
A Model to Design and Verify Context-Aware Adaptive Service Composition

Javier Cubo
Dept. of Computer Science

University of Málaga
Málaga, Spain

cubo@lcc.uma.es

Michele Sama, Franco Raimondi and David Rosenblum
Dept. of Computer Science
University College London

London, UK
{m.sama,f.raimondi,d.rosenblum}@cs.ucl.ac.uk

Abstract
The introduction of mobile clients and context-aware be-

haviours into Web Service compositions may generate faults
and inconsistencies. We introduce an extension of a compo-
sition model where context-awareness is made explicit and
a number of correctness properties are verifiable. In partic-
ular, our extended model enables the verification of proper-
ties commonly used to validate context dependent applica-
tions. We also propose a set of algorithms to verify these
properties efficiently.

1 Introduction
Web-Services composition is one of the most powerful

instruments of the Service Oriented Architecture (SOA) al-

lowing third parties to sell their services and services devel-

opers to reuse existing ones. In a classic web environment,

in which statically all the requests are served in the same

way, the service composition is straightforward. The intro-

duction of web-enabled hand-held devices has created the

necessity of a more context oriented composition in which

the produced response is aware of certain contextual infor-

mation on the requesting client.

Browsers running on hand-held devices transmit contex-

tual information by adding them in the header of their HTTP

requests. They usually do that implicitly inferring certain

information directly from the device and encoding them in

a custom format which may not be interpreted correctly by

the invoked service. For instance consider a request to the

inbox of Google Mail [13] performed on a Nokia N95 using

two different browsers: Safari and OperaMini. The back-

end of Google Mail tries to contextualise the response for

the requesting but client misunderstands the request from

OperaMini and responds by transmitting the default front-

end, which is too large to be rendered on a mobile phone

and requires more time to be received due to its larger size.

The requests performed by Safari and OperaMini only

differs in their headers, in which both browsers have in-

cluded contextual information, with the idea that the Web

Service would use them correctly.

If a Web Service uses the HTTP header to contextualise

its response, it needs to know which parameters are being

used, or it may send the wrong response, as it happens for

Google Mail. Web Services can easily access contextual

information in their implementation but this creates an im-

plicit binding between their response and the context. This

binding is implicit because in the service descriptor there is

no trace of such dependencies. The problem is exacerbated

when context-dependent Web Services are composed, be-

cause their composition has no explicit control on contex-

tual information sent among the composed services. More-

over this introduces complexity both in the implementation

of the single service (which should be adaptive) and in their

composition because, in order for the response to be correct,

all the services should have adapted in a consistent way.

Generally, this problem has been avoided by replicating

contextual information as get/post parameters, thus increas-

ing the size of each request. Even disregarding the issue

of this overhead, replicating contextual information as pa-

rameters introduces the problem of naming them. Indeed,

different acronyms or abbreviations are likely to be used for

the same context variable when combining Web Services

from different producers, and their composition may end up

containing duplicated parameters. For instance, the follow-

ing is the full address line for a search on the HP website:

http://search.hp.com/query.html?lang=en
&submit.x=0&submit.y=0&qt=query&la=en&cc=us

Note that the language is specified twice with two different

names: ‘lang’ and ‘la’. Also note that the real contextual

language for this request was ‘en gb’, while the ‘cc’ (coun-

try code) parameter specifies ‘us’ instead of ‘gb’, which is

wrongly inferred somehow. Moreover if multiple services

are contextualising their response using different contexts,

for instance using the keyboard layout or the browser lan-

guage, the response may be inconsistent. It can also happen

that two services are requiring two different parameters but

they are calling them with the same name. Their composi-

tion needs to distinguish them by introducing an extra layer

2009 IEEE International Conference on Services Computing

978-0-7695-3811-2/09 $26.00 © 2009 IEEE

DOI 10.1109/SCC.2009.61

184

2009 IEEE International Conference on Services Computing

978-0-7695-3811-2/09 $26.00 © 2009 IEEE

DOI 10.1109/SCC.2009.61

184

Authorized licensed use limited to: MIDDLESEX UNIVERSITY. Downloaded on April 19,2010 at 12:51:24 UTC from IEEE Xplore. Restrictions apply.

of complexity and overhead to avoid inconsistencies.

In this paper we address the problem of making Web

Services and their composition context-aware. In Section 2

we propose a definition model for context-aware Web Ser-

vices. It is an extension of our previous model [6] in which

we include context-aware features for Web Services com-

position. Section 3 presents a set of validation patterns and

verification algorithms to check context-aware services. In

Section 4, we discuss mismatch and inconsistence problems

relative to context-aware service composition, as well as a

proposal for solving those problems by generating a third-

party service (adaptor) that fits the service interaction cor-

rectly. In Section 5, we discuss the benefit of using this

model in terms of composition and testability with respect

to some related works. Finally, Section 6 concludes the pa-

per and sketches future works.

2 Modeling Context-Aware Service Protocols
This section presents a model to formalise context-aware

service composition. Intuitively, our idea is to extend ser-

vices descriptors including the HTTP header’s parameters

required by the services to use contextual information. Our

model is built on top of a stack of standard protocols and

enriches their capabilities with a context-aware semantic,

since the original stack is not context-aware.

To illustrate our approach, we introduce a simplified sce-

nario which we use as a case study through the paper.

2.1 Running Example
Consider a Client who requests maps from a Map Ser-

vice, in street or satellite view mode. The Map Service
uses the composition of Street Service and Satellite Service,

which are implemented by separated third parties.

When the Client invokes Map Service for the first time,

it may or may not provide its initial location as part of

its header. If it is not provided, Map Service requests it

explicitly. Map Service invokes Street Service and Satel-
lite Service with an appropriate header containing a set of

contextual information. Street Service uses the language

provided by the invoking browser to localise the response,

while Satellite Service uses the keyboard encoding. Fur-

thermore, the Street Service supports any specified language

in the browser, while the Satellite Service only supports

‘en gb’ and ‘en us’, so if the keyboard encoding language

is different from these ones, it will reply with a default one.

The composition of such services must be able to contex-

tualise to the Client configuration responding in language

consistent in the composition and suitable for the Client.

2.2 Behavioural Model
We assume that services are specified using both a sig-

nature and a protocol. We build upon the SOA stack [7].

Signatures correspond to operation profiles specified us-

ing WSDL, and protocols are business processes defined

in industrial platforms, such as BPEL [1] or WF work-

flows [21]. In the proposed model, protocols, which may

be instantiated to communicate with other different proto-

cols, are represented by means of Labelled Transition Sys-

tems (LTSs) extended with value passing [18], contexts and

conditions, called Context-Aware Symbolic Transition Sys-
tem (CA-STS). The contextual information can be inferred

from the header block of SOAP message (or from entities

such as sensors or devices), and it may also be added to the

WSDL description [15].

Definition 1 (Context) A Context is a set of couples
(CA, CV) where: CA is a context attribute (e.g., lang),
and CV is the value of CA, which can be a single value
(e.g., [‘en gb’]) or a set of values ((e.g., [‘en gb’, ‘es es’])).

Definition 2 (CA-STS label) A label corresponding to a
transition of a CA-STS is either an internal action or a tuple
(C, SI, M, D, PL, CL) where: C are the conditions of the
message (represented by a boolean expression), SI is a ser-
vice identifier, M is the message name, D is the direction of
messages1, PL is either a list of data terms for emission or
of variables for reception (which may include contexts given
explicitly by the user), and CL is a list of context values for
emission or of context attributes for reception (implicit con-
texts - Def. 1 - inferred from the HTTP header of the mes-
sage). Condition’s expressions and contexts are prefixed by
service identifiers (e.g., [c:lang == ‘en gb’]).

Definition 3 (CA-STS) A Context-Aware Symbolic Transi-
tion System (CA-STS) is a tuple (A,S, I, F, T) where: A is
an alphabet of messages (represented by CA-STS labels), S
is a set of states, I ∈ S is the initial state, F ⊆ S are final
states, and T ⊆ S × A × S is a transition function.

We need to match conditions, data parameters, as well

as message contexts of services interacting. We use a syn-

chronous communication model which may be: (i) 1-ary,

(ii) binary between emission/reception messages, or (iii) n-

ary among a sender and more than one receiver (broadcast

communication). Note we do not apply a close world as-

sumption. For us only predicates which are explicitly stated

as True or False can be used. Condition and contexts should

be fixed for all the services interacting in the system. So

far, we control this by prefixing condition’s expressions and

contexts with their service identifiers. We plan to extend the

model to solve this using a context stack in the contextual

mapping, and the introduction of constraints on this stack.

CA-STS services for our example. Figure 1 depicts the

scenario described in Section 2.1 by using the formalism

introduced in this section. Initial and final states are marked

using bullet arrows and darkened states, respectively (notice

1We use the standard notation in which ! and ? represent emission and

reception respectively.

185185

Authorized licensed use limited to: MIDDLESEX UNIVERSITY. Downloaded on April 19,2010 at 12:51:24 UTC from IEEE Xplore. Restrictions apply.

the use of service identifiers, where c is for Client, m for

Map, t for Street and s for Satellite services).

Client c:switchView!

Map Service: orig is embedded in the context or given by the user

m:getDest?(dest) m:changeView?
[c:loc==null]

m:getOrig?(orig)

[c:street==True]
m:getView?

[c:satellite==True]
m:getView?

m:drawStreet!(orig,dest)
#(c:bw_lang)

m:drawSatellite!(orig,dest)
#(c:kb_lang)

Street Service: supports any browser lang , so ‘lang’ refers to ‘bw_lang’
[c:lang==’en_gb’]t:showStreet!

(path_gb,places_gb)

[c:lang==’xx_xx’]t:showStreet!
(path_xx,places_xx)

Satellite Service: supports the keyboard enconding lang if it is ‘en -GB’ or ‘en-US’, otherwise returns a
defined default lang , so ‘lang’ refers to ‘kb_lang’ [c:lang==’en_gb’]s:showSatellite!

(path_gb,places_gb)

[c:lang!=’en_gb’ && c:lang!=’en_us’]s:showSatellite!
(path_default,places_default)

...

[c:loc==null]c:searchMap!
(origin,destination)

[c:loc!=null]m:getDest?
(dest)#(c:loc)

t:getDirection?(orig,dest)
#(c:bw_lang)

s:getDirection?(orig,dest)
#(c:kb_lang)

[c:loc!=null]c:searchMap!
(destination)#(c:loc) [c:street==True ||

c:satellite==True]c:viewMap!
c:getMap?(path,places)

[c:lang==’es_es’]t:showStreet!
(path_es,places_es)

[c:lang==’en_us’]s:showSatellite!
(path_us,places_us)

Figure 1. CA-STS behavioural model for the
tourist map system.

The main contributions of this model are: (1) message
conditions and (2) context attributes which can be derived

automatically from HTTP headers. As an example, con-

sider the condition (c : loc! = null) in the Client service in

Figure 1: this condition means the client location is known

(because it can be inferred directly from the HTTP header).

However, if the location is not known, then the client has to

send it like an explicit parameter.

3 Verification Model
Before performing the process of service composition,

we need to validate each CA-STS service to verify that they

are free of faults and inconsistences. Our verification model

consists of a set of validation patterns and their correspond-

ing verification algorithms based on Ordered Binary Deci-

sion Diagrams (OBDDs [3]), which are presented below.

3.1 Validation Patterns

Once context-awareness has been introduced into the

service model we can validate it against a set of properties:

• Determinism: in each state in which the computation

can follow different paths, conditions on those multiple

requests/responses must be mutually exclusive.

• State liveness: if in a state contexts are used to select

the next request/response, at least one combination of

values of those contexts must lead to a transition.

• Request/response liveness: if a request/response is

conditioned by a certain value of the context, that con-

dition must be satisfiable.

• Non-blocking states: irrespective of the values of the

contextual variables, communication should always

reach a final state.

These properties are an extension of the ones presented

by Sama et al. [20], which includes a more detailed expla-

nation, but applied to CA-STS instead of reactive systems.

The communication between client and server is supposed

to be a finite flow of requests/responses in which context

information are used to improve the provided service. De-

terminism is required to guarantee a correct mapping be-

tween context and transitions. If two conditions would be

satisfiable simultaneously then the result would be non-

deterministic and the result will depend on the implemen-

tation and not on the context itself. State liveness requires

that at least one outbound transition is enabled for each state

(with the exception of the final state). Request/response

liveness guarantees that all the specified transitions will be

satisfiable for at least one combination of contextual val-

ues. A condition like [lang==‘en gb’ && lang==‘es es’]
will never be satisfied and the corresponding transition will

never be executed. The absence of non-blocking states

guarantees that independently from the values of the con-

text, it should be possible to continue the communication

avoiding deadlocks. In terms of context mapping all the

possible combinations of context must satisfy one and only

one transition. The properties presented above can be ver-

ified both for the CA-STS services and for the CA-STS

adaptor generated in the composition (Section 4). In the

next section we describe efficient algorithms for their veri-

fication.

3.2 Verification Algorithms
We have implemented a set of OBDD-based algorithms

to verify the properties described in the previous section,

and we describe an implementation of the algorithms.

3.2.1 OBDD Representation
Before describing the algorithms, we first describe how a

CA-STS service can be represented by mean of OBDDs, a

technique used in symbolic model checking [5]. It has been

shown that in many circumstances OBDDs offer a compact

way to represent and manipulate Boolean functions.

Our idea here is to show how states and labels can

be represented by means of conjunctions of Boolean vari-

ables, and transition relations can be encoded by means of

Boolean formulae. These formulae are then manipulated

using OBDDs. In particular, we show how algorithms for

the verification of the properties presented in Section 3.1

can be derived from our OBDD-based representation. Due

to space limitations, we refer to [3, 5] for further details on

OBDDs; for the scope of this paper, it is sufficient to present

the Boolean encoding of the model and note the Boolean

formulae can be manipulated by means of OBDDs.

186186

Authorized licensed use limited to: MIDDLESEX UNIVERSITY. Downloaded on April 19,2010 at 12:51:24 UTC from IEEE Xplore. Restrictions apply.

As described in Section 2.2, let (A,S, I, F, T) be a CA-

STS. The number n of Boolean variables required to en-

code the set of states S is n = �log2|S|�. For instance, if

S contains 7 states, then 3 Boolean variables {s1, s2, s3}
are required. We represent these variables by means of a

Boolean vector s = (s1, . . . , sn) where each si ∈ s can

take either the value 0 or 1, with the assumption that the

value 0 corresponds to the negation of a variable. For in-

stance, the first state in S could be identified by the vector

(1, 1, 1), the second state by the vector (1, 1, 0), and so on.

Correspondingly, the first state is encoded by the Boolean

formula s1∧s2∧s3, the second state by s1∧s2∧¬s3 (notice

the last negation), and so on2. Sets of states are encoded by

Boolean formulae as well, by taking the disjunction of the

Boolean formulae encoding each state in the set. Thus, the

set of states composed by the first and the second state of S
is represented by (s1 ∧ s2 ∧ s3) ∨ (s1 ∧ s2 ∧ ¬s3).

Consider a message a = (c, si, m, d, pl, cl) ∈ A =
(C,SI, M, D, PL,CL). Message a is encoded as a

Boolean formula by associating a Boolean variable to each

parameter in pl and to each context variable in cl, and then

representing the condition c by means of these variables.

We denote with a the Boolean encoding of a given mes-

sage a ∈ A (essentially, this is the Boolean encoding of c
together with the actual name of the message).

Having encoded states and messages, we can encode the

transition relation T by introducing a set of “primed” vari-

ables (s′1, . . . , s
′
n) to encode the destination state of a tran-

sition. A transition (s, a, t) is encoded by means of the

Boolean formula s ∧ a ∧ t, where the overlined variables

denote Boolean expressions and t is encoded in terms of

the primed variables. The whole transition relation T is en-

coded as a Boolean formula by taking the disjunction of all

the elements of T , i.e., T =
∨

(s,a,t)∈T

(s ∧ a ∧ t).

The encoding presented above allows for the definition

of the verification algorithms for the properties presented in

Section 3.1. First, we compute the set of reachable states

by means of Algorithm 1, where the reachable states are

computed starting from the initial state I and by adding the

set of states reachable from here iteratively until no change

occurs (notice that at line 11 “primed” variables encoding

successor states are converted back to “standard” variables

before being added to the current set of reachable states).

The set of reachable states is used in the following algo-

rithms to verify properties of a (single) CA-STS:

Determinism: Algorithm 2 computes the set of condi-

tions (in the form of a BDD) that enable transitions to more

than a destination state (notice: in our encoding we assume

that the message name has been encoded in the condition

2By slight abuse of notation, the same symbols si(i ∈ {1, . . . , s})
are used to denote Boolean variables or their value in a vector, and atomic

propositions in logical formulae.

Algorithm 1 Reachable States
Input: the CA-STS encoded using OBDDs.
Output: reach: reachable states (OBDD).

1: BDD q,reach,next;
2: q = I;
3: reach = bddZero();
4: next = bddZero();
5: while q ! = reach do
6: reach = q;
7: next = q;
8: next = next * T ;
9: next = exists(s,next);

10: next = exists(a,next);
11: next = next.swapVariables(s, s′);
12: q = q + next;
13: end while
14: return reach

Algorithm 2 Non-determinism detection
Input: the CA-STS encoded using OBDDs.
Output: faults (OBDD).

1: BDD conditions, next
2: for each state v ∈ S do
3: conditions = exists(v′,T ∧ v);
4: for each condition c ∈ conditions do
5: next = c ∧ T ∧ v
6: next = exists({c, v},next);
7: if size(next > 1) then
8: faults.add(c);
9: end if

10: end for
11: end for
12: return faults

itself). For each state (line 2) and for each condition avail-

able in that state (line 4), the set of states reachable is com-

puted (line 5 and 6). If this set contains more than one state,

the condition is added to the set of faulty conditions (line

8). Another kind of non-deterministic transition may oc-

cur: this is when two different conditions between the same

pair of states can be satisfied at the same time. Detection of

this non-deterministic error is performed by means of Al-

gorithm 3 (notice that this algorithm is not symbolic and

operates on the explicit set of transitions. This is because

redundancies in disjunction of Boolean formulae are elim-

inated if using BDD). The function “between” at line 5 re-

turns the collection of BDDs corresponding to the condi-

tions of transitions between two fixed states si and sj . At

line 8 we verify whether the pairwise conjunction of these

conditions is not equivalent to false. If this is the case, then

two conditions can be true at the same time, leading to non-

determinism in transition selection.

State liveness: Algorithm 4 computes the set of states

from which the set of reachable states is empty (i.e., is

equivalent to false). If that happens the part of Web Ser-

vice represented by the unreachable state is dead code.

Request/response liveness: Algorithm 5 simply checks

whether there exists an assignment to the contextual vari-

ables such that a condition is equivalent to false. If that

happens the faulty request/response is unreachable.

Non-blocking states: Algorithm 6 detects the set of non-

187187

Authorized licensed use limited to: MIDDLESEX UNIVERSITY. Downloaded on April 19,2010 at 12:51:24 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Non-deterministic condition detection
Input: the CA-STS encoded using OBDDs.
Output: faults (OBDD).

1: vector<BDD> tmp
2: vector<Transition> transitions
3: for i = 0; i < |S| do
4: for j = i; j < |S| do
5: tmp = between(transitions,si, sj);
6: for n = 0; n < |tmp| do
7: for m = n; m < | tmp | do
8: if size(tmp[n] ∧ tmp[n] != ⊥) then
9: faults.add(tmp[n]);

10: end if
11: end for
12: end for
13: end for
14: end for
15: return faults

Algorithm 4 State liveness detection
Input: the CA-STS encoded using OBDDs.
Output: faults (OBDD).

1: BDD conditions, tmp
2: for each state v ∈ S do
3: tmp = T ∧ v
4: tmp = exists({v, c},tmp);
5: if tmp ≡ ⊥ then
6: faults.add(v);
7: end if
8: end for
9: return faults

final states where the sum of the conditions of the outgoing

assignments is different from true. This means that there

exists at least an assignment for which there is no enabled

transition, so that the service can produce a deadlock.

3.2.2 Prototype implementation
We have implemented the algorithms pre-

sented in the previous section in a proto-

type tool which is available to download from

http://forge.cs.ucl.ac.uk/projects/casts/.

The tool includes a set of data structures to encode instances

of our CA-STS model. These data structures are translated

automatically into BDD, and we employ the GPL library

CUDD [22] to manipulate BDDs.

Verification of the CA-STS services of the tourist map
system. The implementation of the algorithms presented

above has shown the following faults in the model of Fig-

ure 1, which were not obvious at a first analysis:

• Non-deterministic condition in Client and Map Ser-

vice: this fault is caused because our CA-STS does not

require that the two conditions [c:street==True] and

[c:satellite==True] are mutually exclusive.

• Non-deterministic condition in Street Service:

this fault is caused by the “catch-all” condition

[c:lang==‘xx xx’] which is also satisfied when the

language is [c:lang==‘en gb’] or [c:lang==‘es es’].

• Blocking states in Map Service: if neither

[c:satellite==True] nor [c:street==True], then

the third state from the left is blocking.

Algorithm 5 Rule liveness detection
Input: the CA-STS encoded using OBDDs.
Output: faults (OBDD).

1: BDD conditions
2: for each condition c ∈ conditions do
3: if c ≡ ⊥ then
4: faults.add(c);
5: end if
6: end for
7: return faults

Algorithm 6 Blocking states detection
Input: the CA-STS encoded using OBDDs.
Output: faults (OBDD).

1: BDD tmp
2: for each state v ∈ S do
3: tmp = v ∧ T
4: tmp = exists({v′, c},tmp);
5: if tmp != � and not final(v) then
6: faults.add(v);
7: end if
8: end for
9: return faults

• Blocking states in Street and Satellite Services: if lan-

guage is null, the second state from the left is blocking.

The verification of these properties required less than 1

second for all the CA-STS services. We employed up to

9 Boolean BDD variables to encode our scenario, corre-

sponding to a model of size 29. Notice that the proper-

ties presented above could not be checked using a standard

model checker, because of the introduction of conditions

over transitions and because our requirements reason about

these conditions over transitions. Indeed, a standard model

checkers only allows to reason about (sequences of) states

by means of temporal formulae.

4 Context-Aware Service Composition
Once we have checked the CA-STS services of the sys-

tem, we can compose them. But not always services fit each

other, so we have to generate a third-party service, called

adaptor protocol in order to solve behavioural mismatches

arisen in the service interaction [17]. To obtain the CA-

STS adaptor, we define a contextual mapping that avoids not

only the mismatches, but also the inconsistences detected in

Section 3.2. Last, we verify that the resulting composition

is correct, by validating the CA-STS adaptor. Our aim is to

guarantee:

1. variable matching: if a request and a response are to be

coupled, the request needs to provide all the contextual

variables which the response is requiring;

2. value matching: if a request and a response are to be

coupled and context variables are used, the response

needs to handle a super-set of the possible values that

the context variables (sent by the request) can assume.

188188

Authorized licensed use limited to: MIDDLESEX UNIVERSITY. Downloaded on April 19,2010 at 12:51:24 UTC from IEEE Xplore. Restrictions apply.

4.1 Contextual Mapping of CA-STS Ser-
vices

To achieve the aforementioned matching, we may

need to rename messages, to group more than one re-

quest/response event, and/or to rename parameters. For-

mally, we introduce the notion of synchronisation vectors
to synchronize an event occurring among a set of services:

Definition 4 (Synchronisation Vector) A synchronisation
vector (or simply vector) for a set of services {Wsi =
(Ai, Si, Ii, Fi, Ti)}i∈{1,..,n}, is a vector of messages
〈m1, . . . , mn〉 with mi ∈ Ai∪{ε} (ε meaning that a service
does not participate in a synchronization).

To simplify the notation, we will remove ε messages

from synchronisation vectors. We use as abstract notation

for our composition an LTS with vectors on transitions.

This LTS is used as a guide in the application order of in-

teractions denoted by vectors. This order between vectors

is essential in some situations in which mismatch can be

avoided by applying some vectors in a specific order. We

model the composition of services by introducing the no-

tion of contextual mapping, that makes use of vectors.

Definition 5 (Contextual Mapping) A contextual map-
ping (also called contract) for a set of services Wsi

, i ∈
1, ..., n, is defined as a couple (VWs

, Vlts), where VWs
is a

set of vectors for services Wsi , and Vlts is a vector LTS.

We need to check wether mismatches exist in the ser-

vice interaction, as it may happen that the services of a

scenario cannot be used together directly, and mismatches

can occur at several levels: (i) message names (e.g.,
c:switchView! in Client versus m:changeView? in Map ser-

vice), (ii) correspondences between several messages and

a single one, as well as (iii) parameters mismatches (e.g.,
[c:loc==null]c:searchMap!(origin,destination) in Client

with [c:location=null]m:getOrig?(orig).m:getDest?(dest)
in Map service). Contextual mapping is used to solve these

problems. As an example, consider the scenario described

in 2.1 and the CA-STS depicted in Figure 1. To connect

[c : loc! = null]c : searchMap!(destination)#(c : loc)
with [c : loc! = null]m : getDest?(dest)#(c : loc) we

introduce the synchronisation vector (notice the binding of

some parameters such as “destination” to solve the mis-

matches of message names, as well as the renaming in the

receptions of context variables by means of the ˆ symbol):

v1 = 〈[c : loc! = null]c : searchMap!(dest)#(c : loc),
[c : loc! = null]m : getDest?(dest)#(c : locˆorig)〉

Contextual Mapping for the tourist map system. The

contextual mapping for our example scenario is specified

by a set of synchronous vectors, and a vector LTS. To ob-

tain the vectors we extend the automatic generation of [17],

which looks for the most suitable contract solving the

behavioural mismatches. We extend the generation pro-

cess (considering conditions and contexts): (i) automati-

cally checking each service against the properties defined

in Section 3.1, by applying the algorithms described in Sec-

tion 3.2, and (ii) manually with the designer intervention to

solve the detected faults raised by conditions and contexts.

Therefore, in our contextual mapping, we need to solve

both mismatch and inconsistence problems. First, we de-

scribe the solutions to take into account in our mapping, for

the inconsistences detected in Section 3.2:

• Non-deterministic condition in Client and Map Ser-

vice: this fault is solved by specifying that the con-

ditions [c:street==True] and [c:satellite==True] are

mutually exclusive by means of vectors v4 and v5.

• Non-deterministic condition in Street Service:

this fault is solved by increasing the condi-

tion [c:lang==‘xx xx’] with the restrictions

[c:lang==‘en gb’] ∧ [c:lang==‘es es’] in v10.

• Blocking states in Map Service: we start the compo-

sition with the condition [c:street==True] by default.

• Blocking states in Street and Satellite Services: in this

case we assume language is different to null.

Last, the contract generated, which solves both mismatch

and inconsistence problems, is represented by both synchro-

nisation vectors (below) and vector LTS (Figure 2). This

latter indicates the ordering of execution of the vectors to

generate the adaptor.

v1

v2 v3

v4
v6

v14

v5 v7 v8,v9,v10,v11,v12,v13

Figure 2. Vector LTS indicating the ordering
of the interaction among the services.

v1 = 〈[c : loc! = null]c : searchMap!(dest)#(c : loc),
[c : loc! = null]m : getDest?(dest)#(c : locˆorig)〉

v2 = 〈[c : loc == null]c : searchMap!(orig, dest),
[c : loc == null]m : getOrig?(orig)〉

v3 = 〈m : getDest?(dest)〉
v4 = 〈[c : street == True&&c : satellite == False]

c : viewMap!, [c : street == True]t : getV iew?〉
v5 = 〈[c : street == False&&c : satellite == True]

c : viewMap!, [c : satellite == True]s : getV iew?〉
v6 = 〈m : drawStreet!(orig, dest)#(c : bw lang),

t : getDirection?(orig, dest)#(c : bw langˆlang)〉
v7 = 〈m : drawSatellite!(orig, dest)#(c : kb lang),

s : getDirection?(orig, dest)#(kb langˆlang)〉
v8 = 〈c : getMap?(path, places),

[c : lang ==′ en gb′]t : showStreet!(path, places)〉
v9 = 〈c : getMap?(path, places),

[c : lang ==′ es es′]t : showStreet!(path, places)〉
v10 = 〈c : getMap?(path, places),

[c : lang ==′ xx xx′&&c : lang! =′ en gb′&&

189189

Authorized licensed use limited to: MIDDLESEX UNIVERSITY. Downloaded on April 19,2010 at 12:51:24 UTC from IEEE Xplore. Restrictions apply.

c : lang! =′ es es′]t : showStreet!(path, places)〉
v11 = 〈c : getMap?(path, places),

[c : lang ==′ en gb′]s : showSatellite!(path, places)〉
v12 = 〈c : getMap?(path, places),

[c : lang ==′ en us′]s : showSatellite!(path, places)〉
v13 = 〈c : getMap?(path, places),

[c : lang! =′ en gb′&&c : lang! =′ en us′]
s : showSatellite!(path, places)〉

v14 = 〈c : switchV iew!, m : changeV iew?〉

To express the correspondences between one message

on one side (i.e., [c:loc==null]c:searchMap!(orig,dest))
and two messages on the other (i.e.,
[c:loc==null]m:getOrig?(orig).m:getDest?(dest)), we

use two tuples (v2 and v3). The first one is a partial

synchronisation with the emission and the first parameter

received, and the second one completes the synchronisation

by receiving the second parameter expected. The context

attribute #(c : bw lang) of v6 is taken for the Map Service

from the Client and passed to the Street Service. It refers

to the client language, and specifically to the browser

language of the client, which is the used one by the Street

Service. Therefore, we rename that context attribute to

allow that the Street Service use it (c : bw langˆlang).

4.2 Adaptor Protocol Generation

By using the contextual mapping presented above and

the CA-STS services, we generate a new CA-STS, called

CA-STS adaptor protocol, by applying the algorithm de-

scribed in [18] and considering conditions and contexts.

Adaptor protocol for our scenario. Figure 3 depicts

the CA-STS adaptor protocol for our scenario. The initial

state is identified by 0 and the final one by 13. Note message

directions are reversed because all messages will go through

the adaptor, and this latter has to synchronize with these

messages using complementary directions.

[c:loc!=null]c:searchMap?
(dest)#(loc)

1 2

[c:loc==null]c:searchMap?
(lorig,dest)

3 [c:loc==null]
m:getOrig!(orig)

4

[c:loc!=null]m:getDest!
(dest)#(loc^orig)

m:getDest!(dest)

5

[c:street==True &&
c:satellite==False]

c:viewMap?

6

9

7

10

14

......

[c:street==True]
t:getView!

m:drawStreet?(orig,dest)
#(c:bw_lang)

m:drawSatellite?(orig,dest)
#(c:kb_lang)

t:getDirection !(orig,dest)
#(c:bw_lang^lang)

s:getDirection!(orig,dest)
#(c:kb_lang^lang)

12

11

c:getMap!(path,places)

[c:lang==’en_gb’]
t:showStreet?(path,places)

[c:lang==’en_gb’]
t:showSatellite?(path,places)

c:switchView?

m:changeView!

0
13

[c:street==False
&& c:satellite==

True]c:viewMap?

8

[c:satellite==True]
s:getView!

Figure 3. CA-STS adaptor protocol for the
running example

Finally, since CA-STS adaptor protocol is a CA-STS ser-

vice, we apply the verification algorithms for it, to validate

its correct execution, and check that it is free of incompat-

ibilities as we expected. Although currently the generation

of the CA-STS adaptor protocol has to be performed man-

ually by the developer to take conditions and context infor-

mation into account, one of the perspectives is that to extend

the automatic generation of contracts [17], as well as the al-

gorithm to generate the adaptor protocol [18] (both included

in ITACA tool [4]) to support these new features.

5 Related Work
Recently, there have been many research works on

context-aware computing, service composition and formal

verification of services. However, to the best of our knowl-

edge, only some of them combine their efforts to tackle the

three paradigms together. In this work, we focus on all

three, not only describing a context-aware service compo-

sition model, but also subjecting it to automated verifica-

tion to detect inconsistencies and potential faults. Different

works propose model checking techniques in the Web Ser-

vice composition field [11, 12, 8, 24]. Some of them even

use semantic ontology languages to compose the services.

However, none of them tackles context-aware composition.

With respect to service composition, Luo et al. [9]

present a model to compose services and validate theirs cor-

rectness using Petri nets. They check behavioural proper-

ties, such as safety, reachability, deadlock and redundancy

based on simulation of the model. In contrast, we model the

contextual service composition with a strategy by means of

CA-STS that may be easily validated. Vukovic presents an

approach that focuses on the recomposition of the compos-

ite service during its execution, according to changes in the

context [23]. It provides a failure-tolerant solution, but user

preferences and control of independent requests are not con-

trolled, which our model supports.

On the other hand, some works focus on context-

awareness. Firstly, Simcock et al. have designed and im-

plemented a mobile and context-sensitive tourist guide sys-

tem [10]. However, they focus on design and usability is-

sues, not on the services composition. Mokhtar et al. [19]

present an approach to the context-aware dynamic composi-

tion of services to perform user tasks. But no testing mecha-

nism is given to detect inconsistencies, such as we do in our

approach. Kim and Choi [16] suggest a context infrastruc-

ture to provide semantic interoperability in ubiquitous com-

puting. They evaluate its performance without considering

possible un-modeled situations. A model-driven approach

to model a contextual and variable process of an application

structure, as well as its behaviour and its architecture, is de-

fined by Ayed et al. [2]. They have evaluated their approach

only by implementing the UML profile, but not using verifi-

cation techniques. Some work similar to our own has been

done in verifying requirements engineering. Heitmeyer et
al. use finite-state models to discover inconsistencies in

SCR specifications [14]. While the classes of inconsisten-

cies they that detect are characteristic of requirements spec-

190190

Authorized licensed use limited to: MIDDLESEX UNIVERSITY. Downloaded on April 19,2010 at 12:51:24 UTC from IEEE Xplore. Restrictions apply.

ifications, the fault patterns that we detect are characteristic

of service composition with contextual info.

6 Conclusion and Future Work
In this paper we have presented the formalism of CA-

STS to model context-aware Web Services. This model

does not only solve some cases of behavioural mismatches,

but also helps in distinguishing between available contexts

when translating the messages among services, by avoiding

faults or inconsistence situations. Using a non-contextual

approach, message correspondences are fixed, which means

that any client request is always associated to the same tar-

get message. This prevents changes in these connections

being taken into account, and motivates the need for new ca-

pabilities that our context-aware composition approach pro-

vides to achieve message translation depending on contexts.

We have introduced a set of algorithms to verify effi-

ciently the CA-STS services against a number of proper-

ties patterns (non-determinism, liveness of states and rules,

absence of blocking states). Also, we have provided a pro-

totype implementation for these algorithms and we have ap-

plied it to the verification of an example, first validating

the single CA-STSs and last the CA-STS adaptor service,

which solves mismatches, obtained as composition of those

services. Our prototype implementation is already avail-

able, but we plan to develop our approach into a more ma-

ture product. We are also planning to extend existing mod-

els for Web Services automatically. The idea is to query

existing services with and without contextual values, and to

map the Web Services that are context-aware (e.g., by ob-

serving the response of each method we can flag the context

that has been used). In this way we could automatically ex-

tend existing models (even if not perfectly).

In addition, we plan to extend the CA-STS model to fix

conditions and context variables with their corresponding

services in the interaction without the need of use service

identifiers. To do that we need to use a context stack in the

contextual mapping, and the introduction of constraints on

this stack to maintain the correspondences. Another per-

spective is that to extend the ITACA tool [4] to take condi-

tions and context information into account.

Acknowledgements. This work was supported in part by the projects

TIN2008-05932 funded by the Spanish Ministry of Science and Inno-

vation, and P06-TIC-02250 funded by the Andalusian Government, as

well as the UK Engineering and Physical Sciences Research Council (EP-

SRC) under grants EP/D077273/1 (project UbiVal), EP/E006191/1 and

EP/F013442/1, and by the European Commission under the project PLAS-

TIC. David Rosenblum holds a Wolfson Research Merit Award from the

Royal Society. We gratefully acknowledge the insights provided for this

work by Sebastian Elbaum and Sonia Ben Mokhtar.

References

[1] T. Andrews et al. Business Process Execution Language for Web
Services (WSBPEL). BEA Systems, IBM, Microsoft, SAP AG, and

Siebel Systems, 2005.

[2] D. Ayed, D. Delanote, and Y. Berbers. MDD Approach for the Devel-

opment of Context-Aware Applications. In Proc. of CONTEXT’07,

volume 4635 of LNAI, pages 15–28, 2007.

[3] R. Bryant. Graph-Based Algorithms for Boolean Function Manipu-

lation. IEEE Transactions on Computers, 35(8):677–691, 1986.

[4] J. Cámara, J.A. Martı́n, G. Salaün, J. Cubo, M. Ouderni, C. Canal,

and E. Pimentel. ITACA: An Integrated Toolbox for the Automatic

Composition and Adaptation of Web Services (Formal Demo Paper).

In Proc. of ICSE’09, pages 627–630. IEEE Computer Society, 2009.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The

MIT Press, Cambridge, Massachusetts, 1999.

[6] J. Cubo, C. Canal, and E. Pimentel. Towards a Model-Based Ap-

proach for Context-Aware Composition and Adaptation: A Case

Study using WF/.NET. In Proc. of MOMPES’08, pages 3–13. IEEE

Computer Society, 2008.

[7] F. Curbera et al. The Next Step in Web Services. Communications
of the ACM, 46(10):29–34, 2003.

[8] J. Garcia-Fanjul et al. Generation of Conformance Test Suites for

Compositions of Web Services Using Model Checking. In Proc. of
TAIC-PART’08, pages 127–130. IEEE Computer Society, 2006.

[9] N. Luo et al. Towards Context-Aware Composition of Web Services.

In Proc. of GCC’06, pages 494–499. IEEE Computer Society, 2006.

[10] T. Simcock et al. Developing a location based tourist guide appli-

cation. In ACSW Frontiers’03, pages 177–183. Australian Computer

Society, Inc., 2003.

[11] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. Rosenblum, and

S. Uchitel. Model Checking Service Compositions under Resource

Constraints. In Proc. of ESEC/FSE’07, pages 225–234. ACM Press,

2007.

[12] C. Gao, R. Liu, Y. Song, and H. Chen. A Model Checking Tool

Embedded into Services Composition Environment. In Proc. of
GCC’06, pages 355–362. IEEE Computer Society, 2006.

[13] Google. http://mail.google.com/. Accessed on 9 October 2008.

[14] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated con-

sistency checking of requirements specifications. ACM Transactions
on Software Engineering and Methodology, 5(3):231–261, 1996.

[15] M. Keidl and A. Kemper. Towards Context-Aware Adaptable Web

Services. In Proc. of WWW’04, pages 55–65. ACM Press, 2004.

[16] E. Kim and J. Choi. A Semantic Interoperable Context Infrastructure

using Web Services. In Proc. of ICCSA’07, volume 4706 of LNCS,

pages 839–848, 2007.

[17] A. Martı́n and E. Pimentel. Automatic Generation of Adaptation

Contracts. In Proc. of FOCLASA’08, ENTCS. Elsevier, 2008.

[18] R. Mateescu, P. Poizat, and Gwen Salaün. Adaptation of Service Pro-

tocols using Process Algebra and On-the-Fly Reduction Techniques.

In Proc. of ICSOC’08, volume 5364 of LNCS, pages 84–99.

[19] S. Ben Mokhtar, D. Fournier, N. Georgantas, and V. Issarny. Context-

Aware Service Composition in Pervasive Computing Environments.

In Proc. of RISE’05, volume 3943 of LNCS, pages 129–144, 2006.

[20] M. Sama, D. Rosenblum, Z. Wang, and S. Elbaum. Model-Based

Fault Detection in Context-Aware Adaptive Applications. In Proc. of
ESEC/FSE’08. ACM Press, 2008.

[21] K. Scribner. Microsoft Windows Workflow Foundation: Step by Step.

Microsoft Press, 2007.

[22] F. Somenzi. CUDD: CU Decision Diagram Package - Release 2.4.1.

http://vlsi.colorado.edu/˜fabio/CUDD. Accessed on

9 October 2008.

[23] M. Vukovic. Context Aware Service Composition. Technical Report

UCAM-CL-TR-700, University of Cambridge, 2007.

[24] H. Q. Yu and S. Reiff-Marganiec. Semantic Web Services Composi-

tion via Planning as Model Checking. Technical Report CS-06-003,

University of Leicester, 2006.

191191

Authorized licensed use limited to: MIDDLESEX UNIVERSITY. Downloaded on April 19,2010 at 12:51:24 UTC from IEEE Xplore. Restrictions apply.

