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a b s t r a c t 

The heterogeneous nature of the Industrial Internet of Thing (IIoT) has a considerable impact on the 

development of an effective Intrusion Detection System (IDS). The proliferation of linked devices results 

in multiple inputs from industrial sensors. IDS faces challenges in analyzing the features of the traffic and 

identifying anonymous behavior. Due to the unavailability of a comprehensive feature mapping method, 

the present IDS solutions are non-usable to identify zero-day vulnerabilities. 

In this paper, we introduce the first comprehensive IDS framework that combines an efficient feature- 

mapping technique and cascading model to solve the above-mentioned problems. We call our proposed 

solution deeP learnIG model intrusioN detection in indUStrial internet-of things (PIGNUS) . PIGNUS integrates 

Auto Encoders (AE) to select optimal features and Cascade Forward Back Propagation Neural Network 

(CFBPNN) for classification and attack detection. The cascading model uses interconnected links from the 

initial layer to the output layer and determines the normal and abnormal behavior patterns and produces 

a perfect classification. We execute a set of experiments on five popular IIoT datasets: gas pipeline, water 

storage tank, NSLKDD+, UNSW-NB15, and X-IIoTID. We compare PIGNUS to the state-of-the-art models in 

terms of accuracy, False Positive Ratio (FPR), precision, and recall. The results show that PIGNUS provides 

more than 95% accuracy, which is 25% better on average than the existing models. In the other param- 

eters, PIGNUS shows 20% improved FPR, 10% better recall, and 10% better in precision. Overall, PIGNUS 

proves its efficiency as an IDS solution for IIoTs. Thus, PIGNUS is an efficient solution for IIoTs. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Internet of Thing (IoT) paradigm’s evolution elevates the 

igital era to a new level of pervasive and intelligent connectivity. 

t the same time, security is a key issue for the connected mi- 

ieu. Due to computational limitations, skilled attackers can sim- 

ly bypass the standard security measures and cause significant 

ata loss. Intrusion Detection Systems (IDSs) are currently popular 

or identifying known attacks based on stored signatures; however, 

DSs fall short in discovering zero-day threats. Human independent 

DS with automatic detection and prevention can resolve the is- 

ue ( Hodo et al., 2017 ). The growing popularity and outstanding 

erformance of Deep Learning (DL) approaches has a significant 

mpact on application development. Object identification, live face 
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etection, traffic management, discovering threat, pattern recogni- 

ion, and medical interpretations are some DL development areas. 

ptimistic data reduction and accurate assessment of unstructured 

ata are the foremost benefits of DL techniques attracting Indus- 

rial IoT (IIoT) applications. The popular smart industrial sector has 

ome security challenges which are detailed in Table 1 . 

IIoT infrastructure is a collection of interconnected heteroge- 

eous devices including sensors, actuators, processors, network de- 

ices, data transfer devices and application controllers. Fig. 1 de- 

icts a three-layer IIoT architecture with perception, network and 

pplication layers. The perception layer establishes connectivity be- 

ween sensor and field device and forward for communication. 

ireless communication technologies such as 2G, 3G, and Blue- 

ooth are used for data transfer in the network layer. Finally ap- 

lication layer controls the user-end communication. To provide a 

ecure transfer, fundamental security tools and services are em- 

edded into the network layer. Firewalls, intrusion detection sys- 

https://doi.org/10.1016/j.cose.2023.103315
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103315&domain=pdf
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Table 1 

Smart industrial attacks. 

Reference Industry Attack 

Koscher et al. (2010) Telecommunications Data theft with false 

messages. 

Farwell and Rohozinski (2011) Chemical and pharmaceutical 

production 

Stuxnet attack on nuclear 

power networks -Iran 2010 

targeted 60% of computers. 

Falliere et al. (2011) Plant and machinery Stuxnet worm attack accessing 

PLC on Irans nuclear plant. 

Cárdenas et al. (2011) Water supply The destruction of a water 

utility pump through a SCADA 

System. 

Mármol et al. (2012) Electricity production and 

distribution 

Abrupt change of power 

consumption and data theft. 

Edwards (2016) Oil production and supply Spear-Phishing and Distract 

attack on (Aramco oil firm) 

Saudi Arabia, deleted the 

official information. 

Chhetri et al. (2018) Power supply and 

transportation 

Jamming attacks to degrade or 

disable energy supply. 

Tao et al. (2018) Gas pipeline and distribution Ukraine’s power grid hack, 

stolen credentials and shut 

down 30 substations to access 

confidential information. 

Fig. 1. IIoT architecture. 
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s  
ems (IDS) and user authentication are the key security techniques 

or identifying external threats. IIoT architecture is adaptable based 

n the researcher’s perception and the application. The traditional 

hree-layer IIoT structure is given in Fig. 1 . 

.1. IIoT architecture 

Some of the connected IIoT components used to operate the in- 

ustrial structure are discussed below: Centralized Industrial Con- 

rol System (ICS) act as an interface between sensors and physical 

anufacturing devices ( Hijazi et al., 2018 ). The sensors collect in- 
2 
ormation from connected physical components and share it with 

 centralized source. The Supervisory Control And Data Acquisi- 

ion (SCADA) component of ICS is used to access external activi- 

ies. Distributed Control Systems (DCS) manage the shared com- 

onent services and Programmable Logic Controllers (PLC) config- 

re the industrial infrastructure. Finally, Human Machine Interface 

HMI) processes huge data into effective information. The applica- 

ion layer processes the data received from the network devices 

nd manages the services provided to external and internal users 

 Conti et al., 2021 ). Risk prediction is very high in this type of

tructure results with data and life threat ( Boye et al., 2018 ). More-
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ver, traditional insecure communications like Modbus and Trans- 

ission Control Protocol (TCP) are creating authentication issues in 

IoTs. 

.2. Motivation and contribution 

Existing ML and DL models cannot detect zero-day vulnerabil- 

ties as they compare incoming traffic with out-of-dateed signa- 

ure patterns. PIGNUS is created to address the increasing security 

hallenge in IIoT applications and analyse the behavioural aspect. 

IGNUS made the following contributions to this end. 

• Optimal features : PIGNUS is a hybrid model that incorporates 

Auto Encoder (AE) for feature selection with detection tech- 

nique. AE is an unsupervised data compression technique that 

produces encoded data for further processing. The approach 

generates discrete values for latent attributes, then forward 

them for decoding, and produces a compressed dataset. PIGNUS 

uses the results of AE to train the classification model in order 

to improve feature mappings. 
• Cascading model : DL-based Cascading Forward Back Propaga- 

tion Neural Network (CFBPNN) model in PIGNUS establishes a 

sophisticated relationship with the raw data using multiple lev- 

els of abstraction. The layers are interlinked and each layer re- 

ceives the output of the previous layer as input. The hierarchi- 

cal features are extracted to classify the traffic based on the be- 

havioral pattern. 
• Performance : CFBPNN performs the best among the various DL 

classification methods currently available. To evaluate the ef- 

fectiveness of PIGNUS, we compared it with SLKDD+, UNSW- 

NB15, and other IIoT datasets. The PIGNUS model is more effi- 

cient than the state-of-the-art models based on a comparative 

analysis. 

.3. Paper organization 

We organize the rest of the paper as follows. Section 2 reviews 

ome deep learning-based detection models and their techniques. 

ection 3 shows the proposed approach of IDS using the combina- 

ions of deep learning techniques. We analyze the selected method 

ith evaluation metrics in Section 4 . Finally, we conclude our work 

n Section 5 . 

. Related work 

The persuasive quality of DL techniques leverages popular ap- 

lications in computer vision, bio-informatics, Natural Language 

rocessing (NLP) etc. This imprints a significant growth with ef- 

cient performance over Machine Learning (ML) techniques. Self- 

raining and learning methods of DL handle a substantial volume 

f data with minimum human interaction. IIoT is an extension of 

oT to establish industrial applications with sensor connectivity. A 

eview of the research status and the proposals of DL models in 

oth areas is essential. 

Artificial Neural Network (ANN), Deep Neural Network (DNN) 

nd Convolutional Neural Network (CNN) are the popular super- 

ised instance learning methods. These techniques are accessed 

ith a feed-forward neural network to develop sequential and 

mage-based detection models ( Conti et al., 2021 ). Recurrent Neu- 

al Networks (RNN) and the extension Long Short-Term Memory 

LSTM) are the popular methods used in IDS ( Balaji et al., 2022 ).

emi-supervised techniques such as Restricted Boltzmann Machine 

RBM) and Deep Belief Network (DBN) are suitable for training un- 

efined patterns. Transfer learning approaches are also supported 

y DL for generating generic models that is applied to similar chal- 

enges ( Tsiknas et al., 2021 ). The prominent DL-based IDS models 

or IoTs and IIoTs are discussed in the following subsections. 
3 
.1. IDS models using deep learning in IoTs 

The primary goal of DL approaches is to create smart and 

ompact models that provide high-end security with minimal re- 

ources. As a result, DL-based models are beneficial for large 

ata analytic, video and speech processing, image recognition and 

uilding secure IoT applications. Extracting optimal features and 

eveloping a detection model is a challenging task. A few inte- 

rated models with feature reduction and classification strategies 

re discussed below. 

A DBN model with real-time testing to combine network vir- 

ualization with anomaly detection gave 95% accuracy on five 

ttack scenarios ( Thamilarasu and Chawla, 2019 ). A compara- 

ive improvement using DBN for bot attack detection on port 

canners by Manimurugan et al. (2020) results with 2.8 false 

ates. An integrated DL model uses Spider Monkey Optimiza- 

ion (SMO) and Stacked Deep Polynomial Network (SDPN) by 

toum et al. (2022) experimented for three-layer attack detection 

n huge IoT traffic This model is compared with four Deep Fea- 

ure Embedding Learning (DFEL) classifiers as Gradient Boosting- 

ased Tree (GBT), K-Nearest Neighbor (KNN), Decision Tree (DT), 

nd Support Vector Machine (SVM). GBT’s performance is low 

omparatively, even then overall precision is 99 . 38% . Other inte- 

rated techniques with Text-CNN and Gated Recurrent Unit (GRU) 

or feature reduction and conversion by Tabassum et al. (2021) re- 

ulted in a high F!-score. A combination of Principle Component 

nalysis (PCA), Information Gain (IG), Correlation Attribute Eval- 

ation (CAE), and SMO with DNN results with 99 . 27% F1 score 

 Nasir et al., 2022 ). The best feature set is considered for the ex-

eriment. Stand-alone procedures entail time and cost complica- 

ions; as a solution, hybrid models outperform traditional tech- 

iques. LSTM-GRU, a hybrid IDS model for the Internet of Vehi- 

les (IoV), addresses the vanishing gradient problem encountered 

y RNN in a limited time ( Ullah et al., 2022 ). CNN-based anomaly 

etection results in 99% accuracy and provides qualities to examine 

hole traffic across the IoT ( Saba et al., 2022 ). A unique combina-

ion of Reptile Search Algorithm (RSA) for feature reduction boosts 

he anomaly detection accuracy with CNN ( Dahou et al., 2022 ). All 

he detection models discussed above have a strategy to reduce 

emory usage, improve the detection rate, reduce the false rate, 

nd trace the new attacks. Table 2 summarises the most recent 

L-based IDS for IoTs. 

.2. IDS models using deep learning in IIoT 

Collaborative smart industrial technology with integrated IoT 

evices has numerous benefits with effective productivity; how- 

ver, their online nature makes them vulnerable to cyber-attacks. 

ue to attack upgrades, traditional firewalls and antivirus software 

annot address the security gaps caused by the complex structure 

f the smart factory. Thus, the situation induces a high risk of de- 

ice proliferation resulting with direct or indirect intrusions. The 

esearchers propose various ML and DL techniques to build an ef- 

ective IDS system. In this section, we explore some of the models 

nd the challenges faced by each. 

The Deep Feed-Forward Neural Network (DFNN) and Deep 

uto-Encoder (DAE) based anomaly detection system developed 

y Muna et al. (2018) has a distinctive style of training using super- 

ised and unsupervised techniques. The experiment on the NSL- 

DD dataset results in 1.4 false rates compared to UNSW-NB15. 

he researches show a hybrid model experimenting on the CICIDS 

ataset and big data for IDS. The combination of Random Forest 

RF) and GBT for feature selection, and DNN for detecting multi- 

lass attacks performs well in literature ( Faker and Dogdu, 2019 ). 

 feed-forward neural network model illustrates high classification 

ccuracy. The model is tested using a new dataset generated with 
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Table 2 

Review on DL-based IDS models in IoT. 

Author and Reference DL Technique Dataset Accuracy (%) 

Thamilarasu and Chawla (2019) DBN Real-time 99.50 

Manimurugan et al. (2020) DBN CICIDS 2017 98.37 

Otoum et al. (2022) SMO, SDPN NSLKDD + 99.30 

Tabassum et al. (2021) AE,CNN NSLKDD + , Real-time 99.90 

Nasir et al. (2022) DFS with DNN real-time 99.03 

Ullah et al. (2022) LSTM,GRU CSE-CICIDS 2018 99.50 

Saba et al. (2022) CNN-AIDS BoT-IoT 92.85 

Dahou et al. (2022) CNN,RSA BoT-IoT 99.91 

Zhong et al. (2021) Text-CNN,GRU NSLKDD + 98.90 

Zhang and Zhang (2022) Stacked Sparse AE NSLKDD + 95.42 

Table 3 

Review on DL-based IDS models in IIoTs. 

Author and Reference DL Technique Datasets Accuracy (%) 

Muna et al. (2018) DAE and DFNN NSLKDD 98.06 

Faker and Dogdu (2019) DNN, GBT UNSW-NB15 99.99 

Ge et al. (2019) FNN BoT-IoT 98.02 

Vinayakumar et al. (2019) DNN KDDCup 99 92.90 

Li et al. (2020) Multi-CNN KDDtest + 21 86.95 

Gyamfi and Jurcut (2022) OI-SVDD UNSW-NB15 95.02 

Hassan et al. (2020) RS,RT 15 SCADA test-bed 96.71 

Al-Abassi et al. (2020) DNN,DT GP,SWaT 99.67 

Latif et al. (2020) DRaNN UNSW-NB15 99.54 

Choudhary and Kesswani (2020) DNN-IDS UNSW-NB15 90.02 

Tian et al. (2020) Multiple concurrent DL CSIC 2010, 99.41 

Mendonça et al. (2021) SET prediction Real- time 99.02 

Li et al. (2021) CNN-GRU Industrial CPS 99.20 

Awotunde et al. (2021) DFFNN and DAE UNSW-NB15 98.91 

Friha et al. (2022) DNN,CNN,RNN CSE-CICIDS 2018 99.01 

Tharewal et al. (2022) DRL-IDS Gas pipeline 99.10 
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eneric features at the packet level. The model identifies Denial Of 

ervice (DoS), Distributed DoS (DDoS), reconnaissance, and infor- 

ation theft attacks with improved performance ( Ge et al., 2019 ). 

DNN with ML-based classifiers trained to learn abstract and 

igh-dimensional IDS features in IIoT performs well on benchmark 

ataset ( Vinayakumar et al., 2019 ). Further, a multi-CNN fusion 

odel for IDS to capture graphical intrusions ( Li et al., 2020 ) tested

n KDDtest+ and NSLKDD+ resulted in 13.5% false rate. The model 

ivides the dataset into four parts. The one-dimension dataset is 

onverted into a gray-scale graph using the flow data visualiza- 

ion method for dimensional reduction. The subset is processed 

ith the CNN model for detection. On real-time graphical datasets, 

ther integrated models are significantly practical for IIoT environ- 

ents ( Gyamfi and Jurcut, 2022 ). 

The researcher tests the Ensemble-learning model with the 

ombination of Random Subspace (RS) and Random Tree (RT) with 

5 SCADA IIoT network datasets. The RS learning method solves 

he sensitivity of irrelevant features, whereas RT reduces the over- 

tting problem encountered in IIoTs ( Hassan et al., 2020 ). Fea- 

ure normalization and identification of patterns are more im- 

ortant in intrusions. A balanced representation of the imbal- 

nced datasets processed with an ensemble model using DNN and 

T by Al-Abassi et al. (2020) . The model evaluates with 10-fold 

ross-validation on Gas Pipeline (GP) and Secure Water Treatment 

SWaT) resulting apt for industrial structure. Integrity features- 

ased DL prediction model using Sparse Evolutionary Training 

SET) results in 6 . 25% improved accuracy ( Mendonça et al., 2021 ).

e summarize the latest DL-based IDS models for IIoTS in Table 3 . 

The model combines Online Incremental Support Vector Data 

escription (OI-SVDD) with Adaptive Sequential Extreme Learning 

achine (AS-ELM) and is tested on Multi-Access Edge Computing 

MEC) server ( Gyamfi and Jurcut, 2022 ). A real-time data stimula- 

ion and attack modules introduced for reinforcement learning by 
4 
harewal et al. (2022) tested with Natural Gas pipeline transporta- 

ion. This model gave very marginal false rate. 

An attack scenario with the administrator, user, and attack 

odules is launched for testing. The author proposes a light-GBM 

echnique to select the optimal features and a PPo2 algorithm with 

eLU for detecting the attacks. The model performs well compared 

o traditional DL techniques such as CNN, RNN, LSTM, and DQN 

 Tharewal et al., 2022 ). From the above mentioned literature study, 

e observe that none of the models project 100% accuracy for 

 single or multi-class attack detection; thus, it provides a scope 

f improvement. Considering this, we integrate an AE feature re- 

uction technique with a cascading IDS model. This provides bet- 

er detection accuracy for the anomalies available in the industrial 

etwork. 

. Proposed model: PIGNUS 

We propose, deeP learnIG model intrusioN detection in indUS- 

rial internet-of things (PIGNUS). PIGNUS signifies security in Latin. 

IGNUS in a novel DL-based IDS model with the combination of 

uto Encoder (AE) and Cascade Forward Back Propagation Neural 

etwork (CFBPNN). The available models have an average accuracy 

f 95.00%; however, none of the existing works examine AE base 

ompression with cascading classifier. Our PIGNUS addresses this 

ssue and emphasizes the significance of feature extraction with 

 comparative analysis on traditional and AE-based cascade struc- 

ures. In this section, we present our preliminary knowledge of 

he DL techniques, then focus on the assumptions made to con- 

truct PIGNUS. The methodology starts with full description of the 

atasets used in the experiment followed by normalisation proce- 

ure. The application of AE in feature extraction, and the usage of 

FBPNN for detection are successively explored in this section. 
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Fig. 2. Structure of a NN. 
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.1. Preliminary understanding 

Fig. 2 depicts the internal structure of NN with input, hidden, 

nd output layers. The data is supplied into the neurons for the 

nput layer in the form of numbers/images/audio. These input fea- 

ures are represented as x 1 , x 2 , x 3 ,..., x n . The process multiples each

nput by weights (w 1 , w 2 , w 3 , . . . ., w n ) and passes to an activation

unction. An activation function is a step function that maps the 

nput and output signals for network functioning. Eq. (1) depicted 

he mathematical representation of a NN. In this Eq. (1) , x repre- 

ents an input, w represents a weight added for each input, z is 

sed for output, b represents bias, and f represents the activation 

unction. 

 = f 

( 

b + 

N ∑ 

i =1 

x i w i 

) 

. (1) 

The feed-forward algorithm begins with the input layer moving 

n the forward direction to update the state of each unit ( Ge et al.,

019 ). This model multiplies the weights and add the bias; this 

rocess repeats till all the layers are updated. The model adjusts 

he weights and performs the task to improve the accuracy using 

ack propagation. Though, the process is generic, we observe some 

ariations of the structure based on the application requirements. 

.2. Assumptions 

Considering the shortfalls of the existing detection models, we 

bserve that the security module extended to multiple levels will 

e more predictive. The results of single-level detection and pre- 

ention techniques are only reliable for a short period of time 

 Tsiknas et al., 2021 ). To justify the multi-level detection model, 

 three-level security system is beneficial. A framework with a risk 

actor provide suitable security solution. We show the assumption 

f the security model in Fig. 3 . The first level of security is formed

ith basic firewall protection. The security services are applied to 

erify the authentication of the users and control unauthorized ac- 

ess in the second level. Finally, a DL-based IDS model is a required 

o observe the network traffic and report the suspicious activities. 

.3. Methodology 

This section provide a elaborated description of the methods in- 

egrated in PIGNUS. The traditional architecture of the IDS model 

s prone to security leaks. The multi-layer recursive structure an- 

lyzes the data at various levels and makes the model effec- 

ive to handle minute complications. IIoTs have multiple frame- 

orks with interconnected devices and sensor operations. A single- 

ayered model lacks in generating appropriate sequences and drops 

n performance. Such models are restricted by the scope of the 

onnected components ( Liu and Lang, 2019 ). The multi-layer model 

s distributed across the system and executes the processes at each 
5 
evel. The major and minor values are converted based on the state 

f the system. A self-learning model minimize human instructions 

nd mitigates intrusions given from input sequences. We show the 

owchart of the methodology in Fig. 4 . 

To solve the above-mentioned issues we provide PIGNUS, a hy- 

rid model with the combination of AE and CFBPNN. AE builds an 

ptimal feature set and CFBPNN traces the attack pattern based on 

redefined signatures and identify the attack variant with the in- 

errelated link. 

.4. Dataset 

We conduct a comprehensive series of experiments 

n PIGNUS with five different datasets: i) UNSW- 

B15 ( Moustafa and Slay, 2015 ), ii) ICS generated wa- 

er storage tank dataset ( Morris and Gao, 2014 ), iii) gas 

ipeline dataset ( Morris et al., 2015 ), and iv) NSLKDD+ 

ataset ( KDD dataset, 1999 ) v) X-IIoTID dataset ( Al- 

awawreh et al., 2021 ). All five datasets have distinctive features; 

owever, some features are common in all, such as protocol, 

ommand-address, command memory, response count and write 

unction length, cycle time, control mode, time, and attack class. 

To check the applicability of PIGNUS, we use laboratory-scale 

CS data from water storage tank dataset ( Morris and Gao, 2014 ) 

nd industrial gas pipeline dataset ( Morris et al., 2015 ). These 

re IIoT datasets specially used for evaluating AI-based cyber se- 

urity applications. The water storage tank dataset contains pre- 

rocessed network transaction data with 2,36,180 samples in 

hich 1,72,415 are normal and 63,764 are attack values. The gas 

ipeline dataset contains 10,619 samples, where 6672 are normal 

nd 3947 are attack values. We consider 10% of each dataset as 

ample for testing the experiment. The gas pipeline dataset pro- 

ide 27 features and the water storage tank dataset have 24 fea- 

ures; both datasets reflect seven attack categories. 

NSLKDD+ cup dataset is the most popular dataset for IDS with 

uge categories of attack signatures. This dataset is prepared us- 

ng the network traffic captured by the 1998 DARPA IDS evalua- 

ion program ( KDD dataset, 1999 ). In our present research, we use 

SLKDD+ dataset, which overcomes data redundancy and provides 

pdated attack profiles over the traditional KDDCUP dataset. The 

raining dataset contains a total of 125,973 records of which 58,630 

re attack values and 67,343 are normal records. The dataset have 

1 labeled input features of binary and multi-class attack classifica- 

ion. A total of 38 traffic classes with 21 attack classes are available 

n the test data; we consider 16 attacks and one normal class for 

raining. The attack records are grouped into four major classes in- 

luding DoS, probing, User-to-Root (U2R), and Root-to-Local (R2L). 

he descriptions of each attack instance for gas pipeline, water 

torage and NSLKDD+ dataset is given in Table 4 . 

UNSW-NB15 dataset contains raw network packets created by 

he IXIA perfect storm tool in the cyber range lab of the Australian 

entre for Cyber Security (ACCS). The dataset provide nine types 

f cyber-attacks, 45 input features and two million, 540,044 in- 

tance stored in four separate CSV files. A split of the dataset with 

75,341 training and 82,332 testing instance with multi-class at- 

ack variants is considered for the experiment. The dataset con- 

ists of 56,0 0 0 normal values and 119,341 records with nine at- 

ack categories. The generic attack type is with 40,0 0 0 records and 

xploits count with 33,393 records. According to the literature re- 

iew, higher attack records aid towards enhancement of model ac- 

uracy. Considering this, we have used UNSW-NB15 and X-IIoTID 

atasets to train and test our model with a high attack instance. 

n binary classification for this dataset, PIGNUS produces zero false 

ate. 

The X-IIoTID dataset provides real-time labelled IIoT data that 

xposes host and network processes in both safe and vulnerable 
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Fig. 3. Model Assumption. 

Fig. 4. Methodology of proposed model. 

Table 4 

Attack types and number of records in IIoT and NSLKDD+ dataset. 

Gas Pipeline (GPl) and Water Storage tank(WSt) NSLKDD + 

Type Samples (GPl) Samples(WSt) Type Samples 

Normal 19503 6672 Normal 67343 

Naive Malicious Response Injection 1198 335 DoS 45927 

Complex Malicious Response Injection 1457 1664 Probe 11656 

Malicious State Command Injection 209 93 R2L 995 

2Malicious Parameter Command Injection 410 842 U2R 52 

Malicious Function Code Injection 155 41 

Denial Of Service 135 189 

Reconnaissance 4132 783 
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nvironments ( Al-Hawawreh et al., 2021 ). This dataset estimates 

he attack strategies using statistical, machine learning, and deep 

earning techniques. IIoT suitable features are extracted from log 

les and network traffic using device resources and commercial 

DS logs as (OSSEC and Zeek/Bro). The X-IIoTID dataset has 820,834 

nstances, with 68 features out of which 421,417 are normal and 

99,417 attack observations. The dataset has three label levels rep- 

esenting attack scenarios. Class one provides a binary category, 

nd class two supports ormal and 18 sub-categories of attacks and 

nally class three with normal and ten sub-sub attack categories. 

e chose class 3 as the sample set for our experiment. The de- 

ailed attack instance for UNSW-NB15 and X-IIoTID dataset is given 

n Table 5 . To demonstrate the impact of a model within a time 

imit, the full dataset is used for experiment PIGNUS on binary 

T

6 
lass. Ten percent of instances are selected for multi-class training 

nd classification. 

.5. Data normalization 

As the first stage of normalisation, the fill missing function is 

sed to replace empty values with constant and standard values. 

n the second step, we convert all the categorical values (NaN) into 

umerical identities for easy prediction using one hot-encoding 

echnique. This technique processes the categorical variable and 

onverts it into a numerical representation. At the same time, nat- 

ral ordering between categories with integers may result in poor 

erformance or unexpected results; we convert the string values to 

 new binary variable and add unique integer value for each attack. 

he detailed implementation is given in Algorithm 3 . 
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Table 5 

Attack types and number of records in UNSW-NB15 and X-IIoTID dataset. 

UNSW-NB15 X-IIoTID 

Type Samples Type Samples 

Normal 560000 Normal 421417 

Analysis 2000 C and C 2863 

Backdoor 1746 Crypto-Ransomware 458 

DoS 12264 Exfiltration 22134 

Exploits 33393 Exploitation 1133 

Fuzzers 18184 Lateral-movement 31596 

Generic 40000 RDOS 141261 

Reconnaissance 10491 Reconnaissance 127590 

Shellcode 1133 Tampering 5122 

Worms 130 Weaponization 67260 
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The training dataset provides several attack classes, while the 

alidation dataset provides new attack classes that were not ini- 

ialized in the training dataset. In this way, we can test whether 

he trained model can identify new samples besides the ones 

hat were previously trained. To prevent over- or underfitting, 

e adjust some model parameters based on the accuracy of the 

redictions after validation. Overfitting occurs when a model at- 

empts to fit all of the training data and ends up retaining the 

ata patterns, noise, and random fluctuations. A model’s overfit- 

ing issue prevents it from generalising and making good use of 

nanticipated data circumstances. Due to excessive bias in the 

ata and oversimplification of the issue, an under fitted model 

oes not perform as expected in a training set of data. Our 

tudy PIGNUS focuses on both binary and multi-class classifica- 

ion, where we represent normal values as 0 and attack values 

s unique integers based on classification or 1 in case of binary 

ttack. 

.6. Feature extraction with Auto Encoder (AE) 

After the data is normalized, the next step is to extract the best 

eatures for training the model. AE is used to improve training effi- 

iency and speed up detection as part of dimensionality reduction. 

e use the encoded values as input for detection models. 

AE is an unsupervised learning technique used for a com- 

ressed representation of raw data. AE reduces the given input into 

he lower-dimensional format and regenerates the output as a new 

epresentation. To replicate the input vector against the output 

ayer and train the AE model, we implement a back-propagation 

lgorithm. For a given input x and reconstruction result as ̂ x the 

etwork is trained by minimizing the error L ( x, ̂  x ) to measure the 

ariation between the original input and the encoded output. We 

rain AE with 25 hidden layers using the scaled conjugate gradient 

raining algorithm. Most activation functions used in AE are non- 

inear, such as ReLUs (Rectified Linear Units) and sigmoid func- 

ions. The model performance is evaluated using Mean Square Er- 

or (MSE) with L2 sparsity regularize. Based on our experiments 

he MSE for PIGNUS is 4.56%, the lowest among all five datasets 

e used. To prevent over-fitting additional information is given to 

he model in the process of regularization. L2 regression is also 

onsidered as ridge regression, represented with the Eq. (2) . We 

epresent the loss function with L2 norm of the weights given 

n Eq. (3) . 

 

 = w 1 + x 1 + w 2 x 2 + . . . + w n + x n + b. (2)

E minimizes the difference between the input and output; we 

dentify the loss function given in Eq. (3) . 

oss = Er ror ( x, ̂  x ) + λ
N ∑ 

i =1 

w 

2 
i . (3) 
t

7 
In the above expression for an AE model ̂  x with x as input vari- 

bles, w represents the weight and b represents the bias. We use a 

oss function to analyze the difference between the true and pre- 

icted values. λ > 0 represents the regularization parameter and σ
epresents the total calculated loss and predicts the efficiency of 

he model for each input and added weight. The neurons are ”in- 

ctive” if their output value is close to 0 and active if it is close 

o 1. We invoke sparsity parameters to make the neurons active 

nd avoid overfitting issues. We observe that the average activa- 

ion of each hidden neuron is close to itself, or a value close to 

ero ( Yan and Han, 2018 ). 

We summarize the sequences of AE model in Algorithm 1 . 

lgorithm 1 Autoencoder(X ) . 

1: Initialize transpose table X

2: φ : X → F 

3: L = hid d enlayers 

4: Activate w, b weight and bias with random values 

5: per f or mance = MSE

6: trainAutoencoder(X, L ) 

7: ψ : F → X

8: i = 1 

9: while i < L do 

0: while E pochs = 10 0 0 do 

11: Train M sample X 1 , X 2 , . . . X M 

. 

2: φ : y = σ ( W X + b ) 
3: ψ : y 

′ = σ 1 
(
W 

′ 
y + b ′ 

)
4: MSE = 

1 

N 

∑ N 
i 

∑ M 

j 

(
y ′ 

i j 
− y i j 

)2 

5: Loss = Er ror ( x, ̂  x ) + λ
∑ N 

i =1 w 

2 
i 

6: end while 

17: end while 

The decoded output of AE is passed as an input argument for 

he classification model. The detailed procedure of the detection 

odel is given Section 3.7 . The training of the network is di- 

ided into the encoder and the decoder segment. AE function is 

ctivated with x as input arguments from the P IGNUS() . A latent 

pace F is created by mapping the original data x to an encoder 

ethod /phi . To repeat the process we have to initialize hidden 

ayer then activate L weight w and bias b with random values. Next 

et the performance indicator to MSE. Then the AE network is cre- 

ted with x input features and L hidden layers with the method 

rainAutoencoder(X, L ) . The decoder module by ψ maps the latent 

pace F . AE output is the same as the input function. The original 

ample size is recreated with decoded content. The network con- 

truction is stated and the procedure is repeated for 10 0 0 epochs. 

he encoded NN φ function pass through an activation function σ , 

here y is the latent dimension. The decoding NN ψ represent in 

 similar method, with different weights and bias. Final the perfor- 

ance of the model is evaluated based on the loss function and 

SE. MSE and loss is calculated for N rows N i , N i + 1 . . . .N L and

columns M j , M j + 1 . . . .M L with the decoded values y, y ′ . Finally

he output generated from AE : y is passed as input argument for 

F BP N N () method given in Algorithm 2 . 

.7. Detection process 

Traditional machine learning approaches are effective in detect- 

ng suspicious patterns in network traffic ( Liu and Lang, 2019 ). At 

he same time, working with pre-defined clusters, center point ini- 

ialization, and selection of maximum and minimum radius for the 

lusters are some of the drawbacks of the traditional ML meth- 

ds ( Ahmad et al., 2021 ). Low performance with inappropriate fea- 

ure mapping and clustering are the outcomes of such models. 
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Algorithm 2 CF BP N N (input , target ) . 

1: X = Input, Y = T arget, L = Hid d enLayers . 

2: Create y = cascad e f orward net(X, L ) . 

3: Initialize i = 1 , j = 1 ; Set X 
j 

i 
. X n m 

. 

4: Accuracy = 0 ;
5: while i < = L do 

6: while Accuracy (i ) < = Accuracy (i + 1) do 

7: X i + W i , b i . . . .X j + W j b j . 

8: Y= 
∑ n 

i =1 

∑ w 

n x 
j 
i 

9: y = 

∑ n 
i =1 f 

i w 

i 
i 
x i + f 0 

(∑ k 
j=1 w 

0 
j 

f h 
j 

(∑ n 
i =1 w 

h 
ji 

x i 

))
10: Accuracy = 

∑ 

(Y = X ) /N(X, L ) ∗ 100 ;
11: MSE = 

1 

n 

∑ n 
i =1 ( y i − ̂ y ) 

2 

12: R = f 0 
(

w 

b + 

∑ k 
j=1 w 

0 
j 

f h 
(

w 

b 
j 
+ 

∑ n 
i =1 w 

h 
ji 

x i 

))
13: i = i + 1 

14: end while 

15: end while 
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ur PIGNUS leverages the capability of ANN and forms inherited 

lusters to identify the instance of normal and abnormal behavior. 

his constructs boundaries between different clusters and helps to 

dentify the most optimistic features suitable for complex archi- 

ecture. A cluster model is a type of feed-forward neural network, 

hich is trained in a supervised manner with back propagation. 

he method directly classifies the given input vector based on the 

pecified target by matching it with the previous performance and 

epeat till it reaches the threshold. The method is superior to other 

lustering and feed-forward techniques as it adds a pre-clustering 

tage ( Baig et al., 2017 ); thus, PIGNUS training avoids the curse of

imensionality, which occurs when the feature space of a fixed- 

ize gets progressively sparse as the number of dimensions in- 

reases. 

NN supports multiple algorithms for classification problems. Ac- 

ording to our study, we select Cascading Forward Back Propaga- 

ion Neural Network (CFBPNN) method to classify the anomaly and 

istinguish the attack and normal packets. CFBPNN integrates Feed 

orward (FF) and Back Propagation (BP) techniques to form the 

etwork structure. FF method consists of a single input layer, mul- 

iple hidden layers and selected output layers. The BP technique 

perates as a learning algorithm to train network models by calcu- 

ating error values, adjusting weights, and transmitting to the pre- 

ious layer. Because of the non-linear transfer function utilised in 

any layers, the model learn both linear and non-linear relations 

etween input and output vectors ( Qiao et al., 2016 ). 

Connecting the input weights from each successive layer is the 

rocess of a CFBPNN model. Networks with multiple layers have 

he potential to learn the complex relations among input and out- 

ut vectors. CFBPNN starts with a single input layer and gradually 

dds numerous connected layers, which receive connections from 

he original input layer and all previously hidden units. In order to 

hape the connection, we combine a direct link from input neuron 

o a hidden layer ( Warsito et al., 2018 ). We add the perceptions one

y one in the correlation; it starts with a small number and ends 

p with a bigger size. Additional connections improve the speed 

nd learning rate. When the net performance is greater than 99% 

nd there are no NAN results for any of the attack classifications, 

he process is terminated. We describe the mathematical expres- 

ion of CFBPNN in Eq. (4) . CFBPNN clusters the combination of se- 

uence and recurrent learning methods to connect initial inputs 

nd their relationships to infer unseen connectivity. Thus, CFBPNN 
8

s beneficial to generalize and predict anonymous data. 

 = 

n ∑ 

i =1 

f i w 

i 
i x i + f 0 

( 

k ∑ 

j=1 

w 

0 
j f 

h 
j 

( 

n ∑ 

i =1 

w 

h 
ji x i 

) ) 

. (4) 

In Eq. (4) , 
∫ 

represents activation function, w represents the 

eight from input to output layer, i is the number of iteration, 

nd y is for the output layer. We add the bias to the weights and

um with the previous value till k th layer. For a given n sample,

e represent 
∫ 

the sigmoid activation function. This is added with 

he weights w and bias for each iteration of i to the n th value in

q. (4) . We first create a simple connected network with a single 

nput and output unit, and initialize the variable from 1 to n as 

 = 

∑ i =1 
i< = n . We use a regression matrix to construct R as shown 

n Eq. (5) . We summarize the sequence of CFBPNN model with 

IGNUS in Algorithm 2 . 

 = f 0 

( 

w 

b + 

k ∑ 

j=1 

w 

0 
j f 

h 

( 

w 

b 
j + 

n ∑ 

i =1 

w 

h 
ji x i 

) ) 

. (5) 

The detailed approach of the CFBPNN model is shown in Algo- 

ithm 2 . The input and target values are provided from P IGNUS() .

ext we create the CFBPNN with X input, Y target and L hidden 

ayers. Set the input arguments X to n rows and ni columns and 

nitiate accuracy to 0. The Sum of weights and bias are calculated 

or each hidden layer from X[ i ] to X[ L ] by adding the bias of each

ayer b[1] . . . b[ L ] . We repeat every iteration internally by forward- 

ng the values from the initial layer to the active layer in step 8. 

ext, calculate the sum of weights for each input layer. The result 

s passed to activation function f , and the process repeats until 

he last layer is reached. The process is terminated if the input-cell 

alue is empty, else the delay unit is added and incremented to 

he next layer. The model performance is calculated using accuracy 

nd MSE. The process of calculating weights and updating the next 

ayer is repeated till the validation is completed or the accuracy of 

revious and active iterations remains static. Finally, the model re- 

urns the values of MSE, accuracy, Regression (R), and output y as 

he prediction result. We show the overall procedure of PIGNUS in 

lgorithm 3 . 

lgorithm 3 Proposed PIGNUS. 

1: X = readtabl e ( f il ename.cs v ) 
2: Transpose table X = X ′ 
3: T able = Autoencoder(X ) ; 

4: input = T able 

5: Initialize target = categorical(attack ) ;
6: Table conversion t arget = t able (t arget) ;
7: target = onehotencode (target) 

8: Initialize Row m Column n 

9: Assign input to matrix [ m, n ] = size (input) 

0: Splitting data : T rain , T est

11: Initialize ratio P = 0 . 70 

2: V ar = randperm (m ) 

3: T rain = T able (v ar(i = 1 : (P ∗ m ))) 

4: T rain = T able (v ar(P ∗ m ) + 1 to N) 

5: input = T rain 

6: CF BP N N (input , target ) 

As PIGNUS starts with data loading and pre processing, later 

ombines Algorithm 1 for AE and Algorithm 2 for CFBPNN respec- 

ively. Algorithm 3 starts by importing the dataset from external 

ources. The read-table method opens the file specified as a pa- 

ameter and then stores the contents of the variable x with in- 

ut features. The DL models are trained row by row; the dataset is 

ransposed and indicated with x ′ . The Autoencoder method is called 
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Fig. 5. Network structure of CFBPNN. 
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Fig. 6. CFBPNN internal network architecture. 
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ith x as the argument value and the decoded result is stored in 

ariable T able . Next supervised training is implemented for classi- 

cation with labeled data values. The target variable (attack type) 

rovides multi-class string labels. This variable is converted into 

umerical values using one-hot encoders. Table data is assigned 

o input variable. Next to split the dataset, random function with 

nput m and ratioP is activated. The split include 70% training and 

0% testing instance for this experiment. Finally given input and 

arget arguments invoke CFBPNN the detection module. 

. Experimental analysis 

In this section, we first describe the procedure for the experi- 

ental setup. We execute PIGNUS on an I5 processor (16 GB RAM 

nd 1 TB Octan memory) with Windows 10 operating system us- 

ng MATLAB R2019b environment. Then, we define the evaluation 

arameters and finally, discuss the results. 

.1. Experimental setup 

We implement and evaluate our proposed PIGNUS model us- 

ng MatLab R2019a Simulator. Using five different datasets men- 

ioned in Section 3.4 , we experiment AE for conversion. We in- 

lude UNSW-NB15 dataset with 175,341 records, water storage 

ank dataset with 236,180 records, 10,619 samples from the gas 

ipeline dataset, 1,025,973 samples from the NSLKDD+ dataset, and 

nally X-IIoTID dataset with 820,834 instances for our study with 

andom split. 

We adopt the network model with ideal parameters, which pro- 

uce the highest accuracy and lowest false rate after repeated ex- 

eriments. We train the model using CFBPNN with the best net- 

ork structure on all the five datasets. The network structure con- 

ains one input layer with different nodes based on the total input 

eatures given by the dataset. The experimental method provides 

7 input nodes for the gas pipeline dataset, 24 for the water stor- 

ge tank, 45 for UNSW-NB15, 42 for the NSLKDD+ dataset and 68 

or X-IIoTID dataset. It also includes five hidden layers (10 nodes 

ach) and output layer (1 node) indicating the status in multi-class 

rocedure. We represent the network structure of CFBPNN model 

ith 27 input units, four hidden layers and seven output layer each 

ith 10 neurons and 7 attack classes as output given in Fig. 5 . 

Cascading model is applied for all five datasets with common 

arameters, and variation in input size based on features provided. 

he internal network mask of the model with five layers and inter- 

onnected nodes is given in Fig. 6 . The internal architecture of the 

FBPNN model for the first input layer is indicated as process input 
9 
 with five hidden layers Layer 1 . 5 . We use the transfer function, 

 ran − sigmoid ( Latif et al., 2020 ), for each layer to calculate the 

eights and bias received from previous units a 1 . . . .to . . . . 4 per- 

ormed before the hidden layer. The elements a 1 , a 2 , a 3 , and a 4 
arry the weights for the next layer represented after the hidden 

ayer structure as shown in Fig. 6 . Finally, we represent the classi- 

cation output with process Output with the input layers. 

We use 10 0 0 epochs for the transfer function sigmoid with 

 learning rate 0 . 002 , minimum performance gradient 1 e − 07 ,

ecrease factor for μ with 0.1, and increase factor for μ with 

0 for all the datasets with L1 and L2 regularization. Sigmoid 

ransfer function structure is given in Fig. 7 (b) this is applied 

ith Levenberg-Marquardt (LM) training method. LM is the fastest 

ethod for training a moderate-sized network and specially de- 

igned to approach second-order training speed without hessian 

atrix. The performance is indicated with Mean Square Error 

MSE). Gradient Descent Momentum (GDM) is activated as adap- 
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Fig. 7. Structure of CFBPNN internal layer and training function. 
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ion learning function with learning rate (LP.lr) − 0 . 01 and mo- 

entum constant (LP.mc−)0 . 9 , we show this expression in Eq. (6) .

w = mc ∗ dwpre v + (1 − mc) ∗ lr ∗ gw. (6) 

From Eq. (6) , GDM calculates the change in weight (dw ) for a

elected neuron from the input P and error E with weight W . We 

epresent the learning rate with lr, and the momentum constant 

ith mc, gradient weight with gw . We use this to test the perfor-

ance with gradient G for a weight going to the next layer. The 

earning rate and learning state is updated by recording the prior 

eight changes (dw − pre v ) and implements repeatedly. 

Fig. 6 represents the initial input layer a 1 connected to each 

idden layer; PIGNUS represents five hidden layers and one output 

ayer. Every hidden layer is again connects to the next input carry- 

ng the sum of weights and bias. Fig. 7 (a) shows the structure of

nternal layer with added weights, bias, delay units and the acti- 

ation function processed to the next input. We train our PIGNUS 

nd evaluate its performance in detecting binary and multi class 

ttack variants and visualize with confusion matrices. 
10 
.2. Evaluation metrics 

The best method to evaluate the effectiveness of the classifi- 

ation model is a confusion matrix. This makes it easier to distin- 

uish between true and false instances for training and testing. The 

esults of this technique identifies the types of errors encountered 

y the model in the process of training. We analyze the number of 

ncorrect predictions for each class assigned to the model with the 

arget variable. The confusion matrix projects the difference in the 

rediction and actual assumptions. The elements of the confusion 

atrix are used to construct the accuracy of the overall model. The 

onfusion matrices for all the datasets is given in Fig. 8 . In the fol-

owing paragraphs, we define the critical metrics we consider for 

he review process. 

False Negative Rate (FNR) : FNR returns the ratio of false cases 

arked as true and anomalies considered as normal activity in the 

etwork model or a missed alarm rate in detection. Our proposed 

IGNUS has 0 . 00% FNR for binary class and 0 . 22% for the multi-

lass as an average of all the test samples. The values indicate the 

umber of anomaly cases considered true is non-descriptive. We 
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Fig. 8. Binary class confusion matrices for all five datasets. 
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Table 6 

Overall accuracy of the CFBPNN and PIGNUS model for all five datasets. 

Dataset CFBPNN Accuracy (%) PIGNUS Accuracy (%) AE-MSE 

NSLKDD + 99.02 99.02 8.46 

UNSW-NB15 70.06 100.00 7.93 

Gas Pipeline 98.02 100.00 4.23 

Water storage tank 93.09 99.09 2.87 

X-IIoTID 73.05 91.07 4.24 
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se Eq. (7) to calculate FNR. 

 NR = 

F N 

T P + F N 

. (7) 

False Positive Rate (FPR) : FPR indicates the presence of attack 

ecords in the network package which is identified as normal. We 

se Eq. (8) to trace the false cases. This is a percentage of incorrect 

esults classified. PIGNUS shows a 0% false rate for the binary class 

hat indicates no count for wrong interpretation encountered. 

 P R = 

F P 

T P + F P 
. (8) 

Accuracy (A) : We represent the ratio of correctness for the clas- 

ified in Eq. (9) . PIGNUS is proved to be accurate for selected sam- 

les. The accuracy of the model is 100% for binary and multi-class 

ith selected samples. 

ccuracy (A ) = 

T P + T N 

T P + F P + F N + T N 

. (9) 

Precision (P) : The ratio of true positive samples to the predicted 

ositive samples is known as precision. We use P to represent the 

onfidence of attack detection as in Eq. (10) . PIGNUS results in a 

 . 01% precision value, which indicates that the identification of a 

ormal sample to a similar class is more appropriate. 

 = 

T P 

T P + F P 
. (10) 

Recall (R) : We use recall to represent the ratio of true positive 

alues to the total value with Eq. (11) . We can consider this as the

etection rate and use in IDS evaluations. R reflects the model’s 

bility to recognize the attacks from a given class. R-value for the 

roposed model represents that it can classify the attack category 

o 0 . 99% accurately with 0 . 01% error rate. 

 = 

T P 

T P + F N 

. (11) 

.3. Results and comparative analysis 

The goal of PIGNUS is to map the relationships between input 

nd target values and improve the performance of the detection. 
11 
e combine several threshold function with multiple compositions 

n layers to enhance the model accuracy. We show the comparative 

esults in Table 6 . In this table, we compare the accuracy of CF- 

PNN model and AE-based CFBPNN (AE+CFBPNN). Both the mod- 

ls are introduced by us; we observe that AE integrated with CF- 

PNN performs better than the traditional cascade model. As a re- 

ult, we select AE and CFBPNN for PIGNUS. The findings of PIGNUS 

n overall detection are displayed in the discussion, followed by 

he outcomes of attack-specific conditions. We conclude by com- 

aring PIGNUS with other state-of-the-art models. 

Table 6 display the performance of all five datasets of PIGNUS. 

he NSLKDD+ dataset remains constant in both models. where a 

uge improvement is noticed in UNSW-NB15 and XIIoT-ID datasets. 

.3.1. Overall performance 

As the Industrial IoT dataset have huge data elements, com- 

ressing and decoding data elements trace the pattern more effec- 

ively than the traditional cascading method. We observe a 30 . 00% 

mprovement of detection accuracy in UNSW-NB15 and X-IIoTID 

ataset while using AE-based CFBPNN. We observe 6 . 00% improve- 

ent for the water storage tank dataset in attack detection. Re- 

eated training with change in parameters for PIGNUS has given 

0 0 . 0 0% accuracy upon identifying the binary and multi-class at- 

acks for gas pipeline and UNSW-NB15 dataset 6 . 

PIGNUS results in 0 . 00% false rate for UNSW-NB15 and gas 

ipeline dataset and 0 . 01% and 0 . 08% for water storage tank and

SLKDD+ dataset respectively. The false rate observations reflect 

he nonexistence of Type-I or Type-II errors. The false rate of this 
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Table 7 

PIGNUS multi-class detection for NSLKDD+ dataset. 

Attack Accuracy Precision Recall F1 Score 

Normal 100.00 1.0 1.0 1.00 

DoS 100.00 1.0 1.0 1.00 

Probe 100.00 1.0 1.0 1.00 

R2L 99.86 0.5 1.0 0.95 

U2R 99.86 0.5 1.0 0.95 

RDOS 100.00 1.0 1.0 1.00 

Table 8 

PIGNUS multi-class detection for Water storage tank. 

Attack Accuracy Precision Recall F1 Score 

Naive Malicious 

Response Injection 

99.97 1.0 1.0 1.0 

Complex Malicious 

Response Injection 

99.98 1.0 0.99 1.0 

Malicious State 

Command Injection 

99.97 1.0 0.99 1.0 

Malicious Parameter 

Command Injection 

99.97 0.97 1.0 0.98 

Denial Of Service 100.00 1.0 1.0 1.0 

Reconnaissance 100.00 1.0 1.0 1.0 
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Table 9 

PIGNUS multi-class detection results for X-IIoTID dataset. 

Attack Accuracy (%) Precision Recall F1 Score 

C and C 91.64 1.0 0.68 0.81 

Crypto-ransomware 99.99 1.0 0.99 1.0 

Exfiltration 99.79 0.98 1.0 0.99 

Exploitation 99.74 0.98 0.98 0.98 

Lateral-movement 98.37 0.89 1.0 0.94 

RDOS 98.95 0.93 1.0 0.96 

Reconnaissance 99.55 0.97 1.0 0.98 

Tampering 94.02 0.18 0.96 0.31 

Weaponization 99.02 0.99 0.94 0.97 
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xperiment prove that PIGNUS is suitable for detecting attacks 

ith binary and multi-class classification. The model shows excel- 

ent performance for all datasets with 10 0.0 0% accuracy and 0.0 0% 

alse rate for binary classification, projected in Fig. 8 . 

Traditional feed-forward networks travel in one direction, pass- 

ng the input data with added weights and bias to the next layer. 

NN travels using a loop structure connecting the neurons of pre- 

ious and successive layers. The combination of both the network 

ith interconnection from the input to output is the quality of 

IGNUS. This avoids the missing values and the interconnection 

o carry best weights and bias. For hidden layers sigmoid func- 

ion is used and for output layers purelin function is used. We 

ave tested the model with various training algorithms wherein 

he Levenberg-Marquardt results as the best fit for all five datasets 

ith higher accuracy. 

Comparative analysis of the AE+CFBPNN model gives a quite 

ow value of MSE: nearby 0.264 for a gas pipeline, 0.217 MSE 

or a water storage tank, and 1.74 MSE for NSLKDD+, 1.52 MSE 

or UNSW-NB15 dataset and 0.76 for X-IIoTID dataset. We no- 

ice the least gradient value at 0.0039 for the water storage tank 

ataset with six validation checks indicating the best performance 

tate of the model. Time taken for training is considerably low 

ith 00 : 29 minutes for the gas pipeline and the highest time is 

 hours 45 minutes for the X-IIoT dataset. We use regression value to 

dentify the relation between input and the target variable; regres- 

ion test shows 0.97071 R-value for NSLKDD+ dataset 0.98307 for 

 water storage tank and 1 for both gas pipeline and UNSW-NB15 

atasets signify the absolute relations among the variables. 

.3.2. Attack wise detection results 

We evaluate PIGNUS for all five datasets, and the performance 

s estimated using accuracy, precision, recall, and F1 score. For all 

ttack classes the UNSW-NB15 and the gas pipeline dataset project 

bsolute accuracy with 0.0% false rate, hence other three dataset 

ttack performance is visualized in given in Table 8 , Table 7 and 

able 9 . NSLKDD+ dataset have variations to identify some attack 

lasses given in Table 8 . NSLKDD+ dataset contains 16 attacks, 

hich are subdivided into four classes. PIGNUS shows accuracy 

f 10 0 . 0 0% for DoS attack, probe attack, and also for normal traf-

c detection. R2L and U2R attacks are detected by PIGNUS with 

9 . 86% accuracy. 

Water storage tank dataset provides six attack classes, in which 

IGNUS found effective to identify DOS and reconnaissance at- 
12 
ack instances compare to other four malicious packets. However, 

IGNUS shows less accuracy for detecting malicious state com- 

and injection attacks. In contrast, malicious parameter command 

njection and function code injection only vary by 0 . 1% when com- 

ared to denial-of-service attacks. The water storage tank dataset 

hows that the naive malicious response injection attacks perform 

he least among with a false rate of about 0.3 percent compara- 

ively. PIGNUS efficiency for Water storage tank is given in Table 8 . 

We experiment PIGNUS with industrial intrusion detection data 

et: X-IIoTID. PIGNUS produce significantly better results than the 

onventional cascade model. In the three kinds of attack occur- 

ences that this dataset supports, PIGNUS gives 10 0 . 0 0% accuracy 

or binary class. In attack wise comparison C and C attack has 

iven the least performance with 8.36 false rate. Apart from tam- 

ering and RDOS and lateral moveman ent all the attack detection 

ith PIGNUS results above $99producesuracy. We provide a de- 

ailed summary of the PIGNUS performance against attacks using 

-IIoTID dataset in Table 9 . 

.3.3. Comparison of PIGNUS with state-of-the-art models 

We compare our proposed PIGNUS with the state-of-the-art 

odels and display the results in Table 10 . Feed forward methods 

ave the disadvantage of non-recurrent values or missing values. 

e solve this problem by cascading recursive method proposed in 

IGNUS. Our proposed model works with recursive connectivity to 

alculate weight and bias. PIGNUS also forwards the values to the 

ext layer for fine-tuning the detection technique. 

From Table 10 show that all of the models’ accuracy in- 

reases as recall values rise and the other models perfor- 

ances are fairly comparable. With loop connection PIGNUS can 

rack both the forward and backward process and it produces 

% false rates for detection which is comparable to the FNN 

odel ( Ge et al., 2019 ). Anomaly detection using DAE and DFNN 

y Muna et al. (2018) achieved 92.04% accuracy, while PIGNUS 

chieved 99.02% accuracy for NSK-KDD dataset. The nested struc- 

ure of the cascading model improve performance significantly. 

IGNUS is more accurate than DRaNN ( Latif et al., 2020 ) compared 

ith the false rate and performance for the KDDCUP+ dataset. 

IGNUS performs much better than ( Li et al., 2020 ). CNN meth- 

ds are more usable for image-based datasets a multi-conventional 

etwork model proposed by Li et al. (2020) results in a 13.5 

alse ratio comparatively the highest false rate out of all avail- 

ble models. RSRT model ( Hassan et al., 2020 ), DNN and DT 

odel ( Latif et al., 2020 ) show 96 . 00% accuracy for IIoT datasets.

IGNUS outperforms all these mentioned models with 100% ac- 

uracy. DNN model ( Choudhary and Kesswani, 2020 ) is tested on 

DDCup99, NSLKDD, and UNSW-NB15 datasets and projects high 

erformance compared to other datasets. Our PIGNUS results in 

00% accuracy for the same dataset with five recursive and cas- 

ading layers. The false-positive ratio of our model is less than all 

he models. High accuracy with notable precision value is observed 

n Latif et al. (2020) . However, the disadvantage with regular deep 

earning techniques is to determine values with the next layer; 
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Table 10 

Comparison of DL models for IDS in Industrial IoTs. 

Source DL Technique Dataset Accuracy (%) FPR Precision Recall 

Muna et al. (2018) DAE and DFNN NSL-KDD 95.05 5.00 0.94 0.84 

Ge et al. (2019) FNN BoT-IoT 99.00 1.00 0.99 0.99 

Hassan et al. (2020) RSRT SCADA 96.71 3.29 0.97 0.96 

Li et al. (2020) Multi-CNN KDD test + 21 86.95 13.05 0.89 0.87 

Al-Abassi et al. (2020) DNN, DT GP, SWaT 96.00 4.00 0.94 0.93 

Latif et al. (2020) DRaNN UNSW-NB15 99.41 0.59 0.99 0.98 

Choudhary and Kesswani (2020) DNN-IDS UNSW-NB15 91.50 8.50 0.93 0.92 

Tian et al. (2020) Multiple concurrent DL CSIC 2010 99.04 0.60 0.99 0.95 

Li et al. (2021) CNN-GRU Industrial CPS 99.20 0.80 0.95 0.94 

Awotunde et al. (2021) DFNN UNSW-NB15 98.09 1.10 0.967 0.99 

Friha et al. (2022) DNN, CNN, RNN CSE-CICIDS2018 99.02 0.8 0.92 0.96 

Tharewal et al. (2022) DRL-IDS Gas Pipeline 99.01 0.01 0.99 0.99 

Proposed PIGNUS AE + CFBPNN UNSW-NB15 100.00 1.00 1.00 1.00 
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IGNUS have the advantage of processing the previous weight and 

ias values to the next hidden layers. 

We compare the FPR metrics for all the existing models 

iven in Table 10 . We observe different performances between 

ulti-CNN and the proposed PIGNUS model. The concurrent DM 

odel is close to the results of PIGNUS, at the same time 

ian et al. (2020) has a minimum false rate indicating more 

etection efficiency. Comparing PIGNUS with the latest model, 

riha et al. (2022) produce 99 . 2% accuracy tested on water storage 

ank results. 

The model works effectively on testing with the traditional 

ataset but real-time industrial dataset comparison is not much 

lear. Real-time testing model ( Tharewal et al., 2022 ) for indus- 

rial gas pipeline dataset results with 99 . 9% accuracy; following 

he similar line PIGNUS results in 100% accuracy for the indus- 

rial dataset. The experiment results in 0% FPR for NSLKDD+, wa- 

er storage tank, and 0 . 22% for UNSW-NB15, and 2.89 for the gas

ipeline dataset. The strong reason for this efficiency is the length 

f vectors passed on to the model for processing. We notice that 

E implementation for the dataset has high dimensions and re- 

ains a low false rate compared to the high featured dataset. This 

roves that our PIGNUS model is suitable for providing security in 

IoT networks. 

. Conclusion 

In this paper, we propose PIGNUS a hybrid model with the 

ombination of AE and CFBPNN. PIGNUS identifies multi-class IIoT 

ttacks and contributes towards a secured environment with in- 

reased attack detection effectiveness. To demonstrate the model’s 

erformance we test PIGNUS on five well-known datasets: UNSW- 

B15, NSLKDD+, X-IIoTID, gas pipeline, and water storage tank. On 

he UNSW-NB15 and gas pipeline dataset, PIGNUS performs best 

ith a 0 . 0% false rate in identifying multi-class attacks. Given that 

he model was developed using IIoT-specific datasets, the results 

emonstrate how well-suited PIGNUS for the IIoT environment. In 

he future, we would like to extend our experiment with other 

pen datasets and enhance multi-class attack identification to gen- 

ralize the findings. 
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