
Abstract— Speech plays a vital role in communication, from expressing oneself, to utilizing speech-based 
platforms, speech is a necessity. Any disruption in speech is referred to as disfluency, and can impact one’s 
quality of life. This paper presents an experimental study on various techniques for the detection and 
classification of speech disfluencies. Six different types of disfluencies are examined in this paper, namely 
Interjection, Sound Repetition, Word Repetition, Phrase Repetition, Revision and Prolongation (6 classes). 
However, this paper also goes a step further by including the clean speech signals as an added class alongside 
the six disfluencies, thereby making this work more robust with 7 classes. Various machine learning approaches 
have been investigated on the University College London Archive of Stuttered Speech (UCLASS) dataset; a 
standard disfluency dataset generated by University College London (UCL). Five different feature extraction 
techniques viz. Mel Frequency Cepstral Coefficients (MFCC), Linear Predictive Cepstral Coefficients (LPCC), 
Gammatone Frequency Cepstral Coefficients (GFCC), Mel-filterbank energy features, and Spectrograms have 
been used. Comparative analysis of various classifiers shows that MFCC, GFCC, and Spectrograms achieved 
greater than 90% accuracy on both 6 and 7 classes with the kNN classifier. As a future scope to this study, the 
authors aim to focus on tackling the challenges of detecting multiple disfluencies present simultaneously in a 
speech sample. 
 
Index Terms— Disfluency, Speech Recognition, Feature Extraction, Speech Signals. 
 
1. Introduction 

 
Speech is an effective way to express ideas, feelings, and 
thoughts by humans. Speech is vital to effective 
communication. However, speech is not always without 
disruptions. Any disruption in speech is referred to as 
disfluency. Disfluencies in speech make it challenging for 
individuals to express themselves. Most people are 
disfluent to some extent in speaking. Disfluency, seen in 
about 5% children and in about 1% adults of the world 
population, is also referred to as stuttering (Bloodstein, 
1969; Esmaili et al., 2016a). The male population is 4 
times more likely to have disfluency in comparison to 
females (Awad, 1997; Chee et al., 2009b).  
 Determining the cause of stuttering is still a major 
challenge, however several aspects such as genetic, 
psychological, and neurological factors have been 
explored (Conture, 2001; Johnson and Supplement, 1961; 
Watkins et al., 2008; Weber-Fox et al., 2013). Same type 
of genes shared by family members and usually the family  

 
environment, have a huge impact on the stuttering of 
individuals (Drayna and Kang, 2011). However, there is 
no consistent proof of sharing stuttering with genes 
(Smith and Weber, 2016). Generally, Psychological 
factors are seen in the young children which can often be 
recognized as anxiety, lack of confidence, fear, hesitation 
etc. (Smith and Weber, 2016). These factors also play a 
significant role in speech disfluencies.  

Most commonly used classification of disfluencies was 
proposed by Johnson (Johnson, 1961) and it has been used 
ever since by researchers and clinicians. The purpose of 
this study by Johnson was to explore the implications 
from the obtained data and to have clarification of the 
fundamental nature of stuttering. According to Johnson’s 
classification, the types of disfluencies are: 1. Incomplete 
Phrase (To change the words), e.g. HE 
SHOULD…Where is he going? 2. Revision (To change 
the words), e.g. Where are THEY we going? 3. 
Interjection (Addition of words that are meaningless or 
irrelevant to the sentence), e.g. Where are uh-ummm we 
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going? 4. Phrase Repetition (Repeating a Phrase), e.g. 
WHERE ARE Where are we going? 5. Word Repetition 
(Repeating a whole word), e.g. WHAT-WHAT-what are 
you doing? 6. Part-word Repetition (Repeating a sound or  
syllable), e.g. W-W-W-what are you doing? 7. 
Prolongation (Holding a sound for a longer duration), e.g. 
What are wwwwwwwe doing? 8. Broken Word (Inserting 
pause inside a word) What are we DO-(pause)-ING?  

The researchers (Yairi and Ambrose, 1999) have 
attempted to provide a grouping scheme for the listed 
symptoms based on which symptoms are Most Typical  
and Less Typical . Conture’s (Conture, 2001) scheme 
considers symptoms that happen within words 
(classification types 5–8) as a sign of stuttering falling 
under Most Typical. Yairi and Ambrose’s (Yairi and 
Ambrose, 1999) scheme places these same symptoms into 
the Most Typical. Wingate’s (Wingate, 2001, 2002) 
scheme further divides the Most Typical symptoms (types 
6–8) from hesitation-type Less Typical symptoms (types 
1–5). Thus, all three schemes place symptoms 1–4 in the 
Less Typical, and symptoms 6–8 in the Most Typical. 

Classification types are quite helpful in diagnostic 
assessment of speech disfluencies. Generally, the Speech 
Language Pathologist (SLP) manually performs a 
disfluency assessment by counting the number of 
disfluent words as a proportion to the total words in a 
passage (Yaruss, 1997). This also considers the time 
duration of the disfluencies and the total time taken for 
reading a passage. However, correct assessment has a 
huge dependency on the expert speech language 
pathologists, which may lead to low agreements between 
different SLPs. Even the work of experts on disfluency 
assessment utilizes a manual approach which includes 
recording of the speech, transcribing the speech and 
counting the different kinds of speech disfluencies (Stein-

Rubin and Fabus, 2011). Hence, these stuttering 
assessments are usually time consuming, inconsistent, 
subjective, and prone to error (Curlee, 1981; Young, 
1975). An automated assessment of speech disfluencies 
could be an effective solution. The automated model can 
evaluate the performance of the disfluent people before 
and after therapy, thereby acting as an important addition 
to speech therapy. It can also reduce the tedious work of 
SLPs by correctly identifying the disfluencies in the 
speech. This will help SLPs in focusing more on the 
therapy session rather than counting the disfluencies in 
the speech.  

Automatic Speech Recognition (ASR) systems do not 
focus on handling disfluencies in speech (Mullin, 2016). 
Users suffer because the disfluent speech is not 
recognized accurately by the ASR systems. One of the 
reasons for the inaccuracy of ASR systems is that they 
assume that every sound generated by a user is an 
intended sound. However, this is not true for people with 
speech impediments. Hence, it leads to reduced 
effectiveness in proper utilization of the ASR systems. 
ASR systems will also be benefitted by automatic 
assessment of the disfluent speech as it will help the 
disfluent users to effectively utilize the ASR system. The 
task of automatic identification and classification of 
disfluencies in human speech is generally complex due to 
the lack of properly annotated datasets and occurrence of 
multiple disfluencies simultaneously. 

In this paper, the main focus was to include a greater 
number of speech disfluencies which has not been the 
case with any study with machine learning approaches. 
The authors explored different acoustic features such as 
MFCC, LPCC, GFCC, Mel-filterbank energies and 
Spectrogram with different machine learning algorithms 
such as kNN, Decision Trees, LDA, SVM, Ensemble 

 
Fig. 1. General Framework for Disfluency Classification 

 



algorithms. The MFCC, GFCC and Spectrogram features 
performed well with more than 90% accuracy. However, 
the MFCC features were better than the other two features 
in terms of a smaller number of coefficients used and 
more precision, recall and F1 score. The novelty of this 
paper lies in classifying a greater number of disfluency 
classes as well as including clean speech to be trained 
alongside disfluencies based on the assumption that the 
inherent patterns of disfluent classes match the clean 
speech class too. Hence, training our model on clean 
speech would make the model more robust. This paper is 
organized as follows. Section 2 presents an overview of 
previous studies on automatic recognition and 
classification of speech disfluencies. Section 3 discusses 
various techniques used for pre-processing, feature 
extraction and classification of speech disfluencies. 
Section 4 presents the results of the techniques used in this 
research. Section 5 concludes the paper with future scope. 
 
2. Related Work 
 

Various studies have been carried out on the detection 
and classification of disfluencies in speech. The general 
framework (Fig. 1) for speech disfluency classification is 
to first train a set of machine learning and/or deep learning 
classifiers on a set of features obtained from a given 
dataset. Numerous speech corpora are available for 
research purposes having the recorded speech of 
volunteers. The most widely used corpus for disfluency 
recognition is University College London Archive of 
Stuttered Speech (UCLASS) (Howell et al., 2009) 
database. Most of the studies presented here have 
incorporated speech samples from UCLASS. UCLASS is 
a stuttered speech database developed by speech group in 
Psychology department of University College London. 
Two releases of UCLASS have been developed in English 
language. Release-I was developed in 2004 which 
included a total of 138 participants (120 Male & 18 
Female) with age ranging between 5 years 4 months and 
47 years 0 months. This release contained only monolog 
audio samples recordings. Release-II of UCLASS was 
introduced in 2008. It contained 3 types of audio samples: 
Monolog, Reading, Conversation. A total of 82 samples 
of monolog recordings are presented in release-II, out of 
which 76 samples are of male and 6 samples are of female 
participants. Similarly, 108 samples (93 male & 15 
female) of reading and 128 samples (110 male & 18 
female) are available in the corpus. Age of the participants 
in release-II is between 5 years 4 months and 20 years 7 
months. Audio recordings are presented in WAV, MP3 
and SFS (Speech Filing System) format. 

 Limited number of transcriptions are provided for the 
data in both release-I and release-II, which is a major 
drawback of the dataset as it is difficult to validate the 
research findings without required annotations. Another 
drawback of UCLASS is the mismatch between the male 
and female participant ratio. Sound quality of the 
recordings is also variable as the recordings were not 
achieved at the same location. This may be a challenge for 
ASR systems to cope up with the sound quality 
variability. 
 The general approach used by every study is to segment 
the speech files according to the annotations. Features are 
then extracted from segmented speech files. The extracted 
features with the corresponding labels are then fed into 
the specified learning models. 

The first attempt in the recognition of the stuttered 
events was made by Howell & Sackin (Howell and 
Sackin, 1995). They trained Artificial Neural Networks 
(ANN) for the two stuttering events Repetitions and 
Prolongations. Autocorrelation function and envelope 
parameters were used as input features.  

Autocorrelation functions performed slightly better 
than envelope parameters with a hit rate of 82% for 
prolongation and 77% for repetition, where envelope 
parameters recorded a hit rate of 79% and 71% for 
prolongation and repetition, respectively. Other studies 
were performed by different authors for recognition of 
disfluencies in speech using ANN (Geetha et al., 2000; 
Howell et al., 1997a, b; Savin et al., 2016) with highest 
reported accuracy of 87.39% by incorporating data from 
4 speakers (Savin et al., 2016). 

Until recently most researchers used ANN as a 
classifier for recognition of stuttering events in speech. 
However, recent studies have focused on other algorithms 
such as Hidden Markov Models (HMM) (Nöth et al., 
2000; Tan et al., 2007; Wiśniewski et al., 2007a; 
Wiśniewski et al., 2007b), Support Vector Machines 
(SVM) (Arbajian et al., 2017; Ravikumar et al., 2009), k-
Nearest Neighbors (KNN) and Linear Discriminant 
Analysis (LDA) (Ai et al., 2012; Chee et al., 2009a; Fook 
et al., 2013; Hariharan et al., 2012; Lim et al., 2009), 
Multilayer Perceptron (MLP) (Ravikumar et al., 2008; 
Świetlicka et al., 2009; Świetlicka et al., 2013; 
Szczurowska et al., 2014) etc.. The highest accuracy of 
90% was reported using HMM on a dataset consisting of 
10 artificially generated stuttered speeches (Tan et al., 
2007). An accuracy of 95% was reported using SVM and 
94% using k-NN and LDA on UCLASS (Howell et al., 
2009) dataset. An accuracy of 91% was reported using 
MLP on 8 stuttering speakers and 4 normal speakers 
(Świetlicka et al., 2009). However, majority of these 
studies have included only two types of disfluencies for 



recognition i.e., Repetition and Prolongation and the 
training of the classification algorithms were performed 
on a limited number of speech samples. 

More recent studies have included deep learning 
architectures for the recognition of the disfluent speech. 
Kourkounakis et. al. (Kourkounakis et al., 2020a) 
investigated the Bi-Directional LSTM with spectrograms 
as features to produce overall 91.15% accuracy in 
classifying 6 classes. Authors again extended their work 
by developing an architecture named FluentNet, which 
includes ResNET with Bi-Directional LSTM and 
attention layer (Kourkounakis et al., 2020b). Their work 
achieved 91.75% accuracy on UCLASS dataset and 
86.70% accuracy on manually developed dataset 
LibriStutter. 

Sheikh et. al. (Sheikh et al., 2021) explored time delay 
neural networks with MFCC as features on UCLASS 
dataset, achieving only 50.79% overall accuracy. Lea et. 
al. (Lea et al., 2021) introduced a disfluency dataset 
named SEP-28k generated from public audio podcasts 
with 5 different types of disfluencies. They explored 
ConvLSTM on the dataset by achieving 83.6% weighted 
accuracy. The authors incorporated Mel-filterbank 
energies, pitch, pitch delta, articulatory features and 
phoneme probabilities as features for the study. The trend 
of incorporating different types of features have also 
changed over the years. Initial reported studies have used 
features such as autocorrelation function and envelope 
parameters (Howell and Sackin, 1995), duration, energy 
peaks, spectral of word based and part word based, 
frequency of dysfluent portions, speaking rate etc. 
(Czyzewski et al., 2003; Geetha et al., 2000; Howell et al., 
1997a, b; Nöth et al., 2000; Szczurowska et al., 2014). 
Recent studies have incorporated features as Mel 
Frequency Cepstral Coefficients (MFCC) (Chee et al., 
2009a; Fook et al., 2013; Ravikumar et al., 2009; 
Ravikumar et al., 2008; Tan et al., 2007; Wiśniewski et 
al., 2007a; Wiśniewski et al., 2007b), Linear Predictive 
Cepstral Coefficients (LPCC) (Ai et al., 2012; Hariharan 
et al., 2012), Linear Predictive Coding (LPC) (Fook et al., 
2013; Hariharan et al., 2012), Perceptual Linear 
Predictive (PLP) (Esmaili et al., 2016b; Fook et al., 2013), 
Spectrograms (Kourkounakis et al., 2020a; Kourkounakis 
et al., 2020b) etc. These features provide information 
about the spectra of the speech signal which is quite 
helpful in estimating the phonetic information of the 
signal. Most of the studies with machine learning 
techniques have used this spectral information to classify 
the disfluencies. The recent deep learning 
studies(Kourkounakis et al., 2020b) have exploited the 
spectral as well as temporal information of the speech 
signals in order to better understand the complex features. 

Almost every deep learning architecture (Kourkounakis et 
al., 2020a; Kourkounakis et al., 2020b; Lea et al., 2021) 
has introduced LSTM to better understand the temporal 
structure of the signal. 
 Studies have also included manually generated 
datasets, which have been developed and utilized in 
different languages viz. Polish (Czyzewski et al., 2003; 
Świetlicka et al., 2013; Szczurowska et al., 2014), Malay 
(Tan et al., 2007), Mandarin (Jiang et al., 2012), Kannada 
(Geetha et al., 2000) etc. However, these datasets have 
been utilized for small studies and are not available as a 
public dataset to be used for research purposes. As far as 
the authors are aware, this study is the first with a separate 
class which includes a clean speech, unlike any other 
study. 
 

3. Methodology 
 
The approach followed in this study is presented in Fig. 2 
and focused on five types of speech disfluencies: 
Interjection, Sound Repetition, Word Repetition, Phrase 
Repetition, Revision and Prolongation. Speech data for 
the same was obtained from UCLASS release-I. A total 
of 25 speech samples were selected from the reading data 
for the experimental study according to the availability of 
the orthographic transcriptions. These samples contained 
monologues from the participants. Out of the 25 speech 
samples, 2 were of female speakers and 23 were of male 
speakers. Age of the speakers was in the range of 8 years 
to 18 years. 
 
3.1. Segmentation 

Speech disfluencies were recognized and then 
segmented based on the annotation provided by 

 

Fig. 2. General Block Diagram 

 



Kourkounakis et. al. (Kourkounakis et al., 2020a). A total 
of 1272 speech samples were extracted from the 25 
speech files. The extracted samples were then labelled 
into 7 classes (clean speech, interjections, sound 
repetitions, word repetitions, phrase repetitions, revisions 
and prolongations) according to the annotations. 

 
3.2. Feature Extraction 
 

The speech files had a sampling frequency of 44.1 kHz, 
which were down-sampled to 16 kHz. This is because the 
most salient features required for the processing of speech 
are present within 8 kHz frequency range and to fulfill 
Nyquist criteria the sampling frequency must be at least 
16 kHz. 

MFCC features were the first features extracted from 
the dataset. Over the past few decades, the MFCC has 
been widely used in the speech recognition and speaker 
identification (Chee et al., 2009a; Fook et al., 2013; 
Ravikumar et al., 2009; Ravikumar et al., 2008; Tan et al., 

2007; Wiśniewski et al., 2007a; Wiśniewski et al., 
2007b). The sound generated by human beings depends 
upon the shape of the vocal tract which includes tongue, 
teeth etc. If there is a way to determine the shape of vocal 
tract, then any produced sound can be represented 
correctly. Vocal tract is represented by the envelope of the 
time power spectrum of the speech signal and MFCC 
accurately represents this envelope. Mel-scale present in 
the MFCC extraction is a scale that relates the perceived 
frequency of the signal to the actual measured frequency 
as it can capture the minor changes in the frequency. It 
scales the frequency closer to a human ear can hear. 

MFCC feature extraction approach generally includes 
pre-emphasizing the signal as a first step, which includes 
applying a filter to the speech signal to provide 
compensation for the suppressed high frequency 
component during speech production mechanism of 
human beings. The signal is then divided into frames and 
windowing is applied to the signals before applying FFT 
to it. Mel-scale filters are then applied to extract 

Table 1 MFCCs 7 Class 
Classifier Number of 

MFCC 
Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Fine kNN 13 MFCCs 89.6% 91.04% 84.03 85.84 84.9 
Fine kNN 21 MFCCs 93.0% 94.6% 91.03 91.44 91.24 
Fine kNN 31 MFCCs 94.7% 96.4% 94.12 94.88 94.5 
Fine kNN 40 MFCCs 93.3% 95.2% 91.79 91.93 91.8 

 

 
Table 2 MFCCs 6 Class 

Classifier Number of 
MFCC 

Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Fine kNN 13 MFCCs 88.3% 90.23% 97.02 97.06 97.04 
Fine kNN 21 MFCCs 92.1% 94.35% 98.29 98.4 98.35 
Fine kNN 31 MFCCs 93.9% 95.9% 98.89 98.70 98.79 
Fine kNN 40 MFCCs 92.0% 94.42% 98.39 98.20 98.29 

 

 
 

                            Table 3 LPCCs 7 Class 
Classifier Number of 

LPCC 
Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Weighted kNN 13 LPCCs 80.2% 80.53% 78.24 37.22 50.44 
Weighted kNN 21 LPCCs 82.3% 83.0% 85.65 46.22 60.04 
Weighted kNN 31 LPCCs 82.1% 82.77% 89.38 45.69 60.47 
Weighted kNN 40 LPCCs 81.4% 82.06% 88.55 42.76 57.67 

 

 
                               Table 4 LPCCs 6 Class 

Classifier Number of 
LPCC 

Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Weighted kNN 13 LPCCs 67.7% 69.08% 86.15 90.05 88.06 
Weighted kNN 21 LPCCs 72.1% 73.43% 88.42 91.55 89.96 
Weighted kNN 31 LPCCs 71.3% 72.56% 87.07 91.09 89.03 
Weighted kNN 40 LPCCs 69.9% 71.58% 87.12 90.22 88.64 

 

 
 



frequency bands. Discrete Cosine Transform (DCT) is 
performed as the last step to generate MFCC features. 

Linear Predictive Cepstral Coefficients (LPCC) are 
computationally less expensive as they do not contain 
steps like computing the Fourier transform of the signal 
in the initial stages to convert the signal from time to 
frequency domain. The Cepstral coefficients can be 
directly derived from Linear Predictive coding (LPC). 
The first 3 steps of extracting LPCCs namely pre-
emphasis, framing and windowing are the same as 
MFCCs. Autocorrelation analysis performed in LPC is 
based on the idea that any given speech segment in the 
time domain can be represented as a linear combination 
of the previously present segments values. 

Third speech extractor used is Mel-filterbank energies 
which are closely related to MFCC features. Steps 
required to generate Mel-filterbank energies are similar to 
MFCCs except the last step. In general, the coefficients 
generated after applying the Mel-scale are highly 
correlated and hence some machine learning algorithms 
tend to suffer performance loss. Hence, DCT is applied to 

Mel-filterbanks to generate uncorrelated MFCCs with 
reduction of dimensions. However, Mel-filterbank 
energies do give us the human perception of speech 
signals. Even though MFCC features provide better 
performance with less coefficients than Mel-Filterbank 
energy features, however, some studies (Miranda et al., 
2019) have reported the better performance of Mel-
filterbank energies due to more end to end machine and 
deep learning approaches. Hence, the Mel-filterbank 
energy features were included in the study. 

Gammatone Frequency Cepstral Coefficients (GFCC) 
are more recent features in processing of the human 
speech. These are based on the filtering mechanism of 
human cochlear (Patterson et al., 1987).The main idea 
behind GFCC was to develop a model that resembled the 
psychophysical observations of auditory periphery 
(Jeevan et al., 2017). The scaling used in GFCC is 
equivalent rectangular bandwidth (ERB) while MFCC 
uses Mel scale. Motivation behind including the GFCC 
features is its ability to provide more noise robustness 
than MFCC features.(Zhao and Wang, 2013)  

Table 5 GFCCs 7 Class 
Classifier Number of 

GFCC 
Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Fine kNN 13 GFCCs 85.0% 85.99% 84.73 60.73 70.75 
Fine kNN 21 GFCCs 88.6% 90.25% 81.58 83.27 82.41 
Fine kNN 31 GFCCs 90.5% 92.4% 86.15 86.78 86.4 

 

 
Table 6 GFCCs 6 Class 

Classifier Number of 
GFCC 

Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Fine kNN 13 GFCCs 81.9% 84.10% 94.94 94.89 94.92 
Fine kNN 21 GFCCs 87.1% 89.25% 96.36 96.78 96.57 
Fine kNN 31 GFCCs 89.4% 91.57% 96.99 97.66 97.32 

 

 
 

               Table 7 Mel Filterbank 7 Class 
Classifier Number of 

Mel FB 
Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Weighted kNN 13 MFBs 79.1% 79.69% 69.30 37.06 48.29 
Weighted kNN 21 MFBs 79.9% 80.7% 71.54 41.71 52.69 
Weighted kNN 31 MFBs 80.1% 80.6% 76.85 37.96 50.81 
Weighted kNN 40 MFBs 80.1% 80.8% 76.96 37.43 50.36 

 

 
              Table 8 Mel Filterbank 6 Class 

Classifier Number of 
Mel FB 

Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Weighted kNN 13 MFBs 62.9% 64.22% 86.77 84.71 85.73 
Weighted kNN 21 MFBs 62.3% 63.90% 86.66 83.57 85.09 
Weighted kNN 31 MFBs 62.5% 64.14% 85.37 84.23 84.80 
Weighted kNN 40 MFBs 61.9% 63.60% 84.62 84.55 84.58 

 

 
 
 
 
 



The process of GFCC features extraction includes 
converting the signal to frequency domain by applying 
Fast Fourier Transform (FFT) and multiplying it with the 
gammatone filterbank. The signal is then again converted 
back to the time domain using inverse Fourier transform. 
Signal is decimated to a lower frequency, to reduce the 
effect of noise. Then non-linear rectification process is 
applied to the absolute values of the decimated signal. The 
rectification process uses cubic root operation as opposed 
to a log operation used in MFCC. Then finally, discrete 
cosine transform is applied to obtain the GFCC features. 

A Spectrogram is a visual representation of the strength 
of the signal. In other words, it is a representation of the 
amplitude of various frequencies present in a particular 
signal over time (Khan et al., 2021). The visual 
representation of spectrograms displays a brighter region 
where there is a heavy concentration of the sound and a 
dark or less bright region where there is very less or no 
sound. 

To compute spectrograms, the audio is first split into 
overlapped frames or windows. Then a short time Fourier 
transformation is applied to each window and its absolute 
value is obtained. The resulting windows include the 
information about magnitude vs frequency. Logarithm is 
applied to the windows to convert to decibel scale. This 
provides a better image of sound structure. 

Various studies (Ai et al., 2012; Fook et al., 2013) have 
included a variation in the number of coefficients of the 
feature extractors. However, the work presented in our 
paper goes a step further with the approach and has 
included 4 different number of coefficients. Authors 
extracted 13, 21, 31, and 40 coefficients of each feature 
extractor for our study to investigate the impact of number 

of coefficients on overall performance of the 
classification algorithms. The authors decided to 
experiment with different combinations of number of 
coefficients. Authors started by including 13 as the lowest 
number for all the coefficients and eventually increased 
the number of coefficients (21, 31, 40). The decision to 
stop the experiments for each feature was based on when 
the increase in coefficients did not improve the results. 
 
3.3. Classification 

 
The extracted features were given as input to the 

various machine learning classification algorithms. 
Algorithms used for the classification were Decision 
Trees, Linear and quadratic discriminant analysis, 
Support Vector Machines, k-Nearest Neighbor, and 
Ensemble Algorithms (Bagged Trees). Different variants 
of these algorithms were used along with a heuristic set of 
parameter values. In total, 15 classification algorithms 
were evaluated in this experimental study. 

The kNN variants used were: 1) Fine kNN for which 
the value of k was 1 and distance was calculated using 
Euclidean distance. 2) Medium kNN for which the value 
of k was 10 and the distance was calculated using 
Euclidean distance. 3) Coarse kNN for which the value of 
k was 100 and the distance was calculated using 
Euclidean distance. 4) Cosine kNN the value of k was 10 
and the distance was calculated using a cosine distance 
metric. 5) Weighted kNN for which the value of k was 10 
and the distance was calculated using a distance weight. 

Different variants used for decision trees were fine 
trees, medium trees and coarse trees for which the only 
difference was the maximum number of splits of the 
leaves, which were 100 splits for fine trees, 20 splits for 

Table 9 Spectrogram 7 Class 
Classifier Number of 

Spectrogram 
Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Fine kNN 13 Spectrograms 75.8% 76.11% 57.72 8.31 14.53 
Fine kNN 21 Spectrograms 77.9% 78.41% 75.71 22.66 34.88 
Fine kNN 31 Spectrograms 79.9% 80.78% 80.88 37.23 50.98 
Fine kNN 40 Spectrograms 83.4% 85.85% 73.69 76.36 75.00 
Fine kNN 257 Spectrograms 93.8% 96.35% 94.18 94.65 94.41 

 

 
Table 10 Spectrogram 6 Class 

Classifier Number of 
Spectrogram 

Features 

Validation 
Accuracy 

Test 
Accuracy 

Precision Recall F1 
Score 

Fine kNN 13 Spectrograms 54.0% 54.83% 78.69 81.17 79.91 
Fine kNN 21 Spectrograms 62.8% 65.14% 86.69 85.67 86.17 
Fine kNN 31 Spectrograms 72.1% 74.67% 91.14 90.43 90.78 
Fine kNN 40 Spectrograms 77.5% 80.63% 93.65 93.31 93.48 
Fine kNN 257 Spectrograms 89.6% 92.09% 97.38 97.45 97.41 

 

 
 



medium trees and 4 splits for coarse trees and the split 
criteria used for all three variants was Gini’s diversity 
index. 

LDA creates linear boundaries between classes 
whereas the quadratic discriminant creates non-linear 
boundaries. Hence, linear discriminant and quadratic 
discriminant was used for LDA and quadratic 
discriminant respectively. The ensemble algorithms 
combine different machine learning algorithms to achieve 
high accuracy. Algorithm used was: Bagged trees which 
combines random forest with decision tree learners. 
Method used was bootstrap aggregation and the number 
of learning cycles was set to 30, whereas the number of 
splits for decision tree used was 60000. Linear SVM, Fine 
gaussian SVM, Medium gaussian SVM, Coarse gaussian 
SVM were used as variants of the support vector 
machines. Kernel function used for linear SVM was linear 
while for the other variants gaussian kernel function was 
used. The Regularization parameter (C) used in all the 
variants was 1 whereas the gamma parameter used was 1, 
0.87, 3.5 and 14 for Linear SVM, Fine gaussian SVM, 
Medium gaussian SVM, Coarse gaussian SVM 
respectively. 

All the classifiers were investigated on five different 
feature extractors with variations in the number of 
features. This led to a large number of results, but in this 
paper only the best results for each classifier (and 
parameter combination) are presented. 
 

3.4.  Evaluation Metrics 
 

Four parameters are used for the evaluation of 
disfluency detection; Accuracy, Precision, Recall and 
F1 Score. Accuracy gives the measure of correctly 
classified data samples over total data samples. 
Precision gives the proportion of positive predictions 
that are actually correct. Recall measures the 
proportion of actual positives that are predicted 
correctly. F1 score gives the harmonic mean between 
precision and recall. Better the F1 score, more balanced 
is the classification model. 

Precision = True Positive
True Positive+False Positive

 
 

Recall = True Positive
True Positive+False Negative

 
 

F1 = 2 * Precision∗Recall
Precision+Recall

 
 

4. Results and Discussions 
Most studies included in the literature have explored 

only two classes, repetition and prolongation for 
classification. The work presented in this manuscript has 
included a total of 6 types of disfluencies alongside the 
clean speech, unlike any other previous studies. The 
chance accuracy with two classes would be 50% while the 
chance accuracy with our study involving 6 classes is 
16.66%. This means our model can discover/classify 
more patterns from within a disfluent speech than other 
studies. The main reason for the inclusion of clean speech 
alongside other disfluencies was to increase the 
robustness of the classifiers. The authors feel that the 
patterns of disfluencies such as repetitions (character, 
word, phrase) are somewhat similar to the clean speech, 
and so it would be sensible to include clean speech 
alongside the 6 disfluencies. Hence, each classifier was 
examined on 7 classes (clean speech and 6 disfluencies) 
as well as 6 class (6 disfluencies only) data. The 6-class 
data was included only for the comparison with previous 
studies which also have not included clean speech. 

The extracted features data was divided into a training 
set and a testing set in the ratio of 70% and 30% 
respectively. Classification algorithms were trained on 
the training dataset with 5-fold cross-validation. Test data 
was not used in the training stage. 

Table 1 gives the results on 13, 21, 31 and 40 MFCC 
features for 7 class data. Fine kNN performed well here. 
A validation accuracy of 94.7% and test accuracy of 
96.4% was achieved on 31 MFCC features, which was the 
best accuracy in this study. Even the precision, recall and 
F1 score is 94.12, 94.88 and 94.5 respectively, providing 
a very low misclassification rate. Fine kNN achieved 
greater than 89.6% validation accuracy and greater than 
91.04% test accuracy for all number of features. Similar 
results were obtained with 6 class data on kNN classifier 
as shown in Table 2. kNN achieved 93.9% validation 
accuracy and 95.9% test accuracy on 31 MFCC features. 

Table 11 Best results 
Classifier Number of Classes Number of Features Validation Accuracy Test Accuracy 
Fine kNN 7 Class 31 MFCCs 94.7% 96.4% 
Fine kNN 7 Class 31 GFCCs 90.5% 92.4% 
Fine kNN 7 Class 257 Spectrograms 93.8% 96.35% 
Fine kNN 6 Class 31 MFCCs 93.9% 95.9% 
Fine kNN 6 Class 31 GFCCs 89.4% 91.57% 
Fine kNN 6 Class 257 Spectrograms 89.6% 92.09% 

 

 



However, the precision, recall and F1 score produced here 
was higher than MFCC with 7 class making it more 
accurate than the previous. 

LPCC features performed quite poorly on the given 
dataset.                             Table 3 and                                Table 
4 show the results of 7 class and 6 class data. Weighted 
kNN achieved 83% test accuracy with 7 class data on 21 
features but with a less recall score. Which means that the 
number of False Negative (FN) values are more in the 
predicted values. However, with 6 class, 73.43% test 
accuracy was achieved but the precision, recall and F1 
score was 88.42, 91.55, 89.96 respectively, which shows 
that misclassification was much less than 7 class data with 
LPCC features. 

Gammatone Frequency Cepstral Coefficients also 
performed well with both 6 and 7 class data with test 
accuracy of more than 91% with fine kNN. Table 5 and 
Table 6 show the results. Validation accuracy of 90.5% 
and test accuracy of 92.4% for 7 class data and 89.4% 

validation accuracy and 91.57% test accuracy was 
achieved for 6 class data on 31 GFCC features with good 
precision, recall and F1 score. GFCC features were 
extracted with only 13, 21 and 31 features. The reason for 
not including 40 features was that the maximum number 
of permitted features were 32 because of the low sample 
rate of 16 kHz. This limits the number of features 
produced by GFCC. 

Mel-filterbank energy features also performed poorly 
on both 7 and 6 class data. Test accuracy of 80.8% (on 40 
features) and 64.22% (on 13 features) was achieved with 
7 and 6 class data respectively as shown in                Table 
7 and               Table 8 respectively. 7 class data performed 
very poorly on recall and F1 score while 6 class data 
performed well comparatively on all three precision, 
recall and F1 score.  

Table 9 and Table 10 show the results of spectrogram 
features for 7 and 6 class data respectively. Spectrogram 
features gave very low results from the start but as the 

Table 13 Confusion Matrix 7 Class 

Disfluency Clean 
Speech Interjection Sound 

Repetition 
Word 

Repetition 
Phrase 

Repetition Revision Prolongation 

Clean 
Speech 115353 510 1124 305 206 127 124 

Interjection 590 9450 73 35 27 5 7 

Sound 
Repetition 1171 84 14114 58 18 26 35 

Word 
Repetition 292 26 36 3984 10 10 7 

Phrase 
Repetition 164 18 19 10 3040 5 2 

Revision 112 9 26 11 6 1694 4 

Prolongation 138 13 38 2 2 4 2605 
 

 
 

 

Table 12 Confusion Matrix 6 Class 

Disfluency Interjection Sound 
Repetition 

Word 
Repetition 

Phrase 
Repetition Revision Prolongation 

Interjection 9773 197 88 48 28 25 

Sound 
Repetition 169 14990 170 66 49 90 

Word 
Repetition 65 109 3975 27 13 11 

Phrase 
Repetition 55 59 21 3101 9 5 

Revision 23 55 24 7 1678 8 

Prolongation 14 67 16 8 5 2684 
 

 
 

 



number of features started increasing, the results started 
improving. Spectrogram performed lowest on 13 features 
with 76.11% and 54.83% test accuracy for both 7 and 6 
class with very low precision, recall and F1 score for 6 
class. But with each increment in number of features the 
results improved. So, the number of features were 
increased to a higher value (257) and as expected 96.35% 
test accuracy was achieved for 7 class data and 92.09% 
test accuracy was achieved for 6 class data. The achieved 
accuracy maybe more for 7 class data but 6 class data 
produced more in terms of precision (97.38), recall 
(97.45) and F1 (97.41) score. 

The kNN classifier have produced the best results for 
each feature extractor. However, other classifiers were 
also investigated for the given problem. But every 
classifier other than kNN gave poor results. For example, 
for MFCC 7 class data 13 features, Decision Trees, LDA, 
Bagged Trees and SVM produced 76.27%, 
75.76%,82.83% and 75.80% test accuracy. But the 
important aspect of it was a very high misclassification 
rate. The values of precision, recall and F1 score were 
very less and mostly algorithms tend to have skewed 
results by classifying disfluent features as clean speech 
features. Similarly, for every other feature extractor with 
7 and 6 class data, the results produced were very poor. 
For the sake of simplicity, the results produced by other 
classifiers have not been included here. 

Table 11 presents the best results from all the feature 
extractors with 7 and 6 class data. MFCC features proved 
to be the best features for disfluent speech detection. With 
both 7 class and 6 class data, MFCC achieved the highest 
accuracy to detect disfluencies. MFCCs features 
accurately represent the envelope of the time power 

spectrum of a speech signal, correctly predicting the shape 
of vocal tract that produces the sound. 

The number features required for the best accuracy 
were 31. Experimenting with 40 features resulted in 
comparatively less accuracy, precision, recall and F1 
score. 

For LPCC features, the best accuracy for both 7 and 6 
class data was achieved at 21 features. However, for 7 
class the misclassification was comparatively higher. 
Even though the statistical measures (precision, recall and  
F1 score) improved with 6 class data, the overall accuracy 
was not comparable to MFCCs. 

GFCC features showed positive results towards the 
given problem with accuracy and statistical measures 
comparable to MFCC features. However, in the end 
MFFC features still had an upper hand. Like MFCC, the 
best results of GTCC also came when number of features 
were 31 for both 7 and 6 class data. Mel-filterbank energy 
features produced the poorest results of all 5 feature 
extractors. For 7 class data, Mel-filterbank features 
produced highest accuracy at 40 features and for 6 class 
data, these features produced highest accuracy at 13 
features. 

Spectrogram features started with very poor results 
with 13 features. However, with the increase in the 
number of features the results started gradually 
improving. The best results were achieved at 257 features 
for both 7 and 6 class data. The results produced by 
spectrogram features were comparable to MFCC features. 

Out of 5 feature extractors only 3 performed well with 
an accuracy of more than 90%. However, both MFCC and 
GFCC utilized 31 features for the best results, still the 
overall accuracy of MFCC was better. Spectrogram 

Table 14 Comparison with existing studies 
Author(s) Dataset Features Used Number of classes Classifier Best Accuracy 

 
Fook et. al.  UCLASS LPC, PLP, MFCC 2 (Repetition and 

Prolongation) 
kNN, LDA, SVM 95.7% 

Izabella et. al. Manual -- 2 (Fluent vs Disfluent) MLP, RBF 92% 
Chee et. al. UCLASS MFCC 2 (Repetition and 

Prolongation) 
kNN, LDA 90% 

Chee et. al. UCLASS LPCC 2 (Repetition and 
Prolongation) 

kNN, LDA 89.77% 

Chia et. al.  UCLASS MFCC, LPCC 2 (Repetition and 
Prolongation) 

kNN, LDA 94.51% 

Kourkounakis 
et. al. 

UCLASS Spectrogram 6 ResNet 91.15% 

Kourkounakis 
et. al. 

UCLASS Spectrogram 6 FluentNet 91.75% 

Proposed 
approach 

UCLASS MFCC, LPCC, 
GFCC, Mel filterbank 
Energy, Spectrogram 

6 and 7 kNN, LDA, 
SVM, Decision 
Trees, Bagged 
Trees 

96.4% for 7 Class 
with Fine kNN 
and MFCC,  
95.9% for 6 class 
with Fine kNN 
and MFCC 

 

 
 

 
 



features produced an accuracy comparable to MFCC 
features for 7 class data. But utilized a greater number of 
coefficients to produce the same accuracy. Hence, 
spectrogram features were computationally expensive. As 
a result, the experimentation was stopped at 257 features. 
However, based on the previous results of spectrogram 
the results may still improve if one chooses to move 
beyond that.  

Precision determines how many positive samples are 
being predicted than the negative ones whereas the Recall 
determines how many positive samples are being 
correctly predicted out of total positive samples. The high 
precision values in the results clearly shows that the 
number of false positives (FP) are being predicted less by 
the model. Similarly, the higher Recall value of the results 
gives an insight about the model being able to predict less 
false negatives (FN). F1 score is a harmonic mean of 
Precision and Recall. Higher the F1 score, higher is the 
correct predictive performance of the model. 

Table 12 and Table 13 displays the confusion matrix of 
best-case results in both 6 class and 7 class scenarios 
respectively. The matrix also shows the correlation 
between the different disfluencies. For example, in 
confusion matrix 6 class, for the interjection, the highest 
number of similar samples are of sound repetition, 
showing a certain level of similarity between these two 
classes. Similar conclusions can be drawn for other 
disfluencies too. However, in confusion matrix 7 class 
table, for all 6 disfluencies the highest number of similar 
samples are with clean speech (class 7), which justifies 
the original claim of including clean speech to make the 
classifier more. 

Table 14 gives a comparison of the results produced by 
other studies vs the study presented in this paper. As 
discussed, most studies included 2 types of disfluencies 
whereas the study presented here included 6 types of 
disfluencies and also clean speech. This makes our study 
more robust than the previous studies. Also, the two 
studies which included 6 classes have significantly lower 
accuracy than the models presented in this work. 

The main reason behind the MFCC features performing 
better may be that MFCC can correctly identify the sound 
produced by the human vocal tract and can provide with 
the correct shape of the power spectrum of sound (spectral 
envelope) which resembles the sound produced by a 
human (Deshwal et al., 2019).  

 
5. Conclusion and future scope 

 
This study presented different algorithms and feature 

extractors for the detection and classification of 
disfluencies present in speech signals. Out of all the 
algorithms, kNN outperformed every other algorithm 
single handedly. The similarity-based prediction 

capability of the kNN gave it an edge over other 
algorithms, as this algorithm can find similarities for new 
data in any range between 1 to 100 neighbors. 

 MFCC features too produced the best results, mainly 
because MFCCs describe the overall shape of spectral 
envelope which correctly resembles the sound produced 
by human vocal tract. MFCC features not only 
outperformed LPCC, GFCC, Mel-Filterbank energies, but 
also were computationally less expensive than 
spectrogram features as MFCC features took 
approximately 3.6 hours to train on 7 class data to produce 
best results whereas spectrogram features took 
approximately 33 hours for the same. 

As the real time speech signals may include multiple 
disfluencies simultaneously in a speech sample, the future 
scope in this field is to develop an automated 
segmentation technique for the disfluent speech in real 
time. Data from different speech dialects should be 
incorporated in this study so that a robust learning 
algorithm can be investigated for the classification of 
disfluencies. An approach also needs to be developed for 
automatic correction of the disfluent speech signals. This 
will help to improve the flow of speech signal as well as 
have a meaningful impact on the speech 
understandability.  
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