
 PhD thesis

Enhanced classification of network traffic data captured by

intrusion prevention systems

Aljoufi, R.

Full bibliographic citation: Aljoufi, R. 2023. Enhanced classification of network traffic data

captured by intrusion prevention systems. PhD thesis Middlesex University Science and

Technology

Year: 2023

Publisher: Middlesex University Research Repository

Available online: https://repository.mdx.ac.uk/item/8q563

Middlesex University Research Repository makes the University’s research available

electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright

owners unless otherwise stated. The work is supplied on the understanding that any use

for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-

commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or

medium, or extensive quotations taken from them, or their content changed in any way,

without first obtaining permission in writing from the copyright holder(s). They may not be

sold or exploited commercially in any format or medium without the prior written

permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items

including the author’s name, the title of the work, publication details where relevant

https://repository.mdx.ac.uk/item/8q563

(place, publisher, date), pagination, and for theses or dissertations the awarding

institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please

contact the Repository Team at Middlesex University via the following email address:

repository@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: https://libguides.mdx.ac.uk/repository

PhD Thesis

Enhanced Classification of Network
Traffic Data Captured by Intrusion

Prevention Systems

Author: Reem Aljoufi

A thesis submitted in partial fulfilment of the requirement

for the degree of Doctor of Philosophy, PhD.

Department of Computer Science

Middlesex University

London, United Kingdom

September 2022

http://www.mdx.ac.uk/
http://www.mdx.ac.uk

Declaration and List of Publication

Signed:

Date:

Publication:

A research paper titled Multi-task Learning for Intrusion Detection and Analysis of

Computer Network Traffic summarising some of the work carried out as part of this

thesis was published at the The 3rd International Conference of Computer Science and

Renewable Energies (ICCSRE2020).

ii

Abstract

A common practice in modern computer networks is the deployment of Intrusion

Prevention Systems (IPSs) for the purpose of identifying security threats. Such systems

provide alerts on suspicious activities based on a predefined set of rules. These alerts

almost always contain high percentages of false positives and false negatives, which may

impede the efficacy of their use. Therefore, with the presence of high numbers of false

positives and false negatives, the analysis of network traffic data can be ineffective for

decision makers which normally require concise, and preferably, visual forms to base

their decisions upon. Machine learning techniques can help extract useful information

from large datasets. Combined with visualisation, classification could provide a solution

to false alerts and text-based outputs of IPSs.

This research developed two new classification techniques that outperformed the

traditional classification methods in accurate classification of computer network traffic

captured by an IPS framework. They are also highly effective. The main purpose of

these techniques was the effective identification of malicious network traffic and this

was demonstrated via extensive experimental evaluation (where many experiments were

conducted and results are reported in this thesis). In addition, an enhancement of

the principal component analysis (PCA) was presented as part of this study. This

enhancement proved to outperform the classical PCA on classification of IPS data.

Details of the evaluation and experiments are provided in this thesis. One of the

classification methods described in this thesis achieved accuracy values of 98.51% and

99.76% on two computer network traffic dataset settings, whereas the Class-balanced

Similarity Based Instance Transfer Learning (CB-SBIT) algorithm achieves accuracy

values of 93.56% and 96.25% respectively on the same dataset settings. This means the

proposed method outperforms the state-of-the-art algorithm.

As for the PCA enhancement mentioned above, using its resulting principal components

as inputs to classifiers leads to improved accuracy when compared to the classical PCA.

iv

Acknowledgements

I would like to thank my family and friends who supported me and offered their

encouragement during difficult times.

I would also like to express my gratitude to my supervisor, Dr Aboubakr Lasebae, who

guided me throughout my PhD journey.

v

This Research is Dedicated

I am dedicating this thesis to some beloved people who have meant

and continue to mean the world to me. First and foremost, to my

beloved parents whose love and support for me knew no bounds and,

who taught me the value of hard work.

Next, my brothers and sisters for their unconditional patience, love,

support and encouragement.

Last but not least, to all my friends and teachers.

I love you all!

vii

Contents

Declaration and List of Publication ii

Abstract iv

Acknowledgements v

Contents ix

List of Figures xii

List of Tables xiv

1 INTRODUCTION 1

1.1 Introduction and Problem Definition . 1

1.2 Motivation and Rationale . 3

1.2.1 Aims and Objectives . 5

1.3 Research Questions . 6

1.4 Key Research Contributions . 8

1.5 Methodology Overview . 8

1.6 Thesis Structure . 10

2 BACKGROUND AND SUBJECT AREA REVIEW 13

2.1 Overview of Intrusion Prevention Systems 13

2.2 Visualisation of IPS Captured Data . 14

2.3 High Level Overview of Snort PCAP Files 17

2.4 What is Data Mining? . 18

2.5 Data Mining of PCAP Files . 19

2.6 Machine Learning and Multi-task Learning 20

2.6.1 What is Machine Learning? . 21

2.6.2 What is Multi-task Learning (MTL)? 21

2.6.3 How MTL is used in this Work . 22

2.7 Contributions of this Multitask Learning Work 24

2.8 Related Work on using Traditional Machine Learning Methods for
Network Traffic Analysis . 26

2.9 Existing Work on using MTL for Network Traffic Analysis 30

ix

Contents

2.10 Existing Work on using PCA and Eigenvectors for Network Traffic Analysis 33

2.11 Summary . 35

3 DATA MINING OF IPS DATASETS: EXPERIMENTS AND
RESULTS 37

3.1 Classification Evaluation Metrics . 37

3.2 Classification Experiments . 47

3.2.1 The Data . 47

3.2.2 Data Pre-processing . 49

3.2.3 Algorithms used in the Experiments 50

3.2.3.1 Naive Bayes . 50

3.2.3.2 Multilayer Perceptron (MLP) 51

3.2.3.3 Decision Trees . 51

3.2.3.4 Random Forest . 52

3.2.4 Experiments . 52

3.2.4.1 Binary Classification . 53

3.2.4.2 Multiclass Classification 56

3.3 Summary . 57

4 DEVELOPMENT OF NEW CLASSIFICATION METHODS 59

4.1 Multi-Task Learning for Accurate Classification of Network Traffic 59

4.1.1 The Proposed Method . 62

4.1.2 Instance Similarity . 65

4.2 Classification Using Matrix Determinants 66

4.2.1 Algorithm for Matrix Determinants 66

4.3 Classification Using Eigenvalue Perturbation 67

4.3.1 Algorithm for Eigenvectors Perturbation (EV) 70

4.4 Summary . 73

5 VISUALISATION OF PCAP DATA USING PCA 74

5.1 Principal Component Analysis (PCA) . 74

5.2 Computation of PCA . 77

5.3 How PCA Can Help Visualise Large Datasets 80

5.4 Improvement of the PCA Algorithm . 81

5.5 Visualisation using PCA Spearman’s Rho 83

5.5.1 Visualising a Sample using the Covariance Matrix 84

5.5.2 Visualising a Sample using the Pearson Matrix 84

5.5.3 Visualising a Sample Using the Spearman Matrix 85

5.6 Summary . 86

6 CLASSIFICATION RESULTS AND EVALUATION 88

6.1 Network Traffic Data . 88

6.2 Evaluation of the Multitask Learning Approach 90

6.2.1 Comparison with RandomForest 92

6.2.2 Comparison with CB-SBIT . 93

6.3 Evaluation of the Eigenvector Perturbation Classifier (EV) 96

6.3.1 EV vs RF (Multi-Class) . 97

6.3.2 EV vs RF (Individual Classes) . 100

x

Contents

6.4 Comparison of Suggested PCA Variation with Classical PCA Algorithm . 102

6.5 Summary . 103

7 CONCLUSIONS AND FUTURE WORK 105

7.1 General Points . 105

7.2 Conclusions Against Objectives . 106

7.3 Conclusions and Lessons Learnt . 108

7.4 Limitations and Future Work . 110

References 112

xi

List of Figures

1.1 An improved attack detection method of computer network traffic using
data mining and visualisation with human intervention 4

2.1 PCA of IPS data. The figure shows PC1 v PC2. The legend shows the
types of attacks . 17

2.2 Classification procedure. 20

2.3 Visual Illustration of Single and Multi-task Learning 23

3.1 A confusion matrix showing the number of correctly and incorrectly
predicted instances . 40

3.2 A confusion matrix showing predicted v actual classes and the two types
of errors . 41

3.3 A confusion matrix showing more useful metrics 42

3.4 A ROC curve v random classes by a classifier (the dotted line y = x)
giving 50% chance to each class . 44

3.5 A precision-recall curve depicting the skill of a model 45

3.6 Five-fold Cross Validation . 46

3.7 Distribution of instance classes in the IPS traffic dataset 48

3.8 Some of the Features in the Data . 49

3.9 Results of the Naive Bayes classifier . 54

3.10 Results of the Random Forest classifier . 55

3.11 Results of the Decision Tree classifier in the Multiclass Classification . . . 56

3.12 Results of the Multilayer Perceptron classifier in the Multiclass
Classification . 57

4.1 Example Similarity Values Computed between Instances of Multiple
Network Traffic Types (i.e. Tasks) . 63

4.2 Contents of Dataset resulting after the Proposed MTL Method 64

4.3 View of Merged Datasets with Added Similarity Columns 64

4.4 A flowchart depicting the Eigenvectors Perturbation algorithm 72

5.1 Visual Illustration of PCA (Diagram from (Masci, 2013)) 76

5.2 The actual data (blue) and the reconstructed data (red) after using
Spearman’s rho . 82

5.3 The actual data (blue) and the reconstructed data (red) after using the
correlation coefficient . 82

5.4 PCA results after using the covariance matrix. 84

5.5 PCA results after using the Pearson matrix. 85

5.6 PCA results after using the Spearman matrix. 86

xii

List of Figures

6.1 An Example Dataset resulting after the Proposed MTL Method 91

6.2 Results of RandomForest on Pairwise Task Combinations 92

6.3 Results of the MTL Procedure on the same Pairwise Task Combinations . 93

6.4 Results of Comparing Performance of CB-SBIT and the Proposed MTL
Approach . 96

6.5 The accuracy measure of the classifiers. RF, FR and EV achieve very
close results . 98

6.6 Classifier Evaluation (X-axis shows the classifier name and Y-axis shows
the metric value). 99

6.7 Classifying individual classes. (X-axis shows the classifier name and
Y-axis shows the Recall value). 101

xiii

List of Tables

3.1 One-hot Encoding Example . 49

6.1 Data used for MTL Experimental Evaluation 90

6.2 Comparison Between Multiple Classifiers. 99

6.3 Recall Values for Multiple Classifiers on Individual Classes. 102

6.4 Comparison with the Classical PCA Algorithm 103

xiv

List of Algorithms

1 How to Compute Similarity Values between Instances 62

2 How to Concatenate Datasets, add Similarity Values as new Features and
Train a Classifier using the Resulting Dataset 64

3 Algorithm for Matrix Determinants . 66

4 Prediction using Algorithm for Matrix Determinants 67

5 Algorithm for Eigenvectors Perturbation (EV) 70

6 Prediction using Algorithm for Eigenvectors Perturbation (EV) 71

xv

Chapter 1

INTRODUCTION

This chapter provides an introduction to the work conducted in this thesis. It contains

multiple aspects such as problem definition, the motivation and rationale of this work,

research aims and objectives and more.

1.1 Introduction and Problem Definition

An Intrusion Prevention Systems (IPS) has a traditional role in computer systems of

identifying security threats to a computer network (Mane and Rao, 2021). IPSs provide

suspicious traffic alerts. The alerts are later used to analyse network events and act

accordingly. Nevertheless, these alerts commonly contain relatively large numbers of

false positives and false negatives, rendering the process of analysing them tedious to

say the least. Consequently, the analysis of the alert files become insufficiently effective

for decision makers to optimise their decisions on the threats faced by a network.

A more advanced way of considering security threats to a given network is by correctly

and accurately classifying and visualising those threats. The notion here is to capture

1

Introduction

network traffic, analyse it and decide whether it is safe or malicious. Security

visualisation is the area of research and application whereby security threats are

presented in visual manners to allow a more efficient way for security experts and network

administrators to identify and analyse these threats.

Empowering IPS systems with accurate classification, threat identification techniques

and visualisation makes them more capable of identifying harmful traffic that can be

part of an attack. Attacks on computer networks can be highly costly.

This research focused on analysing network traffic data, in particular, IPS data. Such

data are usually large. Hence, using an accurate classifier to perform data analysis

is an advantage that not only saves time, but also increases chances of identifying

attacks faster to avoid damage. The main aim is to provide accurate alerts to network

administrators to react upon. This research therefore aims at developing new simple

and easy to implement and yet highly accurate classification methods that are capable

of identifying network attacks. These classification methods can be easily incorporated

into any existing IPS platforms.

The use of data classification, or categorisation, will be the first step of the system.

The importance of using classification stems from the large number of alerts an IPS

usually produces. Using accurate classification methods will help reduce the number of

false alerts (false positives and false negatives) and therefore produce better predictions

and visualisation results. That will also assist security analysis in identifying security

breaches.

As part of this research, various classification techniques such as RandomForest,

NaiveBayes and Artificial Neural Networks were studied, analysed and tested and

then compared with the developed classifiers. In addition to the new classification

2

Introduction

methods, this study aims to develop a new variation method to the known principal

component analysis (PCA) algorithm that is usually used for dimensionality reduction

and data exploration. All implementations were carried out using Python and

Scikit-learn (Pedregosa et al., 2011), which is an open-source Python package for machine

learning.

1.2 Motivation and Rationale

The main motivation behind carrying out this research is the lack of fast, efficient and

easy to implement classification methods that can accurately identify malicious network

traffic. The situation becomes particularly harder when the amounts of available training

data for such malicious attacks are scarce. In addition, cyber-attacks are a main concern

for companies due to the high costs associated with these attacks (Morgan, 2020).

Classical classifiers such as RandomForest, NaiveBayes, and Artificial Neural Networks

(ANNs), to mention a few, do not perform well on network traffic data (this is explained

in more detail in Chapter 3). Therefore, the main idea of this research is to enhance

detection of attacks and risks aimed at computer networks through the integration of

several factors: Intrusion detection and prevention, machine learning and visualisation.

Essentially, the Packet Capture (PCAP) files (or real-time captured network traffic) from

an IPS of a Local Area Network (LAN) was analysed using machine learning and data

mining algorithms. For this purpose, new classification methods and a new variation

to an existing dimensionality reduction and data exploration techniques were proposed.

Details of these methods are provided in the subsequent chapters in this thesis. The

analysis provides a classification model that is used to classify new incoming network

3

Introduction

traffic. Training of the model aims to minimise the numbers of false positives and false

negatives generated by the IPS.

The PCA variation suggested in this research is used as a basis of a visualisation model

to be adopted by network security experts to detect possible threats. The feedback

obtained from the visualisation is then used to enhance the data mining classification

model. A typical example scenario can be depicted as in Figure 1.1.

Figure 1.1: An improved attack detection method of computer network traffic using
data mining and visualisation with human intervention

Figure 1.1 shows how to improve network attack analysis by implementing several

facets. Here, the IPS, which provides the first level of data containing potential

attacks and many other relevant and irrelevant details. This data will undergo data

pre-processing and preparation techniques so that it is ready for data mining algorithms

to generate a classification model. After the data have been prepared for analysis, a new

classification method was implemented to accurately identify malicious traffic. Being

able to accurately spot traffic that is unsafe is key in any IPS.

The variation to the classical PCA proposed in this thesis uses Spearman’s

rho (Spearman, 1904) instead of covariance coefficients. The variation helps in producing

better visualisation as well as separation between network flows that belong to different

categories (i.e. normal v. malicious traffic). This is demonstrated throughout the

remaining chapters of this thesis.

4

Introduction

The results of the above methods can be incorporated into an IPS and used as a

basis for decision making as it can greatly support human observation in an intrusion

detection/prevention system. This could help identify threats typically unnoticeable by

machines.

1.2.1 Aims and Objectives

The aim of this research work is to improve network attack analysis by implementing

several facets as described above. This includes developing new classification algorithms

that can accurately identify malicious network traffic (especially when available training

data is scarce). To achieve this aim, the following objectives are sought:

1. To investigate data mining techniques and tools available and evaluate their

performance for network traffic data analysis (IPS data in particular).

2. To present and implement the two proposed classification techniques. Namely,

the eigenvector-based classifier and the multi-task learning (MTL) classification

method.

3. To investigate and evaluate existing the classical PCA algorithm and use it to

perform classification and visualisation of network traffic data.

4. To test and evaluate the classification techniques using existing open-source

machine learning platforms/libraries such as Weka or Scikit-learn.

5. To establish criteria for measuring system accuracy as a key step in the evaluation

(choosing the correct evaluation metric is highly important) and then to conduct

a comparison between the developed methods based on that.

A typical scenario of the system is explained in the following steps:

5

Introduction

1. Data are captured by an IPS platform (such as Snort (Snort Documentation,

2022)).

2. Data are cleaned and prepared for data mining (e.g., transformed from PCAP to

CSV or other formats).

3. Data are subjected to classification on a regular basis and a classification model is

generated.

4. The classification criteria will be initially based on a training set of common

attacks. The set will grow while more data are obtained.

5. The model is used to predict new network flows (i.e. a suitable evaluation

procedure is followed and implemented)

6. Graphs are generated for visualising the data using the suggested PCA variation.

Demonstration of achieving the above-mentioned objectives is shown throughout the

subsequent chapters of this thesis.

1.3 Research Questions

This research is focused on the accurate identification of malicious computer network

traffic. This identification is done by analysing the traffic flowing through the network.

This is possible after capturing the traffic, pre-processing and preparing it into a format

suitable for further analysis by machine learning and data mining platforms and libraries.

As such, the following are the main research questions the researched is poised to answer:

6

Introduction

• The available network traffic data is suitable for multi-task learning (MTL). How

would MTL improve the quality (i.e. accuracy) of predictive models? What would

be a suitable similarity measure task in order to apply MTL?.

• Several well-known and commonly used classifiers exist (such as DecisionTree,

NaiveBayes and Artificial Neural Networks). How would an MTL classifier perform

compared to them?

• It is possible to develop a classification method based on matrix determinants.

How would this classifier perform when used to classify network traffic data?

How accurate is it when compared with existing traditional classifiers such as

NaiveBayes and RandomForest?.

• The eigenvalues provide powerful information about their matrices (Mackey

et al., 2005), which makes them a good foundation for a classification method.

How would this method compare to the method in the previous point (i.e.,

determinants)? How would this classifier perform when used to classify network

traffic? How accurate is it when compared with existing traditional classifiers such

as NaiveBayes and RandomForest?.

• Similar to eigenvalues, eigenvectors provide useful information about their matrices

and could be a good foundation for a classification method. When comparing

vectors (flows) as matrix rows instead of scalars (eigenvalues), should this provide

better accuracy as opposed to eigenvalues?

• Spearman correlation can be used in the PCA algorithm instead of Pearson

correlation (Freedman et al., 2007). How would this improve PCA in terms of

separating different classes? If the resulting PCA were used as input to a classifier,

7

Introduction

how would the results improve when compared with the results of the original

PCA?

1.4 Key Research Contributions

Here is a list of the key contributions this research offers:

1. Introducing a new variation to an existing regression method that is based on

multi-task learning (MTL). The novel work in thesis uses the method not only in

a classification context, but also in identifying shortcomings in the original method

(which was published in late 2019 as can be found in (Sadawi et al., 2019)).

2. Developing a new effective classification method based on eigenvectors.

3. Introducing a variation to the PCA algorithm, which helps produce better clustered

visualisation outcomes.

1.5 Methodology Overview

Research can be classified from three different perspectives:

1. Field: This is where a hierarchy of topics is built and the position of the research

within it is identified. For example, the new classification technique(s) introduced

in this thesis fall under the umbrella of supervised machine learning, which fall

under the umbrella of machine learning which falls under the umbrella of artificial

intelligence.

2. Approach: This is where the research method(s) employed as part of the research

process are stated. Some examples include: case study, experiment, survey,

8

Introduction

proof, quantitative/qualitative and so on. Work introduced in this thesis is an

experimental and quantitative research approach.

3. Nature: Examples of the nature of research include: pure theoretical

development, review of pure theory and evaluation of its applicability and applied

research. This thesis falls under the umbrella of applied research.

The work explained throughout this thesis focuses on attaining two main goals,

namely: enhanced classification methods and improved dimensionality reduction (via

data visualisation and exploration) methods. Both methods aimed at the analysis of

network traffic data captured by IPS platforms for the purpose of cyber-security.

This research is experimental based because it involves demonstrating the effectiveness

of the proposed techniques by way of experimentation. In more detail, it falls under the

umbrella of Problem-solving studies where a novel solution, or an improvement of an

existing solution, is invented.

In addition, this research is quantitative because it uses numeric measurements (i.e.

numeric features derived from computer network traffic data), it tests hypotheses and

creates machine learning methods for induction (i.e. to make future predictions).

Repeatability and accuracy in this research are of vital importance.

The first challenge was obtaining suitable data. Fortunately, a freely available dataset

exists and, therefore, was used when running experiments and performing evaluation as

part of this research thesis.

The second challenge was to develop robust classification approaches for efficiently

and accurately identifying malicious network traffic, which could be used to indicate

network attacks. The third challenge was to improve the classical principal component

9

Introduction

algorithm (PCA) that is usually used for dimensionality reduction, and therefore allow

data visualisation and exploration.

For those points, existing literature was reviewed, and limitations were listed and

critically analysed. The findings indicated that there are existing approaches that try

to address the above-mentioned problems, but not to the finest forms when it comes to

network traffic data (more on this in Chapters 2 and 3). The methods developed by this

research add new contributions to the field as explained in detail in this thesis.

For the development methodology, the agile software development methodology was

used due to its flexibility in terms of producing a working model of the system at early

stages, which is later enhanced by several iterations. The approach used was to test

some of the existing techniques/algorithms for security visualisation and data mining

classification and suggest possible improvements with regard to the capability of the

individual technique to cater for growth of data.

The results of the tests were documented, and a comparative analysis was conducted as

will be discussed in Chapters 3 and 6. At the next stage, selected techniques underwent

enhancements. Once the enhanced technique(s) was obtained, it was tested with the

same benchmark data and a comparative analysis was conducted. If the technique proved

effective in terms of some threshold, it was implemented as the underlying algorithm for

a security visualisation system, otherwise further enhancements were undertaken. The

system was critically analysed based on extensive test results.

1.6 Thesis Structure

The following points provide a summary of the chapters that comprise this thesis:

10

Introduction

• Chapter 1: This chapter provides an introduction to the work conducted in this

thesis. It contains multiple aspects such as problem definition, research aims and

objectives and more. In Chapter 2, some background and subject area review are

presented.

• Chapter 2: This chapter provides an overview of the IPS systems, how to visualise

and analyse the data they collect. The chapter also provides an overview of

machine learning, multi-task learning, and why multi-task learning is a suitable

method to tackle the problem at hand. In addition, it provides a review of existing

literature on traditional machine learning methods, multi-task learning methods

and principal components analysis based methods for network traffic analysis.

• Chapter 3: This chapter provides some initial experiments run to evaluate the

performance of several traditional classifiers on network traffic data. The chapter

starts with an overview of several metrics used for evaluation of classification

methods. The main aim is to check whether some better classification methods

are required to accurately classify data of this nature (i.e. network traffic data).

• Chapter 4: This chapter provides an overview of two new classification methods

developed as part of this research. The chapter explains how they work and

shows Python code snippets when possible. It starts with the multi-task learning

classification method and then moves to the eigenvalue based classifier. Evaluation

of these two techniques is detailed in Chapter 6.

• Chapter 5: In this chapter a proposed enhancement of the classical PCA

algorithm is provided. Before doing this, an overview of the PCA algorithm and

explanation of how it works is introduced. After that, an explanation of how PCA

11

Introduction

can be enhanced and used for pre-processing and visualisation of network traffic

data is detailed.

• Chapter 6: This chapter contains the experiments (in order to evaluate the

performance of the introduced methods) and results as well as discussion of those

results. Here the evaluation of the methods proposed as part of this thesis

will demonstrated. The chapter begins by speaking about the data used in

the evaluation process and then moves to a detailed evaluation of the proposed

MTL method for classification. After that, the evaluation of the Eigenvector

Perturbation (EV) classifier is explained. The experimental results show that

the proposed methods are indeed effective.

• Chapter 7: This chapter provides a high level overview of the work carried out

in this thesis and discusses the conclusions, lessons learned as well as lists several

possible ways to extend and improve this work.

This chapter provided an introduction to the work conducted in this thesis. It contained

multiple aspects such as problem definition, research aims and objectives and more. In

the next chapter, some background and subject area review are going to be presented.

12

Chapter 2

BACKGROUND AND

SUBJECT AREA REVIEW

Before delving into the details of the algorithms used and developed as part of this

research, this chapter provides an overview of the data captured by IPS systems, how

visualisation is used in them and how mining of the data they collect is performed. The

chapter also provides an overview of machine learning and multi-task learning (and why

multi-task learning is a suitable method to tackle the problem at hand). In addition, it

provides a review of existing literature which is a significant part of this thesis.

2.1 Overview of Intrusion Prevention Systems

An intrusion prevention system (IPS), sometimes referred to as an intrusion detection

system (IDS), is a software system that monitors an individual application, host, or

an entire network for suspicious activities and provides alerts accordingly. Intrusion

detection is a security technology that aims to identify threats against a target host or

13

BACKGROUND AND SUBJECT AREA REVIEW

application and does not actively block network traffic. If the system is provided with

the ability to respond to a detected threat, it is known as an intrusion prevention system

(IPS). A network-based IPS attempts to detect unauthorised or anomalous behaviour

in network traffic. A network IPS typically uses a network Terminal Access Point

(TAP) (Akashdeep et al., 2017), Switch Port Analysis (SPAN) (Smys et al., 2020),

or a repeater (hub) to collect packets transferred across a given network and analyse the

data (Cisco, 2019).

According to (Jacob and Wanjala, 2018), there are different types of intrusion

prevention/detection systems. For example, there are signature-based systems that work

by maintaining a database of signatures of known attacks and comparing newly captured

data with those signatures to try and identify potential attacks. Another type is the

anomaly-based systems, which use statistical models to build a description of what

normal network traffic looks like. They use such models to spot traffic that deviates

from them and label that traffic as abnormal. The focus in this thesis is on using IDS

platforms because they are commonly used so they can be a reliable source of network

traffic data (Sawant, 2018).

2.2 Visualisation of IPS Captured Data

The network traffic data captured by an IPS system are usually in a binary format

known as of type PCAP (for Packet CAPture). These data require transformation into

a textual format such as CSV (Character Separated Value) files which can be easily

processed by data visualisation and analysis platforms. A practical and systematic way

for transforming PCAP files into CSV files is reported in (Alothman, 2019a). PCAP files

are usually huge in size and the amount of raw data generated by an IPS can quickly

14

BACKGROUND AND SUBJECT AREA REVIEW

overwhelm security analysts who work on analysing these data to identify malicious

patterns in the data flow (Freet and Agrawal, 2017).

A potentially effective approach to examine possible risks in a large amount of

multidimensional data provided by an IPS is PCAP content visualisation. The use of

graphical illustrations of the network traffic could provide an insight into vulnerability

and security issues that are not typically machine recognisable. The graphical approach

to network security is usually referred to as security visualisation (Liu, Sun, Fang, Liu

and Yu, 2014). Security visualisation is essentially the graphical representation of objects

of interest, particularly the threats to a computer system. Some of the uses of security

visualisation include malware analysis, reverse engineering, digital forensics, anomaly

detection, and many others (Sarigiannidis et al., 2015). A simple example of a security

visualisation use is a 2-dimensional graph representing data flow on a computer network

against time, marking potential threats in a different colour.

There are third party applications that support reading the packet files and produce

graphical representations of the captured data. Some examples of IPS visualisers include

EtherApe (EtherApe, 2020), which is a Linux-based package that can read live traffic

or packet capture files, and renders information in a graphical format. It uses colour

coding to differentiate information of interest and supports name resolution. Another

application developed by the University of Maryland is NetGrok (NetGrok, 2009).

NetGrok is Java-based and supports real-time monitoring and reading of packet capture

files, and performs colour coding to identify relevant information. TNV is another

Java-based data visualiser. It provides relevant information by associating remote hosts

to local hosts (Goodall, 2009).

15

BACKGROUND AND SUBJECT AREA REVIEW

How to Visualise PCAP Data Files

As mentioned previously, PCAP data are binary and need to be transformed into

a tabular format such as CSV so it can be easily processed. An open-source tool

to transform PCAP data into CSV is the CICFlowMeter (Draper-Gil et al., 2016)

and (CICFlowMeter, 2018). This application extracts a number of useful features from

the data. After obtaining the data in CSV format, one possible way to visualise it is

to use principal component analysis (PCA) and then plot the scores (or the principal

components, PCs) against each other. For example, it is common to generate a scatter

plot of PC1 versus PC2. This way it is possible to colour instances based on their class

(or category) and check if there exists any separation between instances from different

classes. Figure 2.1 shows the first two principal components plotted against each other

after applying PCA to part of the open-source IPS dataset available from the Canadian

Institute for Cybersecurity (Canadian Institute for Cybersecurity, 2017). The plot shows

that there is a significant overlap between instances from different classes. It is important

to highlight that the variation to PCA suggested in this research aims to achieve a better

separation between instances from different classes.

16

BACKGROUND AND SUBJECT AREA REVIEW

Figure 2.1: PCA of IPS data. The figure shows PC1 v PC2. The legend shows the
types of attacks

2.3 High Level Overview of Snort PCAP Files

Snort is a popular IPS, therefore, this section provides a generic overview of the data it

captures. It captures network traffic data in PCAP file format, which is a binary format

that can be transformed into text-based, human-readable file format. These files could

be manually scrutinised by a system admin to validate their content. An extract of a

.pcap entry content is provided below:

2016-08-04 12:30:00 [1:2102924:4] GPL NETBIOS SMB-DS repeated logon

17

BACKGROUND AND SUBJECT AREA REVIEW

failure [Classification: Unsuccessful User Privilege Gain] [Priority: 1] TCP

192.168.229.123:445 − > 192.168.202.79:551

The alert above provides four pieces of information:

1. The date and time of the threat (in green);

2. The type of the threat, which is a repeated logon attempt from a DMZ machine

to a LAN machine (in red);

3. Assigned priority is 1 (in orange); and

4. The attack was initiated by a machine with IP address 192.168.229.123 on port

445 to a machine with IP address 192.201.202.79 on port 551 (in magenta).

2.4 What is Data Mining?

Before delving into the details of how to apply data mining techniques for the analysis

of PCAP files, it makes sense to define what data mining is. According to (Han et al.,

2012), a reasonable definition can be as follows:

Data mining is a process that involves turning raw data into useful information by using

techniques from several fields such as machine learning, statistics and databases. It can

be considered an interdisciplinary branch of computer science.

The process can involve multiple steps such as data loading, transformation, cleaning,

selection and integration. In addition, it can also include processes such as pattern

evaluation and knowledge representation. Many of these steps are employed as part of

the work developed in this thesis.

18

BACKGROUND AND SUBJECT AREA REVIEW

A definition of machine learning is provided in Section 2.6.1. As part of this thesis, an

evaluation of several classical machine learning algorithms is performed in Chapter 3.

2.5 Data Mining of PCAP Files

There are various data mining techniques that can be used to analyse PCAP files. For

example, classification can be used to classify attacks targeting certain ports. Another

possible type of classification could be based on the geographical area where frequent

attacks are launched.

Classification is the process of predicting a category of a given input. On the other hand,

when a real value is being predicted the process is known as regression.

Classification is not the only technique that may be used for mining the PCAP files;

other techniques may also be applied. For example, association-rule mining can be used

to associate certain types of attack with certain ports. Pattern recognition may also be

used to identify if certain attacks have common patterns, which can help recognise and

prevent similar attacks in the future (Jakub and Branǐsová, 2015). The data mining

techniques used help decrease the number of alerts by grouping similar alerts into one

set and display it in a visual format. For example, the set of attacks from one source

IP address can be represented by one object on a graph. There are various algorithms

available for each data mining technique. For example, the C4.5 classifier based on the

decision tree algorithm is widely used in practice. Decision trees form a straightforward

and simple way for classifying data. A decision tree classifier makes its classification

decision based on a series of questions about the attributes of the data. Each time an

answer is received, a follow-up question is posed until a conclusion about a class label is

reached (Cherfi et al., 2018). Classification training is performed to generate a model,

19

BACKGROUND AND SUBJECT AREA REVIEW

which is used to classify future data. This scenario is depicted in the diagram below

(Figure 2.2).

Figure 2.2: Classification procedure.

The model is created by using an initial dataset known as the training data. In our case

the training data is the network traffic data pre-captured by an IPS and pre-processed

so that it can used by machine learning platforms and algorithms. The classification

model is created after the training process. In other words, the classification algorithm

is trained on the training dataset to create a model that can be used to make future

predictions when given data. Another dataset, called the test dataset, is used to test

the quality of the model in terms of how good its predictions are. As mentioned, it

should be remembered that data needs to be made ready for machine learning and data

mining. This is because data captured by IPS platforms is not usually in a format

understood by machine learning platforms and algorithms. A practical and systematic

way for transforming data captured by IPS into machine learning suitable format is

reported in (Alothman, 2019a).

2.6 Machine Learning and Multi-task Learning

It is logical to introduce what machine learning is about and the specific field that some

of the work introduced in this thesis falls under. This section focuses on familiarising

20

BACKGROUND AND SUBJECT AREA REVIEW

the reader with these topics and providing useful resources for extra reading. How these

methods and technique are used is explained in detail in the coming chapters of this

thesis.

2.6.1 What is Machine Learning?

Machine-learning is the field that focuses on enabling machines (i.e. computers,

hand-held devices and so on) to automatically learn and improve from experience

without being manually, or explicitly, programmed to do so (Bruce et al., 2020).

Experience here means data and usually learning is achieved via algorithms (of which

there are plenty). Normally the learning is carried out for the purpose of explaining the

past and/or predicting the future. Predicting the future means making predictions of

new values or categories based on known values and categories of existing data.

Machine learning can be viewed as a method to achieve artificial intelligence (AI), which

is the field that focuses on enabling machines to learn, reason and act for themselves.

It has to be said that machine learning is a large field, and the reader is referred to the

book in (Kubat, 2015) for more details. In this thesis, the work is primarily focused

on classification, which is the process of predicting a category of a given input (when

predicting a real value the process is known as regression).

2.6.2 What is Multi-task Learning (MTL)?

According to Caruana (Caruana, 1997) which is the first known work on MTL as a

machine learning technique, multi-task learning, or MTL for short, is a method for

improving model generalisation by means of learning related tasks jointly. The core

idea is to use a form of representation that is shared by these related tasks so that the

21

BACKGROUND AND SUBJECT AREA REVIEW

joint learning can occur. This has multiple benefits such as inductive transfer, which

is the effect that happens internally when tasks learned together can benefit from each

other and the ultimately resulting models are of better quality than when the tasks are

learned individually (Sadawi et al., 2019) (which is known as single-task learning, or STL

for short). A visual illustration of MTL and STL is shown in figure 2.3. Hence, MTL is

by definition a branch of transfer learning (Weiss et al., 2016), or TL for short, where

some form of learning is performed on tasks where there are large amounts of data (such

tasks are known as the source tasks) and this learning is exploited to enhance learning

for tasks where data is scarce (such tasks are known as the target tasks).

However, it is important to highlight that in MTL the tasks are learned together at the

same time instead of learning from some tasks in one stage and then transferring the

knowledge learned to other tasks in another stage. A good introduction to MTL with

useful examples can be found at (Zhou1 et al., 2012) and in (Standley et al., 2020).

2.6.3 How MTL is used in this Work

There are several purposes of Cyber-attacks. These usually include the access, change or

destruction of sensitive information. Such attacks can also be launched to extort money

from people or interrupt businesses. Hence, attacks on computer networks can be highly

costly and the number of approaches that attempt to identify malicious network traffic

by performing traffic analysis is increasing as time goes on. This is because the number

of cyber-attacks keeps increasing. This means there is a need for better techniques to

be invented to protect computer devices and networks (Dasgupta et al., 2020).

Because it is possible to capture computer network traffic and transform it into a format

suitable for machine learning, there exists some machine learning techniques for tackling

22

BACKGROUND AND SUBJECT AREA REVIEW

(a) Single-Task Learning (STL)

(b) Multi-Task Learning (MTL)

Figure 2.3: Visual Illustration of Single and Multi-task Learning

this problem. This thesis introduces a new machine learning method for the accurate

detection of malicious traffic when existing training data is scarce. The method is a

multi-task learning technique where datasets belonging to different network traffic types

and attacks (i.e. tasks) are used together in the learning process instead of learning each

task separately.

23

BACKGROUND AND SUBJECT AREA REVIEW

Network traffic data belonging to different types of traffic are related because they are

from the same domain (the domain is network traffic and each attack can be considered

a separate task). Therefore, and despite the possibility that they can have different

distributions, it is intuitively appealing to take advantage of the relationships between

various datasets belonging to different cyber-attacks in the machine learning process.

This is one of the contributions that this thesis makes and this is explained in more

detail in Chapter 4.

2.7 Contributions of this Multitask Learning Work

The proposed MTL method in this work is inspired by a recent work that can be found

at (Sadawi et al., 2019). Although it was applied in the field of drug discovery, it is

possible to adopt, enhance and apply it in other fields such as the field of automatic

analysis of computer network traffic. It is important to highlight the differences between

the method introduced in this paper and the above-mentioned method. The method

introduced in this thesis differs in the following ways:

• The existing method measures the similarity between tasks using amino acid

sequences whereas the method described in this thesis uses instance similarity.

• The existing method is used in a regression context (i.e. to predict a real number)

whereas the method in this thesis is classification (i.e. to predict a category or

class) and therefore the problem setting and evaluation metrics/procedures are

different.

• As part of the research carried out in this thesis, a weakness in the existing method

has been identified. Because it attempts to address a regression problem, it is not

24

BACKGROUND AND SUBJECT AREA REVIEW

straightforward to distinguish between instances from different tasks when the

datasets are merged. Therefore, it adds a task ID column as a new feature (each

task is given a task number) and this can mislead the classifier. This is because

when an integer number (such as 1) is assigned to task A and another number

(such as 2) to task B, mathematically 2 is greater than 1, but does this mean that

task B is larger than task A? not necessarily. A classifier does not know that and

it will use the task ID as a number and not as a category (which introduces order

between tasks and that does not really exist).

• This is a weakness in the existing technique that the work introduced in this thesis

does not suffer from because the class label is used to distinguish between instances

from different tasks. Instead of assigning numerical values to categorical values, a

technique called one-hot encoding should be used to correctly represent categorical

data numerically (Brownlee, 2020)

Based on the above, the contributions of the work described in this thesis can be

summarised as follows:

1. Develop a multi-task learning (MTL) approach for the accurate identification of

malicious network traffic (even in case of scarce data)

2. Instead of learning the similarity between tasks, it is quantified in this work

by measuring it using a well-known similarity metric (namely, the cosine

similarity (Deza and Deza, 2009))

3. Identify a weakness in a recent existing method and demonstrate how the method

described in this thesis avoids it

25

BACKGROUND AND SUBJECT AREA REVIEW

4. Experimentally show that the method introduced in this thesis outperforms

existing widely used classifiers in different situations.

2.8 Related Work on using Traditional Machine Learning

Methods for Network Traffic Analysis

The number of approaches that attempt to identify malicious network traffic by

performing traffic analysis is increasing on a continuous basis. This is because the

number of cyber-attacks is also increasing. A survey can be found in the work of (Silva

et al., 2013). Below is a review of some of the approaches proposed in the literature.

A recent approach that uses machine learning to identify botnets is proposed

by (Alothman, 2018b, Alothman et al., 2018). The approach uses transfer

learning (Torrey and Shavlik, 2009), which is a branch of machine learning that attempts

to learn from tasks with plenty of data to boost performance of machine learning models

built for tasks with much less data. The approach is named SBIT (Similarity Based

Instance Transfer). The approach exploits the similarity between instances from various

types of network traffic to increase the number of instances in a dataset that has a low

number of instances. The idea is to check if there are any highly similar instances in

large datasets (similar to instances in the dataset at hand) and copy those instances

over to a small dataset and assign them a new label (the same label of the instances in

the dataset at hand). The large datasets are usually called the source datasets and the

small dataset is usually called the target dataset. This way more data are obtained and

the assumption of the idea is that it will lead to more accurate models.

26

BACKGROUND AND SUBJECT AREA REVIEW

The above model was extended in (Alothman et al., 2018), where a closer look at the data

was taken to make sure the dataset resulting after instance transfer is class balanced.

In other words, the SBIT approach copies instances without paying any attention to

which class they belong to. On the other hand, the class-balanced SBIT (CB-SBIT)

makes sure that the new dataset contains an approximately equal number of instances

in each class. This way it is easy to avoid problems that result from using imbalanced

datasets, such as overfitting and overoptimistic models. Some of the weaknesses of this

approach is that it is very computationally expensive because it is iterative. In other

words, it needs to loop through all input datasets (i.e. the source datasets) and check

for the similarity between instances in them and instances in the dataset that should

be improved (i.e. the target dataset). The loops go through all instances one by one,

which could take a long time. Also, it is not clear which similarity measure is the most

suitable one as there is a large number of possible similarity measures. Because this is a

recent approach that has reported achieved high accuracy, it is going to be used in the

evaluation stage of the MTL classification method developed as part of this thesis.

The approach proposed by (Jadidi et al., 2013) uses a multi-layer perceptron (MLP)

to model and analyse network traffic data. Two different optimisation techniques were

used in this method to optimise the neural network weights. Another technique that

uses Artificial Neural Networks (ANNs) to analyse network traffic data is presented

by (Beghdad, 2008).

In addition to the two previous methods, the method reported in (Abdulla et al., 2014)

uses a two-stage method for the process of data analysis. The first stage focuses on

predicting if the network traffic is safe or malicious. The second stage is concerned

with identifying the type of attack in case of malicious traffic. ANNs can be seen as

suitable techniques but they suffer from multiple drawbacks such as the need for high

27

BACKGROUND AND SUBJECT AREA REVIEW

computational power and the difficulty in explaining and interpreting their results. Also,

because they start with random weights, they can converge to different values each time

they are run.

The method reported in (Venkatesh and Anitha, 2016) also analyses network traffic

to identify harmful traffic. According to the report, many high-impact features are

extracted from network flow data and these features can be fed into commonly used

classifiers such as decision trees, support-vector machine and NaiveBayes. Although the

authors claim that their method is suitable for encrypted data because the features are

not dependent on packet contents, it is not clear what these features are and how much

impact they make.

The K-Nearest Neighbours (KNN) classifier has also been used for the analysis of network

traffic. An example effort that employs the KNN classifier is described in (Costa et al.,

2015). The reported technique is primarily a clustering technique that attempts to

cluster similar traffic flows together (i.e., based on the assumption that similar traffic

types will result in the same cluster and therefore malicious traffic can be identified).

Support vector machines (SVMs) are powerful classifiers, and it comes as no surprise

that they have been used for network traffic. They are particularly powerful for binary

classification (i.e., in identifying if traffic is safe or harmful). This is confirmed in the

review reported in (Liao et al., 2013). The approach reported in (Yuan et al., 2010)

is based on SVMs as it employs a feature selection algorithm and then trains an SVM

classifier on the data to make future predictions. It is also possible to use a one-class

SVM to perform outlier detection. This way malicious traffic can be spotted as outlier

when compared to safe traffic and that was done in the approach reported in (Winter

et al., 2011). The weaknesses of these approaches in general can be summarised in the

28

BACKGROUND AND SUBJECT AREA REVIEW

fact that it is not always possible to consider the malicious traffic identification problem

as a binary classification problem and the fact that looking at the problem as an outlier

detection problem can lead to unexpected results as it heavily relies on the training data,

which can contain traffic from multiple attacks as well as safe traffic.

Evaluating the performance of a number of commonly used classifiers such as ANNs,

SVM and Random Forest is reported in (Stevanovic and Pedersen, 2014). The idea

is to use features extracted from network traffic flows and see which classifier exhibits

the best performance. The results show that promising performance was obtained after

using only two (of a total of eight) classifiers. In general, Random Forest and its base

classifier, i.e., the decision tree classifier were the best performers.

Decision trees (DTs) are popular classifiers because they perform well in many tasks and

because of their interpretability. One work that uses DTs is the study by (Zhuo et al.,

2013), where several classifiers were experimented with and the general outcome was

to use DTs. This is because they perform better than other classifiers when the data

change in real time, which is the nature of network traffic data. Using decision trees

also reduces the risk of having models of high complexity. In addition, DTs were also

used in the work of (Kumar et al., 2012) where the way data is split at each node inside

the DT is modified. The authors assert that they ensure that the classifier is not biased

by performing feature selection that is based on information gain then choosing a value

to split the data. Also, the work of (Haddadi et al., 2014) uses DTs (combined with

genetic programming) to perform network traffic data analysis. An interesting aspect

of this approach is that it only extracts features from packet headers which means no

payload data is used (so the method is suitable for encrypted data).

Other works that use transfer learning techniques can be found in (Zhao et al., 2017)

29

BACKGROUND AND SUBJECT AREA REVIEW

and (Tan et al., 2018). The first approach uses what is known as feature transfer

where a latent shared feature space was obtained by projecting features from input

datasets into this space and then using the resultant features for analysis and predictions.

The second approach evaluates the performance of an existing freely available transfer

learning algorithm known as TrAdaBoost (Dai et al., 2007).

2.9 Existing Work on using MTL for Network Traffic

Analysis

One of the most recent approaches is the work in (Sadawi et al., 2019) where MTL

was used to obtain better predictive models in the field of drug discovery. The problem

domain was focused on predicting the binding of small molecules (i.e. potential drugs)

on human body proteins (each protein is considered a task). This binding is quantified

using a real number, and therefore the problem setting was regression. As for task

similarity, although there is existing work that focuses on learning similarity between

tasks (Ben-David and Borbely, 2008, Shui et al., 2019), where attempts are made to

automatically quantify the similarity between tasks instead of using manually provided

similarity values, the reported method exploits the amino-acid sequence of each protein

and uses it to compute the similarity between proteins. This similarity is then assumed

to be the task similarity and the approach combines datasets from various proteins

into one large dataset and adds the similarity values as new features. Although the

method exhibits significantly improved results over single task learning, it suffers from

weaknesses (and differs from the work introduced in this thesis) as listed in Section 2.7.

MTL is an active research area in deep learning (i.e. deep neural networks). An example

configuration is known as hard parameter sharing where hidden layers are shared between

30

BACKGROUND AND SUBJECT AREA REVIEW

multiple tasks while task-specific output layers are kept separate (this is the setting

designed by Caruana (Caruana, 1997)). This setting was shown to reduce overfitting as

explained in (Baxter, 1997). Overfitting is the problem that occurs when a trained model

performs well on the training data and poorly on unseen data. Another configuration is

known as soft parameter sharing where each task keeps its own model (and parameters)

and regularisation is used to ensure the parameters of separate models are similar (Duong

et al., 2015, Yang and Hospedales, 2016). A recent survey of MTL in various deep

learning configurations can be found in (Vandenhende et al., 2020).

A recent approach that uses MTL for Network Traffic Classification is reported in (Rezaei

and Liu, 2020a). It is a deep learning technique that is developed for network bandwidth

and duration prediction tasks. Another recent deep learning MTL technique for the

classification of network traffic can be found in (Huang et al., 2018). The two methods are

based on deep neural networks and they suffer from the usual deep learning drawbacks

such as the need for large amounts of training data and the need for extensive compute

power and resources. For example, in (Huang et al., 2018) a significant amount of

data pre-processing is required as the data needs to be picturized before feeding it into

the deep learning architecture (i.e. data must be transformed into a picture-like 2D

representation to be suitable for convolutional neural networks CNNs). This is because

CNNs are known to work well for image analysis and object recognition (Brownlee,

2019). Also, in (Rezaei and Liu, 2020a) the data is seen as a time-series and a 1D CNN

architecture was used. The authors have selected only three features to use as inputs

and no reason was provided for this. This is not the case with the approach described in

this thesis as it simply concatenates datasets from different network traffic types and add

the similarity values to obtain extra features (this is explained in detail in Section 2.6.2.

It is worth mentioning here that deep learning architectures for multi-task and transfer

31

BACKGROUND AND SUBJECT AREA REVIEW

learning in the area of computer network traffic analysis are not difficult to exploit as

they have been shown to contain security vulnerabilities (Rezaei and Liu, 2020b).

As stated in Section 2.6.2, MTL can be considered as a way of achieving transfer learning

(TL). TL was used in the field of cyber-security for the identification of malicious

network traffic. An example is the similarity-based instance transfer (SBIT) work

in (Alothman, 2018b) and, its extension, the class-balanced similarity-based instance

transfer (CB-SBIT) (Alothman et al., 2018). The reported approaches use a brute-force

like method to copy instances from tasks with plenty of data to similar tasks with

small amounts of data. The copying process is performed only for similar instances.

In other words, the similarity of instances in a small dataset and a large dataset is

measured (assuming each dataset belongs to a different type of network attack) and

whenever highly similar instances (to the instances in the small dataset) are found in

the large dataset are found, they are copied to the small dataset so that its size increases

(the copied instances are assigned the class of the dataset they are copied to). This is

performed and then learning is performed using the newly increased in size dataset.

Experiments reported by the authors show improvement in model predictions. Work

introduced in this thesis differs from this approach in more than one aspect. In more

detail, the work introduced in this thesis employs MTL so that no instances are copied

from large datasets to smaller datasets. This can give rise to a problem especially when

no form of regularisation or weighting is used to control how much the copied instances

should contribute to the target dataset (currently they are given the same weight as

the original instances and this is not reliable). The approach in this thesis uses MTL

to learn from the datasets as they are without changing them and this is advantageous.

For more information about existing MTL approaches, a survey can be found in (Zhang

and Yang, 2017).

32

BACKGROUND AND SUBJECT AREA REVIEW

2.10 Existing Work on using PCA and Eigenvectors for

Network Traffic Analysis

This section provides a review of recent approaches involving the PCA algorithm and

its uses in the context of computer network data analysis and other fields. It also

summarises some approaches that involve using eigenvectors for several purposes. An

overview of PCA, how it works and what eigenvectors are is provided in Sections 5.1

and 5.2.

The method explained in (Bhattacharya et al., 2020) uses the PCA algorithm with the

XGBoost (XGBoost, 2021) classifier in the context of Intrusion Detection in Networks.

The authors only apply the following techniques in this sequence: they apply the

traditional PCA algorithm on the data to reduce its dimensionality, after this they

apply the firefly optimisation method (Yang, 2008) for feature selection (i.e. to select

a subset of the principal components generated by PCA). They train the XGBoost

algorithm on the data and employ the trained model for predictions. Their results show

improvement in accuracy when applying PCA and the firefly optimisation method as

opposed to using the original features In (Murugan and Devi, 2019) PCA was combined

with Logistic Regression and used as a feature extraction technique in order to increase

classification accuracy. The application domain was the analysis of twitter data (i.e.

text classification) and the reported results show better accuracy was obtained after

applying PCA to reduce the number of input features.

PCA was also used for a similar purpose in (Nasution et al., 2018) where the idea was

to increase the accuracy of decision trees by training them on a set of non-correlated

features (i.e. the principal components generated by PCA). In addition, the authors

in (Zhu et al., 2019) employ the classical PCA algorithms for dimensionality reduction

33

BACKGROUND AND SUBJECT AREA REVIEW

and then run several experiments to evaluate the performance of Logistic Regression

for classification and k-means clustering for data point cluster analysis. The reported

results in both works show accuracy improvement.

An interesting work is reported in (Gadekallu et al., 2021) where PCA was used in an

optimisation experiment. The main aim of this work was to employ a machine learning

model for tomato disease image classification, which can help in early identification of

tomato disease in order to take proactive action. The technique combines PCA with

the Whale optimisation algorithm (Mirjalili and Lewis, 2016) to select the most useful

feature subset and optimise the classifier being built for image categorisation.

Eigenvectors were used as features for the purpose of machine learning model training

and evaluation. For example, in (Wei et al., 2017), where a malicious Android app

detection tool was built, eigenvectors were extracted from data collected about/from

android apps and used as features to train several traditional machine learning classifiers.

The authors report that, compared with existing work, their approach has a better false

positive rate and accuracy.

The approach discussed in Jiang et al. (2017) proposes an optimised approach for

solving the eigenproblem and determining the minimum finite eigenvalue and associated

eigenvectors. On the other hand, based on the hypothesis that eigenvectors represent

the principal components of the underlying data matrix, they were used to characterize

dominant tremor sources in the work reported in (Soubestre et al., 2018). The work

keeps track of daily tremor activity, and their corresponding eigenvectors, and uses these

eigenvectors to construct a network (i.e. a mathematical graph) for further analysis.

Eigenvectors were also successfully used in spatial data filtering. One powerful method

is the Moran eigenvector filter (Dray et al., 2006) that involves the spatial patterns

34

BACKGROUND AND SUBJECT AREA REVIEW

represented by maps of eigenvectors. The idea is to choose suitable orthogonal patterns

and add them to a linear or generalised linear model. The residuals will result in

having a form of spatial dependence that can be used as part of the model. An efficient

implementation of this filter for large datasets is presented in (Griffith and Chun, 2019).

The authors report that their implementation is computationally efficient for dealing

with large spatial data.

In (Hu et al., 2018) eigenvectors are used as a basis to compute the centres of the radial

basis function (RBF), hence, a clustering method is developed. The idea was to save time

by calculating the principal components of the input data matrix instead of iteratively

calculating cluster centres using the k-means clustering algorithm. The experiments

reported by the authors show that their method leads to faster model training with

similar accuracy result.

2.11 Summary

This chapter has provided a background account for the main subject areas involved

in this thesis. Essentially, a review of how these subjects are interlinked and used

together to improve network security has been introduced. Also, several machine

learning methods have been described, which are commonly used in the analysis of

network traffic data for the purpose of identifying malicious traffic. A close look at

these methods showed that the state-of-the-art transfer learning algorithm for network

traffic analysis (SBIT and its extension CB-SBIT) is a highly iterative algorithm that

seems to use ad-hoc similarity measures to copy instances from large datasets to smaller

datasets. A brief explanation and critical review of other recent existing techniques have

also been provided.

35

BACKGROUND AND SUBJECT AREA REVIEW

In the next chapter some initial experiments run to evaluate the performance of several

traditional classifiers on network traffic data are presented and discussed. The chapter

provides a useful overview of several metrics used for evaluation of classification methods.

36

Chapter 3

DATA MINING OF IPS

DATASETS: EXPERIMENTS

AND RESULTS

This chapter provides some initial experiments run to evaluate the performance of several

traditional classifiers on network traffic data. The chapter starts with an overview of

several metrics used for evaluation of classification methods. The main aim is to have a

comparison to check whether some more suitable classification methods are required to

accurately classify data of this nature (i.e. network traffic data).

3.1 Classification Evaluation Metrics

Before running any experiments, a review of some of the main metrics used in evaluating

the performance of classifiers had been conducted. When using classifiers, it is essential

to obtain information about their performance. An evaluation metric quantifies the

37

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

performance of a predictive model (e.g., a classifier) and the classifier is only as good as

the metric used to evaluate it. If one chooses the wrong metric to evaluate a predictive

model, then they are likely to select a poor model, or in the worst case, they can be

misled about the expected performance of the model. Therefore, choosing an appropriate

metric is highly important in machine learning (Liu, Zhou, Wen and Tang, 2014). Several

evaluation metrics are used by the machine learning community. All metrics make

assumptions about the problem or about what is important in the problem they are

used for. Hence, an evaluation metric must be chosen such that it best captures what

is believed to be important for the model or predictions (Hossin and Sulaiman, 2019).

Some of these metrics are reviewed below. The information provided in the remainder of

this section is summarised from (Canbek et al., 2017) and (Japkowicz and Shah, 2011).

Classification Accuracy: Classification accuracy is a metric that summarises the

performance of a classification model as the number of correct predictions divided

by the total number of predictions (i.e., it is the proportion of the total number of

predictions that were correct). To calculate it, one first uses a classification model to

make a prediction for each example in a test dataset (data not used in training and

with known class labels) and then the predictions are compared to the known labels

for those examples in the test set (the numbers of correct and incorrect predictions are

recorded).

Accuracy = Correct Predictions / Total Predictions

The value of accuracy is usually between 0 and 1, where 1 means the model is predicting

every input correctly and 0 means the model is predicting every input incorrectly. It

can also be reported as a percentage.

Error Rate: Another metric that is related to accuracy is the error rate. It is

calculated as the as the number of incorrect predictions divided by the total number of

38

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

predictions: Error Rate = Incorrect Predictions / Total Predictions.

Based on that, it is straightforward to infer that:

Accuracy + Error Rate = 1

Hence:

Accuracy = 1 – Error Rate

and

Error Rate = 1 – Accuracy

It is important to note that accuracy is not always the best measure to employ especially

when data is imbalanced (Fatourechi et al., 2008). Here is an example to clarify that.

Consider the case of an imbalanced dataset with a 1:100 class where each example of

the minority class (Class 1) will have a corresponding 100 examples in the majority

class (Class 0). In problems of this type, the majority class represents “normal” and the

minority class represents “abnormal” such as an intrusion or malicious network traffic.

In this case: Good performance on the minority class is usually preferred over good

performance on both classes. The issue in such situations arises from the fact that a

model that predicts the majority class (Class 0) for all examples in the test set will have

a classification accuracy of 99% and this is highly over-optimistic (i.e., results can be

misleading).

Confusion Matrix: A confusion matrix is a summary of the predictions made by a

classification model organised into a table by class (Ting, 2017). Each row of the table

indicates the actual class, and each column represents the predicted class. A value in

the cell is a count of the number of predictions made for a class that are actually for a

given class. The cells on the diagonal represent correct predictions, where a predicted

and expected class align. An example confusion matrix is shown in Figure 3.1.

39

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

Figure 3.1: A confusion matrix showing the number of correctly and incorrectly
predicted instances

Based on the counts in the confusion matrix several useful metrics can be calculated.

Before explaining what these metrics are and how to calculate them, it is useful to

introduce the following concepts:

• A true positive (TP) is an outcome where the model correctly predicts the positive

class

• A true negative (TN) is an outcome where the model correctly predicts the negative

class

• A false positive (FP) is an outcome where the model incorrectly predicts the

positive class

• A false negative (FN) is an outcome where the model incorrectly predicts the

negative class

40

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

These counts are useful to obtain an insight into the performance of a predictive model.

They are based on the confusion matrix shown below:

Figure 3.2: A confusion matrix showing predicted v actual classes and the two types
of errors

Precision, Recall and F-Measure: Precision, also known as Positive Predictive

Value, quantifies the number of positive class predictions that actually belong to the

positive class (i.e., the proportion of positive cases that were correctly identified):

Precision = TruePositives / (TruePositives + FalsePositives)

This measure is appropriate when minimising false positives is the focus.

Recall, also known as Sensitivity, quantifies the number of positive class predictions

made out of all positive examples in the dataset (i.e. the proportion of actual positive

cases which are correctly identified):

Recall = TruePositives / (TruePositives + FalseNegatives)

This measure appropriate when minimising false negatives is the focus.

F-Measure provides a single score that balances both the concerns of precision and recall

in one number:

F-Measure = (2 * Precision * Recall) / (Precision + Recall)

41

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

The value of each of the above three measures is always between 0 and 1 where a value

as close as possible to 1 is desired.

Other useful metrics are Specificity, Sensitivity and Negative Predictive Value.

Specificity is calculated as the fraction of TN divided by the total number of negative

examples (i.e., the proportion of actual negative cases which are correctly identified).

On the other hand, Sensitivity (which is the same measure as Recall) is calculated as the

fraction of TP divided by the total number of positive examples. Negative Predictive

Value is the proportion of negative cases that were correctly identified. These measures

are illustrated on the confusion matrix as the following figure shows:

Figure 3.3: A confusion matrix showing more useful metrics

Receiver Operating Characteristic Curve and Area under the Curve: This

is a useful tool when predicting the probability of a binary outcome instead of just

predicting the class immediately. It is worth mentioning here that this is suitable for

binary classifiers. The Receiver Operating Characteristic curve, or ROC curve, is a plot

of the false positive rate (on the x-axis) versus the true positive rate (on the y-axis) for

a number of different candidate threshold values between 0.0 and 1.0. In other words,

42

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

it plots the false alarm rate versus the hit rate. These are provided by the following

formulas:

• True Positive Rate (Sensitivity) = True Positives / (True Positives + False

Negatives).

• Specificity = True Negatives / (True Negatives + False Positives).

• False Positive Rate (1 - Specificity) = False Positives / (False Positives + True

Negatives).

The ROC curve is a useful tool for a few reasons:

• The curves of different models can be compared directly in general or for different

thresholds.

• The area under the curve (AUC) can be used as a summary of the model skill.

The shape of the curve contains plenty of information, including what we might care

about most for a problem, the expected false positive rate, and the false negative rate.

• Smaller values on the x-axis of the plot indicate lower false positives and higher

true negatives.

• Larger values on the y-axis of the plot indicate higher true positives and lower

false negatives.

An example is shown in Figure 3.4. The red curve is for a classifier of interest where we

wish the curve to go towards the top-left corner as much as possible. The area under the

curve (AUC) is usually between 0-1 where 1 means a perfect classifier and 0 means the

43

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

classifier mis-classifies all the instances. The blue line is for a classifier that randomly

picks classes for any input instance (gives a 50% chance to each class). Please observe

that it is outside the scope of this thesis to explain how to generate such curves. For a

detailed explanation on how to do that, the reader can refer to (Bradley, 1997).

Figure 3.4: A ROC curve v random classes by a classifier (the dotted line y = x)
giving 50% chance to each class

Matthews Correlation Coefficient (MCC): This metric is useful as it combines

all four values in the confusion matrix. It is based on treating the actual class and

the predicted class as two (binary) variables, and computing their correlation coefficient

(just like computing the correlation coefficient between any two variables). A high

value (close to 1) means that the classifier is predicting both classes well, even if the

data is imbalanced. On the other hand, a low value (close to 0) means the classifier is

misclassifying most of the classes. The formula to compute the MCC is:

MCC =
TP × TN − FP × FN√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
(3.1)

44

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

Precision-Recall Curve: Especially in highly imbalanced data, and because of the

high-class imbalance, one is usually less interested in the skill of the model at predicting

Class 0 correctly, e.g., high true negatives. Key to the calculation of precision and recall

is that the calculations do not make use of the true negatives. It is only concerned with

the correct prediction of the minority class, Class 1.

A precision-recall curve (an example is shown in Figure 3.5) is a plot of the precision

(y-axis) and the recall (x-axis) for different thresholds, much like the ROC curve. A

very good model is represented by a curve that bows towards (1,1). As described above,

the F-Measure summarises model skill for a specific probability threshold (e.g. 0.5),

whereas the area under a precision-recall curve summarises the skill of a model across

thresholds, just as ROC AUC.

Figure 3.5: A precision-recall curve depicting the skill of a model

Please observe that it is outside the scope of this thesis to explain how to generate this

45

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

curve. For detailed explanation on how to do that, the reader can refer to (Saito and

Rehmsmeier, 2015).

The above was a brief overview of these useful metrics. For a more detailed explanation,

the reader can refer to the article in (Canbek et al., 2017).

K-Fold Cross Validation: The k-fold cross-validation procedure involves splitting the

training dataset into k folds. The first k − 1 folds are used to train a model, and the

holdout kth fold is used as the test set. This process is repeated and each of the folds is

given an opportunity to be used as the holdout test set. A total of k models are fitted

and evaluated, and the performance of the model is calculated as the mean of these runs

(Figure 3.6). This procedure ensures that every instance in the original dataset has the

chance of appearing in training and test set which leads to having a good overview of

classifier performance (Patil et al., 2021).

Figure 3.6: Five-fold Cross Validation

In the standard CV procedure, the data is usually split into k-folds with a uniform

probability distribution. This is not appropriate for evaluating imbalanced classifiers.

It is likely that one or more folds will have few or no examples from the minority class.

46

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

This means that some or perhaps many of the model evaluations will be misleading,

as the model needs only to predict the majority class correctly. The Solution: split a

dataset randomly in a way that maintains the same class distribution in each subset.

This is called stratification or stratified sampling and the target variable y, the class, is

used to control the sampling process.

3.2 Classification Experiments

Some experiments were conducted on a freely available IPS dataset that contains network

traffic data from various malicious activities as well as normal, or benign, traffic.

3.2.1 The Data

This dataset is freely available from the Canadian Institute for Cybersecurity (Canadian

Institute for Cybersecurity, 2017). The dataset was in PCAP format, it was transformed

by its publishers into a comma-separated value (CSV) format using a special tool.

A practical and systematic way for transforming PCAP files into CSV files and

pre-processing the resulting CSV files is reported in (Alothman, 2019a). The dataset

used here contains 2830742 instances in total. The distribution of instances and class

labels is as follows:

47

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

Figure 3.7: Distribution of instance classes in the IPS traffic dataset

The dataset has 78 columns in total, 77 features and a class label. The features, or

attributes, include values such as the flow duration, the total forward packet, destination

port and so on. The class label represents whether the flow results in an attack (attack

name) or is benign. A view of some of the features is shown in Figure 3.8

48

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

Figure 3.8: Some of the Features in the Data

3.2.2 Data Pre-processing

The data comes with several missing values and hence needed to be pre-processed and

prepared for mining. It is usually useful to impute missing values if they do not represent

a large fraction of the entire data. In this dataset, there was only a small fraction and

they were replaced by the median of their respective columns (i.e. feature values).

Another important step to bear in mind is that the feature values are all numeric even for

categorical values. An example is the Destination Port. The destination port represents

a network protocol, which is categorical, but it is represented numerically in this data.

The correct method to represent categorical values numerically is to use the one-hot

encoding technique (Guo and Berkhahn, 2016).

(a) Categorical Column

Color

Red

Red

Yellow

Green

Yellow

(b) Corresponding One-hot Encoding
Representation

Red Yellow Green

1 0 0

1 0 0

0 1 0

0 0 1

0 1 0

Table 3.1: One-hot Encoding Example

Table 3.1 illustrates the idea of One-hot encoding. It works by splitting the column

(which contains numerical categorical data) to many columns depending on the number

49

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

of categories present in that column. If a row contains a category, the corresponding

column will have 1 and all other columns will have 0. However, if this is applied to a

large dataset such as the one at hand, and with the fact that there is a possible 65535

number of ports, the dataset size would become too large for a desktop computer to

process (the number of columns would hugely increase). Therefore, the choice made was

to drop this column from the dataset.

In addition to the above, steps like removal of highly correlated features and outlier

detection and removal could be applied (they are optional steps). However, they were

not applied in these experiments as they might result in loss of relevant information.

3.2.3 Algorithms used in the Experiments

The algorithms used in this evaluation work were from Python’s Scikit-learn machine

learning package (Pedregosa et al., 2011). They were selected because they are commonly

used for benchmarking in the literature (Hao & Ho, 2019). The following subsections

provide a list of these algorithms and a brief introduction to each of them.

3.2.3.1 Naive Bayes

The Naive Bayes classifier (Choi et al., 2020) is based on the classical Bayes theorem

which assumes the input variables (or the features) are independent and hence computes

the posterior probability P(c—x), or the probability of the class given the data, from

the following:

• P (c) or probability of the class c (i.e. the class prior probability);

50

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

• P (x) or probability of the data x (sometimes denoted the evidence or the predictor

prior probability);

• and P (x|c) or probability of the data x given the class c (i.e. the likelihood);

where P (c|x) is given by the formula shown in the following equation.

P (c/x) =
P (x/c)P (c)

P (x)
(3.2)

where:

P (c/X) = P (x1/c)× P (x2/c)× · · ·P (xn/c)× P (c)

3.2.3.2 Multilayer Perceptron (MLP)

This is the classical Artificial Neural Network (ANN). An ANN consists of a network of

artificial neurons (also known as ”nodes”) that are connected to each other (Ramchoun

et al., 2017). The strength (or weight) of their connections to one another is assigned

a value based on how important that connection is when minimising the training error

during the training process. These weight values are updated using an algorithm known

as the Gradient Descent Algorithm. Each neuron contains a transfer function which

translates the input signals to output signals. There are three types of neurons in an

ANN: input nodes, hidden nodes, and output nodes.

3.2.3.3 Decision Trees

The Decision Tree algorithm works by creating classification or regression models in

the shape of a tree structure (Molnar, 2022). The algorithm breaks down the training

dataset into smaller and smaller sub-datasets and incrementally builds an associated

51

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

decision tree at the same time. When it finishes training, it results in a tree with two

types of nodes: decision nodes and leaf nodes. A decision node is where the tree branches

and it has two or more branches. A classification or a decision is made at a leaf node.

3.2.3.4 Random Forest

This algorithm is based on the Decision Trees algorithm. It works by creating a number

of decision trees at training time and using them to make future predictions (Breiman,

2001). To develop each tree, random sampling is performed on the original training data

to obtain a sample dataset (by using random sampling with replacement of both the

instances and input features). Based on this (i.e., each new sample dataset is different),

each tree is different as each tree focuses on a different aspect of the data that it is

trained on. In the end, a classification is made by using a majority vote of predictions

of all generated trees (or the mean is used when performing regression).

3.2.4 Experiments

The experiments reported here performed binary and multiclass classification. In binary

classification, one is actually interested in a yes/no answer to whether an instance belongs

to a given class. For example, whether a given flow of data constitutes an attack or not.

Given the IPS dataset, it is common to use Naive Bayes and Random Forest classifiers.

For example, Naive Bayes (Mukherjee and Sharma, 2012) and Random Forest (Farnaaz

and Jabbar, 2016) as benchmarks. As for the multiclass classification common classifiers

include the MultiLayer Perceptron (MLP) and the Decision Tree classifiers (Koklu and

Ozkan, 2020). For the experiments, these multiclass classifiers were chosen.

52

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

The implementation was in Python mainly using the Scikit-learn and Pandas (McKinney

et al., 2010) and (Wes McKinney, 2010) packages. For the following experiments,

and based on previous explanation of classifier performance metrics, it is important

to highlight the following regarding Precision and Recall as they are reasonable metrics

especially when data is imbalanced: when one tries to maximise precision, they try to

minimise the number false positives. On the other hand, when we maximise the Recall

one tries to minimise the number of false negatives. Hence, precision is useful when

the focus is to minimise the false positives, whereas recall is useful when the focus is to

minimise the false negatives.

In problems like the one at hand, i.e., IPS data that might contain attacks, classifying

mistakes can be highly costly. For example, misclassifying benign traffic as attack (called

a false-positive) is often not desired, but less critical than classifying an attack as being

benign traffic (called false negative). Therefore, minimising false-negatives can be the

main focus but bearing in mind the importance of minimising false-positives. Therefore,

a close attention was paid to several evaluation metrics to assess the performance of the

classifiers in each setting.

3.2.4.1 Binary Classification

Before performing an evaluation of the Naive Bayes and Random Forest classifiers in a

binary classification setting, it is essential to prepare the data so that they contain two

classes (Attack and No Attack). Since the data contain several attacks, the choice to

make was to select one attack as “Attack” and set everything else as “No Attack”. The

“Web Attack XSS” attack was chosen as the attack and everything else in the dataset

was turned to “No Attack”. As “Web Attack XSS” is the class of interest, it was assigned

Class 1 and all other classes were Class 0. After doing this, the number of instances in

53

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

each class was as follows: In Class 0 there were 2830090 instances and in Class 1 there

were 652 instances. This means the dataset was highly imbalanced. A testing procedure

was conducted to split the data into two non-overlapping subsets: a training set and a

testing set. The splitting was stratified based on the class variable to guarantee that the

same percentage of the two classes existed in the training and test data. The training

set was 65% of the original data whereas the test set was the remaining 35%.

Naive Bayes Results: After splitting the data as explained above and training a Naive

Bayes classifier (with default parameters), the results were as shown in the following

table:

Figure 3.9: Results of the Naive Bayes classifier

The results show a promising performance with 91% accuracy. However, this promising

performance is not as good as it seems when one looks at the precision. As indicated in

the definition of the precision measure above, the closer the precision is to 1, the better

54

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

the results are. The precision value in the results was as low as 0.0025 (despite the high

recall value of 0.96). This poor performance is reflected in the F1-Measure, referred

to as F1 in 3.9, which has a low value of 0.0049. The conclusion is therefore, for this

dataset, the Naive Bayes classifier produced a high number of false positives but a low

number of false negatives. Again, a promising performance may appear when looking at

the ROC AUC value (0.956), but the actual, relatively low-quality of the performance

is reflected by the PRC AUC which is 0.477.

Random Forest: For this experiment, the same train and test split used for the Naive

Bayes experiment for Random Forest classifier was used. The results after training it

and predicting the test set are shown below:

Figure 3.10: Results of the Random Forest classifier

55

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

The results again show a promising performance with 99% accuracy. In a different

behaviour to that of Naive Bayes, Random Forest showed a precision value of 0.608 and

a low recall value of 0.061. This is reflected in the F1 value of 0.111. The Random Forest

classifier produced a low number of false positives and a somewhat high number of false

negatives. Again, a promising performance is observed when considering the ROC AUC

value (0.993) but a low value of 0.463 for the PRC AUC was observed.

3.2.4.2 Multiclass Classification

For the multiclass classification, we have used the same train and test splits as the ones

we have used in the binary classification. The difference is the class label as it now

contains the 15 classes rather than only 2 classes.

Decision Trees: The Decision Tree classifier in the Scikit-learn package in Python was

used with its default parameters except for max depth which we set to 5 to save time.

The results are reported in the following table:

Figure 3.11: Results of the Decision Tree classifier in the Multiclass Classification

Using the Decision Tree classifier for the multiclass experiment showed a high accuracy

of 96%. However, both recall and precision metrics were low (with values 0.459 and 0.329

56

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

respectively). This clearly affected the F1 measure which dropped to 0.383. In addition

to the above, the ROC AUC was much closer to 0.5 than to 1 and this is undesired. As

explained earlier, the target is to have the values of the precision, recall, F1 and ROC

AUC measures as close to 1 as possible to make sure the classifier introduced in this

thesis is performing well on the test data.

Multilayer Perceptron: The Multilayer Perceptron classifier was used in Scikit-learn,

with its default parameters except for the number of units in the hidden layer, which

was set to 15. The results are reported in the following table:

Figure 3.12: Results of the Multilayer Perceptron classifier in the Multiclass
Classification

Although the results obtained using Multilayer Perceptron were generally better than

those obtained using Decision Tree, they were still undesired. This is despite the high

accuracy value of 97%. The precision, recall, F1 and ROC AUC were not as high as

desired.

3.3 Summary

This chapter has provided the main metrics used to assess and evaluate classifiers. These

metrics were actually used to evaluate a number of tests conducted on a network traffic

57

DATA MINING OF IPS DATASETS: EXPERIMENTS AND RESULTS

dataset. These tests were divided into binary and multiclass classification methods.

After performing binary and multiclass classification and employing different classifiers,

and when looking at precision, recall, F1-Measure and ROC AUC, it was concluded

that the performance was not as good as desired, and some improvements are required.

The precision and recall metrics needed to be as close to 1 as possible in order to

minimise false-negatives and false-positives. A large number of false positives would

cause distraction to computer security teams and could unnecessarily waste time and

exhaust resources. On the other hand, even a low number of false negatives could

still be costly as it means malicious traffic has not been correctly identified. The next

chapter provides an overview of the new classification methods that attempt to solve

this problem.

58

Chapter 4

DEVELOPMENT OF NEW

CLASSIFICATION METHODS

It was shown in the previous chapter of this thesis that better classifiers were required

to deal with network traffic data. This chapter provides an overview of two new

classification methods developed as part of this research. The chapter explains how

they work and shows Python code snippets when possible. In the next chapter, results

of thorough tests to evaluate their performance are presented.

4.1 Multi-Task Learning for Accurate Classification of

Network Traffic

One of the classifiers developed as part of this research is based on the concept of

multi-task learning (intuition behind MTL and why it is suitable for the purpose of the

research project of this thesis were explained in Sections 2.6.2 and 2.6.3). As shown in

previous chapters of this thesis, the IPS data show a significant difference between the

59

DEVELOPMENT OF NEW CLASSIFICATION METHODS

number of available instances that belong to different traffic types. This is a typical

situation as datasets of this type are usually highly imbalanced. In a scenario like this,

where plenty of data is available for some tasks and very small amounts of data is

available for some other tasks related to these tasks, usually poor predictive models are

obtained when learning the tasks with small amounts of data. It is important to notice

that in this research, each network traffic category is considered a task (i.e., Benign is

a task, DDoS attack is a task and so on). Because of the low performance of existing

models, some improvement is required. This research introduces a multi-task learning

approach to achieve such improvement. The idea is to learn tasks with large amounts

of data together with tasks with small amounts of data in order to obtain better models

for the latter tasks (i.e., with amounts of data).

The proposed MTL method in this work is inspired by a recent work by (Sadawi

et al., 2019). Although it was applied in the field of drug discovery, it is possible

to adopt, enhance and apply it in other fields such as the field of automatic analysis

of computer network traffic. It is important to highlight the differences between the

method introduced in this research and the above-mentioned method. The method this

research adopts (referred to as the modified method) differs in the following ways:

• The existing method measures the similarity between tasks using amino acid

sequences whereas the modified method uses instance similarity as will be

explained in this chapter.

• The existing method is used in a regression context (i.e., to predict a real number)

whereas the modified method is classification (i.e., to predict a category or class)

and therefore the problem setting and evaluation metrics/procedures are different.

60

DEVELOPMENT OF NEW CLASSIFICATION METHODS

• A weakness has been identified in the existing method. Because it attempts to

address a regression problem, it is not straightforward to distinguish between

instances from different tasks when the datasets are merged. Therefore, it adds

a task ID column as a new feature (each task is given a task number) and this

can mislead the classifier as the task numbers are introducing something that does

not exist. In more detail, this is because when an integer number (such as 1) is

assigned to task A and another number (such as 2) to task B, mathematically

2 is greater than 1, but does this mean that task B is larger than task A? Not

necessarily. A classifier does not know that and will use the task ID as a number

and not as a category, which introduces order between tasks that does not really

exist.

• The identified weakness in the existing technique has been overcome in the modified

method. In the modified method, the class label is used to distinguish between

instances from different tasks.

Based on the above, the contributions of this work for the multi-task learning approach

can be summarised as follows:

• Develop a multi-task learning (MTL) approach for the accurate identification of

malicious network traffic (even in case of scarce data).

• Instead of learning the similarity between tasks, it is quantified by measuring it

using a well-known similarity metric (namely, the cosine similarity (Deza and Deza,

2009)).

• Identify a weakness in a recent existing method and demonstrate how the modified

method avoids it.

61

DEVELOPMENT OF NEW CLASSIFICATION METHODS

• Experimentally show that the modified method outperforms existing widely used

classifiers in various situations as will be explained in this Chapter 6.

The development of the MTL modified method has been documented in a paper (Aljoufi,

Reem and Lasebae, Aboubaker, 2021). The paper describes the modified method in

detail. It also shows a thorough experimental evaluation and comparison with a recently

published successful method.

4.1.1 The Proposed Method

As stated previously, the MTL method introduced in this work is a novel extension of

the recent work in (Sadawi et al., 2019). The idea is to consider each network traffic

type as a task and then train a classifier in a multi-task learning setting (each task

is represented by a corresponding dataset). Before running the algorithm, similarity

between all tasks is computed (compute average instance similarity between instances

of all datasets) as shown in algorithm 1.

Algorithm 1: How to Compute Similarity Values between Instances

Input : Two Datasets (ds1 and ds2)
Output: Vector of average similarity values

1 - Initialize empty similarity vector vsim;
2 for i ∈ ds1 do
3 - Initialize temporary empty similarity vector vsim temp;
4 for j ∈ ds2 do
5 - Compute s = cosine similarity(i,j);
6 - add s to vsim temp;

7 - Compute avg sim = avg(vsim temp);
8 - add avg sim to vsim;

9 - Return vsim;

Task similarity is required in multi-task learning because it is often used as a way of

quantifying the relationship between tasks (Shui et al., 2019).

62

DEVELOPMENT OF NEW CLASSIFICATION METHODS

The result of the previous algorithm is a vector of the same length as ds1 that contains

the similarity values of the instances of ds1 to instances in ds2. Using this algorithm, a

vector of similarity values for each pair of datasets (i.e. tasks) can be easily computed.

Figure 4.1 shows example similarity values computed between instances from the

PortScan attack and instances from DDoS attack, Benign traffic and Bot attach

respectively.

Figure 4.1: Example Similarity Values Computed between Instances of Multiple
Network Traffic Types (i.e. Tasks)

After the pairwise similarity values of all tasks (i.e. using their corresponding datasets)

have been computed, these datasets are concatenated and similarity values are added as

new features as shown in algorithm 2.

What the method introduced in this thesis does is: join all datasets together into one

large dataset and then add similarity values as new features to the resulting large dataset.

63

DEVELOPMENT OF NEW CLASSIFICATION METHODS

Algorithm 2: How to Concatenate Datasets, add Similarity Values as new Features
and Train a Classifier using the Resulting Dataset

Input : n related datasets (each contains data from one network traffic type)
Output: A Trained Model that can be used for Future Predictions

1 Merge the n datasets along the columns (i.e. stack them);
2 Add n extra variables to the dataset resulting from step 1: SimToDS 1,

SimToDS 2, ..., SimToDS n;
3 Populate the similarity values using the results from algorithm 1;
4 Train a classifier using the newly created dataset

After that a model can be trained using the large dataset and used for future predictions.

The dataset resulting after applying algorithm 2 should look like the example shown in

figure 4.2. Notice the original features are on the left and the similarity values are on

the right (this example has four new columns because this setting involves data from

four tasks).

Figure 4.2: Contents of Dataset resulting after the Proposed MTL Method

A view of part of the merged data is shown in Figure 4.3. The figure shows the similarity

values added as new columns (i.e. features after the label column).

Figure 4.3: View of Merged Datasets with Added Similarity Columns

64

DEVELOPMENT OF NEW CLASSIFICATION METHODS

4.1.2 Instance Similarity

It was mentioned previously that instead of learning the similarity values between tasks

in MTL, these values can be computed. This is applicable in the case of network traffic

data belonging to different traffic types. The reason for this is that these different

datasets are from the same domain and have the same feature space, with feature

values being numeric. This makes it straightforward to quantify the similarity between

instances in datasets.

The method employed for computing the similarity between tasks (i.e. datasets from

different traffic types) is the same as in (Alothman, 2018b, 2019b, Alothman et al., 2018).

Therefore, the following will briefly define how it is computed and refer the reader to

those cited articles.

When there are two numeric vectors Vj and Vj , their similarity can be computed as a

numeric value S such that this value is always between 0 and 1.

0 <= S <= 1

When S = 0, this means that Vj and Vj are not similar and there is no meaningful

overlap between them (i.e. they have nothing in common or they are orthogonal). On

the other hand, when S = 0, this means that Vj and Vj are the same (i.e. identical).

As the value of S increases from 0 towards 1, it means Vj and Vj are more and more

similar.

Now, the way to compute similarity between datasets (i.e. tasks) is illustrated in

algorithm 1. The idea is to compute all similarity values between all pairs of instances in

any two input datasets and then compute the average similarity value. It is important

65

DEVELOPMENT OF NEW CLASSIFICATION METHODS

to note that in the experiments, the cosine similarity has been used. There are other

similarity types that can be employed (a useful resource on various types of similarity

is the book in (Deza and Deza, 2009).

4.2 Classification Using Matrix Determinants

A new method for classifying the data is proposed by this research. The method is based

on the idea of extracting linear equations from datasets and forming square matrices.

The determinants of these matrices are then computed. Classification is based on the

range of the determinant values. For example, determinants between a and b represent

a given attack label, say ‘Benign’, while determinants between c and d represent another

attack label, say ‘DDoS’, and so on.

4.2.1 Algorithm for Matrix Determinants

Since there are n numeric and one categorical attributes, the matrices formed are of

size n by n, i.e., n rows and n columns. The algorithm (as sillustrated in Algorithm 3)

entails forming matrices using the algorithm below for each single-label (attack/no attack

based) dataset. Training will be attack based, so assuming attack a is considered, the

following algorithm is used for training:

Algorithm 3: Algorithm for Matrix Determinants

Input : Dataset
Output: Matrix Determinants

1 Count the number of rows r in the a dataset, where a is a given attack;
2 Count the number of columns c with numerical values (i.e. exclude the label field);
3 Find k = r − (r(mod(c))). k will be smaller than or equal to r;
4 Select arbitrary k rows from the dataset;
5 Form arbitrary c× c matrices from the datasets. We should get t = k/c matrices.

Call these matrices Aj ;
6 Compute the determinants dj of the Aj matrices, where j = 1, 2, ..., t;

66

DEVELOPMENT OF NEW CLASSIFICATION METHODS

The above steps are repeated for each attack a. When a new flow is encountered, the

following algorithm (as illustrated in Algorithm 4) is used to test for a potential attack

(or no attack) in the flow:

Algorithm 4: Prediction using Algorithm for Matrix Determinants

Input : New Flow
Output: Predicted Class

1 Form a row vector from a new data flow.;
2 Sum up the vector with each row of each of the matrices Aj formed in the training

procedure for each attack a;
3 Each time the flow is added to one row of the matrix, compute the determinant dij .

We will have k matrices with corresponding determinants for each attack dataset;
4 Find the {|dij − dj |} for i = 1, 2, ..., k, j = 1, 2, ..., c, where dj is the determinant of

the matrix Aj and {|dij − dj |} is the minimum of the absolute value of the
difference dij − dj . We will have k of these minimums;

5 Find the minimum of the k minimums calculated above, that is,
min{{|dij − dj |}}.Hence each attack set will have a number representing it. We
call this number the dataset gist;

6 If the gist is zero for more than one attack dataset, count the number of zero gists
for each attack;

7 Classify flow: the flow will belong to the attack set with the smallest gist or with
the highest number of zero gists;

4.3 Classification Using Eigenvalue Perturbation

Although the use of the matrix determinant is useful to classify data as per the above

algorithm, it could be problematic for certain datasets. For example, if the determinant

is zero for more than one of the matrices being classified, it is not easy to choose in

which matrix with the zero determinant the flow fits. One way of going around this is

to count the number of zero occurrences of the determinant. However, this is not an

effective way. Moreover, the occurrences may still coincide, and it would be difficult to

choose the right dataset for the flow.

Another way of classifying the data, which is also similar to the way determinants work, is

the use of the matrix eigenvalues. This is known as the eigenvalue perturbation problem.

67

DEVELOPMENT OF NEW CLASSIFICATION METHODS

Perturbation theory (Patkowski, 2020) works as follows: given a system represented by a

matrix A and an operator λ acting on A, it would be highly useful to understand how a

small perturbation ϵ to A affects λ. That is, to understand the relation between λ(A) and

λ(A′), where A′ is the matrix after the perturbation. One of the interesting operators are

the eigenvalues and eigenvectors of a matrix. So, the eigenvalues and eigenvectors of the

original system are known, it becomes possible to find the eigenvalues and eigenvalues

of the system after perturbation to determine how sensitive to change the system is.

In theory, a small change of the matrix will result in a small change of its eigenvalues.

However, it is not as straightforward as it sounds. Some matrices are more sensitive to

perturbation than others.

This means a small change in one matrix could lead to a significant change in its

eigenvalues. Such matrices are said to be sensitive to perturbation. Other matrices

will have small change in their eigenvalues as a result of large perturbation. Therefore,

a measure to identify what type of matrix one is dealing with is required. One way of

detecting matrix sensitivity is through the use of the condition number. The condition

number is a scalar value that measures how much a matrix is susceptible to change.

There are various definitions of the condition number, but they all consider the maximum

and the minimum of the eigenvalues of the matrix.

Before providing any formulae, it is worth mentioning here that formulae shown in this

chapter are summarised from (Gezerlis, 2020).

One formula uses the 2-norm of the matrix, which is defined as:

∥A∥ =
√
max(λi) (4.1)

68

DEVELOPMENT OF NEW CLASSIFICATION METHODS

Here λi are the eigenvalues of the matrix AAH , where AH is the conjugate transpose of

A.

Then the 2-norm of matrix A is given by the formula below:

cond(A) = ∥A∥2∥A−1∥2 (4.2)

Here A−1 is the inverse of matrix A.

So, in addition to considering the eigenvalues of a matrix, the condition number needs

to also be considered. One way of using this result in classification is to combine the

eigenvalues of a matrix with its condition number. It is possible to compute the condition

number of the matrix after each perturbation and divide the eigenvalues by the condition

number. The result will be a vector of ratios, call it τ , computed as follows:

τ(A′) = [
λ1

cond(A′)
] (4.3)

where A′ is the matrix A after perturbation, cond(A′) is its condition number and λi

are its eigenvalues.

Then when it is possible compare the consecutive perturbations of the matrix, a factor

can be used to measure the significance of the change. The perturbation factor of (A’),

call it p, is the minimum of the elements of τ :

p(A′) = min(τi(A
′)) (4.4)

The perturbation factor of the matrix can be used to compare a series of perturbations

on a matrix and decide which perturbation affects the matrix the highest.

69

DEVELOPMENT OF NEW CLASSIFICATION METHODS

4.3.1 Algorithm for Eigenvectors Perturbation (EV)

A slightly better way of achieving the above classification is to replace the use of

eigenvalues by eigenvectors. Doing such would provide better results as the entire flow

is compared with an entire row of a matrix instead of comparing scalar values. This

requires the use of the norm of the vectors (eigenvectors and matrix rows). Doing

such would eliminate the need of relying on the condition number as it could result in

inaccurate values if the matrix is ill-conditioned. The eigenvector perturbation method

is therefore adopted for the classification of the IPS dataset. Given a dataset and a

flow that is one row of data. The idea is to apply perturbation to the matrix by the

flow and find the eigenvectors. This is achieved by replacing the first row of the matrix

by the flow. Then the second row of the matrix is replaced by the flow and again find

the eigenvectors. This is process is repeated until all the rows and all matrices are

attempted. The algorithm is provided below in Algorithm 5.

Algorithm 5: Algorithm for Eigenvectors Perturbation (EV)

Input : Dataset
Output: Matrices Aj

1 Count the number of rows r in the dataset, where xp is a given attack;
2 Count the number of c columns with numerical values (i.e. exclude the label field);
3 Find k = r − (r(mod(c))) will be smaller than or equal to r;
4 Select arbitrary k rows from the dataset;
5 Form arbitrary c× c matrices from the datasets. We should get t = k/c matrices.

Call these matrices Aj ;

The prediction algorithm is illustrated in Algorithm 6.

70

DEVELOPMENT OF NEW CLASSIFICATION METHODS

Algorithm 6: Prediction using Algorithm for Eigenvectors Perturbation (EV)

Input : New Flow

Output: Predicted Class

1 Take matrix Aj out of the generated matrix;

2 Take the eigenvectors of matrix Aj ;

3 Form a row vector from a new data flow, call it F ;

4 Take Ni the norm of order 1 row i divided elementwise by the flow F , where

Normi(ri/F) is the vector norm of order 1 and ri is the ith row of the matrix Aj .

Take the norm of the norms of eigenvectors of Aj , call it NAj ;

5 Replace ri in Aj by F . Compute NBj , the norm of the norms of the eigenvectors of

Aj after replacement;

6 Find DAB, the absolute value of the difference of NAj and NBj , DABj = |NAj−Bj |;

7 Find MinNj , the minimum of all Ni for matrix Aj ;

8 Reinstate matrix Aj back to original;

9 Repeat from step 4, that is select the next row with i → i+ 1 until all rows of

matrix Aj are used;

10 Repeat from step 1, that it, select the next matrix with j → i+ 1 until all matrices

are covered;

11 Find the minimum of DABj ;

12 Find the minimum of MinNj ;

13 The result of the attack X dataset is then Res(X) = min(DABj ∗min(MinNj));

The above algorithm generates the number Res(Xp) for each attack dataset Xp. To find

out which attack dataset the flow belongs to, the minimum of these numbers needs to

be determined, i.e., min(Res(Xp)). The following is a flowchart depicts the algorithm.

71

DEVELOPMENT OF NEW CLASSIFICATION METHODS

Figure 4.4: A flowchart depicting the Eigenvectors Perturbation algorithm

72

DEVELOPMENT OF NEW CLASSIFICATION METHODS

4.4 Summary

This chapter has provided the details of two new classification algorithms developed as

part of this research. These algorithms outperform exiting ones for the dataset at hand

and this is demonstrated via empirical evaluation. The algorithms are evaluated and

implemented in Chapter 6 of this thesis. The next chapter contains an explanation of

the work on improving the classical PCA algorithm for better PCAP data visualisation.

73

Chapter 5

VISUALISATION OF PCAP

DATA USING PCA

In this chapter a proposed enhancement of the classical PCA algorithm is provided.

Before doing this, an overview of the PCA algorithm and explanation of how it works

is introduced. After that, an explanation of how PCA can be enhanced and used for

pre-processing and visualisation of network traffic data is detailed.

5.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a machine learning concept that is commonly

used to reduce the dimensions of large datasets without losing the significance of the

information in hand (Jolliffe, 2011). It is usually used to help visualise large datasets.

The ideal is to transform possibly correlated variables into linearly uncorrelated variables

called principal components. Here, the first principal component contains the largest

amount of information, the second principal component contains the second largest

74

VISUALISATION OF PCAP DATA USING PCA

amount of information and so on. The amounts of information account for the variance

of each of the variables. Hence, the PCA algorithm requires maximising the variance for

each variable (or axis) and assigning it to the first principal component, second principal

components and so on, such that axes with small variances may be ignored without loss

of much information (Tipping and Bishop, 1999).

Geometrically, PCA is achieved by fitting an axis (or vector) across a set of points in

every dimension. For example, if the data is two dimensional, two vectors are fitted

across the data, which are perpendicular to ensure they are uncorrelated. This is shown

in Figure 5.1.

75

VISUALISATION OF PCAP DATA USING PCA

(a) A scatter plot of two numeric variables

(b) Transformation of data by fitting orthogonal axes (Z1 and Z2
represent the first and second principal components respectively)

Figure 5.1: Visual Illustration of PCA (Diagram from (Masci, 2013))

76

VISUALISATION OF PCAP DATA USING PCA

It is obvious from the above figure that the variance is higher across the first axis, so it

accounts for the first principal component, and the second axis is the second principal

component. This approach is generalised to higher dimensions.

5.2 Computation of PCA

PCA has been explained in detail in the literature. Formulae illustrated in this chapter

are summarised from (Jolliffe and Cadima, 2016) and (Brereton, 2009). Suppose the data

are given in an n by m matrix representing m variables (dimensions), say X1, X2, ..., Xm

and n values. The PCA algorithm starts with subtracting from each data entry the

mean of its variable, as shown below:

X =

(
x11 − µ1 · · ·x1m − µm

...
. . .

...xn1 − µ1 · · ·xnn − µm

)
(5.1)

Where xij is jth value of the ith variable and µi is the mean of the ith variable. This

generates a dataset of the same variables but with means all equal to zero. Sometimes

it is also a common practice to standardise the dataset. The is achieved by subtracting

the mean and dividing by the standard deviation for each entry in the matrix:

X =

(
x11 − µ1

σ1
· · · x1m − µm

σm

...
. . .

...
xn1 − µ1

σ1
· · · xnn − µm

σm

)
(5.2)

Then it is required to calculate the covariance matrix for all pairwise combinations of

the variable as below:

C =

(
cov (x1, x1) · · · cov (x1, xm)

...
. . .

...cov (xm, x1) · · · cov (xm, xm)

)
(5.3)

77

VISUALISATION OF PCAP DATA USING PCA

which is a symmetric m by m matrix.

It is also important to note that the correlation matrix can be used instead of the

covariance matrix. The choice depends on the data in hand. Generally, the covariance

matrix is chosen when the variables are measured in comparable units so the differences

in the variance between variables make significant interpretation. In contrast, the

correlation matrix is chosen when the variables are measured in different units so the

differences in the variance between variables do not make much sense. The correlation

matrix is given below:

Cr =

(
corr (x1, x1) · · · corr (x1, xm)

...
. . .

...corr (xm, x1) · · · corr (xm, xm)

)
(5.4)

Now eigenvectors and eigenvalues of the covariant matrix need to be computed. As the

eigenvectors are orthogonal (given C is symmetric) and are taken for the covariance

matrix, they will act as the axes in the transformation. Given matrix C is m by m,

the result is m eigenvectors and m eigenvalues. The eigenvectors can be normalised by

dividing each by its length. This yields eigenvectors each of length 1.

At this stage, all calculations needed to construct the principal components are available,

which are the eigenvectors of the covariant matrix C. Moreover, the eigenvector with the

highest eigenvalue is the first principal component, and that with the next highest is the

second principal component and so on. Therefore, it is possible to ignore eigenvectors

with less significance, and hence reduce the dimensionality of the original data. This

is done by constructing the feature vector F containing all eigenvectors that should be

kept. Therefore, F will be a matrix of size n by p, where p ≤ m depending on the

number of eigenvectors ignored:

F = (e1 · · · ep) (5.5)

78

VISUALISATION OF PCAP DATA USING PCA

Here e1, ..., ep are the eigenvectors decided to be kept. As these eigenvectors are ordered

by significance based on the eigenvalues, the choice is typically made based on the first

p out of n eigenvectors if no other criteria to do otherwise are involved.

The last step is to transpose the feature vector F and multiply it by the transpose of

matrix X of the values. This will form the matrix Y of the final dataset:

Y = F TXT (5.6)

The new dataset Y has dimension p by n, containing p variables and n values:

Y =

(
y11 · · · y1n

...
. . .

...yp1 · · · ypn
)

(5.7)

which can be transposed to get it in the usual form.

The first principal component Y1 is the first row of matrix Y , the second principal

component Y2 is the second row of matrix Y and so on:

Y1 = y11 + · · ·+ y1n, (5.8)

...

Yp = yp1 + · · ·+ ypn (5.9)

The original dataset, matrix X, can be retrieved from Y provided all eigenvectors have

been selected to form Y . This is achieved by multiplying the inverse matrix of F (or its

transpose) from the left on both sides:

(F T)−1Y = (F T)−1F TXT = IXT = XT (5.10)

79

VISUALISATION OF PCAP DATA USING PCA

It is important to notice that the columns of F are unit orthogonal vectors, and so it is

an orthogonal matrix. An orthogonal matrix has the property that its inverse is equal

to its transpose. Therefore, it is enough to multiply F from the left on both sides to

retrieve X:

Y F = FF TXT = IXT = XT (5.11)

And to retrieve the original dataset, the means initially subtracted from the values are

added. If not all eigenvectors are considered, it is still possible to proceed the same but

some of the data will not be retrieved.

5.3 How PCA Can Help Visualise Large Datasets

If there are large datasets to visualise, it is not usually possible to display all data

in a visual format for inspection purposes. One of the ways enabling large dataset

visualisation is PCA. Since data can be arranged in order of significance, it is possible to

choose to display as many principal components as possible to visualise. It is therefore an

efficient method of visualisation commonly used when faced with large datasets. Some

example visualisations are included in the following sections of this chapter.

As for implementation, Python has a PCA implementation with the

sklearn.decomposition class. For example, to use the PCA kernel in Python,

the following lines of codes calls the PCA kernel in Python are used to call the PCA

kernel and Fit the model from data in X and transform X:

KernelPCA(n components = n, kernel = ”linear”)

fit transform(X)

80

VISUALISATION OF PCAP DATA USING PCA

For the first experiment, the dataset will be visually classified based on the label,

malicious or attack. Further classification results will also be attempted based on PCA.

5.4 Improvement of the PCA Algorithm

As detailed above, the use of the PCA algorithm requires forming the covariance matrix

or the correlation matrix. Observe that we do not focus on Kernel PCA in this work.

In Kernel PCA, the data is mapped into a higher-dimensional space before reducing the

dimensionality (Wang, 2012) and this is not required in our case. The covariance and

correlation are measures of a linear relation between two variables. The correlation is

equal to the covariance divided by the product of the standard deviation of each variable.

Geometrically, the correlation is the slope of the regression line of two variables. Given

the dataset in hand, linear correlation will not be a good fit for the data. Therefore,

nonlinear correlation would be more representative of the data and would consequently

generate more representative principal components of the data. Spearman’s rho assumes

two variables are monotonically related (Ain et al., 2016), which is the case of the data

being studied. Some tests were conducted to compare the results of using correlation

coefficient and Spearman’s rho and at each test Spearman’s rho outperformed the

correlation coefficient.

To provide an example, a set of 37 variables representing the time and 36 values of

network parameters was used in an experiment. The data is a subset of the original

data used for this research (i.e. the IPS dataset mentioned in previous chapters). The

aim of this experiment is to show the advantage of using the Spearman matrix over the

correlation matrix for the data at hand, assuming that the variables are monotonically

related. Principal component analysis was conducted using two principal components

81

VISUALISATION OF PCAP DATA USING PCA

and results are illustrated in Figure 5.2 and 5.3. The horizontal axis represents the

time of the measure and the vertical axis represent one of the other 36 variables of the

dataset. PCA was conducted the principal components were generated using each of the

matrices. The data was then transformed into a reduced dataset of two variables out of

36. The chosen variable’s data points are in blue. An inverse PCA transform of the the

new dataset was obtained to regain the original data.

Figure 5.2: The actual data (blue) and the reconstructed data (red) after using
Spearman’s rho

Figure 5.3: The actual data (blue) and the reconstructed data (red) after using the
correlation coefficient

82

VISUALISATION OF PCAP DATA USING PCA

It can be noticed from Figure 5.2 and 5.3 that Spearman’s rho results in data that is

less sparse compared with the original. This result is also maintained by communality

calculated for each test, which is 89.5% for the highest value variable when correlation

is used and 96.7% when Spearman’s rho is used. Communality is the total amount of

variance that is shared between an original variable and all other variables included in

the analysis (Watkins, 2018). The experiment was repeated for the other 35 variables

and the Spearman’s matrix performed better at each case.

5.5 Visualisation using PCA Spearman’s Rho

The proposed PCA algorithm is used with the covariance matrix replaced by the

Spearman’s rho matrix. This is based on the fact that Spearman’s rho matrix assumes

two variables are monotonically related as it is the case of the datasets in hand. Since

PCA involves plotting data points, the Python Matplotlib package (Hunter, 2007) is

used. Here a comparison between three PCA algorithm implementations is carried out.

Namely, the implementations are different because they use Pearson (Freedman et al.,

2007), Spearman and covariance correlations respectively.

The data used in the comparison is network traffic data and samples are labelled based

on the attack type: PortScan, DDoS, Bot or Benign. A Benign label means the flow does

not generate an attack. The idea behind using PCA is to project the multidimensional

data into a lower dimensional space in order to visualise it. In this case, the data has 76

dimensions (i.e. features) and is projected onto a two-dimensional space with two axes:

Principal Component 1 and Principal Component 2.

Having the algorithms implemented, it becomes possible to visualise the resulting data

after using PCA with different correlation matrices. Example results are provided below.

83

VISUALISATION OF PCAP DATA USING PCA

5.5.1 Visualising a Sample using the Covariance Matrix

Here Python’s scikit-learn package, which has an implementation of PCA that uses

covariance matrix by default, is used. A sample of 4000 flows drawn randomly from the

data is shown as a scatter plot below (Figure 5.4):

Figure 5.4: PCA results after using the covariance matrix.

The diagram shows the possibility of linearly separating most of the data points, with

some exceptions, e.g., parts of the green points, red points, etc.

5.5.2 Visualising a Sample using the Pearson Matrix

Replacing the covariance matrix in the PCA algorithm with Pearson’s correlation matrix

for the same data sample results in the following (Figure 5.5):

84

VISUALISATION OF PCAP DATA USING PCA

Figure 5.5: PCA results after using the Pearson matrix.

It looks that the data using PCA with the Pearson matrix are similarly distributed

as those with the covariance matrix. The reason is that the Pearson matrix is closely

related to the covariance matrix. In fact, it is a normalised version of the covariance

matrix.

5.5.3 Visualising a Sample Using the Spearman Matrix

Finally, replacing the covariance matrix in the PCA algorithm with Spearman’s

correlation matrix in the PCA algorithm produces the following (Figure 5.6):

85

VISUALISATION OF PCAP DATA USING PCA

Figure 5.6: PCA results after using the Spearman matrix.

The figure above shows that the data are more separable than the case of the covariance

and Pearson matrices. This is based on the fact that the data at hand are positively

correlated and hence the Spearman matrix can best reflect such correlation. This

demonstrates the enhancement that the idea introduced in this thesis makes in this

use-case.

5.6 Summary

This chapter has provided an insight into computer network security data visualisation.

In particular the principal component analysis has been introduced and discussed, with

practical implementation in Python. The improvement to the PCA for the data at hand

86

VISUALISATION OF PCAP DATA USING PCA

has been achieved by using the Spearman matrix over those using the covariance matrix

or the Pearson matrix. It is evident that the change of matrix in the PCA results

in a better separation of the data items. This has been shown visually throughout

the chapter. The next chapter has empirical evaluations of the classification methods

introduced as part of this thesis.

87

Chapter 6

CLASSIFICATION RESULTS

AND EVALUATION

This chapter contains the experiments (in order to evaluate the performance of the

introduced methods) and results as well as discussion of those results. Here the

evaluation of the methods proposed as part of this thesis will be demonstrated. The

chapter begins by speaking about the data used in the evaluation process and then

moves to a detailed evaluation of the proposed MTL method for classification. After

that, the evaluation of the Eigenvector Perturbation (EV) classifier is explained. The

experimental results show that the proposed methods are indeed effective.

6.1 Network Traffic Data

Usually network traffic data is captured in a binary format known as the PCAP format

(Packet CAPture). It is possible to extract numeric features from this data and

transform it into tabular format suitable for machine learning and further analysis. An

88

CLASSIFICATION RESULTS AND EVALUATION

existing open-source tool is ISCXFlowMeter (Draper-Gil et al., 2016). After the data

is ready for machine learning, various classification techniques can be used to classify

traffic and identify its type (i.e. whether it is malicious or benign. And in case of

malicious traffic, it is desirable to identify the attack type).

Currently, there are several well known network attacks of which plenty of data is

available. On the other hand, there are several attacks that are not well studied because

of the scarcity of their captured data. (Figure 3.7 shows an example distribution of

instance classes from a dataset captured by an IPS). An example source of such data

is available at (Canadian Institute for Cybersecurity, 2017). The available data is of a

real-world situation where an Intrusion Prevention System (IPS) can be used to spot

network attacks in real-time. As explained in the beginning of this thesis, an IPS

is a computer program that is used to monitor computer network traffic, attempt to

identify malicious, or suspicious, activities and generate alerts when such activity is

found (Di Pietro and Mancini, 2008). Usually, malicious traffic is much less than normal

(safe or benign) traffic, therefore, it is often seen as an anomaly.

The data shows a significant difference between the number of available instances that

belong to different traffic types (in total it contains 2830742 instances). For example,

the number of instances available for benign traffic is as high as 2273096, the number of

instances for the DDoS attack is as high as 128027. On the other hand, the number of

instances available for an Infiltration attack is as low as 36 and the number of available

instances for a Heartbleed attack is as low as 11. The full distribution of instance classes

of this dataset is shown in Figure 3.7. This is a typical situation as datasets of this type

are usually highly imbalanced.

In a scenario like this (where plenty of data is available for some tasks and very small

89

CLASSIFICATION RESULTS AND EVALUATION

amounts of data is available for some other tasks related to these tasks), usually poor

predictive models are obtained when learning the tasks with small amounts of data.

As explained in previous chapters, in this thesis, each network traffic category is referred

to as a task (i.e. Benign is a task, DDoS attack is a task and so on). Because of the

low performance of such models, some improvement is required. This thesis introduces

a multi-task learning approach to achieve such improvement. The idea is to learn tasks

with large amounts of data together with tasks with small amounts of data in order to

obtain better models for the latter tasks. More on multi-task learning was provided in

Section 4.1.

In order to run experiments to evaluate the MTL method developed as part of this thesis,

four tasks and some instances were randomly selected as shown in Table 6.1. This data

was used in the experiments explained in the remainder of this chapter.

Table 6.1: Data used for MTL Experimental Evaluation

Network Traffic Type (i.e. Task) Number of Instances

Benign Traffic 41176

DDoS Traffic 58168

Bot Traffic 45

Portscan Traffic 57

6.2 Evaluation of the Multitask Learning Approach

A detailed evaluation of several classical classifiers was presented in Chapter 3. In this

section the experiments are presented and their results are shown and discussed. To

90

CLASSIFICATION RESULTS AND EVALUATION

demonstrate the effectiveness of the proposed method, the IPS dataset explained in

section 6.1 has been used.

Before starting the actual MTL experiments, an initial evaluation to select the

best base-line classifier that can be trained on the dataset resulting after applying

Algorithm 2 (which was explained in Section 4.1.1) has been run. The results show that

RandomForest is the best performer (and this is consistent with the work in (Alothman

et al., 2018)). Hence, RandomForest is going to be used as the base classifier for the

MTL method.

An example dataset resulting after applying algorithm 2 is shown in Figure 6.1. Notice

the original features are on the left of the label column, which is the class column (each

class is a task). The similarity values are on the right (this example has four new columns

because this dataset contains four unique class labels as shown in the Network Traffic

Type (i.e. Task) column in Table 6.1).

Figure 6.1: An Example Dataset resulting after the Proposed MTL Method

Although not all of them are displayed, the label column in the dataset shown in

Figure 6.1 contains four unique values.

91

CLASSIFICATION RESULTS AND EVALUATION

6.2.1 Comparison with RandomForest

In order to demonstrate the effectiveness of the method proposed in this thesis, its

performance is going to be compared against the best performing classical classifier

(which is RandomForest as stated above). As there are four separate datasets (one for

each of the tasks shown in table 6.1), several datasets have been created by using various

pairwise combinations of datasets (each two different tasks against each other). After

obtaining these dataset combinations a 10-fold cross-validation procedure has been run

using RandomForest (cross-validation and its benefits have been explained in Chapter 3).

This procedure generates several train/test splits, trains a RandomForest model on the

train split and uses it to predict the test split. After this the predictions are grouped

by label (i.e. task) and the average accuracy is computed for each label (i.e. task).

Figure 6.2 shows the results for each pair of tasks (read row vs column).

Figure 6.2: Results of RandomForest on Pairwise Task Combinations

As for the MTL evaluation procedure, the same datasets that have resulted after the

pairwise dataset combination procedure have been used but now the similarity values

are added to them as extra features as explained in section 2.6.2. The results are shown

in Figure 6.3.

92

CLASSIFICATION RESULTS AND EVALUATION

Figure 6.3: Results of the MTL Procedure on the same Pairwise Task Combinations

Notice the significant improvement in performance after using out MTL method

(compare corresponding cells). Please observe that it does not really matter which base

classifier is used (the novel aspect of this work is adding the similarity values to improve

the classification accuracy). The usefulness of this method can be observed if one focuses

on labels where the dataset size is small (i.e. there is a significant improvement when

learning is performed for Bot and Portscan tasks).

6.2.2 Comparison with CB-SBIT

The implementation of the CB-SBIT algorithm (Alothman et al., 2018) is freely

available. Therefore, it has been downloaded (it source code is available at (Alothman,

2018a)) and used to perform evaluation and comparison with the method proposed in

this thesis. In order to run the experiments, the data has been prepared so that it

is compatible with how CB-SBIT works. Three attack types have been selected (Bot,

Portscan and DDoS) and Benign data has been added to them (making sure the resulting

datasets are class balanced and there is no overlap in Benign instances). It is worth

mentioning here that accuracy is going to be used as the performance evaluation metric

because datasets are class balanced (Santafe et al., 2015). Notice that these datasets

do not contain the similarity columns added as part of the MTL procedure. Then the

available CB-SBIT code has been as is in the following way:

93

CLASSIFICATION RESULTS AND EVALUATION

1. Take the Bot data and randomly split it into two equally sized datasets (one for

use as a Target data in the CB-SBIT algorithm and the other for use as test data)

2. The Portscan and DDoS datasets were used as source datasets in CB-SBIT

3. CB-SBIT was run with its default parameters

The original Bot Target dataset size was 45 instances (21 Benign and 24 Bot) and the

new Bot dataset size (after instance transfer by the CB-SBIT algorithm) was 118489

instances (59243 Benign and 59246 Bot). As the new Bot dataset is much larger than

the original dataset one would expect a better model as plenty of data is now available.

However, the results are not as expected. Accuracy before using CB-SBIT (i.e training

the RandomForest classifier on the original training Bot dataset) is 94.78% and accuracy

after transfer (i.e training the RF classifier on the new dataset that contains the original

instances of the small training Bot dataset and the instances transferred to it from the

source datasets using the CB-SBIT algorithm) is 93.56%. This is a surprising result as

the CB-SBIT is performing what is known as negative transfer (i.e. results are worse

after using the CB-SBIT algorithm).

The previous steps have been repeated but now with using the Portscan data as Target

and Test, and adding the Bot dataset to the source datasets.

1. Take the Portscan data and randomly split it into two equally sized datasets (one

for use as target data in the CB-SBIT algorithm and the other for use as test data)

2. The Bot and DDoS datasets were used as source datasets in CB-SBIT

3. CB-SBIT was run with its default parameters

The original Portscan Target dataset size was 57 instances (26 Benign and 31 Portscan)

and the new Portscan dataset size (after instance transfer by the CB-SBIT algorithm)

94

CLASSIFICATION RESULTS AND EVALUATION

was 203877 instances (101936 Benign and 101941 Portscan). Accuracy before transfer

(i.e training the RF classifier on the original small training Portscan dataset) is 82.45%

and accuracy after transfer (i.e training the RF classifier on the new dataset that contains

the original instances of the small training Portscan dataset and the instances transferred

to it from the source datasets using the CB-SBIT algorithm) is 96.25%). This is positive

transfer (i.e. results are better after using the CB-SBIT algorithm)

The proposed MTL method has been applied using the same datasets which have been

used to evaluate the performance of the CB-SBIT algorithm. Remember in the MTL

method the similarity is computed and new columns are added as features (as explained

in Section 2.6.2). Therefore, these datasets contain the similarity columns that are

computed as part of the proposed MTL approach. The procedure was as follows:

1. Concatenate the DDoS dataset with the training datasets of both Bot and Portscan

2. Train a RandomForest classifier on the resulting dataset

3. Predict the Bot and Portscan test datasets and compute the accuracy for each of

them

After MTL, the accuracy was 98.51% on the Bot test dataset and 99.76% on the Portscan

test dataset. This shows that the proposed MTL approach outperforms the CB-SBIT

algorithms on both datasets. The results of this evaluation are shown in figure 6.4. In

summary, for the Portscan data, CB-SBIT shows an improvement in accuracy when

compared with using the RF classifier without instance transfer (i.e. the single task

learning), but MTL shows a better improvement. On the other hand, for the Bot

data, CB-SBIT shows a dis-improvement in accuracy when compared with using the RF

classifier without instance transfer (i.e. the single task learning), because accuracy goes

down, whereas MTL shows a significant improvement.

95

CLASSIFICATION RESULTS AND EVALUATION

Figure 6.4: Results of Comparing Performance of CB-SBIT and the Proposed MTL
Approach

6.3 Evaluation of the Eigenvector Perturbation Classifier

(EV)

An extensive account of experiments was considered to evaluate the eigenvector classifier.

In order to run the experiments, the data were randomly split into two classes (train

and test). It is important to highlight that the splits were stratified and that this was

a multi-class classification problem. Please remember that the data used here is the

random sample mentioned in Table 6.1.

Multiple classifiers were trained on the training split and evaluated using the test split.

The classifiers used were:

• Random Forest (RF)

• Multilayer Perceptron (MLP)

• Naive Bayes (NB)

• Decision Tree (DT)

96

CLASSIFICATION RESULTS AND EVALUATION

• The developed Eigenvector Perturbation Classifier (EV)

The performance of RF, MLP, NB, and DT were initially compared to decide which

of them performed best on the dataset at hand. Then the best classical classifier was

compared to the EV classifier.

Among the four classifiers compared, the results confirmed that Random Forest (RF)

was the best. Compared to the previous experiments, the best classical classifier was

RF as well. This means, if the proposed algorithm (EV) outperformed Random Forest

on the same data, then it would be considered better than those classical classifiers.

Therefore, the plan was to compare the performance of the EV algorithm with that of

RandomForest (EV vs RF). The details are provided in the following sections.

6.3.1 EV vs RF (Multi-Class)

The results of the evaluation experiments are illustrated in the figures below (Notice

the various performance metrics). In terms of overall multi-class accuracy, it can be

seen that RF and DT perform better than EV, although the difference is very small

(Figure 6.5). On the other hand, EV performs better when considering the multi-class

AUC metric (remembering that the data were highly imbalanced). This gives EV an

advantage over RF.

The fact that the EV classifier works better when data is imbalanced makes it more

usable in the real-world because class imbalance is a common problem (Ling and Sheng,

2010). In addition, this could be an indication that the EV classifier picks internal

structures and patterns in the data which help it in deciding which classes the instances

belong to.

97

CLASSIFICATION RESULTS AND EVALUATION

Figure 6.5: The accuracy measure of the classifiers. RF, FR and EV achieve very
close results

When using multi-class Precision, Recall and F1 the results were interesting. RF achieves

a higher multi-class precision (this means it minimises the false positive). On the other

hand, EV achieves a higher multi-class recall (this means it minimises the false negative)

(Figure 6.6). In the case at hand, minimising the false negative is more important than

minimising the false positive (false negative is more costly than false positive). Therefore,

EV should be preferred.

98

CLASSIFICATION RESULTS AND EVALUATION

Figure 6.6: Classifier Evaluation (X-axis shows the classifier name and Y-axis shows
the metric value).

The results are summarised in Table 6.2. Please remember that the values reported

are between zero and one. The best classifiers are those with values as close to one as

possible.

Table 6.2: Comparison Between Multiple Classifiers.

Classifier

Name

Multiclass

F1

Multiclass

ROC AUC

Multiclass

Precision

Multiclass

Recall

RF 0.84 0.85 0.98 0.71

MLP 0.13 0.44 0.08 0.23

NB 0.52 0.71 0.45 0.61

DT 0.79 0.9 0.82 0.78

EV 0.63 0.98 0.53 0.82

99

CLASSIFICATION RESULTS AND EVALUATION

6.3.2 EV vs RF (Individual Classes)

In this experiment, the accuracy of each classifier in each individual class was considered.

This means that the predictions were filtered according to the actual class of the test

instances and the accuracy was computed. There are four unique classes, namely,

’DDoS’, ’BENIGN’, ’Bot’, and ’PortScan’.

The reason this experiment was conducted was to investigate the performance of each

classifier on each type of traffic. This is important especially in cases of small amounts

of data (e.g., when there is a new attack and not much data is available such as the case

of the Bot and PortScan attacks, where the dataset does not contain many records of

these attacks.

When looking at the accuracy of all the used classifiers on ‘DDoS’ data, the performance

of each of RF, NB, DT and EV is relatively good (although RF wins by a small margin).

MLP predicts all test data as ‘BENIGN’ which means all predictions are wrong in this

case (hence the 0% accuracy).

When looking at the accuracy of all the used classifiers on ‘BENIGN’ data, the

performance of RF, MLP, DT and EV is again good (although RF wins by a small

margin and NB is poor). However, there are a high number of ‘DDoS’ and ‘BENIGN’

data in the training and test data.

When evaluating the smaller classes, the story is different! When looking at the accuracy

of all the used classifiers on the ‘Bot’ data, the performance of EV is clearly better than

that of RF, NB, DT and MLP.

When looking at the accuracy of all the used classifiers on ‘PortScan’ data, the

performance of EV is clearly much better than that of RF, NB, DT and MLP. Therefore,

100

CLASSIFICATION RESULTS AND EVALUATION

the EV classifier should be preferred when data is scarce (only a small amount of data

is available) (Figure 6.7).

This explains why EV achieved better recall in the multi-class experiments. Because it

is not easy to obtain a highly accurate predictive model when available data is small

in size, it is important to use a classifier that learns as much discriminative details as

possible. This is what the EV classifier seems to do and this is justified by its superior

performance when compared with other classifiers as demonstrated by the experiments.

Figure 6.7: Classifying individual classes. (X-axis shows the classifier name and
Y-axis shows the Recall value).

The results are summarised in Table 6.3. Please remember that the Recall values

reported are between zero and one. The closer to one the better the classifier.

101

CLASSIFICATION RESULTS AND EVALUATION

Table 6.3: Recall Values for Multiple Classifiers on Individual Classes.

Classifier Name DDoS BENIGN PortScan Bot

RF 0.98 0.99 0.39 0.5

MLP 0 1 0 0

NB 0.96 0.72 0.11 0.71

DT 0.98 0.97 0.38 0.7

EV 0.97 0.95 0.69 0.78

6.4 Comparison of Suggested PCA Variation with

Classical PCA Algorithm

This section involves comparison of PCA algorithm implementations using: (1) Pearson’s

correlation coefficient (this is the variation proposed in this thesis), (2) Spearman

correlation coefficient and (3) covariance correlations (which is the classical PCA

algorithm). The comparison is done automatically as follows:

1. Apply the three above methods.

2. Use the resulting principal components as input to a classifier (using the same data

splits for a fair comparison).

3. Determine the method that leads to better classification results.

After preparing the data and splitting it into train and test splits (and training a

RandomForest classifier using the train split and evaluating its performance using the

test split), the following results shown in Table 6.4 were obtained:

102

CLASSIFICATION RESULTS AND EVALUATION

Table 6.4: Comparison with the Classical PCA Algorithm

PCA using Spearmanr PCA using Pearsonr Traditional PCA

Accuracy 99.15% 99.07% 99.11%

Multiclass ROC AUC 0.89 0.86 0.86

Multiclass Precision 0.86 0.81 0.83

Multiclass Recall 0.78 0.72 0.71

Multiclass F1 0.82 0.76 0.76

Table 6.4 shows that, although the application of the three PCA methods leads to

similar accuracy values, when considering precision, recall and F1 measure, the results

are better when using the variation suggested in this thesis (i.e. to use the Spearman

R). Remember that for these three metrics, the closer to one the better the model.

In addition to the above, a visual comparison of results after applying the three PCA

methods was carried out. The comparison was done by applying the three PCA methods

on the same data, plotting the resulting first two principal components against each

other and colouring instances based on their class (BENIGN, DDoS, Portscan, Bot).

The results of this comparison, which show that using Spearman’s correlation matrix

leads to better separation between different classes, were presented and discussed in

Section 5.5.

6.5 Summary

This chapter has provided the details of the implementation and evaluation of the

multitask learning and eigenvector perturbation (EV) classification algorithms proposed

as part of this thesis. The implementation was conducted in Python. The results clearly

103

CLASSIFICATION RESULTS AND EVALUATION

show that the proposed algorithms outperform other algorithms, especially when the

data provided are scarce. Therefore, it is safe to say that the methods proposed in

this thesis are highly suitable especially in situations where not enough information is

available for certain network traffic types (i.e. when the amount of available data is

small and limited).

104

Chapter 7

CONCLUSIONS AND FUTURE

WORK

This chapter provides a list of multiple lessons gained after the development and

evaluation of the algorithms and approaches explained throughout this thesis. It also

summarises the importance of this work and why it is useful. The chapter will start

with a section about some general points and then it will introduce two sections, one for

the conclusions and lessons learnt from this research and the other will discuss possible

future work.

7.1 General Points

Several parts of this thesis provided a detailed overview of what this research project

entails and the stages it went through. It has provided an overview of Intrusion

Prevention Systems (IPS) and explained how they work. It has explained the types of

data they capture and how the data can be transformed into a format suitable machine

105

CONCLUSIONS AND FUTURE WORK

learning and data mining algorithms. It has also explained security visualisation and

one of its most common concepts, namely, the principal component analysis.

In addition, because this research focused on developing accurate methods for the

identification of malicious network traffic, there were experiments conducted to evaluate

the performance of traditional classifiers such as Naive Bayes, Random Forest and the

Artificial Neural Networks on a freely available IPS dataset. The experiments showed

that there is a need for more accurate classifiers which highly supports the research.

A detailed explanation of the two classification methods, which were developed as part

of this research, has been provided. The two methods are: a multi-task learning method

and a method based on matrix eigenvectors. Furthermore, an overview of the PCA

algorithm and how it could be enhanced , for the purpose of obtaining better separation

between data from different network traffic types, has been provided in this thesis.

There were extensive experiments to evaluate the performance of the above methods.

The research evaluated their performance compared with existing methods and studied

where the new methods outperformed those methods and where they did not. These

experiments were carried out using freely available datasets.

The research also contributed a paper that explains in detail one of the classification

techniques developed as part of this research.

7.2 Conclusions Against Objectives

The aims and objectives of this thesis were listed in Section 1.2.1. They will be discussed

further in this section to summarised how they were achieved.

106

CONCLUSIONS AND FUTURE WORK

1. To investigate data mining techniques and tools available and evaluate their

performance for network traffic data analysis (IPS data in particular). This was

achieved by running several experiments using classical classifiers and evaluating

their performance. The details of these experiments are presented in Sections 3.2.3

and 3.2.4. The main finding of this objective supports the key aim of this thesis

which is the need for better classification methods for detecting malicious network

traffic in IPS data.

2. To present and implement the two proposed classification techniques. Namely,

the eigenvector-based classifier and the multi-task learning (MTL) classification

method. To achieve this a detailed explanation of these two classification

techniques was presented in Chapter 4. The chapter started by explaining the

MTL method then moved to the method based on the eigenvector. The key

finding here is that these two methods are easy to implement and can outperform

existing methods. This is illustrated in Chapter 6 where an extensive evaluation

is performed.

3. To investigate and evaluate existing the classical PCA algorithm and use it to

perform classification and visualisation of network traffic data. How the PCA

algorithm works and how it can be improved for visualisation and classification

of computer network traffic data were explained in Chapter 5. The main finding

after carrying out this work is that the PCA algorithm can be enhanced to better

separate difference classes in network traffic data captured by an IPS.

4. To test and evaluate the classification techniques using existing open-source

machine learning platforms/libraries such as Weka or Scikit-learn. As Python

is currently the main computer programming language in the machine learning

field, it was selected to achieve this aim. The Scikit-learn package implements a

107

CONCLUSIONS AND FUTURE WORK

collection of evaluation metrics that were used in evaluating the methods developed

as part of this thesis (evaluation details are in Chapter 6). An important point

in the context of this research is selecting the right metric. This is elaborated on

more in the next point.

5. To establish criteria for measuring system accuracy as a key step in the evaluation

(choosing the correct evaluation metric is highly important) and then to conduct

a comparison between the developed methods based on that. To achieve

this a detailed explanation of several classification evaluation metrics and their

advantages and disadvantages was provided in Section 3.1. A key finding here is

that not all metrics all useful under all circumstances. For example, using only

accuracy may not be the correct procedure for imbalanced data. Therefore, other

metrics such as precision, recall and the F measure should be used. The evaluation

explained throughout Chapter 6 is based on this explanation.

7.3 Conclusions and Lessons Learnt

A part of this research thesis introduced a novel classification method that is based

on multi-task learning and shows its effectiveness in accurately classifying computer

network traffic especially when training data is scarce. The method is inspired by an

existing regression method that suffers from drawbacks as was explained in previous

sections. This proposed MTL method is useful not only because it results in improved

performance, but also because it is easy to understand, implement and extend.

The performance of several classical classifiers was evaluated and it was concluded that

RandomForest is the winner (this is consistent with previous existing research) and

therefore it was selected for comparison.

108

CONCLUSIONS AND FUTURE WORK

In order to run a fair evaluation, and because four separate datasets were obtained after

splitting a large dataset into smaller sub-datasets based on the network traffic type (each

one representing a task), several datasets were formed by using pairwise combinations

(each two different tasks against each other). After that the resulting datasets were used

as a basis for binary classification.

The method proposed in this thesis was evaluated against RandomForest (while using

the same data) and the results demonstrated significant improvement in performance

when using the proposed method as opposed to RandomForest.

In addition, a recent open-source transfer learning approach was used in the evaluation

experiments so that it is possible to compare the performance of this MTL method

against it (namely this is the successful CB-SBIT approach). Experiments carried out

as part of this research reveal that, not only the fact that the MTL method proposed

here outperforms CB-SBIT when data is scarce, but also CB-SBIT can result in negative

transfer which leads to worse results (when compared with results obtained without

applying the transfer learning technique of CB-SBIT).

This thesis showed the details of the development a novel classification algorithm based

on eigenvectors of matrices. The algorithm is a classification rather than feature

extraction algorithm as it allows classifying new data into a set of established classes

(e.g. benign or malicious). The data are arranged in matrices that are used to build

classification models (i.e. based on matrix eigenvectors). This model is used to classify

new upcoming data.

The suggested classification algorithms resulted after significant research but became

particularly clear after inspecting PCA graphs. The change of the PCA covariance

matrix was the starting point for the relevance of using matrices to represent these data

109

CONCLUSIONS AND FUTURE WORK

and consequently performing matrix operations to understand the data. The connection

to the domain has therefore emerged from PCA.

Three classification algorithms (determinant, eigenvalue, eigenvector) can be found in

chapters in this thesis. After several evaluation experiments as shown in the thesis, the

eigenvector classifier should be preferred when data is scarce (only small amount of data

is available).

This work included a simple but effective variation to the well-known PCA algorithm.

The project initially aimed to study existing classification methods and come up with

a new or enhanced method for classifying IPS data. This aim is particularly concerned

with providing network experts an effective way for deciding on the nature of data traffic

in their network, and consequently amend existing rules and policies based on these data.

This is a highly useful technique as it helps in identifying cyber-attacks early which leads

to damage prevention or at least minimisation.

In achieving this aim, extensive evaluation experiments of existing classical classifiers

were run to ensure the work stands on a solid foundation.

7.4 Limitations and Future Work

It is not surprising that research of the kind carried out in this thesis has limitations.

For example, a limitation of this research is the source of data used in experimentation

and evaluation. In other words, it would be useful to experiments with more data from

different sources. In general, the future work points discussed below can be considered

some limitations of the current research.

110

CONCLUSIONS AND FUTURE WORK

In the near future one possible extension is to test the proposed MTL approach on

data from other domains and experiment with other similarity measures. In addition,

it would also be interesting to explore the possibility of finding a method to learn the

similarity between tasks instead of computing it.

Another point is that, the proposed MTL method can be viewed as a simplified

kernel-based approach in which only the pairwise inner products/cosine distances are

used. A possible future work can look at deepening this approach as a full Kernel-based

analysis. For example, it might be interesting to look at radial basis function (RBF)

kernels and polynomial kernels in a support-vector machine (SVM) context, and do a

comparison for different kernel parameters.

This work is more of an engineering project in the sense that it developed algorithms that

can be plugged into existing IPS platforms for better data analysis and visualisation.

The process here involves human observation which can add more robustness to the

entire process.

As a future extension, this work can be used in a human in the loop scenario. In more

detail, the human expert can use the algorithm to visualise the data using a suitable

graphical user-interface and provide their feedback into the system to improve the overall

performance.

The PCA method performs dimensionality reduction and allows visualising large

amounts of data in a compact, visual manner, which is crucial for network

administrators. It was shown that this method could be enhanced for visualising IPS

data. This was achieved by replacing the covariance matrix by Spearman matrix,

resulting in the data becoming more separable.

111

References

Abdulla, S. A., Ramadass, S., Altyeb, A. A. and Al-Nassiri, A. (2014), ‘Employing
machine learning algorithms to detect unknown scanning and email worms’, Int. Arab
J. Inf. Technol. 11, 140–148.

Ain, A., Bhuyan, M., Bhattacharyya, D. and Kalita, J. (2016), ‘Rank correlation for
low-rate ddos attack detection: An empirical evaluation’, Intl J. of Network Security
18 (3), 474–480.

Akashdeep, Manzoor, I. and Kumar, N. (2017), ‘A feature reduced intrusion detection
system using ann classifier’, Expert Systems with Applications 88, 249–257.
URL: https://www.sciencedirect.com/science/article/pii/S0957417417304748

Aljoufi, Reem and Lasebae, Aboubaker (2021), ‘Multi-task learning for intrusion
detection and analysis of computer network traffic’, E3S Web Conf. 229, 01057.
URL: https://doi.org/10.1051/e3sconf/202122901057

Alothman, B. (2018a), ‘The cb-sbit source code on github’. Accessed 26/05/2022.
URL: https: // github .com/ alothman/ CB-SBIT

Alothman, B. (2018b), ‘Similarity based instance transfer learning for botnet detection’,
International Journal of Intelligent Computing Research (IJICR) 9, 880—-889.

Alothman, B. (2019a), Raw network traffic data preprocessing and preparation
for automatic analysis, in ‘2019 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security)’, IEEE, pp. 1–5.

Alothman, B. (2019b), Robust Botnet Detection Techniques for Mobile and Network
Environments, PhD thesis, Faculty of Technology, De Montfort University, De
Montfort University, The Gateway, Leicester, UK, LE1 9BH. https : / /

dora.dmu.ac.uk/handle/2086/18144.

Alothman, B., Janicke, H. and Yerima, S. Y. (2018), Class balanced similarity-based
instance transfer learning for botnet family classification, in L. Soldatova,
J. Vanschoren, G. Papadopoulos and M. Ceci, eds, ‘Discovery Science’, Springer
International Publishing, Cham, pp. 99–113.

Baxter, J. (1997), ‘A bayesian/information theoretic model of learning to learn
viamultiple task sampling’, Mach. Learn. 28(1), 7–39.
URL: https: // doi .org/ 10 .1023/ A: 1007327622663

Beghdad, R. (2008), ‘Critical study of neural networks in detecting intrusions’,
Computers & Security 27, 168–175.

112

https://github.com/alothman/CB-SBIT
https://dora.dmu.ac.uk/handle/2086/18144
https://dora.dmu.ac.uk/handle/2086/18144
https://doi.org/10.1023/A:1007327622663

References

Ben-David, S. and Borbely, R. S. (2008), ‘A notion of task relatedness yielding provable
multiple-task learning guarantees’, Mach. Learn. 73(3), 273–287.
URL: https://doi.org/10.1007/s10994-007-5043-5

Bhattacharya, S., S, S. R. K., Maddikunta, P. K. R., Kaluri, R., Singh, S., Gadekallu,
T. R., Alazab, M. and Tariq, U. (2020), ‘A novel pca-firefly based xgboost classification
model for intrusion detection in networks using gpu’, Electronics 9(2), 219.
URL: http: // dx .doi .org/ 10 .3390/ electronics9020219

Bradley, A. P. (1997), ‘The use of the area under the roc curve in the evaluation of
machine learning algorithms’, Pattern Recogn. 30(7), 1145–1159.
URL: https: // doi .org/ 10 .1016/ S0031-3203(96) 00142-2

Breiman, L. (2001), ‘Random forests’, Machine Learning 45(1), 5–32.
URL: http: // dx .doi .org/ 10 .1023/ A% 3A1010933404324

Brereton, R. G. (2009), Exploratory Data Analysis, John Wiley & Sons, Ltd, chapter 3,
pp. 47–106.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470746462.ch3

Brownlee, J. (2019), Deep Learning with Python, Deep Learning Mastery.

Brownlee, J. (2020), Data Preparation for Machine Learning, Machine Learning Mastery.

Bruce, P., Bruce, A. and Gedeck, P. (2020), Practical Statistics for Data Scientists: 50+
Essential Concepts Using R and Python, O’Reilly Media.
URL: https://books.google.co.uk/books?id=rycTtAEACAAJ

Canadian Institute for Cybersecurity (2017), ‘Intrusion detection evaluation dataset
(cic-ids2017)’, https://www.unb.ca/cic/datasets/ids- 2017.html. Accessed
16/11/2020.

Canbek, G., Sagiroglu, S., Temizel, T. T. and Baykal, N. (2017), Binary classification
performance measures/metrics: A comprehensive visualized roadmap to gain new
insights, in ‘2017 International Conference on Computer Science and Engineering
(UBMK)’, pp. 821–826.

Caruana, R. (1997), ‘Multitask learning’, Machine Learning 28(1), 41–75.
URL: http: // dx .doi .org/ 10 .1023/ A% 3A1007379606734

Cherfi, A., Nouira, K. and Ferchichi, A. (2018), ‘Very fast c4.5 decision tree algorithm’,
Applied Artificial Intelligence 32, 119 – 137.

Choi, Y., Farnadi, G., Babaki, B. and Van den Broeck, G. (2020), ‘Learning fair naive
bayes classifiers by discovering and eliminating discrimination patterns’, Proceedings
of the AAAI Conference on Artificial Intelligence 34(06), 10077–10084.
URL: https://ojs.aaai.org/index.php/AAAI/article/view/6565

CICFlowMeter (2018), ‘Cicflowmeter’. Accessed 22/05/2022.
URL: https: // github .com/ ahlashkari/ CICFlowMeter

Cisco (2019), ‘Catalyst switched port analyzer (span)’. Accessed 22/06/2022.
URL: https: // www .cisco .com/ c/ en/ us/ support/ docs/ switches/ catalyst-
6500-series-switches/ 10570-41 .html

113

http://dx.doi.org/10.3390/electronics9020219
https://doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1023/A%3A1010933404324
https://www.unb.ca/cic/datasets/ids-2017.html
http://dx.doi.org/10.1023/A%3A1007379606734
https://github.com/ahlashkari/CICFlowMeter
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html

References

Costa, A., Rolim, R., Ramos, F., Soares, G., Almeida, H. and Perkusich, A. (2015),
A collaborative method to reduce the running time and accelerate the k-nearest
neighbors search, in ‘SEKE’, pp. 105–109.

Dai, W., Yang, Q., Xue, G.-R. and Yu, Y. (2007), Boosting for transfer learning, in
‘Proceedings of the 24th International Conference on Machine Learning’, ICML ’07,
Association for Computing Machinery, New York, NY, USA, p. 193–200.
URL: https: // doi .org/ 10 .1145/ 1273496 .1273521

Dasgupta, D., Akhtar, Z. and Sen, S. (2020), ‘Machine learning in cybersecurity:
a comprehensive survey’, The Journal of Defense Modeling and Simulation
0(0), 1548512920951275.
URL: https: // doi .org/ 10 .1177/ 1548512920951275

Deza, M. M. and Deza, E. (2009), Encyclopedia of Distances, Springer Berlin Heidelberg.

Di Pietro, R. and Mancini, L. V. (2008), Intrusion Detection Systems, 1 edn, Springer
Publishing Company, Incorporated.

Draper-Gil, G., Lashkari, A. H., Mamun, M. S. I. and Ghorbani, A. A. (2016),
Characterization of encrypted and vpn traffic using time-related features, in ‘ICISSP’.

Dray, S., Legendre, P. and Peres-Neto, P. R. (2006), ‘Spatial modelling: a comprehensive
framework for principal coordinate analysis of neighbour matrices (pcnm)’, Ecological
Modelling 196(3), 483–493.
URL: https : / / www .sciencedirect .com / science / article / pii /

S0304380006000925

Duong, L., Cohn, T., Bird, S. and Cook, P. (2015), Low resource dependency parsing:
Cross-lingual parameter sharing in a neural network parser, in ‘Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers)’, Association for Computational Linguistics, Beijing, China, pp. 845–850.
URL: https: // www .aclweb .org/ anthology/ P15-2139

EtherApe (2020), ‘Etherape: A graphical network monitor’. Accessed 22/05/2022.
URL: https: // etherape .sourceforge .io/

Farnaaz, N. and Jabbar, M. (2016), ‘Random forest modeling for network intrusion
detection system’, Procedia Computer Science 89, 213–217. Twelfth International
Conference on Communication Networks, ICCN 2016, August 19– 21, 2016,
Bangalore, India Twelfth International Conference on Data Mining and Warehousing,
ICDMW 2016, August 19-21, 2016, Bangalore, India Twelfth International Conference
on Image and Signal Processing, ICISP 2016, August 19-21, 2016, Bangalore, India.
URL: https : / / www .sciencedirect .com / science / article / pii /

S1877050916311127

Fatourechi, M., Ward, R. K., Mason, S. G., Huggins, J., Schlögl, A. and Birch,
G. E. (2008), Comparison of evaluation metrics in classification applications with
imbalanced datasets, in ‘2008 Seventh International Conference on Machine Learning
and Applications’, pp. 777–782.

Freedman, D., Pisani, R. and Purves, R. (2007), ‘Statistics (international student
edition)’, Pisani, R. Purves, 4th edn. WW Norton & Company, New York .

114

https://doi.org/10.1145/1273496.1273521
https://doi.org/10.1177/1548512920951275
https://www.sciencedirect.com/science/article/pii/S0304380006000925
https://www.sciencedirect.com/science/article/pii/S0304380006000925
https://www.aclweb.org/anthology/P15-2139
https://etherape.sourceforge.io/
https://www.sciencedirect.com/science/article/pii/S1877050916311127
https://www.sciencedirect.com/science/article/pii/S1877050916311127

References

Freet, D. and Agrawal, R. (2017), A virtual machine platform and methodology for
network data analysis with ids and security visualization, in ‘SoutheastCon 2017’,
pp. 1–8.

Gadekallu, T. R., Rajput, D. S., Reddy, M. P. K., Lakshmanna, K., Bhattacharya, S.,
Singh, S., Jolfaei, A. and Alazab, M. (2021), ‘A novel pca–whale optimization-based
deep neural network model for classification of tomato plant diseases using gpu’,
Journal of Real-Time Image Processing 18(4), 1383–1396.

Gezerlis, A. (2020), Numerical Methods in Physics with Python, Cambridge University
Press.

Goodall, J. R. (2009), Visualization is better! a comparative evaluation, in ‘2009 6th
International Workshop on Visualization for Cyber Security’, pp. 57–68.

Griffith, D. A. and Chun, Y. (2019), ‘Implementing moran eigenvector spatial filtering
for massively large georeferenced datasets’, International Journal of Geographical
Information Science 33(9), 1703–1717.
URL: https: // doi .org/ 10 .1080/ 13658816 .2019 .1593421

Guo, C. and Berkhahn, F. (2016), ‘Entity embeddings of categorical variables’, CoRR
abs/1604.06737.
URL: http://arxiv.org/abs/1604.06737

Haddadi, F., Runkel, D., Zincir-Heywood, A. and Heywood, M. (2014), ‘On botnet
behaviour analysis using gp and c4.5’, GECCO 2014 - Companion Publication of the
2014 Genetic and Evolutionary Computation Conference .

Han, J., Kamber, M. and Pei, J. (2012), Data mining concepts and techniques, third
edition, Morgan Kaufmann Publishers, Waltham, Mass.
URL: http : / / www .amazon .de / Data - Mining - Concepts - Techniques -

Management / dp / 0123814790 / ref = tmm hrd title 0? ie = UTF8&qid =

1366039033&sr= 1-1

Hossin, M. and Sulaiman, M. (2019), ‘A Review on Evaluation Metrics for Data
Classification Evaluations’, International Journal of Data Mining & Knowledge
Management Process (IJDKP) 5(2), 1–11.
URL: https://doi.org/10.5281/zenodo.3557376

Hu, Y., You, J. J., Liu, J. N. and He, T. (2018), ‘An eigenvector based center selection
for fast training scheme of rbfnn’, Information Sciences 428, 62–75.
URL: https://www.sciencedirect.com/science/article/pii/S0020025517309210

Huang, H., Deng, H., Chen, J., Han, L. and Wang, W. (2018), ‘Automatic multi-task
learning system for abnormal network traffic detection’, International Journal of
Emerging Technologies in Learning (iJET) 13(04), 4–20.
URL: https: // online-journals .org/ index .php/ i-jet/ article/ view/ 8466

Hunter, J. D. (2007), ‘Matplotlib: A 2d graphics environment’, Computing in Science
& Engineering 9(3), 90–95.

Jacob, N. M. and Wanjala, M. Y. (2018), ‘A review of intrusion detection systems’,
Global journal of computer science and technology .

115

https://doi.org/10.1080/13658816.2019.1593421
http://www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
http://www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
http://www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
https://online-journals.org/index.php/i-jet/article/view/8466

References

Jadidi, Z., Muthukkumarasamy, V., Sithirasenan, E. and Sheikhan, M. (2013),
Flow-based anomaly detection using neural network optimized with gsa algorithm,
in ‘2013 IEEE 33rd International Conference on Distributed Computing Systems
Workshops’, pp. 76–81.

Jakub, B. and Branǐsová, J. (2015), ‘Anomaly detection from log files using data mining
techniques’, Lecture Notes in Electrical Engineering 339, 449–457.

Japkowicz, N. and Shah, M. (2011), Evaluating Learning Algorithms: A Classification
Perspective, Cambridge University Press.

Jiang, C., Xie, H. and Bai, Z. (2017), Robust and Efficient Computation of Eigenvectors
in a Generalized Spectral Method for Constrained Clustering, in A. Singh and J. Zhu,
eds, ‘Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics’, Vol. 54 of Proceedings of Machine Learning Research, PMLR, pp. 757–766.
URL: https: // proceedings .mlr .press/ v54/ jiang17b .html

Jolliffe, I. (2011), Principal Component Analysis, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 1094–1096.
URL: https://doi.org/10.1007/978-3-642-04898-2 455

Jolliffe, I. T. and Cadima, J. (2016), ‘Principal component analysis: a review and recent
developments’, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 374(2065), 20150202.
URL: https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202

Koklu, M. and Ozkan, I. A. (2020), ‘Multiclass classification of dry beans using computer
vision and machine learning techniques’, Comput. Electron. Agric. 174, 105507.

Kubat, M. (2015), An Introduction to Machine Learning, 1st edn, Springer Publishing
Company, Incorporated.

Kumar, M., Hanumanthappa, M. and Kumar, T. V. S. (2012), Intrusion detection
system using decision tree algorithm, in ‘2012 IEEE 14th International Conference
on Communication Technology’, pp. 629–634.

Liao, R., Zheng, H., Grzybowski, S. and Yang, L. (2013), ‘A multiclass svm-based
classifier for transformer fault diagnosis using a particle swarm optimizer with
time-varying acceleration coefficients’, International Transactions on Electrical Energy
Systems 23.

Ling, C. X. and Sheng, V. S. (2010), Class Imbalance Problem, Springer US, Boston,
MA, pp. 171–171.
URL: https: // doi .org/ 10 .1007/ 978-0-387-30164-8 110

Liu, X., Sun, Y., Fang, L., Liu, J. and Yu, L. (2014), A survey of network traffic
visualization in detecting network security threats., in Y. Lu, X. Wu and X. Zhang,
eds, ‘ISCTCS’, Vol. 520 of Communications in Computer and Information Science,
Springer, pp. 91–98.

Liu, Y., Zhou, Y., Wen, S. and Tang, C. (2014), ‘A strategy on selecting
performance metrics for classifier evaluation’, Int. J. Mob. Comput. Multimed.
Commun. 6(4), 20–35.
URL: https://doi.org/10.4018/IJMCMC.2014100102

116

https://proceedings.mlr.press/v54/jiang17b.html
https://doi.org/10.1007/978-0-387-30164-8_110

References

Mackey, D. S., Mackey, N., Mehl, C. and Mehrmann, V. (2005), Vector spaces of
linearizations for matrix polynomials, Technical Report No. 464, The University of
Manchester, UK.
URL: http: // www .maths .manchester .ac .uk/ ~ higham/ narep/ narep464 .pdf

Mane, S. and Rao, D. (2021), ‘Explaining network intrusion detection system using
explainable AI framework’, CoRR abs/2103.07110.
URL: https: // arxiv .org/ abs/ 2103 .07110

Masci, F. (2013), ‘an introduction to principal component analysis
(pca)’, http : / / web.ipac.caltech.edu / staff / fmasci / home / astro refs /

PrincipalComponentAnalysis.pdf.

McKinney, W. et al. (2010), Data structures for statistical computing in python,
in ‘Proceedings of the 9th Python in Science Conference’, Vol. 445, Austin, TX,
pp. 51–56.

Mirjalili, S. and Lewis, A. (2016), ‘The whale optimization algorithm’, Advances in
Engineering Software 95, 51–67.
URL: https : / / www .sciencedirect .com / science / article / pii /

S0965997816300163

Molnar, C. (2022), Interpretable Machine Learning, 2 edn, Independently published (on
Github).
URL: https: // christophm .github .io/ interpretable-ml-book

Morgan, S. (2020), ‘Cybercrime to cost the world $10.5 trillion annually by 2025’.
URL: https: // cybersecurityventures .com/ hackerpocalypse- cybercrime-

report-2016/

Mukherjee, S. and Sharma, N. (2012), ‘Intrusion detection using naive bayes classifier
with feature reduction’, Procedia Technology 4, 119–128. 2nd International Conference
on Computer, Communication, Control and Information Technology(C3IT-2012) on
February 25 - 26, 2012.
URL: https : / / www .sciencedirect .com / science / article / pii /

S2212017312002964

Murugan, N. S. and Devi, G. U. (2019), ‘Feature extraction using lr-pca hybridization
on twitter data and classification accuracy using machine learning algorithms’, Cluster
Computing 22(6), 13965–13974.
URL: https: // doi .org/ 10 .1007/ s10586-018-2158-3

Nasution, M. Z. F., Sitompul, O. S. and Ramli, M. (2018), ‘PCA based feature reduction
to improve the accuracy of decision tree c4.5 classification’, 978, 012058.
URL: https://doi.org/10.1088/1742-6596/978/1/012058

NetGrok (2009), ‘Netgrok: a tool for visualizing computer networks in real-time’.
Accessed 22/05/2022.
URL: https: // www .cs .umd .edu/ projects/ netgrok/

Patil, P., Wei, Y., Rinaldo, A. and Tibshirani, R. (2021), Uniform consistency of
cross-validation estimators for high-dimensional ridge regression, in A. Banerjee and
K. Fukumizu, eds, ‘Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics’, Vol. 130 of Proceedings of Machine Learning Research,

117

http://www.maths.manchester.ac.uk/~higham/narep/narep464.pdf
https://arxiv.org/abs/2103.07110
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/PrincipalComponentAnalysis.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/PrincipalComponentAnalysis.pdf
https://www.sciencedirect.com/science/article/pii/S0965997816300163
https://www.sciencedirect.com/science/article/pii/S0965997816300163
https://christophm.github.io/interpretable-ml-book
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.sciencedirect.com/science/article/pii/S2212017312002964
https://www.sciencedirect.com/science/article/pii/S2212017312002964
https://doi.org/10.1007/s10586-018-2158-3
https://www.cs.umd.edu/projects/netgrok/

References

PMLR, pp. 3178–3186.
URL: https://proceedings.mlr.press/v130/patil21a.html

Patkowski, K. (2020), ‘Recent developments in symmetry-adapted perturbation theory’,
WIREs Computational Molecular Science 10(3), e1452.
URL: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1452

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M. and Duchesnay, E. (2011), ‘Scikit-learn: Machine learning
in Python’, Journal of Machine Learning Research 12, 2825–2830.

Ramchoun, H., Idrissi, M. A. J., Ghanou, Y. and Ettaouil, M. (2017), Multilayer
perceptron: Architecture optimization and training with mixed activation functions,
in ‘Proceedings of the 2nd International Conference on Big Data, Cloud and
Applications’, BDCA’17, Association for Computing Machinery, New York, NY, USA.
URL: https://doi.org/10.1145/3090354.3090427

Rezaei, S. and Liu, X. (2020a), Multitask learning for network traffic classification,
in ‘2020 29th International Conference on Computer Communications and Networks
(ICCCN)’, pp. 1–9.

Rezaei, S. and Liu, X. (2020b), A target-agnostic attack on deep models: Exploiting
security vulnerabilities of transfer learning, in ‘International Conference on Learning
Representations’.
URL: https: // openreview .net/ forum? id= BylVcTNtDS

Sadawi, N., Olier, I., Vanschoren, J., van Rijn, J. N., Besnard, J., Bickerton, R., Grosan,
C., Soldatova, L. and King, R. D. (2019), ‘Multi-task learning with a natural metric
for quantitative structure activity relationship learning’, Journal of Cheminformatics
11(1), 68.
URL: https: // doi .org/ 10 .1186/ s13321-019-0392-1

Saito, T. and Rehmsmeier, M. (2015), ‘The precision-recall plot is more informative
than the roc plot when evaluating binary classifiers on imbalanced datasets’, PLOS
ONE 10(3), 1–21.
URL: https: // doi .org/ 10 .1371/ journal .pone .0118432

Santafe, G., Inza, I. n. and Lozano, J. A. (2015), ‘Dealing with the evaluation of
supervised classification algorithms’, Artif. Intell. Rev. 44(4), 467–508.
URL: http: // dx .doi .org/ 10 .1007/ s10462-015-9433-y

Sarigiannidis, P., Karapistoli, E. and Economides, A. A. (2015), Visiot: A threat
visualisation tool for iot systems security, in ‘2015 IEEE International Conference
on Communication Workshop (ICCW)’, pp. 2633–2638.

Sawant, A. (2018), A comparative study of different intrusion prevention systems, in
‘2018 Fourth International Conference on Computing Communication Control and
Automation (ICCUBEA)’, pp. 1–5.

Shui, C., Abbasi, M., Robitaille, L.-E., Wang, B. and Gagné, C. (2019), A principled
approach for learning task similarity in multitask learning, in ‘Proceedings of the
28th International Joint Conference on Artificial Intelligence’, IJCAI’19, AAAI Press,
p. 3446–3452.

118

https://openreview.net/forum?id=BylVcTNtDS
https://doi.org/10.1186/s13321-019-0392-1
https://doi.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1007/s10462-015-9433-y

References

Silva, S. S., Silva, R. M., Pinto, R. C. and Salles, R. M. (2013), ‘Botnets: A survey’,
Computer Networks 57(2), 378–403. Botnet Activity: Analysis, Detection and
Shutdown.
URL: https://www.sciencedirect.com/science/article/pii/S1389128612003568

Smys, D. S., Basar, D. A. and Wang, D. H. (2020), Hybrid intrusion detection system
for internet of things (iot), in ‘Journal of ISMAC’.

Snort Documentation (2022), ‘Snort documentation’. Accessed 22/06/2022.
URL: https: // www .snort .org/ documents

Soubestre, J., Shapiro, N. M., Seydoux, L., deÂ Rosny, J., Droznin, D. V., Droznina,
S. Y., Senyukov, S. L. and Gordeev, E. I. (2018), ‘Network-based detection and
classification of seismovolcanic tremors: Example from the klyuchevskoy volcanic
group in kamchatka’, Journal of Geophysical Research: Solid Earth 123(1), 564–582.
URL: https : / / agupubs .onlinelibrary .wiley .com / doi / abs / 10 .1002 /

2017JB014726

Spearman, C. (1904), ‘The proof and measurement of association between two things’,
The American Journal of Psychology .

Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J. and Savarese, S. (2020), Which
tasks should be learned together in multi-task learning?, in H. D. III and A. Singh,
eds, ‘Proceedings of the 37th International Conference on Machine Learning’, Vol. 119
of Proceedings of Machine Learning Research, PMLR, pp. 9120–9132.
URL: https://proceedings.mlr.press/v119/standley20a.html

Stevanovic, M. and Pedersen, J. M. (2014), An efficient flow-based botnet detection
using supervised machine learning, in ‘2014 International Conference on Computing,
Networking and Communications (ICNC)’, pp. 797–801.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C. and Liu, C. (2018), ‘A survey on deep
transfer learning’, ArXiv abs/1808.01974.

Ting, K. M. (2017), Confusion Matrix, Springer US, Boston, MA, pp. 260–260.
URL: https: // doi .org/ 10 .1007/ 978-1-4899-7687-1 50

Tipping, M. E. and Bishop, C. M. (1999), ‘Probabilistic principal component analysis’,
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B 61(3), 611–622.

Torrey, L. and Shavlik, J. (2009), ‘Transfer learning’, Handbook of Research on Machine
Learning Applications .

Vandenhende, S., Georgoulis, S., Gansbeke, W. V., Proesmans, M., Dai, D. and Gool,
L. V. (2020), ‘Multi-task learning for dense prediction tasks: A survey’.

Venkatesh, G. and Anitha, R. (2016), ‘Botnet detection via mining of traffic flow
characteristics’, Computers & Electrical Engineering 50, 91–101.

Wang, Q. (2012), ‘Kernel principal component analysis and its applications in face
recognition and active shape models’, CoRR abs/1207.3538.

Watkins, M. W. (2018), ‘Exploratory factor analysis: A guide to best practice’, Journal
of Black Psychology 44(3), 219–246.
URL: https://doi.org/10.1177/0095798418771807

119

https://www.snort.org/documents
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JB014726
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JB014726
https://doi.org/10.1007/978-1-4899-7687-1_50

References

Wei, L., Luo, W., Weng, J., Zhong, Y., Zhang, X. and Yan, Z. (2017),
‘Machine learning-based malicious application detection of android’, IEEE Access
5, 25591–25601.

Weiss, K., Khoshgoftaar, T. M. and Wang, D. (2016), ‘A survey of transfer learning’,
Journal of Big Data 3(1), 9.
URL: https://doi.org/10.1186/s40537-016-0043-6

Wes McKinney (2010), Data Structures for Statistical Computing in Python, in Stéfan
van der Walt and Jarrod Millman, eds, ‘Proceedings of the 9th Python in Science
Conference’, pp. 56 – 61.

Winter, P., Hermann, E. and Zeilinger, M. (2011), Inductive intrusion detection in
flow-based network data using one-class support vector machines, in ‘2011 4th IFIP
International Conference on New Technologies, Mobility and Security, NTMS 2011 -
Proceedings’, 2011 4th IFIP International Conference on New Technologies, Mobility
and Security, NTMS 2011 - Proceedings, IEEE. Copyright: Copyright 2011 Elsevier
B.V., All rights reserved.; 4th IFIP International Conference on New Technologies,
Mobility and Security, NTMS 2011 ; Conference date: 07-02-2011 Through 10-02-2011.

XGBoost (2021), ‘The xgboost library’, https://xgboost.readthedocs.io/en/
latest/. Accessed: 2021-10-20.

Yang, X.-S. (2008), Nature-Inspired Metaheuristic Algorithms, Luniver Press.

Yang, Y. and Hospedales, T. M. (2016), ‘Trace norm regularised deep multi-task
learning’, CoRR abs/1606.04038.
URL: http: // arxiv .org/ abs/ 1606 .04038

Yuan, R., Li, Z., Guan, X. and Xu, L. (2010), ‘An svm-based machine learning method
for accurate internet traffic classification’, Information Systems Frontiers 12, 149–156.

Zhang, Y. and Yang, Q. (2017), ‘A survey on multi-task learning’, CoRR
abs/1707.08114.
URL: http: // arxiv .org/ abs/ 1707 .08114

Zhao, J., Shetty, S. and Pan, J. W. (2017), ‘Feature-based transfer learning for
network security’, MILCOM 2017 - 2017 IEEE Military Communications Conference
(MILCOM) pp. 17–22.

Zhou1, J., Chen, J. and Ye, J. (2012), ‘Multi-task learning: Theory, algorithms, and
applications’, https://archive.siam.org/meetings/sdm12/zhou chen ye.pdf.

Zhu, C., Idemudia, C. U. and Feng, W. (2019), ‘Improved logistic regression model
for diabetes prediction by integrating pca and k-means techniques’, Informatics in
Medicine Unlocked 17, 100179.
URL: https : / / www .sciencedirect .com / science / article / pii /

S2352914819300139

Zhuo, L., Zhang, J., Zhao, Y. and Zhao, S. (2013), ‘Compressed domain based
pornographic image recognition using multi-cost sensitive decision trees’, Signal
Process. 93(8), 2126–2139.
URL: https: // doi .org/ 10 .1016/ j .sigpro .2012 .07 .003

120

https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/
http://arxiv.org/abs/1606.04038
http://arxiv.org/abs/1707.08114
https://archive.siam.org/meetings/sdm12/zhou_chen_ye.pdf
https://www.sciencedirect.com/science/article/pii/S2352914819300139
https://www.sciencedirect.com/science/article/pii/S2352914819300139
https://doi.org/10.1016/j.sigpro.2012.07.003

