EFFECTS OF INTER-LIMB ASYMMETRIES ON PHYSICAL AND 1 **SPORTS PERFORMANCE: A SYSTEMATIC REVIEW** 2 3 AUTHORS 4 Chris Bishop¹ (MSc, ASCC), Anthony Turner¹ (PhD, ASCC, CSCS*D) and Paul Read² 5 (PhD, ASCC, CSCS*D) 6 7 8 AFFILIATIONS 9 10 1. London Sport Institute, Middlesex University, School of Science and Technology, London, UK 11 2. Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports 12 Medicine Hospital, Doha, Qatar 13 14 15 **CORRESPONDING AUTHOR** 16 Name: Chris J. Bishop 17

- 18 **Email:** <u>C.Bishop@mdx.ac.uk</u>
- **Telephone No:** +4420 8411 4775
- 20 Address: Middlesex University, Allianz Park, Greenlands Lane, London, NW4 1RL

1 Abstract

The prevalence of inter-limb asymmetries has been reported in numerous studies across a 2 wide range of sports and physical qualities; however, few have analysed their effects on 3 physical and sports performance. A systematic review of the literature was undertaken using 4 the Medline and SPORT Discus databases, with all articles required to meet a specified 5 6 criteria based on a quality review. Eighteen articles met the inclusion criteria, relating 7 participant asymmetry scores to physical and sports performance measures. The findings of 8 this systematic review indicate that inter-limb differences in strength may be detrimental to jumping, kicking and cycling performance. When inter-limb asymmetries are quantified 9 during jumping based exercises, they have been primarily used to examine their association 10 with change of direction speed with mixed findings. Inter-limb asymmetries have also been 11 quantified in anthropometry, sprinting, dynamic balance and sport-specific actions, again 12 13 with inconsistent findings. However, all results have been reported using associative analysis with physical or sport performance metrics with no randomised controlled trials included. 14 15 Further research is warranted to understand the mechanisms that underpin inter-limb 16 differences and the magnitude of performance changes that can be accounted for by these asymmetries. 17

18

19 Key Words: Between-limb differences, imbalances, strength, jumping

- 20
- 21
- 22
- 23

1 **1.0 Introduction**

2 The concept of inter-limb asymmetries compares the performance of one limb in respect to the other and has been widely investigated in the available literature (Keeley et al., 2011). 3 4 Numerous classifications of quantifying these inter-limb differences have been established including dominant vs. non-dominant (Rouissi et al., 2016; Stephens et al., 2007; Newton et 5 al., 2006), stronger vs. weaker (Sato and Heise, 2012; Impellizzeri et al., 2007), right vs. left 6 (Atkins et al., 2016; Zifchock et al., 2008) and injured vs. non-injured (Rohman et al., 2015; 7 Ardern et al., 2011; Grindem et al., 2011; Greenberger and Paterno, 1995; Barber et al., 1990) 8 limbs. The wide range of classifications has meant that no uniform method of quantifying 9 10 inter-limb differences exists to date, with the exception of reporting these asymmetries as a percentage difference from one limb in respect to the other; thus, this review will discuss 11 asymmetries in this context also. 12

Within the literature, a stronger focus surrounding injury risk and occurrence appears to have 13 14 been investigated when compared to physical or sports performance. Previous research has 15 highlighted that both athlete and non-athlete populations who exhibit inter-limb asymmetries > 15% have been associated with increased injury incidence when compared to groups who 16 17 score below this threshold (Grindem et al., 2011; Impellizzeri et al., 2007; Barber et al., 1990). Athletes who have suffered anterior cruciate ligament (ACL) injuries have been a 18 popular stream of investigation (Jordan et al., 2014; Logerstedt et al., 2012; Grindem et al., 19 2011; Reid et al., 2007; Noyes et al., 1991; Barber et al., 1990), and a variety of hop tests 20 have proven valid and reliable measures of quantifying inter-limb differences between the 21 injured and non-injured limb (Ross et al., 2002; Reid et al., 2007; Rohman et al., 2015). 22 Consequently, asymmetries of < 10% has been proposed as the target for patient discharge 23 when athletes are returning to sport (Kyritsis et al., 2016; Rohman et al., 2015), although it 24 25 should be noted that this is an arbitrary threshold. That said, increased symmetry could be

considered as a marker of successful rehabilitation, and increase confidence in the athlete and
 clinician that a safe and effective return to sport is possible.

However, the role of inter-limb asymmetries and their effects on physical or sports 3 performance is less well known. Previous studies have identified the presence of inter-limb 4 differences in a range of populations (Atkins et al., 2016; Ceroni et al., 2012; Impellizzeri et 5 al. 2007; Maloney at al., 2016; Rohman et al., 2015), and a variety of sports such as sprinting 6 (Meyers et al., 2017; Exell et al., 2016; Rumpf et al., 2014), kickboxing (Stanton et al., 2015), 7 8 swimming (Evershed et al., 2014), basketball (Schiltz et al., 2009), and rowing (Buckeridge et al., 2012). In addition, some research has examined inter-limb asymmetries across a range 9 10 of physical competencies including strength (Bailey et al., 2015; Bazyler et al., 2014; Sato and Heise, 2012), power (Bell et al., 2014; Benjanuvatra et al., 2013; Hoffman et al., 2007), 11 and leg stiffness (Hobara et al., 2013; Maloney et al., 2015; Maloney et al., 2016). Whilst it is 12 13 logical to assume that minimising these differences is desirable, determining whether this has an actual measurable effect on physical or sport performance still remains unclear. 14

15 Available literature has shown that inter-limb asymmetries ~10% result in reductions in jump height (Bell et al., 2014), and slower change of direction speed times (Hoffman et al., 16 17 2007), indicating that the reduction of these differences may be favourable. However, other studies have shown conflicting results (Bini and Hume, 2015; Lockie et al., 2014). The 18 presence of heightened inter-limb asymmetries would be expected in sporting actions where 19 preferred limb dominance is evident (Schiltz et al., 2009); although limited data are available 20 to support this notion (Hart et al., 2016). Furthermore, inter-limb asymmetries for kinetic and 21 22 kinematic variables may show different values; thus, not all observed side to side differences may be relevant to the performance outcome (Exell et al., 2016; Rannama et al., 2015). By 23 more clearly understanding the effects of inter-limb asymmetries on physical and sports 24

performance, it will provide practitioners with important information for the design of
 targeted testing and training strategies.

Therefore, the primary aim of this systematic review was to examine the available literature relating to inter-limb asymmetries and to critically evaluate their effects on physical and sport-specific performance. In addition, a 'Directions for Future Research' section has been provided offering guidelines on how to further progress and understand the topic of inter-limb asymmetries.

8

9 **2.0 Methods**

10 2.1 Literature Search Methodology

Original and review journal articles were retrieved from electronic searches of Medline and 11 SPORT Discus databases. Figure 1 provides a schematic of the search methodology. The 12 search strategy combined specific terms with the word 'asymmetries' so as to avoid excessive 13 quantities of unrelated articles. These included: 'asymmetries and performance', 14 'asymmetries and strength', 'asymmetries and jumping', 'asymmetries and speed', 15 'asymmetries and changing direction', 'asymmetries and balance', 'asymmetries and 16 running', and 'asymmetries and sport'. Additional searches were subsequently conducted in 17 Google Scholar if full-text articles were not fully available; these allowed for articles to be 18 found on ResearchGateTM if they were unavailable through the aforementioned search 19 engines. Finally, using the full-text articles, reference lists were checked for additional 20 research studies that were deemed suitable and had not been identified using the 21 22 aforementioned methods. Inclusion criteria required studies to have related their asymmetry

- findings to a separate physical or sport performance metric and not just report the prevalence
 of asymmetries in the population sample tested. The final search date was 9 November, 2016.
- 3
- 4

*** INSERT FIGURE 1 ABOUT HERE ***

5

6 2.2 Grading Article Quality

7 A quality review was conducted in line with previous suggestions (Black et al., 2016). Each 8 study was appraised using nine criteria (Table 1) and a scale of 0-2 (where zero equates to 9 'no', one equates to 'maybe' and two equates to 'yes'). The third criteria pertaining to the intervention being described was modified to 'procedures described' because none of the 10 11 asymmetry studies identified in the final analysis included training interventions. Therefore, 12 due to the nature of associated studies with the topic of inter-limb asymmetries and effects on physical or sports performance, only correlational studies were deemed relevant and specific 13 to the title and thus, included in the subsequent analysis. Total scores for each study were 14 15 then converted to a percentage ranging from 0-100% (Tables 2-5). To be sure of an appropriate level of quality, only articles that scored > 75% were considered for the final 16 analysis. 17

18

19

*** INSERT TABLES 1-5 ABOUT HERE ***

20

21 **3.0 Results**

A total of 16,274 articles were initially returned, with each search's results further streamlined by way of journal relevance (a function that can be processed in Medline and SPORT Discus). Articles from any sport related journal were included in the initial filtering process and resulted in a total of 2,621 articles. The number of articles initially returned (and

1 then filtered by journal relevance) is described for each search term below where the reported 2 numbers represent the following: (Database = n [n by sport related journals]). 'Asymmetries and performance' (Medline = 6485 [264]; SPORT Discus = 652 [299]), 'asymmetries and 3 strength' (Medline = 2586 [208]; SPORT Discus = 421 [289]), 'asymmetries and jumping' 4 (Medline = 75 [29]; SPORT Discus = 78 [65]), 'asymmetries and speed' (Medline = 1573 5 [181]; SPORT Discus = 320 [210]), 'asymmetries and changing direction' (Medline = 24 [4]; 6 SPORT Discus = 2 [2]), 'asymmetries and balance' (Medline = 1686 [170]; SPORT Discus = 7 197 [124]), 'asymmetries and running' (Medline = 585 [61]; SPORT Discus = 131 [87]), 8 'asymmetries and sport' (Medline = 433 [200]; SPORT Discus = 1018 [428]). The title and 9 abstracts from these results subsequently identified 93 full text articles for consideration. Of 10 the 18 articles included in the final analysis (see Tables 2-5 for details on study 11 12 methodologies), 3 of these studies focused on asymmetries in strength, 3 examine asymmetries during jumping-based tasks, 7 during sporting actions, and 5 related 13 asymmetries in dynamic balance, anthropometry, and sprinting to physical performance. 14

Furthermore, a wide range of performance outcome measures were employed to demonstrate the effects of inter-limb asymmetries on physical or sports performance (see Tables 2-5). It should be noted that multiple outcome measures are often tested in any one study; thus, some studies are counted more than once in the proceeding statistics. Categories of tests and the number of studies relating to each included: sprinting (5), jumping (4), change of direction speed (4), cycling (3), kicking based tasks (3), swimming (2), and 1 each specific to different track and field events and goalkeepers in soccer.

22

23 4.0 Discussion

1 The aim of this systematic review was to critically evaluate the available literature pertaining 2 to inter-limb asymmetries and critically evaluate their effects on physical and sport 3 performance. Inter-limb differences in strength, dynamic balance, and anthropometry appear 4 to have a detrimental effect on physical performance, whilst the evidence pertaining to 5 jumping-based tasks is less conclusive. Mixed findings were also noted during sport-specific 6 actions indicating that the effects of inter-limb asymmetry on sports performance may be task 7 specific.

8

9 4.1 Asymmetries in Strength

Bailey et al., (2013) reported mean asymmetries during the isometric mid-thigh pull (IMTP) of $6.6 \pm 5.1\%$, and moderate negative correlations between the peak force (PF) symmetry index and jump height (r = -0.39 to -0.52; p < 0.01) and peak power (r = -0.28 to -0.43; p <0.05) during loaded and unloaded jumps. While a large amount of variance remains unexplained, these data provide an indication that asymmetries of a greater magnitude may contribute to reduced jump performance.

16 Asymmetries in strength have also been shown to have a detrimental effect on the performance of sport-specific skills including kicking and cycling. Hart et al., (2014) reported 17 that higher asymmetries had a negative effect on kicking accuracy in Australian Rules 18 19 football players. Athletes were required to kick a ball to an opposing player stood 20m away 20 with accuracy defined as the receiving player remaining stationary, or within an arm's reach with only one step permitted during the catch. Any deviation from these criteria resulted in 21 the kicker being categorised as 'inaccurate'. Strength imbalance was measured via bilateral 22 23 and unilateral isometric squats with the more accurate group of kickers demonstrating -1% difference between limbs (the minus sign indicating the support limb was stronger); whereas, 24 the less accurate group showed inter-limb differences of 8%. The stronger limb in the 25

1 accurate group was the stance limb, which may indicate that a more stable athlete is able to perform unilateral, technical tasks to a higher standard, although further research is warranted 2 3 to fully corroborate this theory. Furthermore, in a group of competitive cyclists, peak torque asymmetries of the knee extensors (at $180^{\circ} \cdot \text{sec}^{-1}$) were negatively correlated (r = -0.50; p < -0.50) 4 0.05) with power output during a 5-second maximal effort cycling test (Rannama et al., 2015). 5 6 Trunk and pelvis kinematic asymmetries were also negatively correlated (r = -0.65 and -0.63respectively; p < 0.01) with power, indicating that imbalances in quadriceps strength and 7 trunk/pelvis joint angles may have a detrimental effect on power during maximal effort 8 9 cycling. Cumulatively, based on the available data, it would appear that there is a negative relationship between inter-limb asymmetries in strength and jumping, kicking and sprint 10 cycling performance. However, when interpreting these findings, caution should be applied 11 12 as the study designs utilised correlational analysis. Further research should aim to quantify how much variance in 'loss of performance' can be attributed to inter-limb asymmetries in 13 strength. 14

15

16 4.2 Asymmetries during Jumping Tasks

17 Conflicting findings were shown in studies measuring the performance effects of inter-limb asymmetries during jumping-based tasks. Lockie et al., (2014) reported varying asymmetry 18 scores for three different jump tests, highlighting the task-specific nature of physical 19 20 performance tests. All jumps were performed unilaterally with inter-limb differences reported for CMJ height (10.4%), broad jump (3.3%), and lateral jump distances (5.1%). No 21 significant correlations were found between asymmetry scores on any of the jumping tasks 22 and sprint (r range = -0.004 to -0.176) or change of direction speed (CODS) tests (r range = <23 0.001 to 0.189), indicating that inter-limb differences of such low magnitudes in these jump 24 tests do not negatively impact sprint or COD performance. 25

1 Research from Hoffman et al., (2007) also showed no significant differences in the 2 time to perform an L-run to the dominant or non-dominant side, in spite of a 9.7% peak 3 power asymmetry between limbs during a single leg countermovement jump (SLCMJ). This 4 was combined with weak correlations between the SLCMJ non-dominant limb and the L-run for both dominant (r = -0.36; p < .05) and non-dominant (r = -0.37; p < .05) directions; and 5 6 no significant relationships when compared with the dominant limb of the SLCMJ. This may be due to the complexity of CODS tasks that require high levels of skill and are underpinned 7 8 by multiple physical qualities (Sheppard and Young, 2006).

9 Maloney et al., (2016) examined the relationship between asymmetries measured during single leg drop jumps and a 90° cutting task. The sample was subsequently divided 10 11 into fast and slow groups, with mean vertical stiffness and jump height asymmetry explaining 63% of the variance in performance during the cutting task ($r^2 = 0.63$; p = 0.001). 12 Additionally, faster athletes portrayed significantly lower asymmetries for jump height (p =13 0.026), but no other drop jump asymmetry variables were statistically significant. Inter-limb 14 15 asymmetries were also calculated for left and right total time during the CODS test, although no significant differences were noted. Considering the sample in this study were not an 16 17 athletic population and with asymmetries being previously suggested to be a product of playing sport over time (Hart et al., 2016), results may be different if an athlete sample was 18 19 tested. These results indicate that minimising differences between limbs during unilateral 20 drop jumping could be advantageous to enhance cutting performance. It is worth noting that Maloney et al., (2016) used the 'median split' technique when reporting results, whereas 21 Hoffman et al., (2007) and Lockie et al., (2014) did not utilise the same process which may 22 23 account for some of the variation seen in the results.

24

25 4.3 Sport-Specific Asymmetries

1 Bini and Hume, (2015) reported large inter-limb asymmetries for the resultant force (11-21%; p < 0.01) and effective force (36-54%; p < 0.01) in 10 competitive cyclists, with the latter 2 3 being described as the angular impulse of the tangential force on the crank. A strong 4 correlation (r = -0.72) was reported between asymmetries and effective force, whilst no association was observed for resultant force. These findings indicate that cyclists who 5 6 displayed larger asymmetries in effective force may actually perform faster during a 4-km time trial. Individual asymmetries for pedal force varied across the sample, although no 7 reason was identified as to why larger asymmetries corresponded to enhanced cycling 8 9 performance (Bini and Hume, 2015). These results are unexpected as intuitively, larger asymmetries should be associated with reductions in performance; however, this may not be 10 11 as important in a sport such as cycling where total power output is likely to result in superior 12 performance.

Liu and Jensen, (2012) calculated cycling asymmetries by comparing the average 13 angular velocity of a cycle ergometer's crank at 90° and 270° for the right and left limb's 14 15 respectively. Asymmetries were significantly lower for adults compared to older children (p < 0.01), with younger children showing significantly greater between-limb differences than 16 both groups (p < 0.01). In addition, there were significant positive correlations between 17 asymmetries and the root mean square error (ability to match speed to a specified cadence), 18 19 indicating that as inter-limb differences increased, cycling performance decreased at every 20 cadence (40: r = 0.53; 60: r = 0.56; 80: r = 0.56; 100: r = 0.40 and 120: r = 0.72). In addition, asymmetries decreased as cadence increased, suggesting that slower speeds may require 21 greater control with a more natural, cyclical motion favouring a faster cadence (Liu and 22 23 Jensen, 2012).

Conflicting findings regarding the effects of asymmetry on swimming performance
have also been reported. Dos Santos et al., (2013) analysed asymmetries during front crawl

1 tethered (stationary) swimming reporting inter-limb differences for peak and mean force at different time points (beginning: 5-15s; middle: 55-65s; end: 110-120s) during a 2-minute 2 3 swim. Furthermore, subjects were sub-divided into the fast and slow groups (n = 9 per group) 4 based on their respective best 200m times, with the faster group demonstrating significantly lower peak force (13.32 vs. 18.28%; p = 0.017) and mean force (7.01 vs. 10.08%; p = 0.04) 5 6 asymmetries (Dos Santos et al., 2013). This perhaps indicates that heightened inter-limb 7 differences in force production may be detrimental to swimming performance, with a median 8 split technique again used to report the results. In contrast, Morouco et al., (2015) analysed 9 elite level swimmers using a maximum effort 30-second tethered swim, also dividing the sample into fast and slow groups based on their best 50m front crawl time. A mean 10 11 asymmetry index of 19% (range = 3.3-48.5%) was reported and two-thirds of the sample 12 showed asymmetries > 10%. When performance times were compared between groups, no difference in asymmetry was reported, with the authors concluding that inter-limb 13 asymmetries do not negatively affect short-performance sprint swimming (Morouco et al., 14 15 2015). Interestingly, the conflicting findings between the two studies could be explained by the fact that regardless of swim time, the majority of swimmers in Dos Santos et al's., (2013) 16 17 study exhibited inter-limb differences > 10%. Thus, asymmetry may not have been a decisive factor in deciding the performance outcome for this sample. Despite these results, it is 18 suggested that coaches aim to minimise notable differences between limbs, especially those > 19 20 10%.

More definitive results have been reported for the sport of futsal in professional and amateur populations. Barbieri et al., (2015) analysed asymmetries during different kicking actions using both the dominant and non-dominant limbs. Significant differences in ball velocity (p = 0.001) and kicking accuracy (p = 0.003) were shown between limbs for both stationary and 'rolling ball' kicks, with larger asymmetries present in kicking accuracy (28-

1 40%) than ball velocity (10-11%). Unsurprisingly, the rolling condition increased task 2 complexity, highlighting substantially higher asymmetries for the non-dominant limb. Vieira 3 et al., (2016) also analysed kicking accuracy and ball velocity in addition to velocity for the 4 ankle, knee, and hip joints in professional players. Supplementary isokinetic testing also identified significant differences (p < 0.05) in mean power at $180^{\circ} \cdot \sec^{-1}$, resulting in 5 6 significantly higher ankle and ball velocities for the dominant limb. It is not surprising that the non-dominant limb demonstrates reduced kicking performance; however, it provides an 7 8 impression that minimising asymmetries may be beneficial for equalising ball speed on both 9 limbs. What is perhaps more applicable in this instance, is to suggest that players practice shooting using both limbs so that kicking accuracy can be enhanced on the non-dominant side. 10 11 Kicking is most likely more reliant on skill execution than physical measures of performance 12 such as strength and power; thus, there is no guarantee that reduced inter-limb asymmetries will automatically transfer to improved ball accuracy or velocity. 13

The effects of asymmetry on measures of goalkeeping performance have also been 14 15 examined (Spratford et al., 2009). Test set up involved the placement of different footballs at 0.3, 0.9, and 1.5m in height on both the preferred and non-preferred diving side for six elite 16 17 goalkeepers. Subsequent analysis split the dive into three phases: initiation, take-off and ball contact which saw significant differences in various kinematic variables such as pelvis and 18 19 thorax rotation between sides. The most notable outcome was that the non-preferred side 20 experienced less hip extension at take-off and thus, the centre of mass travelled slower and less directly to the ball. It is unclear whether this reduced hip extension on the non-preferred 21 22 side is a product of lower force or power production capabilities. However, it is in the interest 23 of coaches to understand that a goalkeeper likely requires greater practice diving to their nonpreferred side, which may be aided by the reduction of kinetic and kinematic asymmetries. 24

4.4 Asymmetries during Dynamic Balance, Anthropometry, and Sprinting Tasks

2

3 <u>4.4.1 Dynamic Balance</u>

4 Dynamic balance refers to "the ability to move and change directions under various conditions without falling" (Clark et al., 2012). Gonzalo-Skok et al., (2015) used the Y-5 6 Balance test to assess dynamic balance in young elite basketball players from a Spanish Division 1 academy. Composite score asymmetries in addition to those observed in the 7 anterior and postero-medial directions were negatively correlated (r = -0.520 to -0.773; p < -0.773) 8 9 0.05) with CMJ height; a key measure of basketball performance (Fort Vanmeerhaeghe et al., 2016; Read et al., 2014). In addition, dorsiflexion asymmetries (measured during a weight 10 11 bearing lunge test) were negatively correlated (r = -0.523; p < 0.05) with a CODS test 12 involving a 180° turn. Thus, there may be some association between asymmetries in dynamic balance and jump performance with further evidence suggesting that imbalances in ankle 13 range of motion may also negatively affect CODS. It is plausible that more stable athletes (by 14 15 virtue of better balance ability) should be able to exert a more even distribution of force during a jumping action. This is somewhat supported by Jordan et al., (2014) who highlighted 16 the complexity of how inter-limb asymmetries changed from one side to the other during 17 different loading phases of a CMJ, in athletes with prior ACL injuries. Similarly, the 18 19 importance of optimal ankle dorsi-flexion should not be understated during CODS tasks. The 20 action of changing direction requires some element of braking force prior to reapplying force in the desired directional change. Such kinetic forces are suggested to be accompanied by 21 loading through the lower limb joints (flexion of the ankle, knee and hip) in order to 22 successfully 'brake'. Reduced ankle dorsi-flexion is almost certain to have a detrimental 23 knock-on effect further up the kinetic chain; namely, unwanted movement patterns such as 24 knee valgus become a much bigger risk which has been previously reported (Malliaras et al., 25

2006). Therefore, it would appear prudent to both minimise inter-limb differences in dynamic
 balance and optimise ankle range of motion for superior jumping and CODS performance.

3

4 <u>4.4.2 Anthropometry</u>

Further research has also linked asymmetries in lean mass to jumping performance. Bell et al., 5 6 (2014) reported that thigh and shank lean mass asymmetry accounted for 20% of the variance 7 in propulsive force asymmetry and lean mass asymmetry of the pelvis, thigh, and shank 8 accounted for 25% of power asymmetries, during a CMJ. Whilst a large amount of variance 9 remains unexplained by these data, it was also reported that asymmetries in power > 10%during the CMJ resulted in decreased jump height of 9cm (effect size = d > 0.8). Thus, inter-10 11 limb differences in lean mass may be partially responsible for force and power asymmetries 12 and when the effects on jump height are considered, may act as a potential limitation to optimising jump performance. 13

Trivers et al., (2014) assessed anthropometric symmetry in elite Jamaican track and 14 15 field athletes. Knee and ankle width asymmetries were reported to be 10.37 and 4.55% respectively (p < 0.05); with regression analysis showing that asymmetries explained 5% of 16 17 the variation in performance. These data indicate that lower limb symmetry in the ankle and knee joints has a limited effect on the performance of elite track and field athletes. However, 18 19 the authors reported that a trend was evident for more symmetrical athletes to run faster 20 during the 100m. Whilst joint symmetry is likely to be somewhat dictated by athlete genetics, it is feasible that this may offer coaches some useful information pertaining to 'talent 21 identification' of track and field athletes, although more studies would be required to 22 23 corroborate this suggestion, and greater emphasis should be placed on modifiable outcomes.

24

25 <u>4.4.3 Sprinting</u>

1 Recent data have examined asymmetries during maximal sprinting tasks in youth athletes 2 (Meyers et al., 2017). In a sample of 344 school aged boys (age: 11-16), multiple asymmetry metrics were reported inclusive of step length, step frequency, contact time, flight time, 3 4 relative maximum force, and relative vertical/leg stiffness. Mean asymmetries across all age groups and metrics were 2.3-12.6% and weak relationships were shown between the variety 5 6 of asymmetry metrics (step frequency, step length, flight time, and vertical stiffness) and sprint velocity (r = -0.24 to 0.39; p < 0.05). These weak relationships may indicate that sprint 7 8 speed is unlikely to be detrimentally affected, even when inter-limb differences are as high as 9 ~12% in a healthy, youth population. However, it should be considered that no specific details were provided on the sporting backgrounds of the participants; only that they took part 10 11 in 2 x 60-minute physical education classes as part of a school curriculum (Meyers et al., 12 2017). Consequently, any conclusions drawn from this study cannot be inferred to a homogenous, sporting sample of an equivalent or older age. 13

14 Similar results have been noted in adult sprint-trained athletes (Exell et al., 2016); 15 where subjects were required to maximally sprint five trials of 60m. Multiple kinetic and kinematic variables were reported (see Table 5) in respect to inter-limb asymmetries with 16 results correlated to mean sprint velocity. Surprisingly, mean group data reported no 17 significant relationships between kinetic asymmetry, kinematic asymmetry and mean sprint 18 velocity. However, when each individual athlete's asymmetry profile was calculated, 19 20 significant inter-limb differences were noted across a range of kinetic and kinematics variables. All kinematic asymmetry values were < 10%, step characteristics (step velocity, 21 length and frequency) were all < 2%, whilst kinetic asymmetries were substantially larger, 22 23 ranging from 0.1-93.2% (Exell et al., 2016). Despite these results further highlighting how task-specific inter-limb asymmetries can be, it is interesting to note that large kinetic 24 25 asymmetries do not appear to be detrimental to mean sprint velocity in sprint-trained athletes.

2 **5.0 Directions for Future Research**

Due to the paucity of appropriate data, further research is required in a wide range of 3 4 populations to more clearly determine if detrimental effects are shown in a variety of physical and sporting tasks to examine if thresholds exist that are related to performance decrements. 5 Also, the majority of existing research has focused on the measurement of asymmetry at a 6 7 singular time point; thus, limited data are available pertaining to longitudinal changes in 8 asymmetry and their impact on performance. So far, studies have focused on how inter-limb 9 asymmetries change after a 6 to 8 week training intervention (Brown et al., 2017; Gonzalo-Skok et al., 2017; Bazyler et al., 2014; Sannicandro et al., 2014). Training methods have 10 11 taken an integrated approach to correcting inter-limb differences with bilateral and unilateral 12 strength, balance and core training all being used to effectively reduce asymmetries. However, to the authors' knowledge, no study to date has reported how asymmetries change over a 13 longer time period, such as an entire season for team-sport athletes. Fitness testing often 14 15 occurs at multiple time points throughout a year for team sport athletes (pre, mid, and postseason is common) and it should not be assumed that asymmetries reported during pre-season 16 17 would be the same during mid or post-season. Thus, information relating to potential changes over the course of a season may subsequently impact programming for athletes. Therefore, 18 19 when assessing the effects of asymmetry on performance, measured changes over a 20 longitudinal period should be included. In addition, where statistical analysis is concerned, authors should consider regression analysis as a tool to determine how much of a change in 21 performance is accounted for by inter-limb asymmetries. This would provide an indication as 22 23 to whether or not asymmetries are a concept that requires attention from a 'performance reduction' perspective or simply a by-product of playing sport over time (Hart et al., 2016). 24

A further consideration for study designs would be the implementation of randomised controlled trials. Minimal literature has focused on training interventions to reduce asymmetries, especially with the use of a control group (Iacono et al., 2016; Sannicandro et al., 2014). For example, a targeted training intervention that utilised three groups: one that reduced inter-limb asymmetries, a second that exacerbated them and a third acting as a control may provide a clearer picture as to whether reducing between-limb differences are required for optimal physical performance.

The mechanisms or underlying causes of how inter-limb differences occur is another 8 9 area that has not been widely investigated in the current body of literature. For example, while inter-limb asymmetries in power may be related to a reduction in jump height (Bell et 10 11 al., 2014), a deeper understanding of why these differences exist will allow for targeted 12 training interventions to be developed to minimise asymmetry. To support this further, Young 13 et al., (2011) showed that the strategies used in executing a jump were equally as important to monitor as the movement outcome, i.e., the height of the jump itself. Thus, future research 14 15 should investigate the mechanisms that are associated with greater asymmetries during various physical performance tests or sports skills. 16

17 A higher frequency of injuries is also commonly reported during the latter stages of matches for team sport athletes (Ekstrand et al., 2011; Price et al., 2004). Thus, quantifying 18 the effects of fatigue on asymmetries may assist in further understanding mechanisms of 19 20 injury and performance loss during these crucial periods. To the authors' knowledge, only two studies have examined the effects of fatigue on inter-limb asymmetries. Radzak et al., 21 (2017) measured kinetic and kinematic asymmetries during gait in both rested and fatigued 22 23 states. Fatigue was determined when rate of perceived exertion (RPE) was reported ≥ 17 . Subjects were then provided with a 3-minute active recovery before treadmill speed was 24 increased to a velocity that was predicted to elicit 80% VO₂ max. Small (1-6%) reductions in 25

vertical stiffness and loading rate were reported whilst increases in knee internal rotation
(14%) and knee stiffness (5.3%) were also noted in the fatigued state, with the authors noting
that knee joint asymmetries in particular appeared to increase in a fatigued state (Radzak et
al., 2017).

Hodges et al., (2011) used 17 healthy recreational adults to perform 5 sets of 8 5 6 repetitions during a back squat exercise at 90% of their previously determined 8RM. Bilateral 7 vertical ground reaction force asymmetries were calculated form twin force plates with inter-8 limb differences quantified for repetitions 1-2 and 7-8 within each set. Interestingly, average 9 inter-limb asymmetries across all 5 sets was reported to be $4.3 \pm 2.5\%$ for repetitions 1-2 and $3.6 \pm 2.3\%$ for repetitions 7-8, representing no significant differences although it is 10 11 interesting to note that asymmetries actually reduced as more repetitions were performed. 12 However, it should be acknowledged that fatigue was not actually measured in the study, 13 merely inferred from the chosen protocol; thus, future research should aim to quantify fatigue as well where possible. At present, there is a distinct lack of data pertaining to the presence of 14 15 asymmetries under conditions of fatigue and their impact on sports performance; thus, warranting further investigation. 16

17 A final point to consider relates to the quantification of between-limb differences in asymmetric sports. As an example, the sport of Fencing is characterised by repeated bouts of 18 attack by virtue of the 'Fencing lunge'. Athletes often experience large eccentric forces from 19 20 the front limb (as it absorbs force from the lunging action) and higher propulsive forces from the rear limb during the 'push-off' action of the lunge (Turner et al., 2013). The nature of the 21 sport dictates that Fencers will always compete with the same lead limb; thus, inter-limb 22 23 asymmetries are likely to be present. However, to the authors' knowledge, no studies have aimed to quantify inter-limb asymmetries in such athletes and future research should look to 24 25 report this information and assess its impact on sporting performance. In addition, a

comparison between team sport athletes (where unilateral movement patterns occur, but may
 not necessarily be considered as 'asymmetric sports') would also further our understanding
 on this topic.

4

5 **6.0 Conclusion**

6 The cumulative body of literature indicates there is a high prevalence of asymmetry across a range of physical qualities and that inter-limb differences measured across a range of tasks 7 have a detrimental effect on physical and sport performance; however, findings are not 8 9 always consistent. Asymmetries in strength would seem to negatively affect performance tasks including CODS, jumping, and sport-specific skills such as kicking accuracy; 10 11 minimising these differences would appear favourable. For jumping-based asymmetries, the 12 evidence is less conclusive. Single leg vertical and horizontal jumps have shown suitable sensitivity in detecting asymmetries; however, associations with CODS performance are 13 varied. In contrast, asymmetries during single leg tests of reactive strength have shown 14 15 stronger relationships with reductions in CODS performance, whereby faster performers displayed smaller inter-limb asymmetries. Inconsistencies are also apparent during sport-16 specific actions, most notably in cycling and swimming. Additional asymmetry studies 17 pertaining to dynamic balance, anthropometry, and sprinting have also shown mixed results, 18 although there is currently a paucity of data using these measures. The findings of this 19 20 systematic review emphasises the complexity of asymmetries and their relationships with measures of physical and sports performance; highlighting the need for further research. 21

22

23 Compliance with Ethical Standards

Funding – no sources of funding were used to assist in the preparation of this article.

1	Conflicts of interest – the authors declare they have no conflicts of interest relevant to the
2	context of this review.
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1 **References**

2	1.	Ardern, C. L., Webster, K. E., Taylor, N. F., & Feller, J. A. (2011). Return to the
3		preinjury level of competitive sport after anterior cruciate ligament reconstruction
4		surgery. American Journal of Sports Medicine 39, 538-543.
5	2.	Atkins, S. J., Bentley, I., Hurst, H. T., Sinclair, J. K., & Hesketh, C. (2016). The
6		presence of bilateral imbalance of the lower limbs in elite youth soccer players of
7		different ages. Journal of Strength and Conditioning Research 30, 1007-1013.
8	3.	Bailey, C., Sato, K., Alexander, R., Chiang, C-Y., & Stone, M. H. (2013). Isometric
9		force production symmetry and jumping performance in collegiate athletes. Journal of
10		Trainology 2, 1-5.
11	4.	Bailey, C., Sato, K., Burnett, A., & Stone, M. H. (2015). Force-production asymmetry
12		in male and female athletes of differing strength levels. International Journal of
13		Sports Physiology and Performance 10, 504-508.
14	5.	Barber, S. D., Noyes, F. R., Mangine, R. E., McColskey, J. W., & Hartman, W.
15		(1990). Quantitative assessment of functional limitations in normal and anterior
16		cruciate ligament-deficient knees. Clinical Orthopaedics and Related Research 255,
17		204-214.
18	6.	Barbieri, F. A., Gobbi, L. T. B., Santiago, P. R. P., & Cunha, S. A. (2015). Dominant-
19		non-dominant asymmetry of kicking a stationary and rolling ball in a futsal context.
20		Journal of Sports Sciences 33, 1411-1419.
21	7.	Bazyler, C. D., Bailey, C. A., Chiang, C-Y., Sato, K., & Stone, M. H. (2014). The
22		effects of strength training on isometric force production symmetry in recreationally
23		trained males. Journal of Trainology 3, 6-10.

1	8. Bell, D. R., Sanfilippo, J. L., Binkley, N., & Heiderscheit, B. C. (2014). Lean mass
2	asymmetry influences force and power asymmetry during jumping in collegiate
3	athletes. Journal of Strength and Conditioning Research 28, 884-891.
4	9. Benjanuvatra, N., Lay, B. S., Alderson, J. A., & Blanksby, B. A. (2013). Comparison
5	of ground reaction force asymmetry in one- and two-legged countermovement jumps.
6	Journal of Strength and Conditioning Research 27, 2700-2707.
7	10. Bini, R. R., & Hume, P. A. (2015). Relationship between pedal force asymmetry and
8	performance in cycling time trial. Journal of Sports Medicine and Physical Fitness 55,
9	982-898.
10	11. Black, G. M., Gabbett, T. J., Cole, M. H., & Naughton, G. (2016). Monitoring
11	workload in throwing-dominant sports: A systematic review. Sports Medicine 46,
12	1503-1516.
13	12. Brown, S. R., Feldman, E. R., Cross, M. R., Helms, E. R., Marrier, B., Samozino, P.,
14	& Morin, J-B. (2017). The potential for a targeted strength training programme to
15	decrease asymmetry and increase performance: A proof of concept in sprinting.
16	International Journal of Sports Physiology and Performance DOI:
17	https://doi.org/10.1123/ijspp.2016-0590
18	13. Buckeridge, E., Hislop, S., Bull, A., & McGregor, A. (2012). Kinematic asymmetries
19	of the lower limbs during ergometer rowing. Medicine and Science in Sports and
20	Exercise 44, 2147-2153.
21	14. Ceroni, D., Martin, X. E., Delhumeau, C., & Farpour-Lambert, N. J. (2012). Bilateral
22	and gender differences during single-legged vertical jump performance in healthy
23	teenagers. Journal of Strength and Conditioning Research 26, 452-457.
24	15. Clark, M. A., Lucett, S. C., & Sutton, B. G. (2012). NASM Essential of Personal
25	Fitness Training. Lippincott Williams & Wilkins, Chapter 10: pp. 231-252.

1	16. Dos Santos, K. B., Pereira, G., Papoti, M., Bento, P. C. B., & Rodacki, A. (2013).
2	Propulsive force asymmetry during tethered-swimming. International Journal of
3	Sports Medicine 34, 606-611.
4	17. Ekstrand, J., Hagglund, M., & Walden, M. (2011). Epidemiology of muscle injuries in
5	professional football (soccer). American Journal of Sports Medicine 39, 1226-1232.
6	18. Evershed, J., Burkett, B., & Mellifont, R. (2014). Musculoskeletal screening to detect
7	asymmetry in swimming. Physical Therapy in Sport 15, 33-38.
8	19. Exell, T., Irwin, G., Gittoes, M., & Kerwin, D. (2016). Strength and performance
9	asymmetry during maximal velocity sprint running. Scandinavian Journal of
10	Medicine and Science in Sports doi: 10.1111/sms.12759
11	20. Fort-Vanmeerhaeghe, A., Gual, G., Romero-Rodriguez, D., & Unnitha, V. (2016).
12	Lower limb neuromuscular asymmetry in volleyball and basketball players. Journal
13	of Human Kinetics 50, 135-143.
14	21. Gonzalo-Skok, O., Serna, J., Rhea, M. R., & Marin, P. J. (2015). Relationships
15	between functional movement tests and performance tests in young elite male
16	basketball players. International Journal of Sports Physical Therapy 10, 628-638.
17	22. Gonzalo-Skok, O., Tous-Fajardo, J., Suarez-Arrones, L., Arjol-Serrano, J. L., Casajus,
18	J. A., & Mendez-Villanueva, A. (2017). Single-leg power output and between-limbs
19	imbalances in team-sport players: Unilateral versus bilateral combined resistance
20	training. International Journal of Sports Physiology and Performance 12, 106-114.
21	23. Greenberger, H. B., & Paterno, M. V. (1995). Relationship of knee extensor strength
22	and hopping test performance in the assessment of lower extremity function. Journal
23	of Orthopaedic Sports Physical Therapy 22, 202-206.
24	24. Grindem, H., Logerstedt, D., Eitzen, I., Moksnes, H., Axe, M. J., Snyder-Mackler, L.,
25	Engebretsen, E., & Risberg, M. (2011). Single-legged hop tests as predictors of self-

1	reported knee function in nonoperatively treated individuals with anterior cruciate
2	ligament injury. American Journal of Sports Medicine 39, 2347-2354.
3	25. Hart, N. H., Nimphius, S., Spiteri, T., & Newton, R. U. (2014). Leg strength and lean
4	mass symmetry influences kicking performance in Australian Football. Journal of
5	Sports Science and Medicine 13, 157-165.
6	26. Hart, N. H., Nimphius, S., Weber, J., Spiteri, T., Rantalainen, T., Dobbin, M., &
7	Newton, R. U. (2016). Musculoskeletal asymmetry in football athletes: A product of
8	limb function over time. Medicine in Science and Sports and Exercise 48, 1379-1387.
9	27. Hobara, H., Inoue, K., & Kanosue, K. (2013). Effect of hopping frequency on
10	bilateral differences in leg stiffness. Journal of Applied Biomechanics 29, 55-60.
11	28. Hodges, S. J., Patrick, R. J., & Reiser II, R. F. (2011). Effects of fatigue on bilateral
12	ground reaction force asymmetries during the squat exercise. Journal of Strength and
13	Conditioning Research 25, 3107-3117.
14	29. Hoffman, J. R., Ratamess, N. A., Klatt, M., Faigenbaum, A. D., & Kang, J. (2007).
15	Do bilateral power deficits influence direction-specific movement patterns? Research
16	in Sports Medicine 15, 125-132.
17	30. Iacono, A. D., Padulo, J., & Ayalon, M. (2016). Core stability training on lower limb
18	balance strength. Journal of Sports Sciences 34, 671-678.
19	31. Impellizzeri, F. M., Rampinini, E., Maffiuletti, N., & Marcora, S. M. (2007). A
20	vertical jump force test for assessing bilateral strength asymmetry in athletes.
21	Medicine and Science in Sports and Exercise 39, 2044-2050.
22	32. Jordan, M. J., Aagaard, P., & Herzog, W. (2014). Lower limb asymmetry in
23	mechanical muscle function: A comparison between ski racers with and without ACL
24	reconstruction. Scandinavian Journal of Medicine in Science and Sports doi:
25	10.1111/sms.12314.

1	33. Keeley, D. W., Plummer, H. A., & Oliver, G. D. (2011). Predicting asymmetrical
2	lower extremity strength deficits in college-aged men and women using common
3	horizontal and vertical power field tests: A possible screening mechanism. Journal of
4	Strength and Conditioning Research 25, 1632-1637.
5	34. Kyritsis, P., Bahr, R., Landreau, P., Miladi, R., & Witvrouw, E. (2016). Likelihood of
6	ACL graft rupture: not meeting six clinical discharge criteria before return to sport is
7	associated with a four times greater risk of rupture. British Journal of Sports Medicine
8	50, 946-951.
9	35. Liu, T., & Jensen, J. L. (2012). Age-related differences in bilateral asymmetry in
10	cycling performance. Research Quarterly for Exercise and Sport 83, 114-119.
11	36. Lockie, R. G., Callaghan, S. J., Berry, S. P., Cooke, E. R. A., Jordan, C. A., Luczo, T.
12	M., & Jeffriess MD. (2014). Relationship between unilateral jumping ability and
13	asymmetry on multidirectional speed in team-sport athletes. Journal of Strength and
14	Conditioning Research 28, 3557-3566.
15	37. Logerstedt, D., Grindem, H., Lynch, A., Eitzen, I., Engebretsen, L., Risberg, M., Axe,
16	M. J., & Snyder-Mackler, L. (2012). Single-legged hop tests as predictors of self-
17	reported knee function after anterior cruciate ligament reconstruction. American
18	Journal of Sports Medicine 40, 2348-2356.
19	38. Malliaras, P., Cook, J. L., & Kent, P. (2006). Reduced ankle dorsiflexion range may
20	increase the risk of patellar tendon injury among volleyball players. Journal of
21	Science and Medicine in Sport 9, 304-309.
22	39. Maloney, S. J., Fletcher, I. M., & Richards, J. (2015). Reliability of unilateral vertical
23	leg stiffness measures assessed during bilateral hopping. Journal of Applied
24	<i>Biomechanics 31</i> , 285-291.

1	40. Maloney, S. J., Fletcher, I. M., & Richards, J. (2016). A comparison of methods to
2	determine bilateral asymmetries in vertical leg stiffness. Journal of Sports Sciences 34,
3	829-835.
4	41. Maloney, S. J., Richards, J., Nixon, D. G. D., Harvey, L. J., & Fletcher, I. M. (2016).
5	Do stiffness and asymmetries predict change of direction performance? Journal of
6	Sports Sciences DOI: <u>http://dx.doi.org/10.1080/02640414.2016.1179775</u>
7	42. Meyers, R. W., Oliver, J. L., Hughes, M. G., Lloyd, R. S., & Cronin, J. B. (2017).
8	Asymmetry during maximal sprint performance in 11-16 year old boys. Pediatric
9	Exercise Science 29, 94-102.
10	43. Morouco, P. G., Marinho, D. A., Fernandes, R. J., & Marques, M. C. (2015).
11	Quantification of upper limb kinetic asymmetries in front crawl swimming. Human
12	Movement Science 40, 185-192.
13	44. Newton, R. U., Gerber, A., Nimphius, S., Shim, J. K., Doan, B. K., Robertson, M.,
14	Pearson, D. R., Craig, B. W., Hakkinen, K., & Kraemer, W. J. (2006). Determination
15	of functional strength imbalance of the lower extremities. Journal of Strength and
16	Conditioning Research 20, 971-977.
17	45. Noyes, F. R., Barber, S. D., & Mangine, R. E. (1991). Abnormal lower limb
18	symmetry determined by function hop tests after anterior cruciate ligament rupture.
19	American Journal of Sports Medicine 19, 513-518.
20	46. Price, R. J., Hawkins, R. D., Hulse, M. A., & Hodson, A. (2004). The Football
21	Association medical research programme: an audit of injuries in academy youth
22	football. British Journal of Sports Medicine 38, 466-471.
23	47. Radzak, K. N., Putnam, A. M., Tamura, K., Hetzler, R. K., & Stickley, C. D. (2017).
24	Asymmetry between lower limbs during rested and fatigued state running gait in
25	healthy individuals. Gait & Posture 51, 268-274.

1	48. Rannama, I., Port, K., Bazanov, B., & Pedak, K. (2015). Sprint cycling performance
2	and asymmetry. Journal of Human Sport and Exercise 10, 247-258.
3	49. Read, P. J., Hughes, J., Stewart, P., Chavda, S., Bishop, C., Edwards, M., & Turner, A.
4	(2014). A needs analysis and field-based testing battery for basketball. Strength and
5	Conditioning Journal 36, 13-20.
6	50. Reid, A., Birmingham, T. B., Stratford, P. W., Alcock, G. K., & Giffin, R. J. (2007).
7	Hop testing provides a reliable and valid outcome measure during rehabilitation after
8	anterior cruciate ligament reconstruction. Physical Therapy 87, 337-349.
9	51. Rohman, E., Steubs, J. T., & Tompkins, M. (2015). Changes in involved and
10	uninvolved limb function during rehabilitation after anterior cruciate ligament
11	reconstruction: Implications for limb symmetry index measures. American Journal of
12	Sports Medicine 43, 1391-1398.
13	52. Ross, M. D., Langford, B., & Whelan, P. J. (2002). Test-retest reliability of 4 single-
14	leg horizontal hop tests. Journal of Strength and Conditioning Research 16, 617-622.
15	53. Rouissi, M., Chtara, M., Owen, A., Chaalali, A., Chaouachi, A., Gabbett, T., &
16	Chamari, K. (2016). Effect of leg dominance on change of direction ability amongst
17	young elite soccer players. Journal of Sports Sciences 34, 542-548.
18	54. Rumpf, M. C., Cronin, J. B., Mohamad, I. N., Mohamad, S., Oliver, J. L., & Hughes,
19	M. G. (2014). Kinetic asymmetries during running in male youth. Physical Therapy in
20	Sport 15, 53-57.
21	55. Sannicandro, I., Cofano, G., Rosa, R. A. & Piccinno, A. (2014). Balance training
22	exercises decrease lower-limb strength asymmetry in young tennis players. Journal of
23	Sports Science and Medicine 13, 397-402.

1	56. Sato, K., & Heise, G. D. (2012). Influence of weight distribution asymmetry on the
2	biomechanics of a barbell squat. Journal of Strength and Conditioning Research 26,
3	342-349.
4	57. Schiltz, M., Lehance, C., Maquet, D., Bury, T., Crielaard, J-M., & Croisier, J-L.
5	(2009). Explosive strength imbalances in professional basketball players. Journal of
6	Athletic Training 44, 39-47.
7	58. Sheppard, J. M., & Young, W. B. (2006). Agility literature review: classifications,
8	training and testing. Journal of Sports Sciences 24, 919-932.
9	59. Spratford, W., Mellifont, R., & Burkett, B. (2009). The influence of dive direction on
10	movement characteristics for elite football goalkeepers. Sports Biomechanics 8, 235-
11	244.
12	60. Stanton, R., Reaburn, P., & Delvecchio, L. (2015). Asymmetry of lower limb
13	functional performance in amateur male kickboxers. Journal of Australian Strength
14	and Conditioning 23, 105-107.
15	61. Stephens II, T. M., Lawson, B. R., DeVoe, D. E., & Reiser II, R. F. (2007). Gender
16	and bilateral differences in single-leg countermovement jump performance with
17	comparison to a double-leg jump. Journal of Applied Biomechanics 23, 190-202.
18	62. Trivers, R., Fink, B., Russell, M., McCarty, K., James, B., & Palestis, B. G. (2014).
19	Lower body symmetry and running performance in elite Jamaican track and field
20	athletes. PLOS One 9, 1-8.
21	63. Turner, A., Miller, S., Stewart, P., Cree, J., Ingram, R., Dimitriou, L., Moody, J., &
22	Kilduff, L. (2013). Strength and conditioning for fencing. Strength and Conditioning
23	Journal 35, 1-9.
24	64. Vieira, L., Serenza, F., de Andrade, V., de Paula Oliveira, L., Mariano, F., Santana, J.,
25	& Santiago, P. (2016). Kicking performance and muscular strength parameters with

1	dominant and non-dominant limbs in Brazilian elite professional futsal players.
2	Journal of Applied Biomechanics doi: http://dx.doi.org/10.1123/jab.2016-0125
3	65. Young, W., Cormack, S., & Crichton, M. (2011). Which jump variables should be
4	used to asses explosive leg muscle function? International Journal of Sports
5	Physiology and Performance 6, 51-57.
6	66. Zifchock, R., Davis, I., Higginson, J., & Royer, T. (2008). The symmetry angle: A
7	novel, robust method of quantifying asymmetry. Gait & Posture 27, 622-627.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

1 Figure 1: Flow diagram showing the identification and selection of studies in the available

Criteria No.	Item	Score
1	Inclusion criteria stated	0-2
2	Subjects assigned appropriately	0-2
3	Procedures described	0-2
4	Dependent variables defined	0-2
5	Assessments practical	0-2
6	Training duration practical (acute vs. long term)	0-2
7	Statistics appropriate	0-2
8	Results detailed (mean, standard deviation, percent change,	0-2
	effect size)	
9	Conclusions insightful (clear, practical application, future	0-2
	directions)	
Total		0-18

1 Table 1: Study quality scoring system (adapted from Black et al. [24])

	Total	0-10
2		
3		
4		
5		
6		
7		
8		

Reference	Subjects	Asymmetry Tests / Metrics	Performance Outcome Measures	Quality Score	
		Measured			
Bailey et al.,	College athletes	IMTP	SJ, SJ20, CMJ, CMJ20	83%	
(2013)	(n = 36)	(PF symmetry index calculated on	(jump height and peak power)		
		twin force plates)			
Hart et al., (2014)	Australian	Isometric Squat	10 drop punk kicks to a 20m target	100%	
	footballers ($n = 36$)	(bilateral and unilateral)			
Rannama et al.,	Competitive road	Isokinetic peak torque at 60, 180 and	10-second isokinetic maximum power	94%	
(2015)	cyclists	$240^{\circ} \cdot \text{sec}^{-1}$	test (average power taken from 1-6		
	(<i>n</i> = 16)	Kinematic asymmetries also	seconds for data analysis)		
		measured whilst pedalling			
		(ankle, knee, hip, trunk, pelvis)			
IMTP = Isometric mid-thigh pull, PF = Peak force, SJ = Squat jump, SJ20 = Squat jump with 20Kg load, CMJ = Countermovement jump,					
CMJ20 = Counterm	CMJ20 = Countermovement jump with 20Kg load				

1 Table 2: Summary of study methods that have highlighted an asymmetry in strength and the effects
--

Reference	Subjects	Asymmetry Tests / Metrics	Performance Outcome Measures	Quality Score
		Measured		
Lockie et al.,	Team sport athletes	SLCMJ, SL Broad Jump,	20m (including 5 and 10m splits), left	94%
(2014)	(<i>n</i> = 30)	SL Lateral Jump	and right-turn 505,	
		(jump height or distance)	modified t-test	
Hoffman et al.,	NCAA D3 football	SLCMJ	L-Run (performed in both directions to	83%
(2007)	players	(power derived from force plate)	facilitate D and ND change of	
	(<i>n</i> = 62)		directions)	
Maloney et al.,	Healthy adults $(n =$	SLDJ	90° cutting task (on force plate)	100%
(2016)	18)	(stiffness and jump height)		
SL = Single leg, SLCMJ = Single leg countermovement jump, H = Horizontal, DJ = Drop jump, 3J = 3 jump test, NCAA = National Collegiate				

1 Table 3: Summary of study methods that have highlighted an asymmetry in jumping and the effects on physical performance

Athletic Association, D = Dominant, ND = Non-dominant

Reference	Subjects	Asymmetry Tests / Metrics	Performance Outcome Measures	Quality Score
		Measured		
Bini and Hume,	Cyclists and/or	Bilateral pedal forces measured via	4km cycling time trial	83%
(2015)	triathletes ($n = 10$)	'strain gauge' instrumented pedals		
Liu and Jensen,	12 young children	5 x 15s cycling trials at	Root mean square error	100%
(2012)	(age: 5-7)	40, 60, 80, 100 and 120rpm	(indication of how closely each subject	
	12 older children	(average angular velocity of crank)	matched a specified cycling cadence)	
	(age: 8-10)	Metronome provided rhythmic		
	12 adults (age: 24-	feedback on cadence		
	30)			
Dos Santos et al.,	Trained male	2-minute tethered swim with 6	Best 200m front crawl time	100%
(2013)	swimmers $(n = 18)$,	strokes (3 each side) analysed at		
	split into fast (<i>n</i> =	5-15, 55-65 and 110-120s		
	9) and slow	(PF, MF, Impulse and RFD)		
	(n = 9) groups			
Morouco et al.,	'High level' male	30s maximum effort tethered swim	Best 50m front crawl time	94%
(2015)	swimmers	(PF, MF)		
	(<i>n</i> = 18)			
Barbieri et al.,	Brazilian amateur	Metrics: kicking accuracy, foot and	5 kicks of a rolling and stationary ball	89%

1	Table 4: Summary of stud	y methods that have highlighted an	n asymmetry in sport-spe	ecific actions and the effects of	n sporting performance
---	--------------------------	------------------------------------	--------------------------	-----------------------------------	------------------------

(2015)	futsal players	ball velocity		
	(<i>n</i> = 10)			
Vieira et al.,	Professional futsal	Asymmetry test: Isokinetic	Penalty kicks taken from the 2 nd penalty	89%
(2016)	players $(n = 17)$	dynamometry for knee extensors and	mark	
		flexors (60, 180, 300°·sec ⁻¹)		
		Metrics: accuracy, foot and ball		
		velocity, linear velocity of ankle,		
		knee and hip joints		
Spratford et al.,	Elite male	CoM velocity, ankle flexion, knee	3 dives per side at heights of 0.3, 0.9	83%
(2009)	goalkeepers $(n = 6)$	flexion, hip flexion, pelvis rotation,	and 1.5m high to a hanging ball	
		thorax rotation		
PF = Peak force, MF	F = Mean force, RFD =	Rate of force development, $CoM = Centre Compared Compar$	ntre of mass	

1 Table 5: Summary of study methods that have highlighted an asymmetry in dynamic balance, anthropometry, and sprinting and the effects on

2 physical performance

Reference	Subjects	Asymmetry Tests / Metrics	Performance Outcome Measures	Quality Score
		Measured		
Gonzalo-Skok et	Elite youth	WBL (dorsiflexion)	CMJ, SLCMJ, SL Hop, 25m,	94%
al., (2015)	basketball players	SBET	V-Cut and 180° CODS tests	
	(<i>n</i> = 15)			
Bell et al., (2014)	NCAA athletes (n	DEXA, CMJ	СМЈ	100%
	= 167)	(peak force, peak power)	(jump height)	
Trivers et al.,	Elite Jamaican	Knee and ankle joint width +	Best performance times for each	100%
(2014)	track and field	foot length	athlete's respective events (specified by	
	athletes $(n = 73)$		100m, > 100m events, hurdles/jumps)	
Meyers et al.,	Male school	Step length, step frequency, contact	35m sprint time	100%
(2016)	children (aged 11-	time, flight time, relative maximal		
	16)	force, relative vertical stiffness,		
		relative leg stiffness		
Exell et al., (2016)	Sprint trained	Step velocity, step length, step	Mean velocity (m/s)	100%
	athletes $(n = 8)$	frequency, minimum hip height,		
		maximum knee lift, minimum knee		
		angle, maximum hip extension,		

touchdown distance, net horizontal

and vertical impulse, maximum

vertical force, mean support moment,

net ankle/knee/hip work

CMJ = Countermovement jump, vGRF = Vertical ground reaction force, WBL = Weight bearing lunge test, SBET = Star balance excursion test,

SL = Single leg, DEXA = Dual energy x-ray absorptiometry

1