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Abstract 

Purpose - The purpose of this study is to identify and analyze the barriers associated with the adoption of 

Industry 4.0 technologies in agricultural supply chains.  

Design/methodology/approach - The study initially identified thirteen barriers by conducting a literature 

review and semi-structured interviews with key stakeholders. Subsequently, these barriers were validated 

and modeled using an integrated Fuzzy Delphi-ISM approach. Finally, MICMAC analysis was employed to 

categorize the barriers into distinct clusters. 

Finding - The results provide considerable insights into the hierarchical structure and complex 

interrelationships between the barriers as well the driving and dependence power of barriers. Lack of 

information about technologies and lack of compatibility with traditional methods emerged as the two 

main barriers which directly and indirectly influence the other ones. 

Research Implications – The robust hybrid Fuzzy Delphi and ISM techniques used in this study can serve 

as a useful model and benchmark for similar studies probing the barriers to Industry 4.0 adoption. 

Practical Implications: The study is timely for the post-COVID-19 recovery and growth of the agricultural 

sector. The findings are helpful for policymakers and agriculture supply chain stakeholders in devising new 

strategies and policy interventions to prioritize and address Industry 4.0 adoption barriers.  

Originality/Value: It is the first comprehensive, multi-country and multi-method empirical study to 

comprehensively identify and model barriers to Industry 4.0 adoption in agricultural supply chains in 

emerging economies. 

Keywords: Industry 4.0, Barriers, Agriculture, emerging countries, Interpretive Structural Modeling (ISM), 

Fuzzy Delphi technique 

 

1. Introduction 

Agriculture is critical to socio-economic development. However, it is increasingly faced with the challenges 

of ensuring security, safety and sustainability (of food): around 800 million people suffer from 

hunger/malnutrition and 9 million die of starvation each year (De Clercq et al., 2018; World Food 

Programme, 2021), while conventional farming methods, unpredictable weather, pests, diseases and soil 

quality issues depress productivity and crop yield (Rahman et al., 2018; Singh and Agrawal, 2021; Masud 

et al., 2017). Other challenges include leakages with around 15% of the produce lost in transport and 

storage (Kumar et al., 2021), and 40% of the food not eaten and wasted (World Food Programme USA, 

2021). There are further environmental and safety issues: food accounts for around 8% of the global 

greenhouse gas emissions (Chartered Institute of Environmental Health, 2021; The Washington Post, 

2018) and involves consumption of roughly 25% of the global freshwater (UNECE, 2021); it is also 

associated with frequent (foodborne) illnesses and contamination such as salmonella outbreak and mad 



cow disease. These challenges are only going to intensify in the future as the food requirement increases 

(due to the growing population), and agriculture land availability reduces (from the growing urbanization) 

(United Nations, 2017; van Dijk et al., 2021). Potential solution/s could be through the use of advanced 

technologies (World Bank, 2019; Yadav et al., 2022, Psomas and Deliou ,2023). 

Industry 4.0 technologies such as Internet of Things (IoT), Radio Frequency Identification (RFID), Wireless 

Sensor-based Networks (WSNs), Big Data Analytics, Artificial Intelligence (AI), Blockchain, Cloud 

Computing, Autonomous Vehicles/Machineries, and Robotics have gained popularity across many sectors 

(Yadav et al., 2020; Balasubramanian et al., 2021a; Stocco et al., 2022). In agriculture’s case, they could 

make the supply chains more intelligent, integrated, data-driven, agile, and autonomous and thereby 

improve their operational efficiency, responsiveness and traceability (Soosay and Kannusamy, 2018). 

Industry 4.0 also contributes to the development of sustainable supply chains, and circular economy 

models (Stocco et al., 2022). However, their diffusion/adoption rate in the agricultural sector continues 

to be low, which is a cause for concern, but which also reflects the barriers faced in (their) implementation 

(Soosay and Kannusamy, 2018; Akella et al., 2023). Understanding these barriers including their nature, 

characteristics, and interrelationships is therefore important; it would enable suitable policy actions to be 

designed to counter them. This forms the focus of the present work where there have only been a few 

previous studies, i.e., those focused on barriers to Industry 4.0 implementation in agriculture. They have 

also been predominantly exploratory/descriptive (e.g., Long et al., 2016), or specific; for example, barriers 

to specific technologies such as Blockchain (Yadav et al., 2020; Akella et al., 2023) or IoT (Narwane et al., 

2022) in agriculture. The lone somewhat comprehensive study by Kumar et al. (2021) also focused on only 

one country (India), and only on Industry 4.0 barriers from the perspective of circular economy in 

agriculture. This comprehensive, multi-country study with a holistic Industry 4.0 technology orientation 

therefore aims to:   

1) Identify the barriers to Industry 4.0 technology adoption in agricultural supply chains 

2) Model these barriers based on their hierarchical structure and interrelationships 

3) Cluster and prioritize these barriers based on their characteristics (driving and dependence power)  

The barriers (that are identified) highlight all the key challenges that need to be addressed to intensify the 

adoption of Industry 4.0 technologies in agriculture. Further modeling these barriers helps in 

comprehending the causal interrelationships between them. Finally, clustering them based on their 

driving and dependence power enables the development of suitable policy prescriptions and counter-

measures to address the critical ones.  

With agriculture being particularly important to emerging countries, we selected an important region 

from there, specifically, the Greater Mekong Subregion (GMS) for this study. It is a transnational region 

that includes Cambodia, Laos, Myanmar, Thailand, Vietnam and two provinces of China. Agriculture is the 

backbone of this region’s economy (Chanchaichujit et al., 2017); also, conventional agriculture practices 

are dominant there, and where therefore, advanced technology (particularly Industry 4.0 related) could 

make a significant contribution (GMS, 2021).  

The contributions of the study are manifold. It is the first comprehensive, multi-country and multi-method 

empirical study that models Industry 4.0 adoption barriers in agriculture. The structural model for barriers 

that is proposed is not seen in previous studies, and therefore constitutes a novelty, as do the findings on 

the barriers themselves. Also, while the focus is on GMS countries, the fact that agriculture issues are 



similar in other emerging ones means that the learnings can be applied there. Secondly, it offers practical 

insights to agriculture policymakers and stakeholders so that they can develop suitable strategies and 

policy interventions to diminish the impacts of the barriers. The resulting greater implementation of 

advanced technologies will allow the sector to recover faster from the recent COVID-induced economic 

devastation. Finally, from a methodological standpoint, the sequential Fuzzy Delphi-ISM approach (that is 

used) contributes to the literature on multi-criteria decision frameworks (Bianco et al., 2021).  

The rest of the paper is structured as follows. The next section outlines Industry 4.0’s potential for 

agricultural supply chains. Section 3 details the multistage research framework and the different research 

methods used. The study findings are presented in Section 4 and then discussed in Section 5. We conclude 

in Section 6 where the study’s implications, limitations, and suggestions for future work are covered.  

2. Industry 4.0 Application in Agricultural Supply Chains 

Agricultural supply chains are complex and fragmented and consist of a multitude of stakeholders 

including input suppliers (fertilizers, pesticides, equipment, machinery, etc.), farmers, food producers, 

food processors, logistics service providers, technology solution providers, and consumers that are 

associated with the different stages of the supply chain, namely, pre-cultivation, cultivation & harvesting, 

and processing & distribution (Yadav et al., 2022). Various Industry 4.0 technologies can be applied at 

these stages including generic ones such as big data analytics, artificial intelligence, blockchain, and cloud 

computing, and specific ones such as gene-editing (of crops) in pre-cultivation, drones for seed planting, 

autonomous robots for harvesting, and autonomous forklifts and smart containers for processing and 

distribution. Please refer to figure 1 for the details.    

The key activities in pre-cultivation include selecting appropriate arable land, crops, and sowing period/s. 

The role of technology is critical here given the unpredictability of the weather/climatic conditions and 

the soil quality (Masud et al., 2017; Singh and Agrawal, 2021). Data such as on historical weather patterns 

and on others from satellite (images), drone (images) and GPS systems are therefore used with artificial 

intelligence techniques (machine learning and deep learning) to inform on soil quality, seeds, disease 

probability, crop yield and fertilizer selection (De Clercq et al., 2018). A specific case is the use of 

surveillance drones with computer vision to make precise 3D maps for early soil analysis, and to gather 

data for managing irrigation and on nitrogen levels (De Clercq et al., 2018). Further, gene editing of crops 

or genetic modification (e.g., drought-resistant wheat) is used to improve yield (Long et al., 2016; De 

Clercq et al., 2018).  

In the cultivation and harvesting phase, advanced technologies are used to optimize resource usage and 

to reduce waste. Multisource data is typically used with these technologies that enable precise monitoring 

and decision-making on agricultural processes, and which is also referred to as precision agriculture 

(Smania et al., 2022). For example, with regards to farm inputs, data on soil and field conditions captured 

through a Wireless Sensor-based Network (WSN) is analysed to make precise and specific interventions 

on irrigation, fertilizers, nutrients, and pesticides (Ayamga et al., 2021). Similarly, autonomous drones with 

computer vision (camera and sensors) (Gonzalez-de-Santos et al., 2017) are used to assess crop 

growth/development and to alert farmers to any diseases, weeds, or abnormalities (De Clercq et al., 2018; 

Ayamga et al., 2021). Also, precision drone planting systems can shoot pods with seeds and nutrients into 

the soil, and also provide necessary nutrients to grow them, thereby reducing planting costs by up to 85% 

while also increasing yield (De Clercq et al., 2018). They can also plant seeds in remote locations thereby 



lowering equipment and workforce costs; also, survey crops and herds over vast areas quickly and 

efficiently. Similarly, crop pesticide spraying through drones is five times faster than conventional 

spraying, and with lesser material wastage (De Clercq et al., 2018). Further, autonomous/self-driving 

equipment could help address driver/labour shortages and enable large agricultural holdings to be 

effectively and efficiently managed (Nokia, 2022; World Economic Forum, 2022). Finally, robots could be 

used for picking apples and strawberries, harvesting lettuce, and stripping away weeds (Builtin, 2022). 

With computer vision, artificial intelligence and robotic arms, they can do these tasks more efficiently and 

accurately than human beings.    

 

 

Figure 1. Industry 4.0 Application in Agricultural Supply Chain (Source: Authors) 

Digitization/automation has also been exploited in the processing and distribution phase with a key area 

being waste reduction (Yadav et al., 2022). For example, for transporting fresh produce, smart containers 

with sensors, GPS tracking and Internet of Things (IoT) technologies are used, that provide real-time 

tracking, and can alert operators to any quality or theft-related issues (Global Infrastructure Hub, 2022); 

they can also automatically regulate the internal operating conditions (e.g., temperature, humidity), if 

required. A similar RFID-based food traceability system can ensure food safety. Further, the data 

associated with these technologies can be made tamper-proof/fraud-resistant by transferring it to a 

Blockchain (Alkhoori et al., 2021). Other technologies include autonomous or robotic (driverless) forklifts, 

which can operate with nearly 100% accuracy, and with fewer accidents/injuries during loading/unloading 

(Hyster, 2022). Their use not only increases productivity, but also lowers costs with less product damage 

and no employee leave/absenteeism-related problems. Similarly, an autonomous mobile robotic base 

(AMRB) can perform repetitive, nonvalue-added tasks of moving material autonomously to desired 

location/s, and it can do so safely as it reacts, i.e., stops or drive around people, trucks or other obstacles 

(Mecalux, 2021).    

For the end-to-end supply chain, Blockchain technology can be used (Wang et al., 2019). It enables 

anonymity and integrity, with any IoT/sensor/other data fed to it becoming immutable, and subsequent 



changes easily and transparently traceable. This promotes increased data sharing among supply chain 

stakeholders, with the consequent high provenance enhancing food safety and quality (Yadav et al., 2022), 

and eliminating green washing. The (consequent) large amount of shared data can be exploited to 

improve the tracking/tracing (of goods and documents), as also the planning and optimization of 

resources and facilities across the supply chain. The potential for such big data-oriented applications in 

agricultural supply chains is enormous (Yadav et al., 2022). Further, smart contracts operating on 

blockchains can prevent price extortion and payment delays, while also reducing transaction fees 

(because of elimination of intermediaries). For farmers, this would mean fairer pricing and a greater share 

of their crop’s revenue (De Clercq et al., 2018, Yadav et al., 2022). Finally, cloud computing enables 

computing services like storage, servers, networking, analytics, intelligence and software to be delivered 

over the internet in a pay-as-you-go mode (Yadav et al., 2022). This makes them more affordable (and 

therefore implementable) for small-scale farmers, who lack the financial muscle to make their own large 

investments in IT infrastructure.    

3.    Research methodology 

The research methodology flows from the research objectives. The research framework adopted in this 

study is shown in Figure 2.  

 

Figure 2. Research Framework 



3.1. Research Setting 

The research setting needs to be appropriate to the research objectives. We carefully selected the Greater 

Mekong Subregion (GMS) for this study because agriculture is critical to the socio-economic development 

there: 60% of its 340 million inhabitants are engaged in agriculture activities (GMS, 2021). However, 

agriculture’s share of Gross Domestic Product (GDP) in the region has fallen sharply; for example, 

agriculture sector’s contribution to GDP in Cambodia has declined from around 35% in 2011 to around 

23% in 2021 (Statista, 2022a). This is largely due to a reduction in the sector’s productivity, quality, and 

profitability. Most governments in the region have recognized this adverse trend and have urgently 

focused efforts on reversing it through the use of Industry 4.0 technologies (World Economic Forum, 

2022). For instance, in Thailand’s case, several measures have been undertaken to move towards smart 

farming i.e., through use of technologies such as remote sensing, geo-mapping, and drones (Statista, 

2022b). Similarly, in Cambodia, RFID and blockchain technologies have been piloted to improve food 

traceability, while AI, sensors and drones have been tried for enhancing the overall farming productivity 

(UNDP, 2021). The GMS region therefore serves as a relevant and interesting context for conducting the 

investigation.  

An extensive but pragmatic literature review was conducted to address the first objective, which is to 

identify the barriers to Industry 4.0 adoption in agricultural supply chains. The pragmatic approach is 

justified given that practical/realistic insights are needed to inform practice, especially considering the 

novelty of the topic (Balasubramanian et al., 2021b). It involved searching for specific studies (barriers + 

Industry 4.0 + agriculture), and on finding only a few, extending the search to barriers to adoption of other 

advanced technologies in agriculture, and barriers to Industry 4.0’s adoption in other sectors. In addition, 

we also reviewed relevant reports from GMS governments, global organizations such as World Bank, 

World Economic Forum, United Nations, OECD, Asian Development Bank, and leading consulting firms. 

The information gathered from the review was assembled, coded, and analyzed to generate a 

comprehensive list of barriers to Industry 4.0’s adoption in agriculture; also, the barriers could be 

categorized into four distinct groups, namely, i) Economic barriers; ii) Institutional/regulatory barriers; iii) 

Behavioral/psychological barriers; and iv) Organizational barriers (Long et al., 2016). 

3.2.  Semi-structured Interviews 

In the next stage, interviews with 21 industry experts from the GMS region (refer Appendix A) were 

conducted to shortlist the key Industry 4.0 barriers for agriculture in the region. Here, a purposive 

sampling technique was employed to encompass various stakeholders in the agricultural sector, ensuring 

adequate representation from both technology adopters, such as food processors and transport/logistics 

companies, and technology providers, including drone manufacturers and automation solution providers. 

This sampling approach also guaranteed the capture of diverse perspectives from the public sector, 

private sector, and industry associations. Further, purposive sampling ensured there is representation 

from different countries in the GMS.  

A semi-structured interview protocol was adopted, preferred due to the scope of the interviews, which 

covered four categories of barriers: economic, institutional/regulatory, behavioral/psychological, and 

organizational. The interviews, conducted via Zoom, typically lasted between 30 and 45 minutes. Barriers 



identified from the interviews within each category were subsequently coded. For instance, 'high cost of 

implementation,' a key barrier identified during interviews, was coded and categorized under economic 

barriers (ECB1)." The semi-structured nature of the interviews facilitated easy comparison of responses 

against the alternative unstructured interview approach, which is susceptible to information overload 

(Balasubramanian et al., 2017). This method helped in narrowing down the list of barriers from over 30, 

identified from the literature, to 24, retaining only those that were highlighted both in the interviews and 

the literature review and excluding those found only in the literature. Subsequently, the ‘mutually 

exclusive and collectively exhaustive’ principle was applied to ensure there was no repetition or overlap 

between the barriers. For instance, barriers like lack of financial support from the government, absence 

of subsidies, incentives, and tax concessions were analogous and were thus consolidated under a single 

barrier termed ‘low government support.’ Similarly, barriers such as high upfront cost of implementation, 

operational costs, and hidden costs were unified under ‘high cost of implementation,’ further reducing 

the number of barriers to 13. 

3.3. Fuzzy Delphi Technique (FDT) 

In the next phase, the Fuzzy Delphi Technique (FDT) was used to validate and finalize the barriers. The use 

of FDT vis-à-vis traditional qualitative methods such as in-depth interviews and Delphi methods to gather 

insights from experts was Ratbecause such methods can be time-consuming and are often prone to 

yielding vague/uncertain exploratory results (Phellas et al., 2011; Rathore et al., 2022). Conversely, the 

advantage of Fuzzy Delphi Method (FDM) mitigates the uncertainty and imprecision inherent in experts' 

assessments (Gupta et al., 2022), addressing scenarios where humans cannot draw precise conclusions 

(Rathore, 2021; Rathore and Gupta, 2021). FDT is based on the theory of fuzzy sets (Singh and Sarkar, 

2020) and involves collecting experts’ ratings on each of the factors on a fuzzy linguistic scale. This 

approach thereby offers a more structured and precise alternative for capturing expert opinions and 

insights. These factor ratings are then compared with a computed threshold value to decide which to 

retain/exclude. In this study, 23 industry and academic experts were consulted (refer Appendix B) who 

rated the importance of each barrier (13 in total) on a fuzzy linguistic scale. The sample of 23 experts is 

well above the recommended one of 15 (Rathore et al., 2022); also, purposive sampling was used for their 

selection so as to ensure representation from all the GMS countries and stakeholders.  

The following steps were followed (Rathore et al., 2022): 

Step 1 - Prepare a questionnaire with all the barriers and ask experts (𝑛) to rate the importance of barriers 

(𝑚) on a fuzzy linguistic scale, as shown in Table 1. The use of fuzzy linguistic scale is because decision-

makers often find assigning linguistic variables to judgments more intuitive and straightforward than 

making fixed value judgments (Chen et al., 2011). The scale allow for a high level of expressiveness, 

enabling individuals to articulate their preferences, feelings, or judgments in natural language terms 

rather than in rigid numerical terms. Linguistic terms are user-friendly and more intuitive to individuals, 

thus effectively addressing uncertainty and imprecision and allowing for a more nuanced and accurate 

representation of real-world problems (Chen et al., 2011). Next, the relationship between linguistic 

variables and fuzzy sets was used to transform the evaluation of qualitative indicators by experts into 

quantitative fuzzy numbers (Li et al., 2022).  



Table 1. Fuzzy Linguistic Scale for FDT 

Linguistic Terms Codes Corresponding TFN 

No Influence NI (0.1, 0.1, 0.3) 

Low Influence LI (0.1, 0.3, 0.5) 

Medium Influence MI (0.3, 0.5, 0.7) 

High Influence HI (0.5, 0.7, 0.9) 

Very High Influence VI (0.7, 0.9, 0.9) 

 

Step 2 - Inputs of experts for each barrier is converted into triangular fuzzy numbers (TFNs) denoted as 

(𝑝, 𝑞, 𝑟). A fuzzy number corresponding to the 𝑗𝑡ℎ barrier provided by 𝑖𝑡ℎ  expert is represented as: 

𝑍𝑖𝑗 = (𝑝𝑖𝑗 , 𝑞𝑖𝑗, 𝑟𝑖𝑗) for 𝑖 = 1, 2, 3, … 𝑛 and  𝑗 = 1, 2, 3, … 𝑚, where n represents the number of experts and 

m represents the number of barriers.  

Step 3 - Calculate the fuzzy weights of barriers as follows: 

 𝑝𝑗 = min[𝑝𝑖𝑗] ; 𝑟𝑗 = max[𝑟𝑖𝑗] ; 

𝑞𝑗 = (∏(𝑞𝑖𝑗)

𝑛

𝑖=1

)

1/𝑛

 

Step 4 - Apply the centre of gravity method to calculate the defuzzification value 𝑆𝑗  as given below: 

𝑆𝑗 =  
(𝑝𝑗+𝑞𝑗+𝑟𝑗)

3
 , 𝑗 = 1, 2, 3, … 𝑚       

 

Step 5 - Compare the weights of all barriers against the threshold value (𝑎), which is considered a 

benchmark for accepting or rejecting a barrier. The α is obtained by taking the arithmetic mean of the 

defuzzification values for all 13 barriers. If 𝑆𝑗 ≥ 𝑎  , then the barrier is retained; if  𝑆𝑗 < 𝑎;   then the barrier 

is removed. As per this analysis, 12 of the 13 barriers were retained with one excluded.  

3.4. Interpretive Structural Modelling (ISM) 

In line with our second research objective, Interpretive Structural Modelling (ISM) was applied to the 

barriers to generate an associated hierarchical structure with interrelationships (Karadayi-Usta et al, 

2020). ISM involves the use of expert knowledge and experience to convert complex socio-economic 

systems into more lucid forms to improve understanding (Warfield, 1974). The outcome of ISM is an 

interconnection framework where a set of directly and indirectly related elements are mapped into a 

contextual model (Gadekar et al., 2022).  

While prior literature highlights the availability of other multi-criteria decision-making (MCDM) methods, 

such as the Decision-Making Trial and Evaluation Laboratory (DEMATEL) and Analytical Hierarchical 

Process (AHP) to discern interrelations amongst barriers, this study has employed ISM since it holds a 



distinctive advantage over other MCDM methods as it adeptly transforms vague models into hierarchically 

structured and well-articulated barriers (Rathore et al., 2022). Some of the key advantages of ISM over 

other MCDM techniques are as follows (Sushil, 2012; Rathore et al., 2022; Sorooshian et al., 2023): 

• ISM excels in managing and representing complex, interrelated, and interdependent systems and 

relationships within a structured and visual model, especially in sociotechnical and organizational 

contexts, making it easier to understand the relationships among different components or 

variables. However, other MCDMs such as AHP require precise quantification and prioritization of 

decision criteria. 

• ISM is more user-friendly because its binary scale and algorithm are designed to avoid 

inconsistencies. However, others such as DEMATEL require a larger range of scales to complete 

the cause-and-effect interactions. 

• ISM offers robust visualization of relationships and hierarchies among elements or variables, 

allowing decision-makers to gain insights into the systemic interconnections and dependencies, 

which can be crucial for understanding complex and multifaceted problems and systems. 

• ISM is particularly advantageous for conducting qualitative analysis. It helps structure and 

interpret subjective judgments and qualitative information. In contrast, AHP largely relies on 

quantitative data and requires exact numerical input. 

• ISM can be used with the cross-impact matrix multiplication applied to classification (MICMAC) 

for identifying driving and dependent factors in a system, allowing for a deeper understanding of 

the influences and dependencies among various barriers.  

ISM has previously been used to examine barriers, and in various contexts (Karadayi-Usta et al., 2020; 

Kamble et al., 2023). For example, Rathore et al. (2022) used ISM to examine the interrelationships 

between barriers to adoption of disruptive technologies in the logistics sector. Similarly, Balasubramanian 

(2012) utilized ISM to model the barriers affecting green supply chain management practices’ 

implementation in the construction sector. With regards to studies involving agriculture, while Kumar et 

al. (2021) used ISM to analyse Industry 4.0 and circular economy adoption barriers in the sector, barriers 

to blockchain technology adoption were studied via ISM by Yadav et al (2020).  

The flow chart representing ISM steps is given in Figure 3. The details on the execution of each step are 

given below (Ghobakhloo, 2020; James et al., 2023):  



 

Figure 3. ISM Methodology (Adapted from Sushil (2012) and Cherrafi et al. (2017)) 

Step 1 – Identify barriers to the adoption of Industry 4.0 technologies in the agricultural supply chain       

(output from FDT was used)  

Step 2 – Develop the structural self-interaction matrix (SSIM) based on inputs from domain experts who 

indicate the relationships between the barriers using the symbols 𝑉, 𝐴, 𝑋, 𝑂. Here the same 23 domain 

experts used for FDT were used. The meaning of these symbols is as follows: 

V: Barrier  𝑖 i will influence barrier 𝑗; 

A: Barrier 𝑗 will influence barrier 𝑖; 

X: Barrier 𝑖 and 𝑗 will influence each other and 

O: Barriers 𝑖 and 𝑗 are unrelated 



The individual SSIM matrices for each expert (and 23 in total) were then combined into a unified SSIM as 

per the suggestions of Muruganantham et al. (2018). This meant using the mode of different experts’ 

responses on a matrix entry as the corresponding unified matrix entry.  

Step 3 – Develop the initial reachability matrix (IRM). It is developed by converting the SSIM matrix into a 

binary one, where 𝑉, 𝐴, 𝑋 and 𝑂  are substituted by binary numbers 1 and 0 as per the substitution rules 

shown in Table 2. In addition, the main diagonal elements are assigned a 1, since 𝑖 and 𝑗 are equal. 

Table 2. Replacement of contextual relationship by binary numbers 

SSIM Value 
(𝑖, 𝑗)entry 

Binary replacement 
(𝑖, 𝑗) entry (𝑗, 𝑖)entry 

𝑉 1 0 
𝐴 0 1 
𝑋 1 1 
𝑂 0 0 

 

Step 4 – Develop the final reachability matrix (FRM). It is obtained after incorporation of transitivity in the 

IRM to identify the indirect relationships between the barriers. The transitivity of the contextual relation 

is a basic assumption made in the ISM. It states that if 𝑋 is related to 𝑌 and 𝑌 is related to 𝑍, then 𝑋 is 

essentially related to 𝑍. 

Step 5 - Partitioning of the final reachability matrix (FRM) (establishing the hierarchy level of barriers). The 

hierarchy level for Industry 4.0 barriers in this study is developed using the reachability, antecedent, and 

intersection sets for each barrier based on the values from the FRM.  

The reachability set expressed as 𝑅(𝐵𝑖) consisted of the barrier (𝐵𝑖) itself and other barriers affected by 

it.  

𝑅(𝐵𝑖) =  {𝑥 | (𝑖, 𝑥) = 1} 

The antecedent set expressed as 𝐴(𝐵𝑖) comprised of the barrier itself (𝐵𝑖) and other barriers that may 

have affected it.  

𝐴(𝐵𝑖) =  {𝑥 | (𝑥, 𝑖) = 1} 

The intersection set, expressed as 𝐼(𝐵𝑖) for each barrier (𝐵𝑖) consists of the intersection among the pair 

of reachability and the antecedent sets for that particular barrier.  

𝐼(𝐵𝑖) =  𝑅(𝐵𝑖) ∩  𝐴(𝐵𝑖) 

After developing the reachability, antecedent, and intersection sets for all the barriers, the extraction 

process is applied. In each iteration, the 𝐵𝑖  with identical reachability and intersection sets are extracted. 

For instance, in the first iteration, any barrier(s) with the same reachability and intersection sets are 

categorized as the first group, securing their top-level position (Level I) in the ISM hierarchy structure. In 

the next iteration, the extracted barrier(s) in the previous iteration are excluded, and the procedure is 

repeated until the remaining barriers' hierarchy levels are established. 



Step 6 – Formulation of the ISM Model. The structural model is developed from the final reachability 

matrix (FRM). Based on the level of attainment of the barriers, they are positioned in the structural model. 

Barriers of the first level are placed at the top, and barriers of subsequent lower levels are placed below. 

Next, a digraph is developed based on the relationships represented in the FRM. The transitive 

connections are omitted from the digraph. Next, the vector nodes are replaced with statements, and the 

digraph is converted to an ISM-based model, which is rechecked to ensure conceptual consistency. 

3.5. Matrics d’Impacts Croises-Multiplication Applique a Classement (MICMAC) Analysis 

In line with our third research objective, Matrics d’Impacts Croises-Multiplication Applique a Classement 

(MICMAC) was used to cluster the barriers based on their driving and dependence power (Rathore et al., 

2022). While the driving power of a barrier is a summation of all the barriers influenced by it, the 

dependence power is the same for all the barriers affecting it. The Final Reachability Matrix (FRM) is used 

to determine these values; the driving and dependence power of a barrier is the sum of the row and 

column entries respectively where the barrier is positioned in the FRM. Each barrier can then be plotted 

on a two-dimensional graph having Dependence Power and Driving Power as the 𝑋 and 𝑌 coordinates 

respectively; they can then correspond to one of the four quadrants (clusters) (Kumar et al., 2021; Rathore 

et al., 2022):   

(1) Autonomous (Quadrant I) – Barriers in this quadrant have weak driving power and weak dependence 

power.  

(2) Dependent (Quadrant II) – Barriers in this quadrant have weak driving power but strong dependence 

power.  

(3) Linkage (Quadrant III) – Barriers in this quadrant have strong driving and dependence power.  

(4) Driver or Independent (Quadrant IV) – Barriers in this quadrant have strong driving power but weak 

dependence power.  

4. Results 

The results are presented as per the research objectives. First, the barriers identified from the literature 

and confirmed through stakeholder interviews are discussed. Next, the expert validation of these barriers 

through the FDT is explained. The different steps of the ISM technique used to model these barriers (as a 

hierarchical structure with interrelationships) is detailed in the following section, followed by presentation 

of the results of the MICMAC analysis involving clustering and prioritization of these barriers.   

4.1. Barriers Identified using the Literature Review and Expert Interviews 

Thirteen barriers to Industry 4.0 adoption in agricultural supply chains were identified at this stage. They 

are summarized in Table 3. 

 

Table 3. List of barriers to Industry 4.0 adoption in agriculture  

Barrier Category Code Barriers  Literature Source/s 



Economic Barriers (ECB) 

ECB1 High cost of implementation 
Long et al. (2016); Masud et al. (2017); 
Kasemi et al (2022); Narwane et al. 
(2022) 

ECB2 
Long/Uncertain Return on 
Investment  

Das et al. (2019); Sayem et al. (2022); 
Horváth and Szabó (2019); Narwane et 
al. (2022) 

ECB3 Lack of access to funding/loans 
Kwanmuang et al. (2020); Balana and 
Oyeyemi (2022) 

Institutional /Regulatory 
Barriers (IRB) 

IRB1 
Lack of regulatory polices/legal 
framework 

Long et al. (2016); Rathore et al. (2022); 
Hughes et al. (2019); Kwanmuang et. al 
(2020); Narwane et al. (2022) 

IRB2 Low government support Sayem et al. (2022); Kumar et al. (2021) 

Behavioural/ Psychological 
Barriers (BPB) 

BPB1 
Lack of knowledge and awareness of 
technologies 

Long et al. (2016); Kumar et al. (2021) 

BPB2 
Reluctance to change existing 
processes 

Rathore et al. (2022); Srivetbodee and 
Igel (2021) 

BPB3 Lack of trust in the technologies Rathore et al. (2022); Yadav et al. (2020) 

BPB4 Benefits of technologies are unclear 
Das et al. (2019); Steeneveld and 
Hogeveen (2015) 

Organizational Barriers (ORB) 

ORB1 
Lack of compatibility with traditional 
methods 

Long et al.  (2016) Yadav et al. (2020); 
Yadav et al. (2022); Narwane et al. (2022) 

ORB2 
Technology is too complex to 
implement 

Boursianis et al. (2022); Narwane et al. 
(2022) 

ORB3 Lack of required competencies/skills 
Narwane et al. (2022); Gadekar et al. 
(2022); Yadav et al. (2020) 

ORB4 
Lack of information about the 
technologies 

Long et al.  (2016) 

 

4.1.1. Economic Barriers 

 

4.1.1.1.  High cost of implementation (ECB1) 

Previous studies have reported the high cost of Industry 4.0 technologies as a significant barrier to their 

implementation in agricultural supply chains. This was seen to be the case for climate-smart agriculture 

technologies in Europe (Long et al., 2016), as also smart farming and precision agriculture technologies in 

Kosovo, where 53% of farmers were not using them for this reason (Kasemi et al., 2022). Similarly, 

Narwane et al. (2022) and Kumar et al. (2021) have reported high investment costs of IOT and Industry 

4.0 technologies as barriers to their implementations in agri-food and agriculture respectively in the Indian 

context. This was echoed in our interviews as well: high cost was highlighted as one of the main barriers 

to technology adoption in the Mekong region, especially among small-scale farmers and processors. 

According to the interviewees, small-scale enterprises face challenges from asymmetric market power 

and (unlike large firms), do not have the bargaining power to negotiate with smart logistics technology 

providers. With their financial resources further depleted during the COVID-19 pandemic, this situation 

has become worse. As per one interviewee: “The cost of adopting robotic automation technologies is too 

expensive, and hence we are continuing with our existing mechanized operations at the moment”. As per 



another: “Small or medium farmers do not have enough funds to invest in these technologies” with a third 

one saying: “Farmers do not have the budget to buy the latest equipment”. 

 

4.1.1.2   Long/Uncertain Return on Investment (ROI) (ECB2) 

Evidence from the literature suggests long or uncertain return on investment (ROI) from Industry 4.0 

technologies being a significant barrier to the latter’s adoption. For example, Long et al. (2016) found the 

ROI periods of contemporary technologies in the European agricultural sector to be overly long, and hence 

a barrier. Similarly, in Das et al.’s (2019) study on smart farming technologies in Ireland, one-third of the 

participants (farmers) highlighted uncertain ROI to be the reason for their non-adoption of new 

technologies. Previous studies in manufacturing (Sayem et al., 2022; Horváth and Szabó, 2019) have also 

reported “uncertain return on investment” as a prominent barrier to Industry 4.0 adoption. According to 

one of the interviewees, “there needs to be clear ROI evidence to convince stakeholders to adopt latest 

technologies”. Similarly, another interviewee identified “high investment cost vis-a-vis return” to be a key 

issue.  

 

4.1.1.3   Lack of access to funding/loans (ECB3) 

According to the interviewees, the majority of farmers in Thailand and other Mekong Countries are small-

scale; their access to funds and loans from financial institutions is therefore limited, which makes them 

less able to adapt to technology-oriented market disruptions. This is also supported by literature. For 

example, Kwanmuang et al.’s (2020) study on small-scale farmers in Thailand found lack of access to 

capital to be a barrier to (their) smart technology adoption. Similarly, OECD (2021) note that small-scale 

farmers have a lower ability to access capital (than large firms) due to factors such as limited credit history 

and lack of detailed financial information; the unmet financing needs of such small-scale enterprises in 

emerging markets is a whopping $5.2 trillion each year (IFC, 2017). Lack of access to funding/loans has 

been identified as a barrier to technology adoption in other developing countries like Nigeria also (Balana 

and Oyeyemi (2022). 

 

4.1.2 Institutional/Regulatory Barriers 

 

4.1.2.1. Lack of regulatory policies/legal framework (IRB1) 

In many countries, the hesitancy to adopt Industry 4.0 technologies (e.g., Blockchain) in agriculture is due 

to the lack of appropriate regulations and legal framework (Yadav et al., 202; Rathore et al., 2022). For 

example, Long et al. (2016) highlighted several policy and regulatory issues acting as barriers for 

technology solution providers in Europe (to diffuse their innovations into the agricultural sector). Similarly, 

poor national policies were found to be the main barrier to the adoption of smart technologies in the Thai 

agricultural sector (Kwanmuang et al., 2020). Technologies like autonomous vehicles and equipment also 

require regulatory policies; for example, on issues such as vehicle licensing and liability requirements 

(Rathore et al., 2022). McKinsey (2012) also emphasizes that appropriate government policies can lead to 

successful adoption of contemporary technologies in developing countries. A few interviewees identified 

high import tariffs for Industry 4.0 technologies as a regulatory barrier; their concern is valid given that 



suppliers of these technologies are mostly based overseas. A lowering of these tariffs, especially in 

developing countries, could be a big enabler for farmers, agri-producers, and logistics service providers to 

import and apply innovative technologies in their operations. 

 

4.1.2.2. Low government support (IRB2) 

Most interviewees highlighted the importance of government financial support and incentives for 

Industry 4.0 adoption in the Mekong agricultural sector. The literature on agricultural supply chains also 

echoes these sentiments of government support and incentives being critical to Industry 4.0 adoption in 

the sector (Kumar et al., 2021). According to one interviewee, the government should partner with banks 

to provide interest-free/low-interest loans, while another highlighted the importance of government 

technical support and capacity-building programs for increasing Industry 4.0 adoption. Others suggested 

that the “government should subsidize the cost of innovative technologies to facilitate adoption” or should 

provide support for education and training to transform existing employees into digitally skilled ones. The 

other issue highlighted by the interviewees was the lack of digital infrastructure, which is a prerequisite 

for implementing some of the Industry 4.0 technologies. For example, the non/limited availability of 

internet infrastructure is a barrier to adopting technologies such as smart containers (where fast internet 

is needed for real-time monitoring and communication). Here again, the government should come 

forward to develop/support widespread and fast internet availability.   

 

4.1.3 Behavioural/Psychological Barriers 

 

4.1.3.1. Lack of Knowledge and awareness of technologies (BPB1) 

It was evident from the interviewees that most of them, including the government ones, are not fully 

aware of the potential of Industry 4.0 technologies. Previous studies have also highlighted lack of 

knowledge and awareness of advanced technologies being a barrier to their adoption (Long et al., 2016; 

Kumar et al., 2021). As per the interviewees, this knowledge deficit is greater among small and medium-

scale enterprises, where they don’t know how to use, where to source from, and what the potential 

benefits of these technologies are, all of which hampers their (these technologies’) adoption. In this 

context, some interviewees also highlighted the high knowledge-distance between the transferors 

(technology solution providers) and the transferees (farmers and processors). To build Industry 4.0 

awareness, one of the interviewees advocated the use of related demos and case studies of successful 

implementations. As per another: “All relevant stakeholders should conduct awareness programs on 

Industry 4.0 technologies, and also create a networking platform for stakeholders to raise queries on it 

and seek answers/solutions”. 

 

4.1.3.2. Reluctance to change existing processes (BPB2) 

The interviewees informed that most farmers and processors are using traditional methods and are 

reluctant to change them to accommodate new technologies. This reluctance was found to be greater 

among first-generation business owners, and which was appropriately captured in the words of one 

interviewee: “For farmers who are old, it is hard for them to learn new things or change their habits”. 



These findings find support from Srivetbodee and Igel (2021), where resistance to digital adoption was 

found to be related to age, with older farmers more uncomfortable/resistant to learn new technologies; 

also, resistance to change was found to be greater among successful business owners, who, given their 

success with existing approaches, were un-appreciative of the need for change. Previous studies have 

found that small farmers tend to resist the adoption of new technologies due to the greater perceived 

risk, and the financial burden associated with them (ERIA, 2019). According to the interviewees, taking 

the first step to (new) technology adoption is the most difficult, but once this happens, further incremental 

implementations come more naturally and easily. One of the participants highlighted the need to be open-

minded to learn and adapt to new technological innovations.  

 

4.1.3.3 Lack of trust in the technologies (BPB3) 

Several participants highlighted the lack of trust in Industry 4.0 technologies as the main barrier to their 

adoption. It was evident from the interviews that distrust in technologies primarily stems from concerns 

about the longevity of the technologies and their ability to fulfill desired productivity goals. A few 

participants also raised concerns related to privacy and data security. This is largely due to the deep-

rooted cultural preference for traditional methods among agricultural communities, leading to skepticism 

towards new technologies. One interviewee emphasized the importance of fostering trust in Industry 4.0 

technologies by showcasing demos and instances of successful implementations that farmers can observe 

firsthand. This sentiment aligns with similar findings in existing literature (e.g., Rathore et al., 2022; Zkik 

et al., 2022; Akella et al., 2023), where a reported lack of trust in new technologies is identified as a barrier 

to adoption. For instance, Yadav et al. (2020) reported a lack of trust in Blockchain as a major barrier to 

its adoption in agricultural supply chains.  

 

4.1.3.4 Benefits of technologies are unclear (BPB4) 

According to some interviewees, the lack of clear cost-benefit information on Industry 4.0 technologies is 

a barrier to their adoption. As per one interviewee: “To invest in new technology, farmers should have an 

understanding of the cost, income, and expenses”. Another interviewee stressed the need to create 

awareness of the tangible and intangible benefits, as well as the short and long-term benefits of Industry 

4.0 technologies. Here intangible benefits include the increase in product value from the extension in shelf 

life, the lowering of process losses, and the reduction in sales discount (due to the improved quality and 

reputation) (Sharma et al., 2021). Previous studies have also reported unclear benefits of technology to 

be a barrier to its adoption (Shepherd et al., 2020; Steeneveld and Hogeveen, 2015). 

 

4.1.4. Organizational Barriers 

 

4.1.4.1. Lack of compatibility with traditional methods (ORB1) 

It was evident from the interviews that the lack of compatibility of Industry 4.0 technologies with legacy 

systems/traditional methods was a barrier to their adoption. According to respondents, traditional 

agricultural methods may not be designed to integrate seamlessly with advanced technologies, requiring 

significant modifications or adaptations that can be complex and costly. Therefore, incorporating such 



technologies into existing traditional practices can disrupt established workflows and routines, potentially 

leading to reduced productivity and resistance among users. These concerns have also got support from 

literature. For example, Yadav et al. (2022) and Kumar et al. (2021) report compatibility with pre-existing 

hardware and software to be an issue when applying Industry 4.0 technologies. Similarly, as per Narwane 

et al. (2022), deployment of IoT-based wireless sensor networks (WSNs) at an agricultural farm demands 

a seamless exchange of data among different entities, people, and systems, which is only possible with 

good compatibility across systems and stakeholders.   

 

4.1.4.2. Technology is too complex to implement (ORB2) 

The perceived complexity of Industry 4.0 technology can cause anxiety and resistance to (its) adoption 

(Rathore et al., 2022). Interviewees highlighted some Industry 4.0 technologies to be too complex for most 

organizations. Evidence from the literature (e.g., Bolfe et al., 2020) also suggests adoption of a technology 

to be inversely proportional to its complexity. Similarly, Long et al. (2016) report overly complex 

technologies being barriers to innovations (environment-oriented) in agricultural supply chains.   

 

4.1.4.3. Lack of required competencies/skills (ORB3) 

Implementing Industry 4.0 technologies is challenging and if necessary, skills and competencies are not 

there, and more so, if farmers and enterprises wish to move from basic to more sophisticated 

implementation (UNESCAP, 2020). To thrive in a smart economy, enterprises need a diverse set of skills 

ranging from generic information and communications technology (ICT) skills to more specialist ones (e.g., 

how to program Apps, develop ICT applications and manage networks). However, such qualified and 

skilled employees are in short supply (Gadekar et al., 2022). Also, as evident from the interviews, many 

smallholder farmers are old, and with less formal education, which makes it difficult for them to apply any 

new technology without technical support. This is also evidenced in the literature with Yadav et al. (2020) 

finding farmers to be not very tech-savvy, and the understanding of Industry 4.0 technologies such as 

blockchain being difficult for them. 

 

4.1.4.4 Lack of information about the technologies (ORB4) 

It was clear from the interviews that the stakeholders, including the government entities in GMS 

countries, are not well aware of where to find useful information on Industry 4.0 technologies, as the 

sources are scattered and not easily accessible; also, that knowledge on these technologies, including 

their adoption is mostly shared through word-of-mouth, and hence susceptible to misinformation. A key 

reason for such accessibility issues in these (GMS) countries is the language barrier, or the so-called ‘Cross-

Language Information Access’ issue: English is not the main language, but the majority of websites and 

most self-learning materials for technology adoption there are in English (that creates the information-

related barriers (ERIA, 2019)). As per the agricultural sector literature also (e.g., Long et al., 2016), overly 

scientific language (jargon) is a barrier to the adoption of innovative technologies in the sector.   

 

Now that we have identified and explained the 13 barriers, the next step is to validate them using the 

Fuzzy Delphi technique (FDT). 



 

4.2. Validation of Industry 4.0 Adoption Barriers - Fuzzy Delphi Technique (FDT) 

The FDT steps were applied as per Section 3.4 and the results from that are given in Table 4. 

Table 4. Fuzzy Delphi Method (FDM) results 

Codes Fuzzy Weights (𝒂𝒋,𝒃𝒋,𝒄𝒋) Defuzzification (𝒅𝒋) Result 

ECB1 (0.3, 0.72, 0.9) 0.64 Retained 

ECB2 (0.1, 0.55, 0.9) 0.52 Retained 

ECB3 (0.1, 0.64, 0.9) 0.55 Retained 

IRB1 (0.1, 0.57, 0.9) 0.52 Retained 

IRB2 (0.1, 0.55, 0.9) 0.52 Retained 

BPB1 (0.1, 0.60, 0.9) 0.53 Retained 

BPB2 (0.1, 0.56, 0.9) 0.52 Retained 

BPB3 (0.1, 0.55 ,0.9) 0.52 Retained 

BPB4 (0.1, 0.40, 0.7) 0.40 Removed 

ORB1 (0.1, 0.57, 0.9) 0.52 Retained 

ORB2 (0.1, 0.56 ,0.9) 0.52 Retained 

ORB3 (0.1, 0.62, 0.9) 0.54 Retained 

ORB4 (0.1, 0.59, 0.9) 0.53 Retained 

  Threshold Value 0.52   

 

As seen in Table 4, all the barriers except BPB4 (Benefits of technology are unclear) are retained as their 

defuzzification weights are greater than or equal to the threshold value of 0.52; BPB4’s weight on the 

other hand is much lower at 0.40, and which is therefore removed.   

4.3. Understanding the hierarchical interrelationships between the barriers using ISM 

ISM as per Section 3.5 was applied with the starting point being the 12 barriers identified from the FDT 

analysis (as above). Domain experts’ inputs were first used to create the structural self-interaction matrix 

(SSIM) and the subsequent Initial Reachability Matrix (IRM) that are presented in Tables 5 and 6 below.   

Table 5. Structural Self-Interaction Matrix (SSIM) 

Codes ORB4 ORB3 ORB2 ORB1 BPB3 BPB2 BPB1 IRB2 IRB1 ECB3 ECB2 ECB1 

ECB1 O A A A O V O A O A V - 
ECB2 O O A A O V O A O A  -   
ECB3 O O O O O O O A A  -     
IRB1 A O O O O V A X  -       
IRB2 A V O O O V A  -         
BPB1 A V V O V V -            
BPB2 A A A A A  -             
BPB3 A O A A  -               
ORB1 O O V  -                 
ORB2 O X  -                   
ORB3 O -                      
ORB4  -                       



 

Table 6. Initial Reachability Matrix (IRM) 

Codes ORB4 ORB3 ORB2 ORB1 BPB3 BPB2 BPB1 IRB2 IRB1 ECB3 ECB2 ECB1 

ECB1 0 0 0 0 0 1 0 0 0 0 1 1 
ECB2 0 0 0 0 0 1 0 0 0 0 1 0 
ECB3 0 0 0 0 0 0 0 0 0 1 1 1 
IRB1 0 0 0 0 0 1 0 1 1 1 0 0 
IRB2 0 1 0 0 0 1 0 1 1 1 1 1 
BPB1 0 1 1 0 1 1 1 1 1 0 0 0 
BPB2 0 0 0 0 0 1 0 0 0 0 0 0 
BPB3 0 0 0 0 1 1 0 0 0 0 0 0 
ORB1 0 0 1 1 1 1 0 0 0 0 1 1 
ORB2 0 1 1 0 1 1 0 0 0 0 1 1 
ORB3 0 1 1 0 0 1 0 0 0 0 0 1 
ORB4 1 0 0 0 1 1 1 1 1 0 0 0 

 

Then after incorporation of transitivity in the Initial Reachability Matrix (IRM), the Final Reachability Matrix 

(FRM) was developed which is presented in Table 7 below. 

Table 7. Final Reachability Matrix (FRM) 

Codes ORB4 ORB3 ORB2 ORB1 BPB3 BPB2 BPB1 IRB2 IRB1 ECB3 ECB2 ECB1 
Driving 
Power 

Rank 

ECB1 0 0 0 0 0 1 0 0 0 0 1 1 3 7 

ECB2 0 0 0 0 0 1 0 0 0 0 1 0 2 8 

ECB3 0 0 0 0 0 1* 0 0 0 1 1 1 4 6 

IRB1 0 1* 0 0 0 1 0 1 1 1 1* 1* 7 4 

IRB2 0 1 1* 0 0 1 0 1 1 1 1 1 8 3 

BPB1 0 1 1 0 1 1 1 1 1 1* 1* 1* 10 2 

BPB2 0 0 0 0 0 1 0 0 0 0 0 0 1 9 

BPB3 0 0 0 0 1 1 0 0 0 0 0 0 2 8 

ORB1 0 1* 1 1 1 1 0 0 0 0 1 1 7 4 

ORB2 0 1 1 0 1 1 0 0 0 0 1 1 6 5 

ORB3 0 1 1 0 1* 1 0 0 0 0 1* 1 6 5 

ORB4 1 1* 1* 0 1 1 1 1 1 1* 1* 1* 11 1 

Dependence 
Power 

1 7 6 1 6 12 2 4 4 5 10 9 67/67  

Rank 9 4 5 9 5 1 8 7 7 6 2 3   

*Denotes the values which are changed from “0” to “1” during transitivity check 

The FRM was then partitioned to establish the hierarchy level of the barriers, and this is done through 

multiple iterations. Tables 8-15 show the level partitioning of barriers. 

 Table 8. Level Partitioning (Iteration 1) 

Factors Reachability Set Antecedent Set Intersection Set Level 

ECB1 BPB2; ECB2; ECB1 
ECB1; ECB3; IRB1; IRB2; BPB1; ORB1; 
ORB2; ORB2; ORB4 

ECB1   

ECB2 ECB2; BPB2 
ECB1; ECB2; ECB3; IRB1; IRB2; BPB1; 
ORB1; ORB2; ORB3; ORB4 

ECB2   



ECB3 BPB2; ECB3; ECB2; ECB1 ECB3; IRB1; IRB2; BPB1; ORB4 ECB3   

IRB1 
ORB3; ORB2; ORB1; BPB3; BPB2; BPB1; 
IRB2; IRB1; ECB3; ECB2; ECB1 

IRB1; IRB2; BPB1; ORB4 
IRB1; IRB2; 
BPB1 

  

IRB2 
ORB3; ORB2; ORB1; BPB3; BPB2; BPB1; 
IRB2; IRB1; ECB3; ECB2; ECB1 

IRB1; IRB2; BPB1; ORB4 
IRB1; IRB2; 
BPB1 

  

BPB1 
ORB3; ORB2; ORB1; BPB3; BPB2; BPB1; 
IRB2; IRB1; ECB3; ECB2; ECB1 

BPB1; ORB4 BPB1   

BPB2 BPB2 
ECB1; ECB2; ECB3; IRB1; IRB2; BPB1; 
BPB2; BPB3; ORB1; ORB2; ORB3; ORB4 

BPB2       I 

BPB3 BPB2; BPB3 BPB1; BPB3; ORB1; ORB2; ORB3; ORB4 BPB3   

ORB1 
ORB3; ORB2; ORB1; BPB2; BPB3; ECB2; 
ECB1 

ORB1 ORB1   

ORB2 ORB3; ORB2; BPB2; BPB3; ECB2; ECB1 IRB2; ORB1; ORB2; ORB3; ORB4 ORB3; ORB2   

ORB3 ORB3; ORB2; BPB3; BPB2; ECB2; ECB1 IRB1; IRB2; ORB1; ORB2; ORB3; ORB4 ORB3; ORB2   

ORB4 
ORB4; ORB3; ORB2; BPB3; BPB2; BPB1; 
IRB2; IRB1; ECB3; ECB2; ECB1 

ORB4 ORB4   

 

Table 9. Level Partitioning (Iteration 2) 

Factors Reachability Set Antecedent Set Intersection Set Level 

ECB1 ECB2; ECB1 
ECB1; ECB3; IRB1; IRB2; BPB1; ORB1; 
ORB2; ORB2; ORB4 

ECB1   

ECB2 ECB2 
ECB1; ECB2; ECB3; IRB1; IRB2; BPB1; 
ORB1; ORB2; ORB3; ORB4 

ECB2   II 

ECB3 ECB3; ECB2; ECB1 ECB3; IRB1; IRB2; BPB1; ORB4 ECB3   

IRB1 
ORB3; ORB2; ORB1; BPB3; BPB1; IRB2; 
IRB1; ECB3; ECB2; ECB1 

IRB1; IRB2; BPB1; ORB4 
IRB1; IRB2; 
BPB1 

  

IRB2 
ORB3; ORB2; ORB1; BPB3; BPB1; IRB2; 
IRB1; ECB3; ECB2; ECB1 

IRB1; IRB2; BPB1; ORB4 
IRB1; IRB2; 
BPB1 

  

BPB1 
ORB3; ORB2; ORB1; BPB3; BPB1; IRB2; 
IRB1; ECB3; ECB2; ECB1 

BPB1; ORB4 BPB1   

BPB3 BPB3 BPB1; BPB3; ORB1; ORB2; ORB3; ORB4 BPB3    II 

ORB1 ORB3; ORB2; ORB1; BPB3; ECB2; ECB1 ORB1 ORB1   

ORB2 ORB3; ORB2; BPB3; ECB2; ECB1 IRB2; ORB1; ORB2; ORB3; ORB4 ORB3; ORB2   

ORB3 ORB3; ORB2; BPB3; ECB2; ECB1 IRB1; IRB2; ORB1; ORB2; ORB3; ORB4 ORB3; ORB2   

ORB4 
ORB4; ORB3; ORB2; BPB3; BPB1; IRB2; 
IRB1; ECB3; ECB2; ECB1 

ORB4 ORB4   

 

Table 10. Level Partitioning (Iteration 3) 

Factors Reachability Set Antecedent Set Intersection Set Level 

ECB1 ECB1 
ECB1; ECB3; IRB1; IRB2; BPB1; ORB1; 
ORB2; ORB2; ORB4 ECB1 III 

ECB3 ECB3; ECB1 ECB3; IRB1; IRB2; BPB1; ORB4 ECB3   

IRB1 
ORB3; ORB2; ORB1; BPB1; IRB2; IRB1; 
ECB3; ECB1 IRB1; IRB2; BPB1; ORB4 IRB1; IRB2; BPB1   

IRB2 
ORB3; ORB2; ORB1; BPB1; IRB2; IRB1; 
ECB3; ECB1 IRB1; IRB2; BPB1; ORB4 IRB1; IRB2; BPB1   

BPB1 
ORB3; ORB2; ORB1; BPB1; IRB2; IRB1; 
ECB3; ECB1 BPB1; ORB4 BPB1   



ORB1 ORB3; ORB2; ORB1; ECB1 ORB1 ORB1   

ORB2 ORB3; ORB2; ECB1 IRB2; ORB1; ORB2; ORB3; ORB4 ORB3; ORB2   

ORB3 ORB3; ORB2; ECB1 IRB1; IRB2; ORB1; ORB2; ORB3; ORB4 ORB3; ORB2   

ORB4 
ORB4; ORB3; ORB2; BPB1; IRB2; IRB1; 
ECB3; ECB1 ORB4 ORB4   

 

Table 11. Level Partitioning (Iteration 4) 

Factors Reachability Set Antecedent Set Intersection Set Level 

ECB3 ECB3 ECB3; IRB1; IRB2; BPB1; ORB4 ECB3 IV 

IRB1 
ORB3; ORB2; ORB1; BPB1; IRB2; IRB1; 
ECB3 IRB1; IRB2; BPB1; ORB4 IRB1; IRB2; BPB1   

IRB2 
ORB3; ORB2; ORB1; BPB1; IRB2; IRB1; 
ECB3 IRB1; IRB2; BPB1; ORB4 IRB1; IRB2; BPB1   

BPB1 
ORB3; ORB2; ORB1; BPB1; IRB2; IRB1; 
ECB3 BPB1; ORB4 BPB1   

ORB1 ORB3; ORB2; ORB1 ORB1 ORB1   

ORB2 ORB3; ORB2 IRB2; ORB1; ORB2; ORB3; ORB4 ORB3; ORB2 IV 

ORB3 ORB3; ORB2 IRB1; IRB2; ORB1; ORB2; ORB3; ORB4 ORB3; ORB2 IV 

ORB4 
ORB4; ORB3; ORB2; BPB1; IRB2; IRB1; 
ECB3 ORB4 ORB4   

 

Table 12. Level Partitioning (Iteration 5) 

Factors Reachability Set Antecedent Set Intersection Set Level 

IRB1 ORB1; BPB1; IRB2; IRB1 IRB1; IRB2; BPB1; ORB4 IRB1; IRB2; BPB1   

IRB2 ORB1; BPB1; IRB2; IRB1 IRB1; IRB2; BPB1; ORB4 IRB1; IRB2; BPB1   

BPB1 ORB1; BPB1; IRB2; IRB1 BPB1; ORB4 BPB1   

ORB1 ORB1 ORB1 ORB1 V 

ORB4 ORB4; BPB1; IRB2; IRB1 ORB4 ORB4   

 

Table 13. Level Partitioning (Iteration 6) 

Factors Reachability Set Antecedent Set Intersection Set Level 

IRB1 BPB1; IRB2; IRB1 IRB1; IRB2; BPB1; ORB4 IRB1; IRB2; BPB1 VI 

IRB2 BPB1; IRB2; IRB1 IRB1; IRB2; BPB1; ORB4 IRB1; IRB2; BPB1 VI 

BPB1 BPB1; IRB2; IRB1 BPB1; ORB4 BPB1   

ORB4 ORB4; BPB1; IRB2; IRB1 ORB4 ORB4   

 

Table 14. Level Partitioning (Iteration 7) 

Factors Reachability Set Antecedent Set Intersection Set Level 

BPB1 BPB1 BPB1; ORB4 BPB1 VII 

ORB4 ORB4; BPB1 ORB4 ORB4   

 



Table 15. Level Partitioning (Iteration 8) 

Factors Reachability Set Antecedent Set Intersection Set Level 

ORB4 ORB4 ORB4 ORB4 VIII 

 

The ISM model that is developed at the end from the FRM is presented in Figure 4.   

 

 

Figure 4. ISM-based Structural Model 

4.4. Understanding the Driving and Dependence power of barriers using MICMAC Analysis 

The Final Reachability Matrix (FRM) was used to calculate the driving and dependence powers 

for each of the barriers (refer Table 7 presented earlier). These are plotted in a 2-dimensional 

plot with dependence power and driving power as the 𝑋 and 𝑌 coordinates (refer figure 5 below).   



 

Figure 5. Clustering of barriers using MICMAC Analysis 

5. Discussion 

In line with our first research objective, the study identified 13 barriers to Industry 4.0 adoption in 

agricultural supply chains. These barriers were further categorized into four groups, namely economic 

barriers, institutional barriers, behavioral/psychological barriers, and organizational barriers. They were 

then assessed using the Fuzzy Delphi Technique, where the “Benefits of technologies are unclear” (BPB4) 

barrier was eliminated. This elimination could be because of its overlap with the “lack of knowledge and 

awareness of technologies” (BPB1) and the “uncertain/long return on investment” (ECB2) barriers. The 

rest of the barriers were validated and retained for further analysis. Such an in-depth determination of 

Industry 4.0 adoption barriers in agricultural supply chains is a significant contribution, given that it has 

not been previously attempted for a large, multi-country, emerging economy context.    

Next, in line with our second research objective, the ISM approach revealed the hierarchical structure and 

precedence relationships among the barriers (see Figure 4). Then, as per our third research objective, the 

barriers were clustered into four distinct categories: Autonomous, Dependent, Linkage, and Driver barrier 

categories (see Figure 5). As evident from figures 4 and 5, the five Driver category barriers (Driver (IV)) 

occupy the three lowest levels in the ISM hierarchical model and influence the other barriers. These are 

“lack of information about the technologies” (ORB4), “lack of compatibility with traditional methods” 

(ORB1), “lack of knowledge and awareness of technologies” (BPB1), “lack of regulatory policies/legal 

framework” (IRB1), and “low government support” (IRB2). They influence the other barriers and are 

therefore considered the most important. Among these, two of them (ORB4 and ORB1) occupy the base 

or the lowest level of the ISM model. This means they are independent barriers which directly and 

indirectly influence all the other ones, and therefore require serious attention from the policymakers. 

Prior studies indicate that a lack of information about new technologies can lead to fragmented and 

disorganized adoption (Long et al., 2016). One respondent pointed out that literacy rates among farmers, 

especially those using traditional methods, tend to be low. As a result, accessing, understanding, and 



utilizing information related to new technologies can be particularly challenging for them. Moreover, a 

lack of internet access, predominantly in rural areas, can significantly hinder access to information about 

new technologies. In parallel, incompatibility with existing technologies emerges as a major barrier, 

amplifying other barriers. One interviewee cited the absence of essential infrastructure, such as reliable 

internet access, especially in remote and rural areas, as a factor impeding the adoption of Industry 4.0 

technologies. Several pieces of literature also recognize these compatibility issues with existing systems 

as concerns affecting the adoption of new technologies (Long et al., 2016; Yadav et al., 2020; 2022; 

Narwane et al., 2022). 

The “Technology is too complex to implement” (ORB2), and “lack of required competencies/skills (ORB3) 

barriers emerged as the Linkage barriers (Quadrant III) that occupy the mid-level in the ISM model. These 

barriers are therefore sensitive/unstable, and must be addressed carefully, as any action involving them 

would result in a subsequent reaction that can affect them as well as the other barriers. Existing literature 

reveals that stakeholders in the agricultural sector, including small-scale farmers, often perceive Industry 

4.0 technologies as too complex to implement and manage (Boursianis et al., 2022; Narwane et al., 2022). 

However, evidence from other sectors indicates that the perceived complexity of these technologies as a 

barrier to adoption is not exclusive to agriculture. For instance, studies from the logistics sector show that 

firms often prefer working with simpler software platforms over more complex and advanced blockchain-

based platforms (Rathore et al., 2022). The lack of necessary competencies and skills is another barrier 

consistently highlighted across various sectors in Industry 4.0 literature. Within agriculture, practitioners, 

especially those accustomed to traditional farming methods, may lack the essential skills and 

understanding to effectively utilize advanced technologies (Narwane et al., 2022; Yadav et al., 2020). 

Similarly, in sectors like supply chain management, the absence of skilled and trained staff to operate 

modern equipment and IT systems is identified as a significant barrier to adopting new technologies 

(Sharma et al., 2021). 

Four barriers, namely “high cost of implementation” (ECB1), “long/uncertain return on investment” 

(ECB2), “lack of trust in the technologies” (BPB3), and “reluctance to change existing processes” (BPB2) 

emerged as Dependent barriers (Quadrant II). Not surprisingly, they occupy the top three hierarchical 

levels in the ISM model as the other barriers influence them. Of these, the “reluctance to change existing 

processes” barrier occupies the highest level in the ISM hierarchy, which means it is directly and indirectly 

affected by all the other barriers and can only be managed by addressing them. Several studies categorize 

this obstacle as a behavioral/psychological barrier in the agricultural sector, influenced collectively by 

other barriers (Rathore et al., 2022; Srivetbodee and Igel, 2021). For instance, distrust in technologies can 

lead to reluctance in adopting Industry 4.0 technologies. Unsurprisingly, multiple studies identify lack of 

trust as a significant barrier in the agricultural sector, affected by other barriers (Rathore et al., 2022; 

Yadav et al., 2020). In fact, the literature provides substantial evidence that lack of trust is a prevalent 

concern across various industries. For example, in the logistics sector, lack of trust was found to have 

higher dependence power than other barriers concerning the adoption of disruptive technologies 

(Rathore et al., 2022), mirroring findings of this study. Similarly, uncertainty in return on investments is 

not only a substantial barrier in agriculture (Das et al., 2019; Sayem et al., 2022; Horváth and Szabó, 2019; 

Narwane et al., 2022) but is also prevalent in other sectors. Gadekar et al. (2022), for example, identified 

uncertain return on investments as a barrier in the Indian manufacturing industry. Regarding the high cost 

of implementation, it is universally recognized as a barrier to adopting Industry 4.0 technologies across 

sectors, including agriculture (Long et al., 2016; Masud et al., 2017; Kasemi et al, 2022; Narwane et al., 



2022). The construction industry also reports high costs as an obstacle to transitioning towards off-site 

construction such as additive manufacturing (Gan et al., 2018). 

Finally, “lack of access to funding/loans” emerged as an autonomous barrier (Quadrant I). Barriers falling 

under this category have weak driving and dependence power, and therefore less impact on adoption (of 

Industry 4.0 technologies in this case); they can also be tackled relatively easily.  

Next, a closer examination of the direct causal relationships among the barriers shows that “lack of 

information about the technologies” is the main reason for “stakeholders' lack of knowledge and 

awareness” about them. As discussed earlier, low English proficiency is a problem for farmers in the GMS 

region; moreover, different countries in the region speak different languages. Hence, there is a need to 

provide information related to Industry 4.0 technologies in the local language. The manuals and training 

materials that are typically in English should also be converted to the local language. Addressing this (lack 

of knowledge and awareness) issue is important, as it affects policy maker and government support and 

actions. As evidenced from the interviews, governments in the region, such as the Ministry of Agriculture 

and industry associations (who influence policy) have limited knowledge and awareness of Industry 4.0 

technologies; for instance, many stakeholders are unaware of the intangible benefits of technology.  

On the other hand, the “lack of compatibility with traditional methods or interoperability with existing 

systems” makes new technology adoption too complex for many stakeholders. It requires changing the 

current processes and systems (to accommodate the new technologies), which is considered risky and 

time-consuming. It also requires skilled and competent employees in those technologies who may be in 

short supply or expensive. Even if available, many small-scale enterprises may be unable to afford them 

in full-time mode because of their financial constraints (ERIA, 2019). One approach could be to 

upskill/reskill the low-skilled employees there. Government bodies, industry associations in partnership 

with banks, and other regional stakeholders could design appropriate capacity-building programs, and 

thereby play a key role in this.   

The “high cost of implementation” is seen to cause the “long/uncertain return on investment” on Industry 

4.0 technologies. To address this, local governments could give micro, small and medium-sized agricultural 

firms financial support in the form of credit guarantees, longer repayment periods, collateral-free loans, 

low/zero interest loans and subsidies. They could also work with local and regional banks, such as the 

Asian Development Bank (ADB) to facilitate easy access to finance for the agricultural sector. Selected 

technology products could also be exempt from import duties or could be heavily subsidized. A low or 

zero upfront cost model (OPEX model) could also be promoted. Next, the complex nature of some Industry 

4.0 technologies (ORB2) is seen to cause a “lack of trust or confidence in using these technologies” (BPB3), 

mainly due to a perceived risk of failure. Then the “lack of trust or confidence in using these technologies” 

(BPB3) together with “long/uncertain return on investment” (or financial benefits) (ECB2) makes 

stakeholders “Reluctant to change their existing processes (to implement new technologies)” (BPB2).  

6. Study Implications 

The implications of this study are manifold. They can be categorized as research and practical implications.  

6.1. Research Implications 

In terms of research contributions, this study stands as the first exhaustive multi-method empirical 

investigation aimed at identifying, validating, and modeling the various barriers to Industry 4.0 adoption 



within the agricultural sector across multiple emerging countries. Consequently, the presented structural 

model addressing barriers to Industry 4.0 adoption in agriculture is both novel and significant. While this 

research is centered on GMS, the similarities in the foundational challenges encountered by the 

agricultural sectors in other emerging countries, especially in Asia, suggest that the insights derived from 

this study have broader applicability. The developed model could substantively facilitate subsequent 

research endeavors in this field, offering a basis for testing and application in diverse agricultural contexts. 

Furthermore, this research enriches the wider discourse on the barriers to adopting technological 

innovations in emerging nations, with a particular focus on Industry 4.0 adoption. Methodologically, the 

use of the Fuzzy Delphi-ISM approach in this study augments the body of work on multi-criteria decision-

making frameworks and can serve as a useful model and benchmark for similar studies probing the 

barriers to Industry 4.0 adoption. 

6.2. Practical Implications 

This study provides practical insights that are instrumental for policymakers and agriculture supply chain 

stakeholders in devising new strategies and policy interventions to prioritize and address the barriers to 

Industry 4.0 technologies. The timeliness of this study is emphasized by the pivotal role of Industry 4.0 in 

the post-COVID recovery of the agricultural sector in emerging countries, and its potential to tackle 

inherent sectoral challenges such as labor shortages and unpredictable climatic conditions. Given that 

agriculture constitutes the economic backbone of GMS economies, accounting for 30% of employment in 

Thailand and Cambodia, 40% in Vietnam, over 50% in Myanmar, and 69% in Laos (ADB, 2021), the 

implications of this study are substantial. By addressing barriers to enhance Industry 4.0 adoption, this 

study can facilitate productivity gains, income boosts, and process cost reductions, contributing 

significantly to improving socio-economic conditions in these regions. 

From a policy perspective, this study advocates for the formulation of clear policies, regulations, and 

guidelines to overcome barriers to the adoption of Industry 4.0 technologies. Governmental 

interventions, through well-framed regulations and policies, can act as catalysts for adopting these 

technologies by establishing supportive legal and institutional frameworks, offering financial incentives, 

and creating an environment conducive to digital transformation. Governments are encouraged to 

establish task forces to define standards and technical regulations for the application and dissemination 

of these technologies and to extend financial support, particularly to micro and small-scale enterprises, 

to foster the adoption of Industry 4.0 technologies. This research underscores the importance for 

governments to cultivate robust partnerships with banks and the private sector to enable fruitful public-

private partnerships for the adoption of Industry 4.0 technologies.  

7. Conclusions 

Agricultural supply chains have traditionally relied on labor-intensive low-technology methods, with 

consequential low efficiencies and significant wastages. These deficiencies are now sought to be 

addressed through the incorporation of different Industry 4.0 technologies, and associated business 

model/operations transformations (De Clercq et al., 2018; World Economic Forum, 2022). A sustained, 

large-scale diffusion of these technologies requires the associated barriers to be addressed, which in turn 

requires an in-depth and structured understanding of these barriers first, which was the primary focus of 

this study.  



This study stands as one of the first studies to examine the barriers encountered in adopting Industry 4.0 

technologies within agricultural supply chains, especially in emerging economies. By employing an 

integrative Fuzzy Delphi-ISM approach and MICMAC analysis, it has delved deep into understanding the 

hierarchical structure and intricate interrelations among the barriers. Lack of information about 

technologies and lack of compatibility with traditional methods emerged as the two main barriers which 

directly and indirectly influence the other ones. 

Though the study is rigorous, it does have some limitations. First, the identified list of 13 barriers may not 

be exhaustive. Future studies can look at updating them for different contexts. Second, the ISM 

methodology uses binary relationships between the variables, i.e., in 0/1 terms. This is a limitation given 

that there could be an intermediate value between 0 and 1. Future researchers could therefore use other 

multi-criteria decision methodologies such as fuzzy DEMATEL or AHP for modeling the barriers. Finally, 

the weighting of the barriers in the Fuzzy Delphi technique as well as for the modelling is based on experts’ 

subjective assessment. Because it is qualitative, the strength of the relationships among the barriers 

couldn’t be assessed. Future research could therefore use a large-scale survey and structural equation 

modeling to hypothesize and statistically test the causal relationships among the barriers. Despite these 

limitations, we believe the proposed model and its successful application will significantly enhance the 

understanding of Industry 4.0 adoption barriers in the agricultural sector; will also encourage more 

research on this important topic.  
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Participant  Stakeholder Organization Focus Designation Country 
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Head, Agricultural 
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Participant  Stakeholder Organization Focus Designation Country 

P3 Private Firm Rice Mill / Rice exporter Managing Director Thailand 

P4 Private Firm Rice Mill / Rice exporter Vice President Cambodia 

P5 Industry 
Association  

Thai Fruit Export Association President Thailand 

P6 Private Firm  Tapioca Food Processing Firm Managing Director Thailand 

P7 
Private Firm 

Logistics company (Reefer 
Container) 

Managing Director Thailand 

P8 
Private Firm 

Logistics Company 

(Transportation) 
Executive Director Cambodia 

P9 
Private Firm 

Warehousing and Cold 
Storage 

General Manager 

 
Thailand 

P10 Association 

(Transportation) 

GMS-Freight Transport 
Association 

Vice Chairman GMS 

P11 
Private Firm 

Logistics Company 
(3PL/Transportation) 

Managing Director 

 
Thailand 

P12 
Private Firm 

Logistics Company 

(Transportation) 

Executive Vice President - 
Transportation and 
logistics 

Thailand 

P13 
Private Firm 

Cold Storage/Refrigeration 
Equipment Manufacturer 

Thailand Country 
Representative 

China/ 

Thailand 

P14 Private Firm 
(Multinational) 

Logistics and Supply Chain 
General Manager 
(Thailand) 

Global/ 

Thailand 

P15 
Private Firm 

Renewable Energy 
Technologies 

Design & Sales Engineer 
Global/ 

Thailand 

P16 
Private Firm 

Warehousing and Logistics 
(Chiller storage and Reefer 
Container) 

Manager 
Mekong 
Region 

P17 Private Firm Drone Manufacturer CEO Thailand 

P18 
Private Firm 

Robotics and Drone Solution 
Provider 

Co-founder and CEO Thailand 

P19 Private Firm 
(Multinational) 

Warehouse Drone and 
Robotics  

Business Development 
Manager 

Singapore/ 
Global 

P20 Private Firm 
(Multinational) 

Smart warehouse and Robotic 
Automation Solution Provider 

Operations Manager Singapore 

P21 
Private Firm 

Hydrokinetic Energy 
Technologies for Aquaculture 

COO Singapore 

 

Appendix B. Details of Experts who Participated in FDT and ISM 

Participant Stakeholder Organization Focus Designation Country 

E1 Government 
Horticulture and Subsidiary Crops 
Division – Ministry of Agriculture 
Forestry and Fisheries 

Vice Chief Cambodia 

E2 Government Plant Protection Division - Ministry of Officer Cambodia 



Participant Stakeholder Organization Focus Designation Country 

Agriculture Forestry and Fisheries 

E3 Government 
Agricultural Extension Division - 
Ministry of Agriculture Forestry and 
Fisheries 

Officer Cambodia 

E4 Government 
Ministry of Industry, Science, 
Technology & Innovation 

Officer Cambodia 

E5 University 
Department of Natural Resource 
Management and Development 

Academic/Researcher Cambodia 

E6 University 
Planning and International Cooperation 
– Agricultural University 

Academic/Researcher Cambodia 

E7 Government Ministry of Commerce Director Cambodia 

E8 Private Firm Food Production & Processing Director Cambodia 

E9 Government 
Information Technology and Innovation 
Division - Ministry of Industry and 
Commerce 

Head of Division Lao PDR 

E10 University Department of Agricultural Engineering Academic/Researcher Myanmar 

E11 Government Ministry of Electric Power Director Myanmar 

E12 Government 
Ministry of Agriculture, Livestock and 
Irrigation 

Officer Myanmar 

E13 Association 
International Freight Forwarders' 
Association 

Director Myanmar 

E14 Association 
Fruit, Flower and Vegetable Producers 

and Exporters Association 
Director Myanmar 

E15 Private Firm Logistics Company CEO Myanmar 

E16 Research Firm 
Horticultural Research Institute (Plant 
Protection) 

Researcher Vietnam 

E17 University National University of Forestry Academic/Researcher Vietnam 

E18 Research Firm 
Plant Protection Department – Rice 
Research Institute 

Researcher Vietnam 

E19 University 
Agro-Forestry-Fisheries – Quality 
Assurance Department 

Officer Vietnam 

E20 Research Firm Rice Research Institute Head Vietnam 

E21 University Department of Agriculture Researcher Thailand 

E22 Private Firm Social Enterprise Managing Director Thailand 

E23 Government 
Ministry of Agriculture and 
Cooperatives – Department of 
Agriculture Extension 

Researcher Thailand 

 

 


