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1 Introduction

Currently, UML version 1.3 is defined a collection of UML meta-models (a def-
inition of UML in a subset of itself). Each meta-model describes the structure
of part of the language and provides a collection of well-formedness constraints.
The semantics of the language are given as informal text. The definition is un-
satisfactory because it is partial, unstructured and introduces questions relating
to the soundness of such a meta-circular language definition.

Under the auspices of the precise UML (pUML) group we have proposed a
re-structuring and semantic definition of the current version of UML (1.3) [5].
This work aims to provide a modular definition of the semantics that can support,
a wide variety of profiles. There are number of components to this definition:
a kernel library, which provides a collection of modelling concepts essential to
the building of UML profiles, an extension mechanism for constructing profiles
as extensions of the kernel library or other profiles, and a constraint language
for expressing invariant properties of UML models. It is intended that once
completed, the kernel and associated domain specific profiles will provide a
standard reference library for the UML.

In order to re-architect the UML we intend to perform the following:

e Define a Meta-Modelling Sub-Language (MMSL) and use it to define
UML. The MMSL is essentially a replacement for the MOF.

e Define a profile mechanism that allows UML to be constructed from se-
mantically rich packages.

e Define a semantics for the MMSL and OCL.
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One of the key features of this approach is the notion of a profile. The current
UML 1.3 definition suffers from being syntax-bound and semantics-free. OCL is
used to express syntactic well-formedness constraints on UML models. However,
there is no way of determining what a model means. Profiles are a way of
defining model components in terms of both syntax and semantics. This paper
aims to describe the concept of profile by an example. The paper is structured
as follows: section 2 describes key issues that must be addressed in order to
re-architect UML 1.3; section 3 defines an architecture for re-structuring UML;
section 4 defines the term profile as used in our approach; section 5 defines
a profile that provides examples each of the key components of the approach;
finally, section 6 discusses issues of the approach and describes current and
future work.

2 Limitations of UML 1.3

2.1 Semantic Foundation

To define a language requires (at least) an abstract syntax, a semantics domain
and a relationship between the two to be defined (see [2] for more details). In
the current UML semantics document, the abstract syntax is defined using a
meta-model approach (class diagrams + OCL constraints), the semantics do-
main is given in natural language as is the relationship between the syntax and
semantics. Thus the semantics document is not a precise or formal description
of the language. Such a description is required in order to facilitate: analysis;
tool construction; modularity and composition; language extension; rigorous
proof; and detailed comparison with other approaches.

Our approach uses the MMSL to define profiles. The MMSL has a meta-
circular definition and an external semantics using an object calculus [8]. The
object calculus is hidden; its existence is essential in order to resolve fundamental
semantic issues.

2.2 Multiple Modelling Languages

The current version of UML provides a large number of modelling facilities.
Because of this, there is a danger of becoming overloaded with too many con-
cepts, many of which are not widely used except in very specific circumstances.
For example, the definition of class diagrams (static model elements) supports
a wide variety of facilities for expressing constraints. In practice, these facilities
are rarely used, or may be used inappropriately.

In practice, it is very important to be able to construct different semantic
definitions for specific modelling domains. Some examples that have already
been proposed for UML are: real-time, business and networking domains, among
others. This has led to the notion of a UML profile[3]: a semantics definition
which is specifically aimed at supporting a single modelling domain.



In order to re-architect the UML we require extension mechanisms for con-
structing profiles from pre-existing ones, thus enabling profile reuse. For exam-
ple, it should be possible to have a core or kernel profile (introducing common
UML semantic concepts: classes, associations, operations, etc.), then for each
profile to import from the core, adding further concepts and placing restrictions
on the use of imported concepts.

2.3 Syntactic Limitations

The UML 1.3 definition assumes that all concrete syntax has been transformed
into abstract syntax structures such as those manipulated internally by tools.
Whilst this approach is acceptable if the mapping from concrete syntax to ab-
stract syntax is one-to-one, this may not always be the case. In the proposed
profiling approach we define a simple MMSL and treat many aspects of UML
concrete syntax as sugar. This raises the issue of how to define a mapping
between concrete and abstract syntax. A corollary is the issue of alternative
syntaxes for UML. Two examples where alternative syntaxes are desirable: ap-
plication domain specific patterns; and providing graphical notations for OCL.

2.4 Constraint Language

OCL is currently used to define well-formedness constraints in UML 1.3. Our
approach views OCL as a fundamental component of the definition of UML.
UML is constructed by composing profiles. Each profile is a collection of classes
whose instances are constrained using OCL expressions. OCL is therefore a
mechanism for expressing both syntactic properties (i.e. well-formedness) and
semantic properties.

We make one simple but powerful extension to OCL. The current definition
of OCL is weighted towards its use in defining invariants, operation pre- and
post-conditions and guards on state transitions. To determine whether any given
OCL expression is satisfied requires a context containing information such as
the values of free variables. The context is implicit in the current definition of
OCL. We extend this by allowing OCL expressions to have explicit contexts;
essentially this is achieved by allowing parameterisation over OCL expressions,
turning OCL expressions into functions from a number of values to true or
false.

This extension allows users much greater freedom over where they place
OCL expressions. It is essential to allow OCL to be used to its full potential in
meta-models.

3 An Architecture for UML Semantics

This section briefly summarises recent work done to provide a semantics archi-
tecture for UML, which supports the precise definition of UML profiles. This
work was presented as a response to the OMG’s request for information (RFT)
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Figure 1: Profile architecture

regarding the next major release of UML (version 2.0) by the precise UML group
[5].

The semantics architecture presented in [5] is based upon the use of meta-
modelling to provide a precise denotational description of UML concepts. The
definition is structured into packages, based on a kernel library of language
definition tools and components. A profile is a definition of a language that
may specialise and/or extend other profiles, and incorporate components from
the kernel library. Figure 1, shows the general architecture.

The kernel library consists of a number of basic packages containing funda-
mental UML concepts. These include:

Static basics - generalised constructs for modelling the static properties of
systems.

Constraint basics - constructs relating to the expression of constraints.
Dynamic basics - constructs for modelling the behaviour of systems.

Model management basics - general mechanisms for extending and spe-
cialising the components of the language.

As shown, profiles are extensions of these basic packages. An extension
mechanism, similar to that proposed in the Catalysis method [6] is used to copy
elements from one package into another, whilst also permitting extension of
their features.

Each profile is organised into abstract syntax, semantics domain and a sat-
isfaction/denotation relationship between the two (see Figure 2). Both abstract
syntax and semantics domain may have many concrete representations.

The definition of UML using profiles is underway. Our aims are to con-
tribute to the UML 2.0 revision process to produce a modelling notation that
is manageable, extensible and semantics-rich. Profiles are the building blocks



Abstract Semantics
Syntax
\ s
\ 7/
ﬁ 7/
Denotational
Mapping

Figure 2: Profile semantics

of the approach. The rest of this paper gives the step by step construction of
a simple profile. The example UML diagrams have been constructed using the
Argo/UML tool [7].

4 Profiles

A profile defines a language in terms of its syntax and semantics. Both the
syntax and semantics are described using the Meta-Modelling Sub-Language
which is the fundamental core language for UML. The syntaz of a language
defines the components used to construct phrases in the domain of discourse.
For example, if UML is the domain of discourse then phrases are composed from
classes, objects and messages. If e-commerce is the domain of discourse then we
may talk about web-pages, input-fields and data validation.

The syntax of a language provides a weak modelling notation. We can
use OCL to describe well-formed-ness constraints on the syntax. These con-
straints are essentially meaningless and cannot be validated since each syntactic
phrase exists in a semantic vacuum. Modelling is strengthened by associating
each syntactic phrase with meaning. Meaning is the semantics of a language,
usually consisting of a collection of objects whose properties are simple and
well-understood.

A UML profile consists of three essential components: a model of the syntax;
a model of the semantics; a relationship between well-formed syntax phrases
and objects in the semantic domain. Each component is defined using the
MMSL which consists of classes, associations, inheritance and OCL. A profile
is therefore:

¢ A model of the syntax domain given as a class diagram and well-formedness
constraints in OCL.

e A model of the semantic domain given as a class diagram and well-
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Figure 3: Meta Model for Profile

formedness constraints in OCL.

e A semantic mapping that defines relationships between components of
the syntax and semantic models. OCL is used to define constraints on the
relationships.

Figure 3 shows a definition of the class Profile as part of the MMSL.
A Classifier is a description of a category of data values. All profiles are
classifiers; they define a relationship between syntactic objects and semantic
objects, or models. Objects classified by a profile are defined to be those objects
classified by the semantic mapping of the profile.

Profile is defined as a class with super-class Classifier. The associations
syntax and semantics define the classes that are used to represent the syntactic
and semantic objects in the profile. A profile is associated via relation to a
collection of binary association classes. Each class holds between a syntax class
and a semantics class:

Profile

relation->forall(r |
syntax.includes(r.associationEnd[1].type) and
semantics.includes(r.associationEnd[2].type)

Invariants placed on the values of relation define the classification constraints
for the profile. Typically there will be a single semantics class and a relation



between it and each syntax class. If the relation is total and many to one then
this constitutes a semantic function in the sense of denotational semantics.
Our approach re-architects the UML using profiles. Example profiles are:

e The static profile whose syntax is class diagrams and whose semantics is
objects with slots. The semantic mapping ensures that objects have slots
corresponding to the associations defined by the classes.

e The OCL profile whose syntax is OCL and whose semantics is the two
element value domain containing true and false. The semantic mapping
evaluates the OCL expressions producing the outcome true or false.

e The interaction profile whose syntax is interaction diagrams and whose
semantics is traces of messages between objects. The semantic mapping
will make particular choices of ordering and alternative interactions.

Since profiles encode the semantics of a modelling language they may be used
to check the equivalence of two or more profile instances. This technique can
be used to establish the rumoured equivalence of collaboration diagrams and
sequence diagrams.

5 Example Profile

Profiles may be used to define UML or to define application specific languages
and their semantics. This section constructs a simple example profile from the
domain of web commerce. The essential features of the ECommerce profile are:

e The syntactic domain is a language for expressing web pages supporting
text and user input.

e The semantic domain denotes executions of a machine that records user
input and modifies a collection of customer accounts.

e The relationships between syntax and semantics link ‘evaluations’ of the
web page in terms of user interactions with the corresponding changes in
customer accounts.

5.1 Syntax Domain

Figure 4 defines the classes in the syntax domain of the ECommerce profile. Each
class represents a web page. WebPage is an abstract super-class. Text contains
the text that appears on a web page. Seq composes two web pages together;
sophisticated displays are not modelled: web pages occur in sequence, users
access first and then press a next button to proceed to second. InputBox
is an area for user input. An input box is labelled and has two conditions (see
below). Cond is a conditional component it has a guard and two components.
If the guard is true (see below) then the page displayed is described by conseq
otherwise alt is displayed.
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Figure 4: Syntax for ECommerce Profile

Conditions are used to control the consequences of user input in a conditional
web page. In both cases, the conditions are expressed using parameterised OCL.
OCL must be evaluated in a context. The context of OCL is implicit in the
case where OCL is used to express class invariants, pre- and post-conditions
and guards on state transitions. Parameterised OCL allows the context to
be explicit, the values for the parameters are supplied by applying the OCL
expression to a value.

The pre-condition of an input box is parameterised with respect to the pre-
state and a value string. The pre-condition must be true with respect to the
current (pre-) state of the system and the current input value in order for the
web-page to allow the operator to proceed. The post-condition of an input
box is parameterised with respect to the pre- and post-state of the system.
The post-condition will usually specify a state change in terms of the pre-state
values.

Syntax domains typically have well-formedness constraints. An example
constraint for a web page is that all of the input box labels must be different.
Well-formedness constraints are defined using OCL. Firstly, we constrain each
of the syntactic domain classes to be associated with a set of labels:

WebPage
labels = Set{}



InputBox
labels
Seq

Set{label}

labels = first.labels->union(second.labels)
Cond
labels = conseq.labels->union(alt.labels)

The well-formedness constraint that all labels must be unique on a web page
can be expressed as follows:

Seq
first.labels->intersection(second.labels) = Set{}

5.2 Semantic Domain
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Figure 5: Semantics for ECommerce Profile

Figure 5 defines the classes in the semantic domain of the ECommerce profile.
A Trace is a sequence of Transitions. Each transition has a pre-state and a
post-state. A State is a collection of Bindings and information on customer
Accounts.

Objects in the semantic domain are historical records of single user inter-
actions with a web page that controls an interface to a collection of customer
accounts. Each transition occurs in response to a user input. Each user input is
recorded as a binding in the state environment. Typically a user input will cause



the environment to be extended and possibly cause a change to the current state
of the customer accounts.

A semantic domain has well-formedness constraints. These are expressed
using OCL. For example, the start and end transitions of any trace must be
part of the trace:

Trace
transitions->exists(t | t.pre = start) and
transitions->exists(t | t.post = end)

Any transition which is not at the start of a trace must have a unique preced-
ing transition and any transition which is not at the end must have a unique
succeeding transition:

Trace
transitions->forall(tl |
not(tl.pre = start) implies transitions->exists(t2 |
tl.pre = t2.post and transitions->forall(t3 |
tl.pre = t3.post implies t2 = t3))) and
transitions->forall(tl |
not(tl.post = end) implies transitions->exists(t2 |
tl.post = t2.pre and transitions->forall(t3 |
tl.post = t3.pre implies t2 = t3)))

All the names in the environment of a state must be unique:

State
env->forall (bl |
env->forall (b2 |
bl.name = b2.name implies bl = b2))

Transitions can either leave the current environment alone or may extend it
with a single binding:

Transition
post.env = pre.env or
( post.env->setDifference(pre.env)->size = 1 and
post.env->setDifference(pre.env) .name = label and
post.env->setDifference(pre.env) .value = value)

5.3 Semantic Mapping

Figure 6 shows the semantic mapping from elements of the ECommerce syntax
domain to elements of the ECommerce semantics domain. The mapping consists
of 5 association classes. Each association class represents a relationship between
a different syntax class and instances of the semantic domain class Trace. The
constraints on each association class define a mappings between instances of the
syntax classes and instances of the semantics classes. Each of these constraints
is described in turn.

When a user observes text on a web page there is no change in the underlying
system state. This is recorded in the semantics as being no observable system
transition:

10
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Figure 6: Semantic Mapping for ECommerce Profile

TextTrace
trace.transitions->size = 0 and
trace.start = trace.end

A conditional web page displays one of two alternatives depending on the out-
come of a test. A conditional trace therefore has an extra sub-trace recording
whether the consequent or alternative web page was displayed:

CondTrace
webPage.guard (trace.start) implies
chosen.webPage = webPage.conseq and
trace = chosen.trace and
not (webPage.guard (trace.start)) implies
chosen.webPage = webPage.alt and
trace = chosen.trace

The invariant on CondTrace provides an example of a parameterised OCL ex-
pression. The expression webPage.guard is parameterised with respect to a
state. An example guard that checks for no accounts is:

fun(s:State) = s.accounts->size = 0

A sequence of web pages is defined to be the concatenation of two sub-traces
recorded as the first and second attributes of an instance of SeqTrace:

SeqTrace

11



first.webPage = webPage.first and
second.webPage = second.first and
first.trace.last = second.trace.first and
trace.start = first.trace.start and
trace.end = second.trace.end and
trace.transitions = first.trace.transitions->
union(second.trace.transitions)

An input box is the only web page component that performs a state transition.
A state change is performed only when the pre-condition of the input box is
true. If the pre-condition is false then the transition occurs but performs no
state change. Otherwise the state change must satisfy the post-condition of the
input box and the transition records the input data by adding it to the state
environment.

InputBoxTrace
let binding = trace.end.env->setDifference(trace.start.env)
in trace.transitions->size = 1 and
trace.transitions.label = webPage.label and
webPage.pre(trace.start,trace.transitions.value) implies
(binding.name = webPage.label and
binding.value = trace.transitions.value and
webPage.post (trace.start,trace.end)) and
not (webPage.pre(trace.start,trace.transitions.value)) implies
trace.start = trace.end

5.4 Example Model

Consider a web page that is a single input box b labelled with name. The idea
is that the operator can type in their name and this will create a new account
for them if one does not already exist. The input will always succeed so the
precondition on the input box is true:

b.pre = fun(s:State,n:String) = true

The post-condition will only be true for transitions where the account already
existed or has been created:

b.post = fun(pre:State,post:State) =
pre.accounts->exists(a |
a.name = lookup(post.env,"name")) implies
pre.accounts = post.accounts and
not pre.accounts->exists(a |
a.name = lookup(post.env,"name")) implies
let newAccount = post.accounts->setDifference(pre.accounts)
in newAccount->size = 1 and
newAcount.name = lookup(post.env,"name") and
newAccount.orders = Set{}

12



6 Analysis and Current Work

This paper has motivated a requirement for re-architecting the current definition
of UML. It has proposed an approach to this task based on profiles. A profile is
a language definition given in terms of a syntax domain, a semantics domain and
a semantic mapping. Using profiles to define UML leads to a family of modelling
languages each constructed by composing library profiles and introducing new
application specific profiles. The paper has given a simple example of a simple
e-commerce profile.

Re-architecting the UML is a very large task. We believe it is needed because
the current definition (1.3) is not manageable and does not precisely address the
issue of semantics. We intend to show that our approach is viable by defining
the meta-circular MMSL profile and using it to define profiles for representative
sub-components of UML (such as class diagrams).

Our longer-term aim is to provide a reference implementation for the UML.
One manifestation of this would be a tool that could be used to check syntax and
semantic components that are used by other tools. The common interchange
format would be and XMI variant that is based on the MMSL. A semantic
architecture, such as that described in this paper, is a precursor to such a tool.
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