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A systematic understanding of the relationship between intelligence and consciousness can only be 

achieved when we can accurately measure intelligence and consciousness. In other work I have 

suggested how the measurement of consciousness can be improved by reframing the science of 

consciousness as a search for mathematical theories that map between physical and conscious states. 

This paper discusses the measurement of intelligence in natural and artificial systems. While 

reasonable methods exist for measuring intelligence in humans, these can only be partly generalized 

to non-human animals and they cannot be applied to artificial systems. Some universal measures of 

intelligence have been developed, but their dependence on goals and rewards creates serious 

problems. This paper sets out a new universal algorithm for measuring intelligence that is based on a 

system’s ability to make accurate predictions. This algorithm can measure intelligence in humans, 

non-human animals and artificial systems. Preliminary experiments have demonstrated that it can 

measure the changing intelligence of an agent in a maze environment. This new measure of 

intelligence could lead to a much better understanding of the relationship between intelligence and 

consciousness in natural and artificial systems, and it has many practical applications, particularly 

in AI safety. 

Keywords: Intelligence, consciousness, prediction, predictive brain, Bayesian brain, probability, 

artificial intelligence, AI, universal measure of intelligence.

 Introduction 

Humans are highly intelligent, and their brains are associated with rich states of 

consciousness. The connection between intelligence and consciousness in humans is 

unlikely to be a necessary relationship or a natural law because we can use radically 

different architectures (biological neurons, silicon chips, etc.) to build artificial systems 

that have the same level of intelligence (measured through objective tests), which are 

unlikely to have the same consciousness. Some of the possible connections between 

intelligence and consciousness were discussed in a previous paper [Gamez, 2020], which 

concluded that the relationship between intelligence and consciousness can only be 

systematically studied when we can accurately measure intelligence and consciousness in 

humans, non-human animals and artificial systems.  

In previous work [Gamez, 2018] I suggested how we could develop algorithmic 

theories of consciousness that would be able to generate believable predictions about the 

consciousness associated with a particular physical state. This would be a major 
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contribution to our ability to measure consciousness. This paper addresses the other half of 

the problem: how can we reliably measure the intelligence of humans, non-human animals 

and artificial systems? 

The first part of this paper discusses previous work on the measurement of intelligence 

in humans, non-human animals, and artificial systems. This includes batteries of questions, 

such as IQ tests, cognitive tests for animals, and universal measures of intelligence. After 

summarizing the limitations of these previous measures, Section 3 discusses recent theories 

about probability and prediction in the brain and the connection between prediction and 

intelligence. Section 4 describes a new algorithm for measuring predictive intelligence, 

which can be applied to humans, non-human animals and artificial systems. This section 

also summarizes some early experimental work in which the algorithm is used to measure 

the changing intelligence of an agent as it explores a maze environment. Section 5 covers 

some limitations of the current algorithm and suggests how it could change our way of 

thinking about intelligence. In the future this new measure of intelligence could lead to 

better ways of regulating and controlling artificial intelligence. 

 Measurement of Intelligence 

 What is Intelligence? 

Intelligence is a complex multifaceted term and many overlapping definitions have been 

put forward. These include cognitive ability, rational thinking, problem-solving and goal-

directed adaptive behavior [Bartholomew, 2004]. Most people believe that intelligence is 

some kind of general ability to think, understand and solve problems. It has also been 

claimed that there are multiple types of intelligence - for example, musical intelligence, 

linguistic intelligence, and emotional intelligence [Gardner, 2006]. Warwick [2000] frames 

this more generally with his idea that intelligence is a high-dimensional space of abilities. 

Other people working in AI have linked intelligence to the achievement of goals or rewards 

(see Section 2.5). 

A distinction is often made between fluid and crystallized intelligence [Cattell, 1971]. 

Crystallized intelligence is a stored ability to solve problems. For example, older 

intelligence tests included factual questions, such as “Who is the president of the USA?”. 

The answer to this question must be remembered – it cannot be deduced by reasoning. 

Crystallized intelligence also includes rules that can be used to solve problems, known as 

heuristics. For example, it is theoretically possible to deduce how to solve a Rubik’s cube 

from scratch. However, most people use heuristics to solve different parts of the problem 

- for example, a method for moving a color to a different face - and then sequence the 

heuristics together to complete the puzzle. Heuristics also exist for some of the problems 

that appear in intelligence tests. 

Fluid intelligence is the ability to generalize knowledge and solve problems that have 

not been seen before. For example, someone with high fluid intelligence might be able to 
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generalize what they have learnt from solving the Rubik’s cube to similar puzzles. Modern 

intelligence tests are mostly designed to measure fluid intelligence. In humans there is a 

constant interaction between fluid and crystallized intelligence. A solution to a problem 

might be discovered through fluid intelligence and then stored for rapid recall at a later 

date.  

 Measurement of Human Intelligence 

Intelligence is not a precisely defined property, like mass or charge, and it cannot be 

directly measured. People recognize intelligent behavior and rank people according to their 

intelligence, but we cannot point to the intelligence in a brain and we cannot program 

general intelligence into a machine.  

Over the last hundred years there has been a large amount of work on the indirect 

measurement of human intelligence using batteries of tests that measure behavioral 

characteristics judged to be linked to intelligence. In the early days these tests included 

significant numbers of questions based on factual knowledge (crystallized intelligence). 

Modern human intelligence tests are now mostly based on verbal reasoning, spatial 

manipulation and mathematics. The results from these tests are typically converted into 

values of intelligence quotient (IQ) or g-score. To calculate IQ you take the test results 

from a sample of the population and calculate the mean and standard deviation. The mean 

score is assigned an IQ of 100 and each standard deviation above and below the mean 

corresponds to 15 IQ points. The resulting IQ score can be used to rank individuals 

according to how well they perform on a battery of intelligence tests. IQ is a population 

derived measure that does not correspond to a property of a particular individual. 

Within the scientific community intelligence test results are often analyzed for factors 

that explain the relationships between the test results. Studies have shown that factors 

related to specific cognitive abilities – for example, reasoning, memory, and processing 

speed – can explain the results of closely related tests, and these factors are, in turn, linked 

to a single underlying factor, g, which is thought to correspond to intelligence. Like 

intelligence, g cannot be directly measured, so the test results are expressed as a g-score. 

Measures of IQ and g-score are controversial and they have often been misused. However, 

they have played a valuable role in scientific research on intelligence and they can be an 

effective way of pre-processing large numbers of applicants for jobs, education, or the 

military.  

The results from human intelligence tests have been shown to be correlated with other 

measures of success. For example, people who score highly in intelligence tests are more 

likely to achieve advanced educational degrees and pursue careers in areas, such as science, 

that are generally regarded as requiring intelligence [Robertson et al., 2010]. This 

correlation of intelligence tests with societal measures of intelligence gives IQ and g-score 

considerable plausibility as measures of human intelligence. 
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 Measurement of Intelligence in Non-human Animals 

Animals cannot take human intelligence tests, so there has been a lot of work on the 

development of cognitive test batteries for animals [Shaw & Schmelz, 2017]. While it 

might be possible to come up with a plausible set of tests that could be applied to similar 

animals, this approach is likely to neglect the different types of intelligence that animals 

develop to survive in their ecological niche. A measure of intelligence that is designed for 

sheep or fish, for example, cannot easily be transferred to birds or bees. Suppose we want 

to develop a test that compares human and pigeon intelligence. We could include 

mathematical abilities and spatial reasoning in our tests, which might be common to both. 

But pigeons have a greater capacity to map and navigate through their environment, so 

should this be included in the test as well? As our test battery expands with each species 

we will end up with a very ad-hoc collection, with each animal scoring well on the tests 

that are specific to their own set of abilities. It seems highly unlikely that we will be able 

to design a single set of cognitive tests that would enable us to meaningfully compare 

intelligence across all species.  

A second problem with the measurement of non-human animal intelligence is that we 

do not have a way of connecting an animal’s test results to other indicators of intelligence 

for that species. Most people would agree that a person who gets top grades in school, gets 

a first at MIT and publishes groundbreaking physics research is likely to be intelligent. If 

an intelligence test gives this person a low score, then this is a failure of the test, not an 

indicator of low intelligence. But how could we ground the results of intelligence tests in 

octopi, bees or dogs? Animals do not take advanced degrees or write papers on quantum 

theory. Mating success is not correlated with intelligence in humans, so we have no reason 

to believe that this could be used to validate the results of animal intelligence tests. It is far 

from clear how we could prove that intelligence tests in animals measure anything more 

than the ability to perform the test itself. 

These problems are often addressed by giving simplified human tests to animals– for 

example, tests of spatial reasoning or mathematical ability [Boysen and Capaldi, 1992]. 

This is a form of Turing testing that measures the extent to which non-human animals 

exhibit human intelligence. It is not a meaningful measure of non-human animal 

intelligence and it does not enable us to compare general intelligence across species. 

 Measurement of Artificial Intelligence 

Many different types of system are classified as artificially intelligent, for example: 

• Machine learning algorithms. Trained to label data, predict time series, and so on. 

• Chatbots. Replicate human conversational ability. 

• Natural language processing. For example, Watson [Ferrucci, 2012]. 

• Cognitive systems. For example, IDA [Franklin, 2003]. 
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• Game playing systems. For example, the deep Q-network that can play ATARI video 

games [Mnih et al., 2015]. 

• Computer models of the brain.  

• Computer models of consciousness. For example, CiceroBot [Chella et al., 2007]. 

• AGI. There have been some attempts, such as Cyc [Lenat and Guha, 1993]. 

• Self-driving cars.a 

These systems have diverse expertise and operate within different highly constrained 

environments. None of them can understand or pass an intelligence test that has been 

written for humans or non-human animals. However, it would be straightforward to 

program AIs to outperform humans on IQ tests. What, then, is this intelligence that these 

artificial systems have in common and how could we possibly measure it? 

Artificial intelligence can be measured using Turing testing, which takes humans as the 

benchmark and ranks machines according to the extent that they match human intelligence. 

One problem with this approach is that as machines improve they are likely to exhaust the 

possibilities of human tasks. For example, they might eventually map out and completely 

understand all the possibilities of Go, which would become for them what Tic Tac Toe is 

for humans – a trivial game whose possibilities can be easily comprehended. To rank AIs 

according to their intelligence we need tasks that challenge them and which they can 

complete to different degrees. If they all completely solve a task that is challenging for 

humans and get the same score, then we can, at most, say that they have super-human 

intelligence on that task. 

A more serious problem with Turing testing is that it cannot measure non-human forms 

of intelligence. For example, computers are much better at processing vast amounts of data, 

so they could have much higher levels of intelligence in bioinformatics, while being 

incapable of solving a Raven’s Matrix. It would be extremely anthropocentric to declare 

that a machine is not intelligent because it cannot solve the narrow range of problems that 

can be tackled by human intelligence.  

These issues suggest that Turing testing is only useful when we want to produce 

human-like machines whose intelligence does not significantly exceed human intelligence. 

It cannot be used to measure artificial intelligence that significantly exceeds human 

intelligence or that operates in a completely different area. 

 Universal Measures of Intelligence 

To address the problems with measuring natural and artificial intelligence, people have 

developed universal measures of intelligence that are, in theory, applicable to any system 

at all. For example, Legg and Hutter [2007] define intelligence as an agent’s ability to 

achieve goals in a wide range of environments. Their algorithm measures intelligence by 

 
a These are not exclusive categories. For example, AlphaGo and Watson are built with machine learning 

algorithms. 
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summing the rewards that an agent receives across all possible environments, with some 

adjustment for the complexity of different environments. This measure has some intuitive 

plausibility, but it is not practically calculable because it sums across all possible actions 

of the agent and across all possible environments. A more practical goal-

achievement/reward-based measure of intelligence has been proposed by Hernandez-

Orallo and Dowe [2010]. 

As discussed in Section 2.2, the results of IQ tests in humans are thought to be linked 

to intelligence because they are correlated with achievements that are widely regarded as 

indicators of intelligence. People who get good grades at school and publish papers in 

Nature typically get high scores in IQ tests. However, the goals and rewards that are linked 

to intelligence in humans are a subset of the goals that humans pursue and the rewards that 

they receive from their environment. The achievement of some human goals is highly 

correlated with intelligence; the achievement of other human goals, such as drinking beer 

and watching Netflix, is highly rewarding, but extremely weakly correlated with IQ or g-

score. More intelligent humans also tend to have less achievable goals (high impact 

publications; breakthroughs in AI, etc.) and their preoccupation with these harder goals 

often leads them to receive less rewards from their environment. So goal-

achievement/reward-based measures of intelligence will be much less correlated with 

human intelligence than IQ tests or g-score. With non-human animals, the majority of goals 

and rewards are achieved with limited amounts of crystallized intelligence. This suggests 

that goal-achievement/reward-based intelligence measures are, at best, likely to be weakly 

correlated with non-human animal intelligence. 

Goal-achievement/reward-based measures of intelligence are even more problematic 

with artificial systems. To begin with, most artificial systems do not have anything 

resembling a human goal. Roughly speaking, a human goal is a state of the world that a 

person pictures in their imagination and associates with a positive emotional state. The 

person compares the imagined goal with the current state of the world to determine if they 

have achieved the goal. The reward is a positive emotional state that is induced by the 

environment or by the perception of the environment.b For example, if I am searching for 

my keys and find my keys, then I experience a feeling of relief. Most AI systems do not 

work this way - a ‘goal’ in an AI system is often an internal variable that causes a while 

loop to exit when a particular environment state is reached. It is also very hard to see how 

a coherent non-anthropocentric notion of reward can be developed for artificial systems 

that lack emotions and consciousness.  As far as a computer is concerned an increase in a 

variable named ‘reward’ is no different from an increase in a variable named ‘punishment’. 

Both ‘reward’ and ‘punishment’ are just human labels that do not exist at the level of the 

binary machine code that is executed by the computer.  

Another problem with goal-achievement/reward-based measures of artificial 

intelligence is that environments can have extremely large numbers of goals. Consider a 

binary environment whose state can be 1 or 0. An agent in this environment can have the 

 
b This interpretation of goals and rewards is mostly drawn from Damasio [1994]. 
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goal for the state to be 1 or 0, to alternate in the pattern 11010010, and so on. These are all 

acceptable goals for an agent in this environment. The theoretical limit for the number of 

goals that an agent can have in this environment is 2memory size, where each memory state is 

a different number that corresponds to the pattern of 1’s and 0’s that the agent ‘aims’ to 

achieve in its environment. From a human point of view, these goals make no sense, but 

goal-achievement/reward-based measures of intelligence do not place any restrictions on 

the quality of the goals that are ‘aspired to’ by the machine. This large goal space enables 

artificial systems to set themselves goals that can be achieved in their environment without 

any intelligence. For example, consider a binary environment that randomly switches 

between 1 and 0. An agent could set itself goals that correspond to every possible random 

pattern for the next 1000 time steps. It would not have to do anything or apply any 

intelligence to achieve these goals. If the achievement of goals was linked to rewards, then 

the agent would achieve a high score on a reward-based measure of intelligence. 

A third problem with goal-achievement/reward-based measures of intelligence is that 

they conflate two different functions of a system: 1) Problem-solving intelligence that 

understands the environment and develops plans that can be executed to achieve the goals 

and rewards. 2) Actuators that enable the agent to execute the plans, achieve the goals and 

receive the rewards. Suppose two agents in an environment have the same goal of moving 

a heavy rock 50m and the achievement of this goal has a large reward. One agent is strong 

and the other is weak. Both agents can use their intelligence to develop a plan about how 

the rock can be moved to receive the reward, but only one of the agents is strong enough 

to move the rock and get the reward. A goal-achievement/reward-based measure would 

attribute more intelligence to the strong agent because it received the reward, but this is 

incorrect because in this example both agents have the same intelligence – the only 

difference between them is their physical ability to execute the plans formulated by their 

intelligence. 

Finally, there is a problem about how the reward of an AI system is connected to the 

environment. In humans rewards are often connected to states of the environment – receipt 

of food, warmth, etc. In an AI system a variable named ‘reward’ could be increased when 

the AI achieved its goals. The AI system could also increase this variable by itself without 

any interaction with its environment – a form of wireheading. Again, inaccurate high scores 

would be achieved on a goal-achievement/reward-based measure of intelligence. We need 

a better universal way of measuring intelligence in humans, non-human animals and 

artificial systems. 

 Prediction and Probability in Natural and Artificial Systems 

 Prediction and Probability in the Brain 

Older models of the brain, for example Marr [1982], were based on the idea that low level 

sensory input layers, for example V1, computed simple features of the input data and these 
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features were successively processed into more complex representations, such as faces and 

people. In this model the information that is passed from lower to higher levels is the 

presence or absence of the features detected by the layer - for example, the presence of an 

edge or hand at a particular point in the visual field.  

In recent years there has been a surge of interest in the idea that the primary function 

of the brain is the generation of predictions about the environment [Clark, 2016]. 

According to these theories, each layer in the brain generates predictions about activity in 

the layer below. Each layer compares the predictions with its own activity and passes 

information about the prediction errors back up to the layer above. This explains why there 

are more top-down than bottom-up connections in the brain. Predictive brain theories 

typically treat the brain’s predictions as probability distributions. This accommodates 

situations in which we are certain about something, as well as more common scenarios in 

which we assign probabilities to different events. For example, I use my past experience to 

estimate the probability that pasta will be available in a shop on a certain day. This 

probability can change - for example, when people stock up during a pandemic. People 

working on the Bayesian brain investigate the extent to which the probability distributions 

of the brain’s predictions match the probability distributions of the environment [Knill and 

Pouget, 2004]. 

There is little evidence for Bayesian and predictive theories of the brain. However, they 

are consistent with our subjective experiences and a good match for what we know about 

the brain. If the predictive and Bayesian brain hypotheses are partly or wholly true, then 

the generation of probabilistic predictions is a core function of the brain, and we would 

expect there to be a strong correlation between a brain’s predictive ability and its 

intelligence.  

 Probability and Prediction in AI Systems 

AI systems make predictions that are often expressed as probability distributions. For 

example, robots predict the consequences of different movements and select sequences of 

actions that maximize the probability of achieving their goals. The output of machine 

learning algorithms is often expressed as probability distributions, and their mapping 

between input and output can be regarded as predictions about the labels that are associated 

with particular input states. Any system that learns about the regularities of an uncertain 

environment will make some form of probabilistic predictions. 

 Prediction and Intelligence 

There are close links between a system’s ability to generate predictions and its intelligence. 

An agent with perfect predictive ability would have god-like omniscience. It would know 

what would happen under all possible permutations of its environment; it could plan 

sequences of actions that would have the highest probability of achieving its goals. A 
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predictive approach to intelligence separates an agent’s understanding of its environment 

from the goals that is has in that environment and its ability to achieve these goals. 

Prediction can be measured in both natural and artificial systems and a predictive approach 

to intelligence fits in well with recent work on the predictive and Bayesian brain.  

My hypothesis is that prediction is the most important component of natural and 

artificial intelligence: If we can accurately measure a system’s ability to predict, we can 

accurately measure the system’s intelligence. The next section summarizes the work that I 

have done on a universal measure of intelligence based on prediction. It starts with 

definitions of internal states, predictions, and distinct states of the environment. The 

algorithm is then presented followed by an overview of some recent experimental work. 

 A Universal Measure of Intelligence Based on Prediction 

 Internal States and Predictions 

When assessing the accuracy of a prediction it is natural to compare the prediction with a 

state of the environment. For example, I might predict that it will rain and then check the 

weather to see if my prediction came true. Comparison between predictions and 

environment states is natural and easy when similar systems (for example, people) are 

interacting with the same environment (the physical world). It is much less straightforward 

with non-human animals and artificial systems, which have different sensors, different 

environments and different ways of representing their environments. 

Suppose a Khepera robot,c a dog and a human are in a room. For the Khepera, the states 

of the environment consist of the distances of objects from its ultrasonic sensors.d It might 

have a way of converting these internal measurements into a map of the room, but this 

would be a 2D map that was limited to objects at the same height as the robot. The dog has 

a three-dimensional experience of the room with limited color vision and a 3D odor map. 

The human experiences a sophisticated distribution of colors, less smell and a deeper 

understanding of the objects - for example, it can see at a glance that a pattern of colors on 

the wall is a map. Which is the real objective room whose probability distributions should 

be compared with the predictions of the Khepera, dog and human? Is the room 2D or 3D? 

Is it colored? Does it contain a map and a 3D distribution of smells? Physics states that the 

objective room is the wave-particle distributions of all the elementary particles, but the 

Heisenberg uncertainty principle tells us that this cannot be fully and accurately measured, 

even if we had appropriate instruments. Clearly it does not make sense to base our 

assessment of the human’s intelligence on its ability to predict 3D smell patterns or the 

intelligence of the dog on its ability to predict color patterns that it cannot sense. The only 

 
c There are several versions of the Khepera robot. In this example, I am considering a basic version that only has 

ultrasonic distance sensors. 
d Actually the distance values are just numbers for the Khepera – we cannot assume that it has the human concepts 

of objects and distances. This does not affect the basic point that I am making here. 
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reasonable and fair way of evaluating the intelligence of each agent in the room is to 

compare their predictions with the probability distributions of their own future states. 

Systems with more sensors and richer representations of their environment will exhibit 

higher intelligence because their internal states will be less perturbed by events that they 

are not sensing. For example, a human and a dog can see a ball bouncing around a room 

and predict its trajectory, but a Khepera robot will only see the ball intermittently appearing 

in its 2D array of distance sensors, which will be very difficult to predict. 

My predictive measure of intelligence is based on an agent’s internal states, I1, I2 … Iq. 

At each point in time and/or at each place in the environment it generates one or more 

predictions about these internal states, P1-1, P1-2 … P1-r, P2-1, P2-2 … P2-r … Pq-1, Pq-2, Pq-r, 

where P2-5 is a prediction about the state of I2 at time 5 (measured in time steps or seconds). 

The predictions are probability distributions across values. For example, the agent might 

predict that I1 will have value 35 with probability 0.7 and value 37 with probability 0.3. 

They can also be probability distributions across time. For example, the agent might predict 

that the value probability distribution, P, has probability 0.2 of occurring in 2 seconds, 

probability 0.5 of occurring in 3 seconds and probability 0.3 of occurring in 4 seconds. 

These probability distributions can be combined into a single joint probability distribution 

across values and time. 

We typically make predictions about future states. In this measure of intelligence they 

can also be about past states or about states that are outside the current environment. For 

example, people make predictions about the Big Bang or about what their children are 

eating for lunch at school. Systems can also predict the labels that are associated with a 

particular input pattern - for example, a face-recognition algorithm. 

 Distinct States of the Environment 

Roughly speaking the most common types of environment are: 

• Spatial. The location of an agent in space can change, leading to different sensory inputs.  

• Temporal. An agent’s environment can change in time independently of the movement 

of the agent.  

• Data. Many AIs work within a data environment that they are progressively exposed to 

during training and testing.  

These are not exclusive categories: the environment of many agents is a combination of 

multiple types. 

In my algorithm two environment states are considered to be the same if the agent 

cannot distinguish between them. Two environment states are distinct if they lead to 

different internal states. To measure an agent’s intelligence, we need to expose it to all 

distinct environment states and sum up the accuracy of its predictions across these states. 

The set of distinct environment states will vary with an agent’s sensors and internal 

memory. For example, a light that flashes red-green is indistinguishable from a light that 
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flashes green-red for an agent that cannot detect color. The sequences 1010 and 010 are 

indistinguishable for an agent that can only store one digit. In a complex environment an 

agent’s intelligence could be estimated by exposing it to a representative sample of distinct 

environment states. 

 Algorithm for Measuring Predictive Intelligence 

This algorithm for measuring predictive intelligence compares the probability distributions 

of an agent’s predictions with the probability distributions that actually occur as the agent 

interacts with its environment. This is illustrated in Fig. 1. 

 

Fig. 1. Agent’s predictions about internal states. The agent has internal states I1, I2, I3 and I4. I1-0, I2-0, I3-0 and I4-0 

are the probability distributions of the internal states at time 0. P1-1, P1-2, P1-3 are predictions that the agent makes 

about the values of I1 at times 1, 2 and 3.  As the spatial and temporal properties of the environment change, the 

future states of I1, I2, I3 and I4 are compared with earlier predictions to check their accuracy. 

To measure the accuracy of the predictions we need to compare the probability 

distributions of the predictions with the later probability distributions of the internal states 

– for example, in Fig. 1, comparing the prediction P1-2 made at time 0 with I1-2 at time 1. 

In this algorithm Hellinger distance is used to compare probability distributions: 

𝐻(𝑃, 𝑄) =
1

√2
√∑(√𝑝𝑖 −√𝑞𝑖)

2
𝑘

𝑖=1

 (1) 

Hellinger distance is 0 when there is an exact match between two probability distributions 

and 1 when there is a complete mismatch between two probability distributions. So 1-

H(P,Q) gives us the degree of match between two probability distributions, expressed as a 

number between 0 and 1. 

To calculate the total prediction match, PMe, between predictions and internal states 

we need to sum up the match between the probability distributions of the agent’s 

predictions, P1-1, P2-1, P3-1, etc. and the probability distributions of the agent’s internal 

states I1-1, I2-1, I3-1, etc. for all distinct states, s=1 … s=p, of environment e: 
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𝑃𝑀𝑒 =∑∑∑1−𝐻(𝑃𝑖−𝑡 , 𝐼𝑖−𝑡)

𝑟

𝑡=1

𝑞

𝑖=1

𝑝

𝑠=1

 (2) 

Environments have large differences in complexity and it is much easier to make 

predictions about simple environments. This problem can be addressed by multiplying PMe 

with the Kolmogorov complexity of the predictions. Kolmogorov complexity cannot be 

directly calculated, so this intelligence measure uses the compressibility of the predictions 

as its measure of complexity. This is the length of the compressed predictions, K, divided 

by the length of the uncompressed predictions, L. This leads to an equation for calculating 

predictive intelligence, PIe, of an agent in environment e: 

𝑃𝐼𝑒 =
𝐾

𝐿
∑∑∑1−𝐻(𝑃𝑖−𝑡 , 𝐼𝑖−𝑡)

𝑟

𝑡=1

𝑞

𝑖=1

𝑝

𝑠=1

 (3) 

Eq. 3 can be used to compare the predictive intelligence of agents within a single 

environment. However, we often want to evaluate agents’ intelligence across multiple 

environments. This is particularly important when we are analyzing the intelligence of 

artificial systems, which often outperform humans in single environments, such as Go or 

chess, while being completely useless in the real world. When summing intelligence across 

environments we cannot simply add the PIe values from different environments together. 

If we took the simple sum, an agent would double its intelligence across two environments 

that were almost identical. To address this issue, the sum of PIe across multiple 

environments is multiplied by the joint Kolmogorov complexity of the two environments 

divided by the sum of the complexity of the environments considered individually, as 

shown in Eq. 4. 

pc =
𝐾(𝐿1 + 𝐿2 +⋯+ 𝐿𝑛)

𝐾(𝐿1)+𝐾(𝐿2) + ⋯+𝐾(𝐿𝑛)
∑𝑃𝐼𝑒

𝑝

𝑒=1

 (4) 

L1 … Ln are strings describing environments 1-n and K(L) is the length of the shortest 

program describing this string. In practice Kolmogorov complexity can be approximated 

by compression algorithms. When two environments are very similar it should be possible 

to find a compact representation of the two together. In this case the joint complexity will 

be approximately the same as the individual complexity of each environment and the 

complexity factor will approximate 1/2. When two environments are very different, the 

joint complexity will be similar to the sum of the individual complexities and the 

complexity factor will be close to 1. So agents that make accurate predictions about 

multiple different environments will be attributed a higher Pc than agents that make accurate 

predictions about multiple similar environments. 

The symbol, P, that I have chosen for this measure of intelligence is the Old Norse letter 

(rune) that corresponds to our modern ‘p’ sound (named ‘peorth’, ‘perth’ or ‘pertho’). In 

addition to its role as the first letter of the word ‘prediction’, P is associated with the dice 
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cup, chance, secrets, destiny and the future, which is rather appropriate for a measure that 

is designed to measure our ability to accurately predict the future. In Eq. 4, Pc is crystallized 

predictive intelligence. I define fluid predictive intelligence, Pf, as the rate of change of Pc, 

as shown in Eq. 5: 

Pf =
𝑑pc
𝑑𝑡

 (5) 

 Experimental Work 

This measure of intelligence was tested on a simple agent that interacts with multiple maze 

environments. The environments consist of walls that the agent cannot enter, empty squares 

and rewards. The agent has sensors on its front, left and right sides that tell it the contents 

of adjacent squares. It also has a sensor that detects the contents of the current square. The 

agent can rotate left or right and it can attempt to jump in the direction that it is pointing. 

The attempt will fail if it tries to jump into a wall. The agent simulation is shown in Fig. 2. 

 

Fig. 2. Agent in maze environment. Sensors S1-S3 give the agent information about the contents of the adjacent 

square (empty, wall, reward). S4 gives information about the contents of the current square. The agent can rotate 

left and right and it can move forward into empty squares or into squares containing a reward. 



14       David Gamez 

The agent uses its previous experience of the maze to predict the inputs that will occur after 

an action (move forward or change direction). If it has no experience of the consequences 

of its actions under particular input conditions, then it assigns equal probability to all input 

state values. 

To discover the actual probability distributions of the agent’s inputs under different 

state transitions, the system switches the agent’s learning off and monitors the agent as it 

tries every possible movement in each location of the environment. Then learning is 

switched on. As the agent explores its environment its predicted probability distributions 

for a movement are compared to the actual probability distributions to calculate Pc. Fluid 

intelligence, Pf, is calculated by taking the differential of a polynomial approximation to Pc 

at the center of a time window. An example is shown in Fig. 3. 

 
Fig. 1.  a) Crystallized intelligence of agent over time. The red line is the polynomial approximation that is used 

to calculate fluid intelligence. The green line shows the slope of the polynomial at the red dot. b) Fluid intelligence 

of agent over time. The red dot corresponds to the center of the time window that is used to calculate the 

polynomial approximation in the left graph. The value of fluid intelligence at the red dot is the slope of the green 

line in the left graph. 

These preliminary experiments demonstrate that Pc and Pf can be calculated in real time 

on small systems. The simulation can be viewed online at www.davidgamez.eu/pi and the 

source code is available for download. 

 Discussion  

In this approach intelligence is relative to a set of environments – intelligent systems do 

not have the ability to understand and predict the features of any environment. This is 

reasonable because the real-world intelligences that we know are only able to comprehend 

narrow sets of environments. Some intelligences are good at numbers; others can predict 

changes in the real physical world; others make accurate predictions about large data sets. 

People with an IQ of 180 can pass exams and write scientific papers, but they cannot 

identify patterns in large data sets and they often have low social and emotional 

intelligence. What links all these types of intelligence together is their ability to generate 

accurate predictions within specific environments.  

We could only come up with final and complete values of Pc and Pf for an agent if we 

could measure its predictive intelligence in every possible environment. Since there is an 

http://www.davidgamez.eu/pi
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effectively infinite number of possible environments, a system’s Pc and Pf values will 

always be relative to the set of environments in which its intelligence has been measured, 

and it will always be subject to change – for example, if the system turns out to be good at 

making predictions about a new environment that it has never encountered before. 
The experiments described in Section 4.4 show that Pc and Pf can be measured on small 

systems and environments. In most situations it will be practically impossible to measure 

PMe for every distinct environment state, so it will be necessary to develop methods for 

estimating Pc and Pf from limited measurements, possibly using similar methods to 

Hernandez-Orallo and Dowe [2010].  

In some situations, Pc and Pf might not match our intuitions about the intelligence of a 

system. One problematic case is a system that generates large numbers of predictions about 

internal states that are disconnected from the environment. For example, a system could 

create many variables that increase by 1 every time step and then generate accurate 

predictions about future states of these variables. The complexity components of the 

algorithm would ensure that little intelligence was associated with each internal state. 

However, the overall intelligence of this system would still end up large because its 

intelligence would exist in every possible environment. One potential solution to this 

problem would be to use statistics, Granger causality, mutual information or a similar 

algorithm to measure the connection between the internal states and the environment. The 

prediction match of the internal states could then be weighted by the extent to which they 

are connected to the environment. This would ensure that an agent’s intelligence is about 

its environment.e 

This algorithm uses an internalist approach because there are no observer-independent 

facts of the matter about the current state of the environment beyond the unmeasurable 

position and velocity of the elementary wave-particles. The problem with an internalist 

approach is that it relies on an observer-dependent mapping between physical states, input 

states I1, I2 … Iq and predictions P1-1 … Pq-r. For example, the internal states of a brain can 

be measured at the level of neurons, neuron groups, EM waves, blood, and so on. To 

analyze a brain for intelligence, we first have to decide which states we will use for our 

analysis. Then we have to decide which of these states are internal states, which are 

predictions and which should be ignored. The situation is equally challenging with 

computers. When we develop AIs we allocate variables and naturally take these as the 

states that our measure of intelligence should be applied to. However, the internal states of 

an AI can also be obtained by measuring the RAM, EM waves and so on. What we take to 

be obvious internal states to measure are not the only states that we can treat as internal 

and analyze for predictions. I have discussed this problem at length in relation to Tononi’s 

IIT [Gamez, 2016] and in relation to computational theories of consciousness [Gamez, 

2014]. Tononi’s solution is to consider all possible levels and look for the maximum Φ 

 
e This raises the problem discussed in Section 4.1 about which states of the environment are connected to the 

agent’s internal states. This could potentially be addressed by looking for the maximum mutual information 

(for example) between internal states and the environment. However, this could lead to a combinatorial 

explosion. 
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across all levels [Tononi, 2010], but this is impossible because the number of levels is 

effectively infinite. As I have discussed elsewhere [Gamez, 2018], consciousness is an 

‘objective’f property of a system and objective properties cannot be correlated with 

subjective properties. However, it is less clear whether intelligence is an ‘objective’ 

property like consciousness, so in many cases we might be satisfied with an estimate of the 

intelligence of a system based on what we consider to be a reasonable choice of internal 

states. With smaller systems we can sweep the states to look for the level that has maximum 

intelligence and this could be combined with an analysis of the connection between internal 

states and the environment. 

The current version of the P algorithm could be improved. To begin with, the only 

maximum or upper limit for Pc is the ability to predict the past and future probability 

distributions of every wave-particle in the entire universe, so Pc will get very large with big 

systems and complex environments. This could be addressed by adding a logarithm to Eq. 

(4). Second, when the agent guesses randomly there is usually some degree of match 

between the random probability distributions and the actual probability distributions - 

similar to the score that random guessing obtains in a multiple choice test. This could be 

addressed by subtracting the prediction match of a random distribution from the prediction 

match of the predictions in Eq. (2) and Eq. (3). However, the notion of negative intelligence 

might be problematic, so some thought would have to be given to situations in which the 

agent’s prediction match is less than the match with the random distribution.  

There has been a great deal of discussion of AI safety and the existential threat that AI 

could pose to humanity. In these discussions the notion of intelligence is often 

instrumentalized – for example, as the achievement of goals or rewards – or interpreted as 

a very abstract general property of a system that enables it to solve problems in many 

different areas (human psychology, computer hacking, global domination, etc.). The 

measure of intelligence that has been put forward in this paper provides a much clearer 

definition of artificial intelligence and shows us that intelligence can take many different 

forms. In the future Pc and Pf could be used to identify AI systems that are a potential threat. 

For example, current machine learning systems already have superhuman levels of Pc in 

their areas of expertise, but they do not pose any threat to humanity because they have very 

low levels of Pc in human psychology, the real physical environment, computer hacking, 

etc. These machines also have low Pf in environments that are significantly different from 

the data sets that they have been designed to work with. In the longer term, Pc and Pf could 

be incorporated into laws that regulate the amount of AI intelligence in different 

environments. 

 Conclusions and Future Work 

This paper has set out a new way of measuring intelligence in natural and artificial systems 

that draws on recent work on the predictive and Bayesian brain and does not rely on a 

 
f By this I mean that consciousness really exists, even though it can only be measured subjectively. 
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problematic connection between intelligence and the achievement of goals and rewards. Pc 

and Pf improve our theoretical understanding of intelligence, they could lead to a better 

understanding of the relationships between intelligence and consciousness, and they have 

many practical applications, particularly in AI safety. 

Preliminary experimental work has demonstrated that Pc and Pf can be measured in 

simple embodied agents. The next stage of this research will be to measure fluid and 

crystallized intelligence in a machine learning algorithm as it learns to classify data. 

Performance tests are also planned and it is anticipated that the algorithm will be refined 

over time to address the issues raised in Section 5 - following a similar trajectory to the 

improvements to Φ that have been made over the last 15 years. 
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