
Cardinals in Isabelle/HOL

Jasmin Christian Blanchette1, Andrei Popescu1,2, and Dmitriy Traytel1

1 Fakultät für Informatik, Technische Universität München, Germany
2 Institute of Mathematics Simion Stoilow of the Romanian Academy, Bucharest, Romania

Abstract. We report on a formalization of ordinals and cardinals in Isabelle/HOL.
A main challenge we faced was the inability of higher-order logic to represent
ordinals canonically, as transitive sets (as done in set theory). We resolved this
into a “decentralized” representation identifying ordinals with wellorders, with
all concepts and results proved to be invariant under order isomorphism. We also
discuss several applications of this general theory in formal developments.

1 Introduction

Set theory is the traditional framework for ordinals and cardinals. Axiomatizations such
as Zermelo–Fraenkel (ZF) and von Neumann–Bernays–Gödel (NBG) permit the defini-
tion of ordinals as transitive sets well-ordered by membership as the strict relation and
by inclusion as the non-strict counterpart. Ordinals form a class Ord which is itself well-
ordered by membership. Basic constructions and results in the theory of ordinals and
cardinals make heavy use of Ord, employing definitions and proofs by transfinite recur-
sion and induction. In other words, Ord conveniently captures the notion of wellorder.

In higher-order logic (HOL, Section 2), the situation is quite different. There is no
support for infinite transitive sets, since the type system permits only finite iterations
of the powerset. Consequently, membership cannot be used to implement ordinals and
cardinals. Another difficulty is that there is no single type that can host a complete
collection of canonical representatives for wellorders.

A natural question to ask is: Can we still develop in HOL a theory of cardinals?
The answer depends on the precise goals. Our criterion for the affirmative answer is
the possibility to prove general-purpose theorems on cardinality for the working math-
ematician, such as: Given any two types, one can be embedded into the other; given any
infinite type, the type of lists over it has the same cardinality; and so on.

We present a formalization in Isabelle/HOL that provides such general-purpose the-
orems, as well as some more specialized results and applications. We take a decen-
tralized approach, identifying ordinals with arbitrary wellorders and developing all the
concepts up to (order-preserving) isomorphism (Section 3). Cardinals are defined, again
up to isomorphism, to be the minimum ordinals on given underlying sets (Section 4).

The concepts we work with are more abstract than in set theory: Ordinal equality is
replaced by a polymorphic relation =o stating the existence of an order isomorphism,
and membership is replaced by a polymorphic operator <o stating the existence of a
strict order embedding (with its non-strict counterpart ≤o removing the requirement
that the order embedding be strict). This abstract view takes more effort to maintain than
the convenient concrete implementation from set theory, since all the defined operations

need to be shown compatible with the new equality and most of them need to be shown
monotonic with respect to the new ordering. For example, |A|, the cardinal of A, is
defined as some cardinal order on A, and then proved to be isomorphic to any cardinal
order on A; and r1 +c r2, the sum of cardinals r1 and r2, is defined as the cardinal of the
sum of r1’s and r2’s fields, and then +c is proved compatible with =o and≤o. Moreover,
since the collection of all ordinals does not fit in one type, we must predict the size of
the constructed objects and choose large enough support types for them.

The overcoming of those impediments allows us to validate the following thesis:

The basics of cardinals can be developed independently of membership-based
implementation details and the existence of large classes from set theory.

The truth of this thesis was not clear to us when we started the formalization, since
we could not find any textbook or formalization that takes this abstract approach. All
introductions to cardinals rely quite heavily on set theory, diving at will into the homo-
geneous ether provided by the class of all ordinals.

The initial infrastructure and general-purpose theorems was incorporated in the
Archive of Formal Proofs [16] in 2009, together with thorough documentation, but
was not otherwise published. Since then, the formalization has evolved to help spe-
cific applications: Cofinalities and regular cardinals were added for a formalization of
syntax with bindings [17], and cardinal arithmetic was developed to support Isabelle’s
(co)datatype package [22] (Section 5).

The theory of cardinals is included with Isabelle starting with the 2012 edition.
Some of the features described here are present only in Isabelle’s development repos-
itory; they are expected to be part of the forthcoming 2014 release. Supplemental for-
malized material discussed in this paper is publicly available [1].

Related Work. Ordinals, unlike cardinals, have been formalized in HOL before. Har-
rison [7] formalized ordinals in HOL88 and provesd theorems such as Zermelo, Zorn,
and transfinite induction. Huffman [10] formalized countable ordinals in Isabelle/HOL,
including arithmetics and the Veblen hierarchies; the countability assumption made it
possible to fix a type of ordinals. Recently, Norrish and Huffman [13] independently
redeveloped in HOL4 much of our theory of ordinals. But while Norrish and Huff-
man focus on establishing ordinals as quotients of wellorders under isomorphism and
develop some deeper ordinal arithmetics including Cantor normal form, we see the or-
dinals mostly as a stepping stone toward the cardinals and focus on these.

Beyond HOL, Paulson and Grabczewski [14] have formalized some ordinal and
cardinal theory in Isabelle/ZF following the usual set-theoretic recipe, via the class of
ordinals with membership. Their main objective was to formalize several alternative
statements of the axiom of choice, and hence they invest care in avoiding this axiom for
part of the cardinal theory. If our case, the Hilbert choice operator (effectively enforcing
a bounded version of the axiom of choice) is pervasive.

Outside the realm of mechanized reasoning, there seems to be little or no interest in
developing ordinals and cardinals in a weaker setting than ZF. An exception is Taylor
[21], who proposes a foundation for ordinals that avoids membership and meshes well
with category theory. His Remark 1.12 mentions the bounded nature of the introduced
concepts, which is crucial to express them in HOL.

2

2 Higher-Order Logic and Isabelle/HOL

By HOL we mean classical higher-order logic with Hilbert choice, the axiom of infin-
ity, and rank-1 polymorphism. HOL is based on Church’s simple type theory [4]. It is
the logic of Gordon’s system of the same name [5] and of its many successors. HOL
is roughly equivalent to ZF without support for classes and with the axiom of compre-
hension taking the place of the axiom of replacement. Our formalization is performed
in Isabelle/HOL [12], an implementation enriched with Haskell-style type classes [6].

Types in HOL are either atomic types (e.g., unit, nat, and bool), type variables α, β,
or fully applied type constructors (e.g., nat list and nat set). The same notation is used
for polymorphic types—e.g., α list denotes what would be more precisely written as
∀α. α list. Type constructors may have any numeric arity. The type constructors α→ β,
α+ β, and α× β, for function space, sum, and product. All types are nonempty. New
types can be introduced by carving out nonempty subsets of existing types. A constant
c of type τ is indicated as c : τ. Definitions are introduced using the ≡ symbol.

The following types and constants from the Isabelle library are heavily used in our
formalization. UNIV : α set is the universe set, i.e., the set of all elements of type α.
0 and Suc are the constructors of the type nat. Elements of the sum type are constructed
by the two embeddings Inl : α→ α+β and Inr : β→ α+β.

id : α→ α is the identity function. f •A is the image of A : α set through f : α→ β,
i.e., the set { f a. a∈ A}. f −−•B is the inverse image of B : β set, i.e., the set {a. f a∈ B}.
The predicates inj_on f A and bij_betw f A B state that f : α→ β is an injection on
A : α set and that f : α→ β is a bijection between A : α set and B : β set, respectively.

The type (α×α) set of binary relations on α is abbreviated to α rel. Id : α rel is the
identity relation. Given r : α rel, Field r : α set is the field (underlying set) of r, i.e., the
union between its domain and its codomain: {a. ∃b. (a, b) ∈ r} ∪ {b. ∃a. (a, b) ∈ r}.

The following predicates operate on relations, where A : α set and r : α rel:

REFLEXIVE refl_on A r ≡ r ⊆ A×A ∧ ∀x∈A. (x, x) ∈ r
SYMMETRIC sym r ≡ ∀a b. (a, b) ∈ r→ (b, a) ∈ r
TRANSITIVE trans r ≡ ∀a b c. (a, b) ∈ r∧ (b, c) ∈ r→ (a, c) ∈ r
ANTISYMMETRIC antisym r ≡ ∀a b. (a, b) ∈ r∧ (b, a) ∈ r→ a = b
TOTAL total_on A r ≡ ∀(a∈A)(b∈A). a 6=b→ (a, b)∈ r∨ (b, a)∈ r
WELLFOUNDED wf r ≡ ∀P. (∀a. (∀b. (b, a) ∈ r→ P b)→ P a)→ (∀a. P a)
PARTIAL ORDER partial_order_on A r ≡ refl_on A r ∧ trans r ∧ antisym r
LINEAR ORDER linear_order_on r ≡ partial_order_on A r ∧ total_on A r
WELLORDER well_order_on A r ≡ linear_order_on A r ∧ wf (r− Id)

If r is a partial order, then r− Id is its associated strict partial order. Some of the
above definitions are slightly nonstandard, but can be proved equivalent to standard
ones. For example, well-foundedness is given here a higher-order definition useful in
proofs as an induction principle, while it is usually equivalently defined as the non-
existence of infinite chains a : nat→ α with (a (Suc i), a i) ∈ r for all i. Also, well-
orderedness is usually defined as partial-orderedness plus the existence of a smallest
element for each nonempty subset in its field.

Note that refl_on A r (thus also well_order_on A r) implies Field r = A. We abbrevi-
ate well_order_on (Field r) r to Well_order r and well_order_on UNIV r to well_order r.

3

3 Ordinals

This section give some highlights of our formalization of ordinals. We work with ab-
stract ordinals, i.e., with wellorders, making no assumption about their underlying im-
plementation.

3.1 Infrastructure

We represent a wellorder as a relation r : τ rel, where τ is some type. The following
operators are pervasive in our constructions: under r a is the set of all elements less than
or equal to a, or “under” a, with respect to r. Similarly, underS r a gives the elements
strictly under a with respect to r. We call these under- and strict-under-intervals:

under : α rel→ α→ α set underS : α rel→ α→ α set
under r a≡ {b | (b, a) ∈ r} underS r a≡ {b | (b, a) ∈ r∧b 6= a}

A wellorder is a linear order relation r such that its strict version, r− Id, is a well-
founded relation. Well-founded induction and recursion are already supported by Isa-
belle’s library. We define slight variations of these notions tailored for wellorders.

Lemma 1 (Wellorder induction). If ∀a∈ Field r. (∀a′ ∈ underS r a. P a′)→ P a, then
∀a ∈ Field r. P a.

When proving a property P for all elements of r’s field, wellorder induction allows us
to show P for fixed a ∈ Field r, assuming P holds for elements strictly r-smaller than a.

Wellorder recursion is similar, except that we do not prove a property, but define
a function f on Field r. It suffices that, for each a ∈ Field r, we assume f already de-
fined on underS r a and define f a. This is technically achieved by a “wellorder recur-
sor” operator wo_recr : ((α→ β)→ α→ β)→ α→ β and an admissibility predicate
adm_wor : ((α→ β)→ α→ β)→ bool defined by

adm_wor H ≡ ∀ f g a. (∀a′ ∈ underS r a. f a′ = g a′)→ H f a = H g a

A recursive definition is represented by a function H : (α→ β)→ α→ β, where H f
maps a to a value based on the values of f on underS r a. A more precise type for H
would be ∏a∈Field r(underS r a→ β)→ β, but this is not supported by HOL. Instead, H
is required to be admissible, i.e., not dependent on the values of f outside underS r a.
The defined function wo_rec H is then a fixpoint of H on Field r.

Lemma 2 (Wellorder recursion). If adm_wor H, then ∀a ∈ Field r. wo_recr H a =
H (wo_recr H) a.

An (order) filter on r, also called an initial segment of r if r is a wellorder, is a subset A
of r’s field such that, whenever A contains a, it also contains all elements under a:

ofilter : α rel→ α set→ bool
ofilter r A ≡ A⊆ Field r ∧ (∀a ∈ A. under r a⊆ A)

Both the under- and the strict-under-intervals are filters of r. Moreover, every filter of r
is either its whole field or a strict-under-interval.

Lemma 3. (1) ofilter r (under r a) ∧ ofilter r (underS r a);
(2) ofilter r A ←→ A = Field r ∨ (∃a ∈ Field r. A = underS r a).

4

3.2 Embedding and Isomorphism

Wellorder embeddings, strict embeddings and isomorphisms are defined as follows:

embed, embedS, iso : α rel→ β rel→ (α→ β)→ bool
embed r s f ≡ ∀a ∈ Field r. bij_betw f (under r a) (under s (f a))
embedS r s f ≡ embed r s f ∧ ¬ bij_betw f (Field r) (Field s)
iso r s f ≡ embed r s f ∧ bij_betw f (Field r) (Field s)

We read embed r s f as “ f embeds r into s”—this is defined by stating that, for all
a ∈ Field r, f establishes a bijection between the under-intervals of a in r and those of
f a in s. The more conventional way to define embedding, namely, stating that f is in-
jective, order preserving, and maps Field r into a filter of s, is proved as a lemma (where
compat r s f expresses order preservation of f , i.e.,∀a b. (a, b) ∈ r→ (f a, f b) ∈ s).

Lemma 4. embed r s f ←→ compat r s f ∧ inj_on f (Field r) ∧ ofilter s (f •Field r)

Every embedding is either an (order) isomorphism, iso r s f , or a strict embedding,
embedS r s f , depending on whether f is a bijection or not. These notions yield the
following relations between wellorders:

≤o, <o, =o : (α rel×β rel) set
≤o ≡ {(r, s). Well_order r ∧ Well_order s ∧ ∃ f . embed r s f}
<o ≡ {(r, s). Well_order r ∧ Well_order s ∧ ∃ f . embedS r s f}
=o ≡ {(r, s). Well_order r ∧ Well_order s ∧ ∃ f . iso r s f}

We abbreviate (r, s) ∈ ≤o by r ≤o s, and similarly for <o and =o. Thus, r ≤o s means
that r is smaller than or equal to s, in that it can be embedded in s, and similarly r <o s
and r =o s for strict embedding and isomorphism. These relations are well-behaved.

Theorem 1. 1. r =o r
2. r =o s→ s =o r
3. r =o s ∧ s =o t→ r =o t
4. r ≤o r
5. r ≤o s ∧ s≤o t→ r ≤o t

6. ¬ r <o r
7. r <o s ∧ s <o t→ r <o t
8. r ≤o s ←→ r <o s ∨ r =o s
9. r =o s ←→ r ≤o s ∧ s≤o r

In particular, if we restrict the types of these relations from (α rel× β rel) set to
(α rel) rel (taking β= α), we obtain that =o is an equivalence (1–3) and≤o is a preorder
(4–5); moreover <o is the strict version of ≤o modulo the “equality” =o (6–8). In fact,
if think of =o as the equality, ≤o becomes a partial order (9), and correspondingly <o a
strict partial order.

The above relations establish an order between the wellorders similar to the standard
one on the class of ordinals, but distributed across types and (consequently) only up to
isomorphism. What is still missing is a result corresponding to the class of ordinals
being itself well-ordered. To this end, we first show ≤o to be total.

Theorem 2. r ≤o s ∨ r ≤o s

5

Proof idea. In textbooks, totality of ≤o follows from the fact that every wellorder is
isomorphic to an ordinal and that the class of ordinals Ord is totally ordered. To show
the former, one starts with a wellorder r and provides an embedding of r into Ord. By
contrast, here we have to start with two wellorders r : α rel and s : β rel, without a priori
knowing which one is larger, hence which should embed which. Our proof proceeds by
defining a function by transfinite recursion on r, that embeds r into s in case that r ≤o s,
and is the inverse of an embedding of s into r otherwise. ut

It remains to show that this total order is in effect a wellorder, or, equivalently its
strict counterpart <o is well-founded (note the annotation restricting the type of <o):

Theorem 3. wf (<o : (α rel) rel)

Theorems 1, 2, and 3 yield directly that, for any fixed type, its wellorders are them-
selves well-ordered up to isomorphism. This paves the way for introducing cardinals.

3.3 Ordinal Arithmetic

Holz et al. [9], like most textbooks, define operations on ordinals—sum, product, expo-
nentiation—by transfinite recursion. On the other hand, these operations admit direct
(nonrecursive) definitions, which we prefer since they are particularly suited to arbitrary
wellorders. (In [9], these direct definitions are depicted as “visual” descriptions.)

We define the ordinal sum +o : α rel→ β rel→ (α+β) rel by concatenating the two
argument wellorders r and s such that elements of Field r come below those of Field s.

r +o s ≡ (Inl⊗ Inl) • r ∪ (Inr⊗ Inr) • s ∪ {(Inl x, Inr y). x ∈ Field r∧ y ∈ Field s}

Here and elsewhere, ⊗ : (α1 → β1)→ (α2 → β2)→ (α1×α2 → β1× β2) is the map
function for products, (f1⊗ f2) (a1, a2) = (f1 a1, f2 a2).

Ordinal multiplication×o :α rel→ β rel→ (α×β) rel is defined as the anti-lexicographic
ordering on the product type.

r ×o s ≡ {((x1, y1), (x2, y2)). x1, x2 ∈ Field r∧ y1, y2 ∈ Field s∧
(y1 6= y2∧ (y1, y2) ∈ s ∨ y1 = y2∧ (x1, x2) ∈ r)}

For ordinal exponentiation, r ^o s, we consider functions of finite support from
the field of s to the field of r. As all function in HOL are total, we represent the re-
stricted domain Field (s : β rel) by considering only functions that are constant (equal
to a particular unspecified value ⊥) outside of the domain. We thus define the operator
Func : β set→ α set→ (β→ α) set, where Func B A gives the set of all such functions
with domain B and range A, namely, { f . f •B⊆ A∧ (∀x /∈ B. f x =⊥)}. Additionally,
finite support means that only finitely many elements of Field s are mapped to elements
different from the minimal element 0r of the wellorder r: FinFunc B A ≡ Func B A ∩
{ f . finite{x ∈ B. f x 6= 0r}}.

Now we are ready to define the exponentiation of r to s. Its underlying set consists
of functions of finite support between Field s and Field r. The order between two such
functions f and g is defined as follows. Assuming f 6= g, thanks to the finite support
there exists a maximum (with respect to s) z∈ Field s such that f z 6= g z. If (f z, g z)∈ r,

6

we declare f smaller than g; otherwise (meaning (g z, f z) ∈ r as r is a wellorder and
hence total) we declare g smaller than f .

^o : α rel→ β rel→ (β→ α) rel
r ^o s ≡ {(f , g). f , g ∈ FinFunc (Field s) (Field r)∧ (f = g∨

let z = maxs{x ∈ Field s. f x 6= g x}in (f z, g z) ∈ r)}

All these constructions yield wellorders. Moreover, they satisfy the following arith-
metic properties, where 0 and 1 are the empty and singleton wellorder, respectively.

Theorem 4. Well_order (r +o s); Well_order (r ×o s); Well_order (r ^o s)

Lemma 5 (Lemma 1.4.3 in [9]).

0 +o r =o r =o r +o 0 (r +o s) +o t =o r +o (s +o t)
s≤o r +o s r ≤o s→ r +o t ≤o s +o t
s <o t→ r +o s <o r +o t

0×o r =o 0 =o r ×o 0 1×o r =o r =o r ×o 1
(r ×o s)×o t =o r ×o (s×o t) r ×o (s +o t) =o r ×o s +o r ×o t
r ≤o s→ r ×o t ≤o s×o t 0 <o r∧ s <o t→ r ×o s <o r ×o t

0 <o r→ 0 ^o r =o 0 1 ^o r =o 1
(r ^o s) ^o t =o r ^o (s×o t) r ^o s +o t =o r ^o s×o r ^o t
r ≤o s→ r ^o t ≤o s ^o t 1 <o r∧ s <o t→ r ^o s <o r ^o t
1 <o r→ s≤o r ^o s

A benefit of the standard definitions of these operations by transitive recursion is
that the above arithmetic facts can then be nicely proved by corresponding transfinite
induction. In our case, we went for direct definitions, and correspondingly aimed at
direct proofs via the explicit indication of suitable isomorphisms or embeddings as in
the definitions of =o,≤o, <o. This approach works fine for the equations (=o identities)
and for right-monotonicity properties of the operators (where one assumes equality on
the left arguments and ordering of the right arguments). For example, to prove 0 <o

r∧ s <o t→ r ×o s <o r ×o t, we use the definition of <o to obtain from s <o t a strict
embedding f of s into t; then the desired strict embedding of r×o s into r×o t is id⊗ f .

By contrast, left-monotonicity properties such as r ≤o s → r ×o t ≤o s×o t no
longer follow that smoothly—it is not clear how to produce an embedding of r ×o t
into s ×o t from one of r into s. To conveniently handle left-monotonicity, we intro-
duced an alternative characterization of ≤o:

Lemma 6. r ≤o s ←→ Well_order r ∧Well_order s ∧ (∃ f . ∀a∈ Field r. f a∈ Field s ∧
f • underS r a⊆ underS s (f a))

Thus, in order to show r ≤o s, it suffices to provide an order embedding, not nec-
essarily a wellorder one, i.e., not necessarily an embedding of Field r as a filter of s.
This is a dramatic simplification of the task of proving r ≤o s (surprisingly not stated
in textbooks). With it, we can readily prove left-monotonicity properties. E.g., to show
r ×o t≤o s×o t assuming an embedding f of r into s, we now take the luxury of defin-
ing a plain order embedding, the obvious candidate, f ⊗ id, doing the job.

Note that right-monotonicity holds for<o (a fortiori for≤o), while left-monotonicity
only holds for ≤o. This is fortunate, since Lemma 6 is not adaptable to <o either.

7

4 Cardinals

With the ordinals in place, we can develop a theory of cardinals, which endows HOL
with many conveniences of cardinality reasoning, including basic cardinal arithmetics.

4.1 Bootstrapping

We define cardinal orders (cardinals) on a set as special wellorders, namely, those that
are minimal with respect to =o—this is our HOL counterpart of the standard definition
of cardinals as “ordinals that cannot be mapped one-to-one onto smaller ordinals” [9, p.
42].

card_order_on A r ≡ well_order_on A r ∧ (∀s. well_order_on A s→ r ≤o s)

Similarly to wellorders, we abbreviate card_order_on (Field r) r by Card_order r and
card_order_on UNIV r by card_order r. Note that, by definition, card_order_on A r im-
plies A=Field r, and therefore when we wish to omit A we can simply write Card_order r.

In general, cardinals are useful through their capability of measuring sets. In our
setting, we first prove that for every set A (on any type), there exists a cardinal on it.
This cardinal is not unique, but it is unique up to isomorphism.

Theorem 5. 1. ∃r. card_order_on A r
2. card_order_on A r ∧ card_order_on A s → r =o s

We are now ready to define the cardinality of a set |_| : α set→ α rel:

|A| ≡ SOME r. card_order_on A r

Using Hilbert choice, we did pick one particular cardinal order on A (which is possible
by Th. 5.1). The choice is irrelevant by Th. 5.2, and we can prove that the cardinality
operator behaves as expected, in particular, it is monotonic.

Lemma 7. 1. card_order_on A |A|
2. Field |A|= A

3. A⊆ B → |A| ≤o |B|
4. r ≤o s → |Field r| ≤o |Field s|

Cardinalities of sets were defined in an order-theoretic fashion, but we can now
prove that they correspond to the more elementary comparisons in terms of functions.

Theorem 6. 1. |A|=o |B| ←→ (∃ f . bij_betw f A B)
2. |A| ≤o |B| ←→ (∃ f . inj_on f A ∧ f •A⊆ B)
3. A 6= /0 → (|A| ≤o |B| ←→ (∃g. g •B⊆ A))

Together with theorem 2 this allows to prove in HOL the aforementioned interesting
order-free fact for the working mathematician.

Theorem 7. For any two types σ and τ, one is embeddable in the the other, in that there
exists either an injection from σ to τ or one from τ to σ.

8

4.2 Cardinality of Set and Type Constructors

We analyze the cardinalities of several standard type constructors: α+β (disjoint sum),
α× β (binary product), α set (powertype), α list (lists). In order to provide more gen-
erally usable results, we actually look at the homonymous set-based versions of these
constructors, which take the form of polymorphic constants:3

+ : α set→ β set→ (α+β) set, A+B ≡ {Inl a | a ∈ A} ∪ {Inr b | b ∈ B}
× : α set→ β set→ (α×β) set, A×B ≡ {(a, b) | a ∈ A ∧ b ∈ B}
Pow : α set→ (α set) set, Pow A ≡ {X | X ⊆ A}
lists : α list→ (α list) set, lists A ≡ {as | set as⊆ A}

The cardinalities of these operators are compatible with isomorphism and embedding.

Lemma 8. Let K be any of +,×, Pow, lists, n ∈ {1, 2} be its arity, and θ be either of
=o,≤o. If ∀i ∈ {1, . . . , n}. |Ai| θ |Bi|, then |K A1 . . . An)| θ |K B1 . . . Bn|.

In addition, we have the following ordering between cardinalities.

Lemma 9. 1. |A| ≤o |A+B|
2. |A+B| ≤o |A×B| 4

3. |A| <o |Pow A|
4. |A| ≤o |lists A|

If one of the involved sets is infinite, some embeddings collapse to isomorphisms.

Lemma 10. Assume infinite A. Then:

1. |A×A|=o |A|
2. |A|=o |lists A|

3. |A+B|=o if A≤o B then |A| else |B|
4. B 6= /0 → |A×B|=o if A≤o B then |A| else |B|

Amongst those results, the property of products (Lemma 10.1) required significant for-
malization effort: its proof goes through the so-called bounded product construction—
this is extensively discussed in [14], in the context of a formalization within Isabelle/ZF.

In Isabelle/HOL, × is an instance of the indexed sum (disjoint union) operator
SIG : α set→ (α→ β set)→ (α× β) set, defined by SIG A B (written SIG a∈A B a)
≡
⋃

a∈A
⋃

b∈B a (a, b). The above properties for × carry over to SIG as well. The latter
operator provides support for proving cardinality bounds of indexed unions:

Lemma 11. 1. |
⋃

i∈I A i| ≤o |SIG i∈I A i|
2. infinite B ∧ |I| ≤o |B| ∧ (∀i ∈ I. |A i| ≤o |B|) → |

⋃
i∈I A i| ≤o |B|

3 For a large class of type constructors (including the ones discussed here), set-based versions
can be extracted uniformly [22]—see also Section 5.2.

4 if both A and B have at least two elements

9

4.3 ℵ0 and the Finite Cardinals

Our ℵ0 is the existing constant natLeq : nat rel—the standard order on natural numbers.
It behaves as expected for ℵ0, in particular, it is ≤o-minimal among infinite cardinals.
Proper filters of natLeq are precisely the finite sets of the first consecutive numbers.

Lemma 12. 1. infinite A ←→ natLeq≤o |A|
2. Card_order natLeq
3. Card_order r ∧ infinite (Field r) → r ≤o natLeq
4. ofilter natLeq A ←→ A = (UNIV : nat set) ∨ (∃n. A = {0, . . . , n})

We use these to define the finite cardinals as restrictions of natLeq: natLeq_on n ≡
natLeq ∩ {0, . . . , n}×{0, . . . , n}. We prove that that these indeed behave like the finite
cardinals (up to isomorphism):

Lemma 13. 1. card_order (natLeq_on n)
2. finite A ←→ (∃n. |A|=o natLeq_on n)
3. finite A ∧ |A|=o |B| → finite B

4.4 Some Cardinal Arithmetic

To define cardSuc r, the successor of a cardinal r : α rel, we first choose a type which
we know is large enough to contain a cardinal greater than r, namely, α set. Then we
define what it means to be a successor cardinal: to be a cardinal that is greater than r
and, for now at least amongst all cardinals on the chosen type α set, to be ≤o-minimal.

isCardSuc : α rel→ (α set) rel→ bool
isCardSuc r s ≡ Card_order s ∧ r <o s ∧

(∀t : (α set) rel. Card_order t ∧ r <o t → s≤o t)

Thanks to the choice of the codomain type and Th. 3, we know such a cardinal exists.

Lemma 14. ∃s. isCardSuc r s

This allows us to define cardSuc : α rel→ (α set) rel to assign any such cardinal to
r and infer that it indeed satisfies its “defining” properties:

cardSuc r ≡ SOME s. isCardSuc r s

Lemma 15. isCardSuc r (cardSuc r)

However, this is not yet good enough. We need to prove that cardSuc r is minimal
not only amongst the cardinals on α set, but amongst all cardinals—this is achieved
by a tedious process of making isomorphic copies. We obtain the desired characteristic
properties of successor cardinals in full generality.

Theorem 8. Assume Card_order (r : α rel) and Card_order (t : β rel). Then:

10

1. r <o cardSuc r 2. r <o t → cardSuc r ≤o t

Finally, we prove that cardSuc is compatible with isomorphism and is monotonic.

Theorem 9. Assume Card_order r and Card_order s. Then:

1. cardSuc r =o cardSuc s ←→ r =o s 2. cardSuc r <o cardSuc s ←→ r <o s

Thus, we first introduced the successor in a type-specific manner, asserting mini-
mality within a chosen type, since HOL would not allow us to proceed more gener-
ally at that point. But then we proved the characteristic property in full generality, and
finally proved that the notion is compatible with =o and ≤o . This route of introduc-
ing cardinality operators is certainly more bureaucratic than in set theory, but achieves
the desired effect. We follow this route with all the standard cardinal operations, e.g,
+c : α rel→ β rel→ (α+β) rel, for which we prove the basic arithmetic properties.

Lemma 16 (Lemma 1.5.10 in [9]).

(r +c s) +c t =o r +c (s +c t) r +c s =o s +c r
(r ×c s)×c t =o r ×c (s×c t) r ×c s =o s×c r
r ×c 0 =o 0 r ×c 1 =o r
r ×c (s +c t) =o r ×c s +c r ×c t
r ^c (s +c t) =o r ^c s×c r ^c t (r ^c s) ^c t =o r ^c (s×c t)
(r ×c s) ^c t =o r ^c t ×c s ^c t ¬ r =o 0 → r ^c 0 =o 1 ∧ 0 ^c r =o 0
r ^c 1 =o r 1 ^c r =o 1 r ^c 2 =o r ×c r
r ≤o s ∧ t ≤o u → r +c t ≤o s +c u r ≤o s ∧ t ≤o u → r ×c t ≤o s×c u
r ≤o s ∧ t ≤o u ∧ ¬ =o 0 → r ^c t ≤o s ^c u

Another useful cardinal operation is the maximum of two cardinals, cmax r s, which
is well-defined by the totality of ≤o. Thanks to Lemma 10.1, for infinite cardinals it
behaves like both sum and product:

Lemma 17. infinite (Field r) ∨ infinite (Field s) → cmax r s =o r +c s =o r ×c s

4.5 Regular Cardinals

A set A : α set is cofinal for r : α rel, written cofinal A r, if ∀a ∈ Field r. ∃b ∈ A. a 6= b ∧
(a, b) ∈ r. And r is called regular, written regular r, if ∀A. A⊆ Field r ∧ cofinal A r →
|A|=o r.

Regularity is a generalization of the property of natLeq of not being “coverable” by
smaller cardinals—indeed, no finite set A of numbers fulfills ∀m. ∃ n ∈ A. m < n. Other
examples of regular cardinals include the infinite successor cardinals.

Lemma 18. 1. regular natLeq
2. Card_order r ∧ infinite (Field r) → regular (cardSuc r)

A property of regular cardinals useful in applications is the following: inclusion of a
set of smaller cardinality in a union of a chain indexed by the cardinal behaves similarly
to membership, in that it boils down to inclusion in one of the sets in the chain.

11

Lemma 19. Assume Card_order r, regular r, ∀i j. (i, j) ∈ r → A i⊆ A j, |B| <o r, and
B⊆

⋃
i∈Field r A i. Then ∃i ∈ Field r. B⊆ A i

Finally, regular cardinals are stable under unions: they cannot be covered by a union
of sets of smaller cardinality indexed by a set of smaller cardinality:

Lemma 20. Assume Card_order r, regular r, |I| <o r, and ∀i ∈ I. |A i| <o r.
Then |

⋃
i∈I A i| <o r.

5 Applications

Here we describe applications of our theory of cardinals in larger developments.

5.1 Syntax with Bindings

In his Ph.D. thesis [17–19], Popescu has formalized a general theory of syntax with
bindings, parameterized over a binding signature with possibly infinitary operation
symbols. For handling infinitary syntax, cardinal support was crucially needed. We il-
lustrate the problem and solution on an example. Let index and var be types representing
indexes and variables, respectively, and consider the following datatype of terms:

datatype term = Var var | Lam var term | Sum (index→ term)

Thus, a term is either (an injection of) a variable, or a lambda-abstraction, or an indexed
sum of a family of terms. We define the standard operators of free variables fvars :
term→ var set and capture-avoiding substitution _[_/_] : term→ term→ var→ term:

fvars (Var x) = {x}
fvars (Lam x t) = fvars t−{x}
fvars (Sum f) =

⋃
i∈I fvars (f i)

(Var x)[s/y] = (if x = y then s else Var x)
(Lam x t)[s/y] = let x′ = pickFresh [Var y, s]

in Lam x′ (t[x′/x][s/y])
(Sum f)[s/y] = Sum (λi. (f i)[s/y])

To avoid capture, the Lam-clause for substitution performs a renaming of x into x′,
chosen to be fresh for y and t by the operator pickFresh (which takes a list of terms and
returns a variable not free in any of them). But how can we be sure that such a choice
exists, i.e., that we can define pickFresh? The standard solution of having the type var
infinite does not suffice here—indeed, the Sum constructor introduces possibly infinite
index-branching, and therefore fvars T may return an infinite set of variables, and in
fact may return UNIV.

Fortunately, the rationale behind the standard solution generalizes smoothly to this
infinitary situation. The key idea for finitely branching syntax is that no n-ary construc-
tor breaks the finiteness of the set of free variables, since a finite union of finite sets is
finite. As seen in Lemma 20, this generalizes to regular cardinals. So we can take var to
have a regular cardinal greater than index, e.g., cardSuc |index|.

Lemma 21. regular |var| ∧ |index| <o |var| → (∀t. |fvars t| <o |var|)

12

Proof idea. Immediate by structural induction on t, using Lemma 20. ut
Then pickFresh can be easily defined. After passing this milestone, a theory of sub-

stitution and free variables proceeds similarly to the finitary case [17]. Most current
frameworks for syntax with bindings, including nominal logic [11, 15], assume finite-
ness of the syntactic objects—regular cardinals could provide a foundation for an in-
finitary generalization.

5.2 Bounded Functors and the (Co)datatype Package

Isabelle’s new (co)datatype package is heavily based on both category theory and car-
dinal theory. It maintains a class of functors with extra structure, called bounded natural
functors (BNFs), for which it constructs initial algebras (datatypes) and final coalgebras
(codatatypes). The category theory underlying the package is described in [22]. Here
we focus on cardinality aspects omitted or very briefly mentioned in there.

BNFs are type constructors equipped with functorial (mapping) actions, natural
transformations and a cardinality bound. For example, a unary BNF consists of: a type
constructor α F; a constant Fmap : (α→ β)→ α F→ β F; a constant Fset : α F→ α set
(giving for each x : α F its set of “atoms”) that is natural w.r.t F; a cardinal Fbd such
that ∀x. |Fset x| ≤o Fbd. We define Fin : α set→ (α F) set, the internalization of F to
sets, i.e., the set-based version of F (as in the examples presented in Section 4.2), by
Fin A = {x | Fset x⊆ A}.

An algebra for F is a triple A = (T, A : T set, s : T F→ T) (where T is a type) such
that ∀x ∈ Fin A. s x ∈ A—this condition qualifies s as a function between Fin A and A,
written s : Fin A→ A. We call A the carrier of A and s the structural map of A, the
latter modeling the operations of the algebra. E.g., if α F = unit+α×α, an algebra
A consists of a set A : T set with a constant and a binary operation on it, encoded as
s : unit+α×α→ α.

This notion accommodates standard algebraic constructions. One forms the product
∏i∈I Ai of a family of algebras (all having the same type T) by taking the product of
the carrier sets and defining the structural map s : Fin (∏i∈I Ai)→ ∏i∈I Ai by s x =
(si (Fmap proji x))i∈I . A stable part of A is any set A′ ⊆ A such that ∀x ∈ Fin A′. s x ∈
A′. Since the intersection of stable parts is a stable part, we can define and algebra
Min(A), called the minimal algebra of A taking its carrier to be the intersection of all
stable parts and its structural map to be (the restriction of) s—this corresponds to the
notion of subalgebra generated by /0. A morphism between two algebras A and A ′ is a
function h : A→ A′ that commutes with the structural maps, in that ∀x∈ Fin A. h (s x) =
s′ (Fmap h x).

Building the initial algebra of F (an algebra such that, for any algebra A , there
exists precisely a morphism between it and A) can be naively attempted as follows:
First we take R = ∏ {A |A algebra}, the product of all algebras. Given any algebra
A , there surely exists a morphism h from R to A : the corresponding projection. Then
the restriction of h to Min(R) is the desired unique morphism from Min(R) to A , and
therefore Min(R) is our desired initial algebra.

This naive approach fails since we cannot possibly construct in HOL the product of
all algebras (and even if we could, in a richer logic, it would not be an algebra itself due

13

to its size). We use the boundedness of F to fix this flaw as follows. First note that, in the
above context, it suffices to define h from R not to A , but to Min(A). And therefore
it would suffice to take R as the product of all minimal algebras, and, moreover, to
only consider a complete collection of representatives (up to isomorphism). Hence, if
we knew that all minimal algebras of all algebras had cardinality smaller than a given
bound r0, we could choose a type T0 of cardinality r0 and then define R as the product
of all algebras on T0: R = ∏ {A |A = (T0, A : T0 set, s : T0 F→ T0) algebra}. Then
the naive construction would go through!

It remains to find a suitable r0: as it turns out, r0 = cardSuc Fbd is such a cardinal.

Theorem 10. For all algebras A , let M be the carrier of Min(A). Then |M| ≤o r0.

Proof idea. The definition of Min(A) performs a construction of M “from above”, as an
intersection, yielding no cardinality information. We need to produce an alternative con-
struction “from below”, using the internal structure of F. Let N =

⋃
i∈Field r0

Ni, where
each Ni is defined by wellorder recursion as follows: Ni =

⋃
j. j∈underS r0 i s •Fin N j. To

prove that N is a stable part of A (and hence that M ⊆ N), let x ∈ Fin N. Then Fset x⊆
N =

⋃
i∈Field r0

Ni, and hence, since r0 is regular by Lemma 18.2, we use Lemma 19 to
obtain i ∈ Field r0 such that Fset x ⊆ Ni, i.e., x ∈ Fin Ni. Hence s x ∈ Nsucc r0 i ⊆ N,
as desired. Conversely, N ⊆ M follows by wellorder induction. We thus have M = N.
Now, |N| ≤o cardSuc Fbd follows by wellorder induction. ut

As for the final coalgebra (codatatype) construction, we build from every BNF F
a domain of infinitely branching trees, which we then quotient to F-bisimilarity [22,
Section IV(F)]. The good behavior of this construction depends crucially on F being
bounded by a polynomial functor:

Lemma 22. The exist the cardinals k and l (not depending on the set A or on its type)
such that A 6= /0→ |Fin A| ≤o k ×c (|A| ^c l)

Initially, we had maintained (a slight variation of) that property as another BNF
axiom [22, Section IV], not realizing that it is redundant.5 Removing it has simplified
the package code substantially.

Another concept we extensively use in the package is cardinal arithmetic, mostly
for showing that various constructions (composition, datatype, codatatype) on BNFs
are themselves BNFs. All in all, our cardinal formalization was instrumental in the
succinct and compositional package architecture.

6 More Details on the Formalization

Fig. 1 shows the main theory structure of our development, mapped to the (sub)section
structure of the paper. To support the development presented here, we formalized many
basic facts about wellorders and (order-)isomorphic transfer across bijection. When we
started our development, Isabelle’s library had extensive support for type-class-based

5 Stefan Milius and Lutz Schröder suggested the elegant proof of Lemma 22 sketched in Ap-
pendix C.

14

(Co)datatype_Package (Section 5.2)

Binding_Syntax (Section 5.1) Cardinal_Arithmetic (Section 4.4)

Ordinal_Arithmetic (Section 3.3) Cardinal_Order_Relation (Section 4)

YYYYYYYYYYYYYY

Constructions_on_Wellorders (Section 3.2)

YYYYYYYYYYYYYY

Wellorder_Embedding (Section 3.2)

Wellorder_Relation (Section 3.1)

Fig. 1. Essential theory structure

orders. However, working with the wellorder type class was not an option, since we
need several wellorders for the same type—e.g., the cardinal of a type is modeled as the
minimum among all its wellorders. The overall development amounts to about 14000
lines of scripts (excluding the applications).

Throughout the paper, we have illustrated our effort to adapt the theory of cardinals
to the HOL types, doing without a canonical class of ordinals ordered by membership.
Anther limitation of HOL, faced quite often but seldom acknowledged by formalizers,
is the inability of HOL to quantify over types except at the statements’ top level. A no-
torious example comes from the formalizations of the FOL completeness theorem (e.g.,
Harrison [8]): a sentence is provable iff it is true in all models. The statement, more pre-
cisely, its right-to-left implication, is not expressible in HOL, since the right-hand side
quantifies over all carrier types of all models. But one can prove an expressible stronger
statement: Based on the language cardinality, one identifies and fixes a representative
type so that satisfaction in all models on that type already ensures provability.

Our own formalization abounds in such cases of originally non-expressible state-
ments, but which can be fixed by a proper choice of “representatives.” One is the def-
inition of the successor cardinal from Section 4.4: we cannot directly define cardSuc r
requiring minimality with respect to all cardinals >o r on all types, but we choose a
type and then prove that the choice is irrelevant. Another is the claimed converse of
Lemma 20, which, spelled with its explicit type quantifications, would look as follows:

∀α. ∀r : α rel. Card_order r ∧ (∀β. ∀I : β set. ∀A : β→ α set.|I| <o r ∧ (∀i ∈ I. |A i| <o r)
→ |

⋃
i ∈ I. A i| <o r) → regular r

This is not expressible in HOL due to the inner universal quantification over the type
β. But if we instantiate β to be a large enough index type, e.g., to α, we obtain a HOL-
expressible statement. It would be interesting to identify a pattern for such statements
not expressible in HOL, but with an expressible valid strengthening. However, the var-
ious solutions are apparently more or less ad hoc: for FOL completeness, an insight
from the actual construction of the model (Löwenheim–Skolem); for the successor car-
dinal, invariance under isomorphism; for the alternative characterization of regularity,
the properties of indexed union.

15

7 Conclusion

We have formalized in Isabelle/HOL a theory of cardinals, proceeding locally and ab-
stractly, up to wellorder isomorphism. The theory has been applied to reason about
infinitary objects arising in syntax with bindings and (co)datatype theory. Moreover,
Breitner employed it in formalizing free group theory [2].

We hope our experiment will be repeated by the other HOL provers,where a theory
of cardinals seems as useful as in any other general-purpose framework for mathemat-
ics. Indeed, the theory provides “working mathematicians” with the needed injections
and bijections (e.g., between lists over an infinite type, or the square of an infinite type,
and the type itself) without requiring them to perform awkward ad hoc encodings.

An interesting question is whether the quotienting improvement of Norrish and
Huffman would have helped with our cardinal theory. We believe the answer is “not
significantly”, since we would still be faced with the problem of changing the underly-
ing type of cardinals to accommodate for larger and larger sizes. In HOL, there is no
way to reason about arbitrary cardinals up to equality, so isomorphism still seems like
the right compromise.

Acknowledgment. We thank Tobias Nipkow for making this work possible. Blanchette
is supported by the Deutsche Forschungsgemeinschaft (DFG) project Hardening the
Hammer (grant Ni 491/14-1). Popescu is supported by the DFG project Security Type
Systems and Deduction (grant Ni 491/13-2) as part of the program Reliably Secure Soft-
ware Systems (RS3, priority program 1496). Traytel is supported by the DFG program
Program and Model Analysis (PUMA, doctorate program 1480). The authors are listed
alphabetically regardless of individual contributions or seniority.

References

1. Blanchette, J.C., Popescu, A., Traytel, D.: Formal development associated with this paper.
http://www21.in.tum.de/~traytel/card_devel.tar.gz

2. Breitner, J.: Free groups. In: Klein, G., Nipkow, T., Paulson, L. (eds.) Archive of Formal
Proofs. http://afp.sourceforge.net/entries/Free-Groups.shtml (2011)

3. Chang, C.C., Keisler, H.J.: Model Theory. North-Holland (1973)
4. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2), 56–68 (1940)
5. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment

for Higher Order Logic. Cambridge University Press (1993)
6. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride,

C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer (2007)
7. Harrison, J.: The HOL wellorder library. http://www.cl.cam.ac.uk/~jrh13/papers/

wellorder-library.html (1992)
8. Harrison, J.: Formalizing basic first order model theory. In: Grundy, J., Newey, M.C. (eds.)

TPHOLs ’98. LNCS, vol. 1479, pp. 153–170. Springer (1998)
9. Holz, M., Steffens, K., Weitz, E.: Introduction to Cardinal Arithmetic. Birkhäuser Advanced

Texts, Birkhäuser (1999)
10. Huffman, B.: Countable ordinals. In: Klein, G., Nipkow, T., Paulson, L. (eds.) Archive of

Formal Proofs. http://afp.sf.net/entries/Ordinal.shtml (2005)

16

http://www21.in.tum.de/~traytel/card_devel.tar.gz
http://afp.sourceforge.net/entries/Free-Groups.shtml
http://www.cl.cam.ac.uk/~jrh13/papers/wellorder-library.html
http://www.cl.cam.ac.uk/~jrh13/papers/wellorder-library.html
http://afp.sf.net/entries/Ordinal.shtml

11. Huffman, B., Urban, C.: Proof pearl: A new foundation for Nominal Isabelle. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 35–50. Springer (2010)

12. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

13. Norrish, M., Huffman, B.: Ordinals in HOL: Transfinite arithmetic up to (and beyond)ω1. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 133–146.
Springer (2013)

14. Paulson, L.C., Grabczewski, K.: Mechanizing set theory. J. Autom. Reasoning 17(3), 291–
323 (1996)

15. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186(2),
165–193 (2003)

16. Popescu, A.: Ordinals and cardinals in HOL. In: Klein, G., Nipkow, T., Paulson, L. (eds.)
Archive of Formal Proofs. http://afp.sf.net/entries/Ordinals_and_Cardinals.

shtml (2009)
17. Popescu, A.: Contributions to the theory of syntax with bindings and to process algebra.

Ph.D. thesis, University of Illinois at Urbana-Champaign (2010)
18. Popescu, A., Gunter, E.L.: Recursion principles for syntax with bindings and substitution.

In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) ICFP ’11. pp. 346–358. ACM (2011)
19. Popescu, A., Gunter, E.L., Osborn, C.J.: Strong normalization of System F by HOAS on top

of FOAS. In: LICS 2010. pp. 31–40. IEEE (2010)
20. Sternagel, C.: Extending well-founded partial orders to total well-founded orders (Febru-

ary 2013), archived at https://lists.cam.ac.uk/pipermail/cl-isabelle-users/

2013-February/thread.html

21. Taylor, P.: Intuitionistic sets and ordinals. J. Symb. Log. 61(3), 705–744 (1996)
22. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for

higher-order logic: Category theory applied to theorem proving. In: LICS 2012, pp. 596–
605. IEEE (2012)

23. Wisbauer, R.: Foundations of Module and Ring Theory: A Handbook for Study and Re-
search, Algebra, Logic and Applications, vol. 3. Gordon and Breach (1991)

17

http://afp.sf.net/entries/Ordinals_and_Cardinals.shtml
http://afp.sf.net/entries/Ordinals_and_Cardinals.shtml
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2013-February/thread.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2013-February/thread.html

A More on Finite Cardinals

For finite cardinalities, we prove backward compatibility with a preexisting cardinality
operator card : α set→ nat (which maps infinite sets to 0):

Lemma 23. Assume finite A ∧ finite B. Then:

1. |A|=o |B| ←→ card A = card B 2. |A| ≤o |B| ←→ card A≤ card B

The card operator has extensive library support in Isabelle. It is still the preferred
cardinality operator for finite sets, since it refers to numbers with order and equality
rather than the more bureaucratic order embeddings and isomorphisms.

cardSuc preserves finiteness and behaves as expected for finite cardinals:

Lemma 24. 1. Card_order r → (finite (cardSuc r) ←→ finite (Field r))
2. cardSuc (natLeq_on n) =o natLeq_on (Suc n)

B Case Study: An Order Extension Theorem

Recently, Christian Sternagel started a discussion on the Isabelle mailing list [20] con-
cerning the desire to prove the following theorem: Every well-founded relation p can
be extended to a wellorder w. (This was needed in a larger development of a framework
for termination proofs.)

There were several proof idea proposals, including the following one involving
transfinite recursion. p can be traversed by recurring over a sufficiently large cardinal k,
producing larger and larger relations (vi)i<k, as follows (in standard ordinal notation):
(a) v0 = /0
(b) vi+1 = vi extended with a maxim: the minimal element of p not in the field of vi
(c) if i is a limit ordinal, vi =

⋃
j<i v j

Then w can be taken to be
⋃

j<k v j.
An alternative proposal was based on Zorn’s lemma, which is the proof Sternagel

eventually formalized. A main reason for not preferring transfinite recursion was ap-
parently the difficulty of using our wellorder recursor wo_rec. The recursor can cover
the above definition, but is awkward to use in such situations which need to distinguish
between the successor and the limit case. To address this, we formalized support for
successor and limit ordinals, including a customized recursor.

Given r and a ∈ Field r, aboveS r a is the set of elements strictly r-above a, {b | b 6=
a ∧ (a, b) ∈ r}. The successor of an element, succ r a, is the r-minimum of aboveS r a
(well-defined only if aboveS r a 6= /0). a is a limit element if it is not a proper successor:
isLim r a ≡ ¬ (∃b. aboveS r b 6= /0 ∧ succ b = a). The characteristic property of limit
elements is that they are the suprema of their strict under-intervals:

Lemma 25. a ∈ Field r ∧ isLim r a → a = supr r (underS r a)

The corresponding recursor, wo_recZSL r : β→ (α→ β→ β)→ ((α→ β)→ α→ β)→
α→ β, is a modification of wo_rec that distinguishes three cases:

18

Lemma 26 (Wellorder recursion with zero, successor and limit).
Assume adm_woL r L and a ∈ Field r. Then:

1. wo_recZSL r Z S L 0r = Z
2. aboveS r a 6= /0 → wo_recZSL r Z S L (succ r a) = S a (wo_recZSL r Z S L a)
3. isLim r a ∧ a 6= 0r → wo_recZSL r Z S L a = L (wo_recZSL r Z S L) a

This recursor is less bureaucratic than wo_rec since the 0 and successor cases are
“statically” known to be admissible—only the limit case needs to be checked, via the
admissibility predicate adm_woL r, a variation of adm_wo r restricted to limit elements:

adm_woL r H ≡ ∀ f g a. isLim r a ∧ (∀a′ ∈ underS r a. f a′ = g a′)→ H f a = H g a

The following proof principle complements the recursion principle of Lemma 26:

Lemma 27 (Wellorder induction with zero, successor and limit).
Assume the following hold:

• P 0r

• ∀a. aboveS r a 6= /0 ∧ P a → P (succ r a)
• ∀a ∈ Field r. isLim r a ∧ a 6= 0r(∀a′ ∈ underS r a. P a′)→ P a.

Then ∀a ∈ Field r. P a.

Now we can faithfully formalize the above three-case definition. Let k= cmax natLeq
|Field p| and let T be its type. We define v : T → α rel by v=wo_recZSL k Z S L, where:
(a) Z ≡ /0
(b) S ≡ λ a r. extend p r where extend p r ≡ let A = Field p \ Field r and a =

(SOME a. minimal p A a) in
{

r ∪ {(a, b) | a ∈ Field r ∪ {b}}, if A 6= /0
r, otherwise

(c) L ≡ λ R a.
⋃
{R b | b ∈ underS k a}

Next, we consider the following predicates, the second intended as a chain invariant:

incl_on A p r ≡ ∀a ∈ A. ∀ b ∈ A. (a, b) ∈ p→ (a, b) ∈ r
invar p r ≡ Well_order r ∧ ofilter (Field r) p ∧ incl_on (Field r) p r

Thus, incl_on A p r says that, on A relation p is included in relation r. We show, by
wellorder recursion, that, for all i ∈ Field k, invar p (v i) holds, and that, for all i, j, if
(i, j) ∈ k and i 6= j, the inclusion v i⊆ v j is a wellorder embedding.

Finally, we prove that w =
⋃

i∈Field k v i is the desired wellorder extension. w is a
wellorder as a union of a wellorder-embedding chain, and p⊆ w holds because, due to
the size of k, v (succ k i) = v i (and hence p⊆ v i) for some i ∈ Field k.

Interestingly, the same invariant invar works for the Zorn-based approach, yielding
a slightly more compact proof. In the literature, Zorn seems to be generally preferred by
algebraists [23], while transfinite recursion/induction is a speciality of logicians [3]. For
this particular instance, the latter approach felt more intuitive and (its informal version)
was easier to discover and formulate.

19

C Some Proof Ideas

Proof of Theorem 2.
We define together, by wellorder recursion on r, the functions f : α→ β and g : α→
bool. Assume a ∈ Field r and f and g have already been defined on underS r a. Let
A = Field s− (f •underS r a). If A 6= /0, we define f a to be the s-minimum of A and g a
to be True. Otherwise we define g a to be False (and f a to be anything).

We first prove by well-founded induction that, for all a ∈ Field r, if False 6∈ (g •
underS r a), then bij_betw f (underS r b) (underS s (f b)) for all b ∈ underS r a. Then
we have 2 cases:
- If False 6∈ (g •Field r), then f establishes an embedding of r in s.
- Otherwise, the inverse of f establishes an embedding in the opposite direction. ut

Proof of Theorem 3.
Compared to the standard result about the class of ordinals, an extra difficulty arises
from the use of embeddings (as opposed to plain inclusions) in the definition of r <o s.
Direct reasoning about embeddings would be very tedious, since it would require rea-
soning about limit behavior of embedding composition (pretty much like limit construc-
tions in category theory). Fortunately however, this is not necessary, as we can reduce
embeddings to inclusions as follows: Let R be a nonempty set of wellorders on α. We
need to prove that it has a minim with respect to <o. We pick r0 ∈ R, and restrict atten-
tion to R0 = {r ∈ R. r ≤o r0}—if R0 has a minim, then so does R. Next, we show that
there exists a surjection H between Ro and the filters of r0 such that the following hold:
r ≤o s ←→ H r ⊆ H s; r <o s ←→ H r ⊂ H s; r =o s ←→ H r = H s. This effectively
brings the problem to the familiar ground of filters on a fixed wellorder with inclusions
between them, where the proof proceeds smoothly (and standardly). ut

Proof of Lemma 6.
Assume r : α rel and s : β rel: for the nontrivial implication, we assume the existence of
an f : α→ β as above. We define a function g : α→ β by wellorder recursion on r in
the “tightest" possible way, each time choosing the s-smallest element not taken so far
(similarly to the definition of f in the proof of Th. 2). By wellorder induction and the
properties of f , we prove that g is always below f : this ensures that g is a (wellorder)
embedding of r into s, which proves r ≤o s. ut

Proof of Lemma 22.
Let k = |Fin (Field Fbd)| and l = Fbd. We define d : Fin (Field Fbd)× (Field Fbd→ A)
by d (y, f) = Fmap f y. It suffices to prove that d is surjective. To this end, let x ∈
Fin A. Since |Fset x| ≤o Fbd, we obtain an injective function g : Fset x→ Field Fbd.
Let y = Fmap g x. We choose f : Field Fbd→ Fin A be such that it is the left inverse
of g on g •Fset x—this choice is possible since g is injective and Fset x ⊆ A. By the
functoriality of Fmap, we have

d (y, f) = Fmap f y = Fmap f (Fmap g x) = Fmap (f ◦g) x = Fmap id x = x

and hence y and f witness the surjectivity of d. ut

20

	Cardinals in Isabelle/HOL
	1 Introduction
	2 Higher-Order Logic and Isabelle/HOL
	3 Ordinals
	3.1 Infrastructure
	3.2 Embedding and Isomorphism
	3.3 Ordinal Arithmetic

	4 Cardinals
	4.1 Bootstrapping
	4.2 Cardinality of Set and Type Constructors
	4.3 0 and the Finite Cardinals
	4.4 Some Cardinal Arithmetic
	4.5 Regular Cardinals

	5 Applications
	5.1 Syntax with Bindings
	5.2 Bounded Functors and the (Co)datatype Package

	6 More Details on the Formalization
	7 Conclusion
	A More on Finite Cardinals
	B Case Study: An Order Extension Theorem
	C Some Proof Ideas

