
Algorithms for efficient symbolic detection of faults in context-aware applications

Michele Sama, Franco Raimondi, David Rosenblum, Wolfgang Emmerich
Department of Computer Science

University College London
Gower Street, London, UK

{m.sama,f.raimondi,d.rosenblum,w.emmerich}@cs.ucl.ac.uk

Abstract

Context-aware and adaptive applications running on
mobile devices pose new challenges for the verification
community. Current verification techniques are tailored for
different domains (mostly hardware) and the kind of faults
that are typical of applications running on mobile devices
are difficult (or impossible) to encode using the patterns of
“traditional” verification domains [9].

In this paper we present how techniques similar to the
ones used in symbolic model checking can be applied to
the verification of context-aware and adaptive applications.
More in detail, we show how a model of a context-aware
application can be encoded by means of Ordered Binary
Decision Diagrams and we introduce symbolic algorithms
for the verification of a number of properties.

1 Introduction

The current miniaturization trend of a number of compo-
nents (such as GPS, accelerometers, barometers, Bluetooth
and WiFi interfaces, light sensors and video-cameras, etc.),
together with their optimization in terms of energy con-
sumption, has made it possible to develop portable devices
that can monitor and adapt to the environment in which they
“live”. Thus, for instance, it is now standard to have mo-
bile phones that automatically adjust their brightness to the
available light and many other adaptations can be (and are)
triggered automatically by changes in the context.

Context-Aware Adaptive Applications (CAAAs) are the
software layer responsible for these automatic changes.
Typically, CAAAs read the state of the environment through
a number of input channels, possibly governed by a mid-
dleware, and act on the device to execute the appropriate
adaptation mechanisms [5, 10, 11, 12, 22, 24, 25]. A set of
adaptation rules is usually included in the implementation
of CAAAs to specify their actual behaviour.

The aim of this paper is to detect and identify adaptation
faults that may arise while executing adaptation rules, such
as

• The failure of a rule to trigger in spite of being sup-
posed to do so by the designers.

• The device reaching a deadlock state.

• The device continuously looping around different con-
figurations thus effectively making the device un-
usable.

The large size of the state space and the kind of proper-
ties that need to be verified make this problem challenging.
In this paper we describe how the state space can be ma-
nipulated by means of Ordered Binary Decision Diagrams
(OBDDs [4]) and symbolic techniques similar to the ones
used in symbolic model checking [8] can then be employed
in the verification step. Notice that it would not be possi-
ble to reduce our verification problem to the input problem
of a model checker such as NuSMV [6] or SPIN [16], as
these enable the verification of temporal patterns only (in
the sense of [9]). As a consequence, it would not be pos-
sible to employ these tools for the verification of properties
such as detecting loops and/or cycles.

The rest of the paper is organised as follows: Section 2
compares this work with recent literature. Section 3 intro-
duces OBDDs and notions of symbolic computations. Sec-
tion 5 shows how (the finite-state machine representing) a
CAAA can be translated into OBDDs. An example of a
CAAA is presented in Section 4. The verification algo-
rithms are presented in Section 6. We conclude in Section 7.

2 Related work

Our work is broadly related to existing verification
techniques for context-aware applications, real-time sys-
tems, sequential networks, rule-based adaptation in context-
awareness middleware, and combinatorial models of inputs.

The class of system which we target perform sequential
asynchronous inquiries to multiple sensors obtaining con-
textual information which are use to switch between adap-
tive behaviours. CAAAs extend the concept of context-
awareness [26], in which a system reacts to external in-
puts, by using this reaction to feed adaptive process of self-
modification [17]

Roman et al. provides Mobile extension for the UNITY
notation and proof logic to the verification of mobile sys-
tems [23]. Mobile UNITY mainly focuses on mobility,
while our approach is inspecting adaptations.

Validation of CAAAs has been the target of other re-
searches [20, 28, 29]. However our approach differs from
other techniques because it applies model checking to adap-
tation models, while other works focus on test case selection
and runtime analysis.

The core of our approach is a rule based transition sys-
tem. Traditional techniques for testing rule-based systems
focus on predicate validation and rule chains [3, 13]. Our
analysis considers multiple rules at the same time and de-
tects interferences.

Transition systems and finite state machines (FSM) have
been used extensively to represent and verify properties of
systems in requirements engineering. Heitmeyer et al. use
FSM models to discover inconsistencies in SCR specifica-
tions [15], and Heimdahl and Leveson use FSM models
to discover inconsistencies in RSML specifications [14].
While the classes of inconsistencies that they detect are
characteristic of requirements specifications, the fault pat-
terns that we detect are characteristic of CAAAs.

3 Preliminaries

3.1 Binary Decision Diagrams

Ordered Binary Decision Diagrams have been particu-
larly successful in the last two decades because they of-
fer, on average, a much more compact representation of
Boolean functions with respect to other canonical forms
(e.g., conjunctive/disjunctive normal forms).

A Boolean variable x is a variable whose value is ei-
ther 0 or 1. A Boolean function of n Boolean variables is
a function f : {0, 1}n → {0, 1}. Boolean formulae can be
seen as Boolean functions. For instance, the Boolean for-
mula x1 ∧ (x2 ∨ x3) can be seen as the Boolean function
f(x1, x2, x3) = x1 ∧ (x2 ∨ x3).

A rooted, directed graph G can be associated to every
Boolean function f(x1, . . . , xn) by imposing an ordering
on the variables x1, . . . , xn, and by reducing the graph (in
the sense explained below) [4]. The graph G is called the
Ordered Binary Decision Diagrams of f . For instance,
the reduced graph associated with the Boolean function
f(x1, x2, x3) = x1 ∧ (x2 ∨ x3) is depicted in Figure 1 (b),

1
0

x3

x2

x1

000 0 0 1 1 1

x1

x2 x2

x3 x3 x3 x3

(a) (b)

Figure 1. OBDD example for f = x1∧ (x2∨x3).

by “simplifying” the graph depicted in Figure 1 (a). For-
mally, a graph is reduced by iteratively eliminating the ver-
texes which are the root of two isomorphic subgraphs, and
by merging isomorphic subgraphs. A graph is said to be
reduced if it contains no isomorphic subgraphs and no ver-
texes v and v′ such that the sub-graphs rooted at v and v′

are isomorphic. We assume here that the left child of a ver-
tex corresponds to the choice of the value 0 (i.e., false) for
the variable preceding it, while the right child correspond
to the choice of the value 1 (i.e., true). Thus, the leftmost
path of Figure 1 (a) corresponds to an assignment of 0 to all
variables and, consequently, to the value 0 to the expression
f(x1, x2, x3) = x1 ∧ (x2 ∨ x3).

It is shown in [4] that, given a fixed ordering of the
Boolean variables x1, . . . , xn, the reduced graph of any
Boolean function f : {0, 1}n → {0, 1} is unique (i.e., OB-
DDs are a canonical representation for Boolean functions).

Boolean operators can be applied to Boolean functions;
for instance the disjunction operator ∨ can be applied to
two Boolean functions f1 and f2 to obtain a third Boolean
function f3 = f1 ∨ f2.

3.2 Symbolic computations

The use of OBDDs to represent states and transitions
has been proposed by [21]. The key idea here is to rep-
resent states (and set of states) as Boolean formulae which,
in turn, can be encoded as OBDDs. As an example, con-
sider the set of states S = {S∞,S∈,S3} and the relation
R = {(S∞,S∈), (S∈,S3), (S3,S∞)} (i.e. a simple loop).
Let N = dlog2|S|e; in our example N = 2. Each ele-
ment S ∈ S is associated with a vector of Boolean vari-
ables x = (x1, . . . , xN), i.e., each element of S is associ-
ated with a tuple of {0, 1}N . Each tuple x = (x1, . . . , xN)
is then identified with a Boolean formula, represented by
a conjunction of literals, i.e., a conjunction of variables or

State Boolean vector Boolean formula
S1 (1, 1) x1 ∧ x2

S2 (1, 0) x1 ∧ ¬x2

S3 (0, 1) ¬x1 ∧ x2

Table 1. Example of Boolean encoding.

their negation1. It is assumed that the value 0 in a tuple cor-
responds to a negation. The encoding of the states in our
example is given in Table 1.

Sets of states are encoded by taking the disjunction of the
Boolean formulae encoding the single states. For instance,
the set of states {S1, S3} from the example in Table 1 is
encoded by the Boolean formula f = (x1∧x2)∨(¬x1∧x2).

A new set of “primed” variables (x′1, . . . , x
′
N) is intro-

duced to encode the relation between two states S, S′ ∈ S.
In particular, if SRS ′ holds, then S is encoded using the
non-primed variables, S′ is encoded using the primed vari-
ables, and the relation SRS ′ is expressed as a Boolean for-
mula by taking the conjunction of the encoding for S and
S′. The whole relation R ⊆ S ×S is encoded as a Boolean
formula by taking the disjunction of all the transition steps.
In our example, the transition relation is encoded by the fol-
lowing Boolean formula fR:

fR(x1, x2, x
′
1, x

′
2) = ((x1 ∧ x2) ∧ (x′1 ∧ ¬x′2))∨

((x1 ∧ ¬x2) ∧ (¬x′1 ∧ x′2)) ∨ ((¬x1 ∧ x2) ∧ (x′1 ∧ x′2))

3.3 Modelling CAAAs

We model a CAAAs by means of a set of states S; for
instance, the profile of a mobile phone (e.g., Meeting or Of-
fice) is a possible state, see Section 4. CAAAs evolve from
an initial state Sinitial ∈ S in accordance to a set of adapta-
tion rules. We model adaptation rules by means of a ”tran-
sition” relation R ⊆ S × P × S × A, where P is a set of
Boolean formulae called predicates that can be built start-
ing from a set C of propositional context variables and A is
a set of actions (such as “enable Bluetooth”).

Let R = (S, P, S′, A) be a rule in R. By slight abuse of
notation, we denote by P (S) the result of evaluating the
Boolean expression P in state S: this evaluation is per-
formed by evaluating the propositional context variables in
S and then computing the result when these are substituted
in P . If P (S) evaluates to true, then we say that R becomes
active. Intuitively, this means that whenever S is the current
state and P (S) is true, then the CAAA performs a transition
to S′ and executes A upon entering in S′.

1By slight abuse of notation, the same symbols xi(i ∈ {1, . . . , N})
are used to denote Boolean variables in a vector, and atomic propositions
in logical formulae.

4 A concrete example

In this section we present PhoneAdapter, a typical appli-
cation that can be verified using our approach.

The application uses contextual information to adapt a
phone’s configuration profile. Phone profiles are settings
that determine a phone’s behavior, such as display inten-
sity, ring tone volume, vibration, and Bluetooth discovery.
Instead of requiring users to select a profile manually, the
application is driven by a set of adaptation rules, each of
which specifies a predicate whose satisfaction automatically
triggers the activation of an associated profile. The selected
profile prevails until a more suitable one is chosen through
the triggering of other rules. The rule predicates are ex-
pressed over context readings from Bluetooth and GPS sen-
sors on the phone plus the phone’s internal clock.

PhoneAdapter’s adaptation rules define nine profiles:

1. General: the initial profile (which defines a user-spec-
ified default configuration), and the profile applied by
default when the phone’s sensors are unable to detect
any activity related to one of the remaining profiles;

2. Home: increases the ring tone volume and removes vi-
bration when the user is at home;

3. Office: mutes the ring tone and activates vibration
when the user is in his office;

4. Meeting: mutes the ring tone and disables vibration
when the user is in a meeting;

5. Outdoor: increases the backlight and speaker volume
when the user is outdoors;

6. Jogging: increases the backlight and speaker volume
and also activates vibration when the user is jogging;

7. Driving: connects to the car’s handsfree communica-
tion system when the user is driving;

8. DrivingFast: diverts calls when the user is driving fast;

9. Sync: periodically synchronizes personal information
on the phone with the user’s home or office PC when
the phone is not in use and the PC is discovered via
Bluetooth.

Some profiles are more important than others for safety
or social reasons, so it is possible to sort the rules with a
weak priority order that determines their evaluation order.
In this scenario, high priority is given to rules related to
DrivingFast and Driving, medium priority to rules related
to Meeting, Home, Outdoor, Jogging, and Office, and low
priority to rules related to Sync (since synchronization can
be performed after other activities have been accounted for).

Rule Name Current States New State Full Predicate Simple Predicate
ActivateOutdoor General Outdoor GPS.isValid() and !GPS.location()=home and

!GPS.location()=office
Agps and !Bgps and
!Cgps

DeactivateOutdoor Outdoor General !ActivateOutdoor !(Agps and !Bgps and
!Cgps

ActivateJogging Outdoor Jogging GPS.isValid() and GPS.speed()>5 Agps and Dgps

DeactivateJogging Jogging Outdoor !ActivateJogging !(Agps and Dgps)
ActivateDriving General, Home,

Office, Outdoor
Driving BT=car handsfree Abt

DeactivateDriving Driving General !ActivateDriving !Abt

ActivateDrivingFast Driving DrivingFast GPS.isValid() and GPS.speed()>70 Agps and Egps

DeactivateDrivingFast DrivingFast Driving !ActivateDrivingFast !(Agps and Egps)
ActivateHome General Home BT=home pc or (GPS.isValid() and

GPS.location()=home)
Bbt or (Agps and Bgps)

DeactivateHome Home General !ActivateHome !(Bbt or (Agps and
Bgps))

ActivateOffice General Office BT=office pc or BT=office pc * or (GPS.isValid()
and GPS.location()=office)

Cbt or Dbt or (Agps

and Cgps)
DeactivateOffice Office General !ActivateOffice !(Cbt or Dbt or (Agps

and Cgps))
ActivateMeeting Office Meeting Time>=meeting start and BT.count()>=3 At and Ebt

DeactivateMeeting Meeting Office Time>=meeting end Bt

ActivateSync General Sync BT=home pc or BT=office pc Bbt or Cbt

DeactivateSync Sync General !ActivateSync !(Bbt or Cbt)

Table 2. Adaptation Rules of PhoneAdapter

Table 2 presents the set of adaptation rules we defined for
PhoneAdapter. For convenience, the table depicts names
we use later in the text to refer to specific rules, and it de-
picts rule predicates both in their simplified form expressed
over propositional context variables, and in their fully ex-
panded form expressed over sensed context variables. In
some cases a rule name is used in place of a full predicate,
meaning that the full predicate is the same as that of the
named rule.2 Also, the table does not show the actions of
rules, since they play no role in our example.

As shown in the table, PhoneAdapter adapts between
nine different states according to 19 different rules ex-
pressed over three different sensed context variables,
namely BT (Bluetooth), GPS (or other form of location
such as AGPS, based on cell id, or using WiFi map-
ping) and Time, which are monitored via 12 proposi-
tional context variables representing the 12 different rela-
tional expressions in which the sensed context variables
are used. For example, one such relational expression
is GPS.location()=home, which tests whether the location
sensed by the phone’s GPS sensor corresponds to the user’s
home location (stored in variable home). This relational ex-
pression is represented throughout the rules by the proposi-
tional context variable Bgps.

Figure 2 depicts the (labelled) transition system associ-
ated with the adaptation rules of PhoneAdapter, with state
General being its initial state.

2Note that according to our definitions ofR and M , the row named Ac-
tivateDriving in Table 2 actually represents four different rules, each being
active in a different state; however, because the predicates and priorities of
those rules are identical, we represent them in the table with a single rule
name for simplicity.

Figure 2. The transition system for
PhoneAdapter.

5 Encoding a CAAA using OBDDs

In this section we show how a CAAA can be encoded us-
ing OBDDs, using a technique similar to the one presented
in Section 3.

The number of Boolean variables required to encode
states of S is N = dlog2|S|e; for instance, for the exam-
ple in the previous section N = dlog2|9|e = 4. Let v be
the vector of N Boolean variables encoding S; in addition,

we introduce N more variables to encode the “destination”
state in a transition by means of a vector v′ = (v1, . . . , vN).
We also introduce M = |C| variables that represent the truth
value of the Boolean propositional context variables (in the
example presented in the previous section there are 12 such
variables) encoded by the Boolean vector c = (c1, . . . , cM).
Finally, we introduce O = dlog2|A|e variables to encode
actions.

The representation above allows for the encoding of
rules inR: let R = (S, P, S′, A) be a rule inR. Its Boolean
representation is given by v ∧ P (S) ∧ v′ ∧ a, where v and
v′ are, respectively, the Boolean representation of states S
and S′, P (S) is a Boolean formula representing the predi-
cate P in which the appropriate variables from C have been
substituted, and a is the Boolean encoding for the action
A. For instance, if S is represented by the Boolean vec-
tor (1, 1, 1, 1), S′ by the Boolean vector (1, 1, 1, 0), P (S)
by the Boolean expression c1 ∧ c3 ∧ ¬c6 (these represent
the context variables as they are used in P (S)), and A by
the Boolean vector (1, 0), then R is the following Boolean
expression:

(v1∧v2∧v3∧v4)∧(v′1∧v′2∧v′3∧¬v′4)∧(c1∧c3∧¬c6)∧(a1∧¬a2)

The set of rules R is encoded by a Boolean formula as
well by taking the disjunction of all the rules Ri ∈ R, i.e.:

R =
∨

Ri∈R
Ri

All the Boolean formulae mentioned here can be repre-
sented by means of OBDDs thus providing a compact rep-
resentation and enabling symbolic computations. In par-
ticular, given the Boolean formula R encoding rules, we
compute the set of states reachable from the initial state by
means of Algorithm 1. In the following, we use the notation
from [27], which provides a C/C++ library for the efficient
manipulation of OBDDs (notice that BDD and OBDD are
synonyms in this library).

The set of states reachable from Sinit is needed for the
verification algorithms presented in the next section. This
set is obtained using Algorithm 1; the idea here is to com-
pute iteratively the set of reachable states by starting from
the set of initial states (line 1), then computing a transition
step (line 8) and repeating until there is no change (i.e. a
fix-point has been reached). The function “exists(v,next)”
is used to quantify a vector of Boolean variables in a
BDD. Formally, given a Boolean function f(x1, . . . , xn),
the operation ∃xi.f(x1, . . . , xn) is defined as the appli-
cation of the disjunction operator to the composition of
f with a constant function, i.e., ∃xi.f(x1, . . . , xn) =
fxi=0(x1, . . . , xn) ∨ fxi=1(x1, . . . , xn). This definition is
extended to the quantification over a vector by taking the
disjunction of all the possible combinations of truth assign-
ments to the vector. An efficient implementation for this

Algorithm 1 Reachable States
Input: the CAAAs encoded using OBDDs.
Output: reach: reachable states (OBDD).

1: BDD q,reach,next;
2: q = Sinit;
3: reach = bddZero();
4: next = bddZero();
5: while q ! = reach do
6: reach = q;
7: next = q;
8: next = next * R;
9: next = exists(v,next);

10: next = exists(c,next);
11: next = exists(a,next);
12: next = next.swapVariables(v, v′);
13: q = q + next;
14: end while
15: return reach

function is provided by [27]. Notice that the OBDD result-
ing from the quantification over a vector v does not depend
on v, i.e., the OBDD next at line 11 is a function of v′ only
because all the other variables have been quantified. Fi-
nally, line 12 converts a “next” state to a “current” state (i.e.
in terms of v), and next now encodes (as an OBDD) the set
of states reachable with one transition from the set of reach-
able states computed in previous iterations. In line 13 this
set is added to the set of reachable states and the loop is
repeated. The termination of the loop is guaranteed by the
fact that the construction is monotonically increasing and
the set of reachable states is finite.

6 Verification Algorithms

In this section we describe a family of faults which we
name behavioural faults. These are faults caused by errors
in the logic of and in the relationship between rules. We
have identified the following properties that may be vio-
lated:

• Reachability: each state is reachable from the initial
state via some sequence of adaptations.

• Determinism: For each state in a CAAA and each
possible assignment of values to propositional context
variables in that state, there is at most one rule that can
be triggered.

• State Liveness: For each state in a CAAA, if the state
contains any active rules (and thus is not a final state),
then at least one of the active rules has a satisfiable
predicate.

• Rule Liveness: For each state in a CAAA and each
of its active rules, there is at least one assignment of
values to propositional context variables that satisfies
the predicate of the rule.

• Stability: The state of a CAAA is not dependent on the
length of time a propositional context variable holds its
value.

We discuss these properties in detail below and we
present symbolic algorithms for the detection of violations
of these properties, using the example presented in Sec-
tion 4 where needed to clarify the presentation.

6.1 Reachability property

The violation of this property can identify faults at de-
sign level and it is easily verified by comparing the OBDD
for reachable states reach computed by means of Algo-
rithm 1 and the OBDD encoding the set S: if the two OB-
DDs are not (syntactically) equal, then there exists at least
a state of S which is not in reach. The set of states that are
not reachable is encoded by the following OBDD:

unreach = S ∧ (¬reach)

The set of states corresponding to this OBDD (if not empty)
can be printed using a number of utility functions from [27].

6.2 Determinism properties

If the rules of a CAAA violate the determinism prop-
erty we say that the rules contain a non-deterministic activa-
tion. This violation pattern is characterized by the presence
of multiple active rules in the same state whose predicates
can be satisfied the same set of context variables, generating
non-deterministic adaptations.

Algorithm 2 finds the set of predicates that allow for a
transition to two different states from the same starting state,
represented by means of the OBDD faults. This set is com-
puted by iterating over all the states and checking the pred-
icates that are enabled in that state, encoded by means of
the OBDD rules: this latter OBDD is computed by quanti-
fying over actions and “next” states (see lines 3 and 4). For
each predicate in this set the algorithm checks the size of
the BDD encoding the successor state from v (lines 6 and
7). If this is greater than one (line 8), then the definition of
the original CAAA contains two rules that can be satisfied
at the same time in the same state.

6.3 Liveness properties

If the rules of a CAAA violate the Rule Liveness prop-
erty, then the rule contains a dead predicate, i.e., in some

Algorithm 2 Non-determinism detection
Input: the CAAAs encoded using OBDDs.
Output: faults: fault states (OBDD).

1: BDD rules, next
2: for each state v ∈ S do
3: rules = exists(v′,R∧ v);
4: rules = exists(a,rules);
5: for each predicate p ∈ rules do
6: next = p ∧R ∧ v
7: next = exists({a, v, v′},next);
8: if size(next > 1) then
9: faults.add(p);

10: end if
11: end for
12: end for
13: return faults

Algorithm 3 Rule liveness detection
Input: the CAAAs encoded using OBDDs.
Output: faults: fault states (OBDD).

1: BDD rules, next
2: for each state v ∈ S do
3: next = exists({a, c},R∧ v);
4: for each state v′ ∈ next do
5: rules = v ∧R ∧ v′

6: rules = exists({a, v, v′},next);
7: if rules == bddFalse() then
8: faults.add(v, v′);
9: end if

10: end for
11: end for
12: return faults

state there is a predicate which is not satisfiable. Further-
more, if none of the predicates in a state are satisfiable, then
no transition is possible from that state, i.e., the state is a
deadlock state.

Algorithm 3 detects the set of states (current,next) such
that a dead rule exists between them. This is done by it-
erating over the set of states (line 2) and then over the set
of states reachable from each state (line 4): if a predicate
that cannot be satisfied was defined for these two states then
the pair of states is added to a vector of faults. In line 7,
un-satisfiability of a predicate is checked by comparing the
OBDD encoding the predicate to the zero OBDD (i.e., false,
represented by the built-in function “bddFalse()”).

Similarly, Algorithm 4 detects the states in which all the
rules are unsatisfiable: in this case for each state all the en-
able rules are obtained by quantifying over the next states
and actions (line 3). If this set is not satisfiable, the state is
added to the set of faulty state. As above, un-satisfiability is

checked by comparing the OBDD to the zero OBDD.

Algorithm 4 State liveness detection
Input: the CAAAs encoded using OBDDs.
Output: faults: fault states (OBDD).

1: BDD rules, next
2: for each state v ∈ S do
3: rules = exists({a, v, v′},v ∧R);
4: if rules == bddFalse() then
5: faults.add(v, v′);
6: end if
7: end for
8: return faults

6.4 Stability properties

A CAAA suffers from stability problems when a set of
context variables can produce a sequence of adaptations and
when the final state of the sequence may depend on the
length of time with which some context variables hold their
value. In general, we say that the rules of a CAAA contain
an Adaptation Race fault when the rules allow an indefinite
number of adaptation rules to occur. If the adaptations form
a cycle, then we say that the rules contain an Adaptation
Cycle fault.

In general, these pattern of behaviour may not always
be considered faulty; however, they may produce multiple
adaptations which, in the best case, could annoy the user.
Moreover, races can be dangerous because the CAAA will
adapt to the last state of the race if the affected variables
hold their values long enough, but otherwise the final state
could be random.

As an example, consider the states Office and Meet-
ing in Table 2 and the transition rules ActivateMeet-
ing and DeactivateMeeting. In particular, the predicate
Time>=MeetingStart is true for any time greater than
MeetingStart, in particular even after the end of the meet-
ing. Therefore, an adaptation cycle is executed here at the
end of the meeting, when the profile wrongly loops between
Office and Meeting.

Algorithm 5 presents a method to compute the predicates
which trigger adaptations of length greater than 1. First, all
the predicates are extracted from the rules (line 2); for each
predicate, we compute the set from of states from where
a transition is triggered by the predicate and the set to of
states reachable with that predicate (line 4 and 5). We then
take the intersection of these two sets (line 6) and, if it is
not null (line 7), then we found a state (the state to) which
is at the same time a starting and a final state for the same
predicate, i.e., at least an adaptation of length 2 exists for
the predicate.

Algorithm 5 Metastability detection
Input: the CAAAs encoded using OBDDs.
Output: faults: fault predicates (OBDD).

1: BDD rules, from, to
2: rules = exists({a, v, v′},R);
3: for each predicate p ∈ rules do
4: from = exists({{a, v′}, R∧ p);
5: to = exists({{a, v}, R∧ p);
6: overlap = from ∧ to.swapVariables(v, v′);
7: if (overlap) != bddFalse() then
8: faults.add(p);
9: end if

10: end for
11: return faults

Under our assumption, we consider faulty all the adap-
tations requiring more than one transition step but our algo-
rithm could be easily extended to detect cycles only.

7 Discussion and conclusion

In this paper we have presented how CAAAs can be rep-
resented by means of OBDDs and we have introduced in
detail a number of algorithms to verify a set of properties
symbolically: determinism of transitions, liveness proper-
ties, stability of states. Some of these properties cannot
be encoded using traditional temporal patterns in the sense
of [9], therefore traditional model checkers could only be
used to verify part of the properties presented in this pa-
per. In particular, it is not possible to verify that a prop-
erty holds infinitely often in a model by means of tempo-
ral model checkers: this is the reason for the introduction
of fairness conditions outside the model in model checkers
such as NuSMV [6] (see details in [7]). Moreover, most
temporal model checkers do not have the notion of labelled
transitions, and therefore it would not be possible to check
a property such as the Rule liveness property. We are in-
vestigating the applicability of some extensions of temporal
logic with actions [2, 19] to our scenario.

We are currently evaluating our approach using a con-
crete implementation based on [27]. Preliminary experi-
mental results are encouraging and we plan to present a
more detailed evaluation at the workshop.

Various directions are worth exploring starting from the
algorithms presented here: we plan to define an input lan-
guage for CAAAs to define rules and properties, with the
idea of implementing a model checker for CAAAs. In ad-
dition, we plan real-time extensions of our algorithms using
quantitative approaches as in [1, 18].

Acknowledgements

The work described in this paper builds on previous work
with Sebastian Elbaum and Zhimin Wang of the University
of Nebraska-Lincoln.

This work was partially supported by the EPSRC un-
der grant EP/D077273/1 for project UbiVal and by the EU
project PLASTIC. David Rosenblum holds a Wolfson Re-
search Merit Award from the Royal Society.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, April 1994.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-
time temporal logic. Journal of the ACM, 49(5):672–713,
2002.

[3] V. Barr. Applications of rule-base coverage measures to ex-
pert system evaluation. In Proc. National Conference on Ar-
tificial Intelligence and Ninth Innovative Applications of Ar-
tificial Intelligence Conference, pages 411 – 416, July 1997.

[4] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transaction on Computers, 35(8):677–
691, 1986.

[5] L. Capra, W. Emmerich, and C. Mascolo. Carisma: Context-
aware reflective middleware system for mobile applications.
IEEE Transactions on Software Engineering, 29(10):29–
945, October 2003.

[6] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NUSMV2: An open-source tool for symbolic model check-
ing. In Proceedings of the 14th International Conference
on Computer Aided Verification (CAV’02), volume 2404 of
LNCS, pages 359–364. Springer-Verlag, 2002.

[7] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Effi-
cient generation of counterexamples and witnesses in sym-
bolic model checking. Technical report, Pittsburgh, PA,
USA, 1994.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 1999.

[9] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Prop-
erty specification patterns for finite-state verification. In
M. Ardis, editor, Proceedings of the 2nd Workshop on For-
mal Methods in Software Practice (FMSP’98), pages 7–15,
New York, 1998. ACM Press.

[10] P. Fahy and S. Clarke. CASS—Middleware for mobile
context-aware applications. In Proc. MobiSys Workshop on
Context Awareness, pages 304–308, June 2004.

[11] J. Floch. Theory of adaptation. Deliver-
able D2.2, MADAM Project, available from
http://www.ist-music.eu/MUSIC/madam-project/madam-
deliverables/techreportreference.2007-04-13.0451108510,
2006. Last accessed 7 March 2008.

[12] T. Gu, H. K. Pung, and D. Q. Zhang. A middleware for
building context-aware mobile services. In Proc. IEEE Ve-
hicular Technology Conference, pages 2656– 2660, May
2004.

[13] U. G. Gupta. Automatic tools for testing expert systems.
Communications of the ACM, 5:179–184, May 1998.

[14] M. P. Heimdahl and N. G. Leveson. Completeness and
consistency in hierarchical state-based requirements. IEEE
Transactions on Software Engineering, 22(6):363–377, June
1996.

[15] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Auto-
mated consistency checking of requirements specifications.
ACM Transactions on Software Engineering and Methodol-
ogy, 5(3):231–261, 1996.

[16] G. J. Holzmann. The model checker SPIN. IEEE Trans. on
Software Eng., 23(5):279–295, 1997.

[17] iscid. http://www.iscid.org/encyclopedia/adaptive system.
[18] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM:

Probabilistic symbolic model checker. In Computer Perfor-
mance Evaluation / TOOLS, pages 200–204, 2002.

[19] A. Lomuscio and F. Raimondi. Model checking knowl-
edge, strategies, and games in multi-agent systems. In
Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems (AAMAS’06),
pages 161–168, Hakodake, Japan, 2006. ACM Press.

[20] H. Lu, W. K. Chan, and T. H. Tse. Testing context-aware
middleware-centric programs: A data flow approach and an
RFID-based experimentation. In Proc. International Sympo-
sium on Foundations of Software Engineering, pages 242–
252, November 2006.

[21] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[22] A. Ranganathan and R. H. Campbell. A middleware
for context-aware agents in ubiquitous computing environ-
ments. In Proc. ACM/IFIP/USENIX International Middle-
ware Conference, pages 143–161, June 2003.

[23] G.-C. Roman, P. J. McCann, and J. Y. Plun. Mobile UNITY:
Reasoning and specification in mobile computing. ACM
Transactions on Software Engineering and Methodology,
6(3):250 – 282, July 1997.

[24] M. Sama and D. Rosenblum. ContextNotifier.
http://code.google.com/p/contextnotifier/.

[25] M. Sama, D. S. Rosenblum, Z. Wang, and S. Elbaum. Multi-
layer faults in the architectures of mobile, context-aware
adaptive applications: A position paper (Short Paper). In
Proc. ICSE 2008 International Workshop on Software Ar-
chitectures and Mobility, May 2008. Short Paper, to appear.

[26] B. Schilit, N. Adams, and R. Want. Context-aware comput-
ing applications. In IEEE Workshop on Mobile Computing
Systems and Applications, Santa Cruz, CA, US, 1994.

[27] F. Somenzi. CUDD: CU decision diagram package - re-
lease 2.4.1. http://vlsi.colorado.edu/∼fabio/
CUDD/cuddIntro.html, 2005.

[28] T. Tse, S. Yau, W. Chan, H. Lu, and T. Chen. Testing
context-sensitive middleware-based software applications.
In Proc. International Computer Software and Applications
Conference, pages 458–465, September 2004.

[29] Z. Wang, S. Elbaum, and D. S. Rosenblum. Automated
generation of context-aware tests. In Proc. International
Conference on Software Engineering, pages 406–415, May
2007.

