
Use of Latent Semantic Indexing for Content Based

Searching and Routing of Mobile Agents on P2P

Network

A thesis submitted to Middlesex University

in partial ful�lment for the degree of Master of Philosophy

by M. Singh

School of Engineering and Information Sciences

Middlesex University

March 2010

Abstract

The peer-to-peer (P2P) system has a number of nodes that are connected to each other

in an unstructured or a structured overlay network. One of the most important problems

in a P2P system is locating of resources that are shared by various nodes. Techniques

such as Flooding and Distributed Hash-Table (DHT) has been proposed to locate resources

shared by various nodes. Flooding su�ers from saturation as number of nodes increase, while

DHT cannot handle multiple keys to de�ne and search a resource. Various further research

works including multi agent systems (MAS) have been pursued that take unstructured or

structured networks as a backbone and hence inherently su�er from problems. We present

the solution that is more e�cient and e�ective for discovering shared resources on a network

that is in�uenced by content shared by nodes. Our solution presents use of multiple agents

that manage the shared information on a node and a mobile agent called Reconnaissance

Agent (RA), that is responsible for querying various nodes. To reduce the search load on

nodes that have unrelated content, an e�cient migration route is proposed for RA, that

is based on cosine similarity of content shared by nodes and user query. Results show

reduction in search load and tra�c due to communication, and increase in recall value for

locating of resources de�ned by multiple keys using RA that are logically similar to user

query. Furthermore, the results indicate that by use of our technique the relevance of search

results is higher; that is obtained by minimal tra�c generation/communication and hops

made by RA.

Keywords: Resource Discovery, P2P, Reconnaissance Agent, Latent Semantic Indexing,

Cosine Similarity.

ii

Acknowledgements

I would like to acknowledge and extend my heartfelt gratitude to the following persons who

have made the completion of this thesis possible:

My supervisors, Dr. Xiaochun Cheng and Dr. Roman Belavkin, for their vital assistance,

encouragement, and support throughout the duration of the research project.

Late Emeritus Prof. Colin Tully for giving me the chance to pursue postgraduate studies.

His initial encouraging words have been driving force for me throughout this work. May he

rest in peace.

Mr. Sumeet Gautam for his assistance in collection of the topics for background chapter

and testing.

Most especially to my family

And to Akal Purakh Waheguru, who made all things possible.

M. Singh

Middlesex University

iii

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivation & Background 1
1.2 Research Question 3
1.3 Aims and Objectives 3
1.4 Research Method 4
1.5 Contributions 4
1.6 Structure of Report 5

2 Literature Survey 6

2.1 Indexing Architectures used by P2P Systems 6
2.1.1 Centralised Indexing
2.1.2 Decentralised Indexing - Unstructured Network
2.1.3 Distributed Indexing - Structured Network

2.2 Resource Discovery and Routing 12
2.2.1 Resource Discovery in Unstructured P2P Systems
2.2.2 Resource Discovery in Structured P2P Systems
2.2.3 Resource Discovery in Mobile Agent Systems

2.3 Critical Review 20
2.4 Agent Based System Development Frameworks 20
2.5 Qualitative Comparison of Mobile Agent Platforms 21
2.6 Summary of the Chapter 27

3 Design Features and Implementation 28

3.1 The Proposed Multi-Agent System for Resource Discovery - A�nity 28
3.1.1 The Proposed Global System Architecture
3.1.2 Speci�cation of Agents

3.2 The Proposed Mobile Agent Routing 32
3.2.1 Latent Semantic Indexing and Singular Value Decomposition (LSI-

SVD) for Peer Clustering and Mobile Agent Routing
3.3 The Proposed Multi-Agent Collaboration for Resource Discovery 36
3.4 Implementation 39

CONTENTS v

3.4.1 Agents Communication Implementation
3.4.2 Feature Matrix - Frequency-Based Indexing
3.4.3 Implementation of Latent Semantic Indexing and Singular Value De-

composition
3.4.3.1 Index Maintenance

3.4.4 Similarity Function
3.4.4.1 Node Learning - Clustering
3.4.4.2 Node Searching and Ranking - Content Based Routing
3.4.4.3 Query Resolving

3.4.5 Mobile Agent - Reconnaissance Agent
3.5 Discussion 54
3.6 Summary of the Chapter 54

4 Experiments, Results, and Evaluation 56

4.1 Design of Experiments 56
4.1.1 Experiment Environment and Test Bed

4.2 Test 1 - Comparison to Flooding Technique 60
4.2.1 Experiment 1 - Response Time and Evaluation
4.2.2 Experiment 2 - E�ectiveness of Search Technique and Evaluation
4.2.3 Observations
4.2.4 Critical Analysis

4.3 Test 2 - Comparison to Other Routing Techniques/Algorithms 65
4.3.1 Experiment 1 - Pair-Wise Document Similarity And Evaluation
4.3.2 Experiment 2 - E�ectiveness of Search Technique And Evaluation
4.3.3 Experiment 3 - E�ectiveness to Locate Resources and Evaluation
4.3.4 Experiment 4 - Degree of Relevance of Results and Evaluation

4.4 Discussion 71
4.5 Summary of the Chapter 72

5 Discussion, Conclusions, and Future Work 73

5.1 Discussions - Analysis of Other Research Works 73
5.2 Applications for Research Conducted 76
5.3 Conclusions 77
5.4 Future Work 78

References 80

A Similarity Measures and Weighting Functions 87

B Classes Realised - A�nity 88

C Program Listings - A�nity 89

C.1 Interface BootInf.java 89
C.2 Class Bootstrap.java 90
C.3 Class BootstrapServer.java 95
C.4 Class Extractor.java 97

CONTENTS vi

C.5 Class ReportSim.java 99
C.6 Class Directory.java 101
C.7 Class MasterList.java 102
C.8 Class Repository.java 110
C.9 Class Node.java 112
C.10 Class InformationAgent.java 115
C.11 Class LocalAgent.java 130
C.12 Class LocalUI.java 146
C.13 Class MatchStore.java 148
C.14 Class InterfaceAgent.java 149
C.15 Class SearchGUI.java 154
C.16 Class ReconnaissanceAgent.java 160

vii

List of Figures

2.1 A typical scenario of the centralised system. Source: Singh et al. (2009) . . . 7
2.2 Illustration of the �ooding process. 8
2.3 Comparison of distributed indexing structures. (i) Gnutella-like local index-

ing. (ii) Global indexing. (iii) Hybrid indexing. (iv) Optimized hybrid in-
dexing. a, b, and c are terms. X, Y, and Z are documents. Source: Tang &
Dwarkadas (2004) . 17

2.4 The SMART architecture Source: Wong et al. (2001) 22
2.5 The D'Agent architecture . 23
2.6 The simpli�ed version of Grasshopper Architecture. The basic services in-

clude MASIF and Core Services. MASIF includes agent creation, destruction,
suspend, activate and location services and Core services include agent exe-
cution, transport, management, communication, security and naming. The
enhanced services include APIs, GUIs and task control features. 24

2.7 The Aglets architecture Source: Schoeman & Cloete (2003) 25

3.1 Global architecture of the system . 30
3.2 Peer clustering and overlay organisation achieved using latent semantic indexing 33
3.3 Interactions between multiple agents for resource discovery and realisation of

an overlay network . 37
3.4 The RA's interaction with InfA for issuing new peer GUID 39
3.5 Flow diagram for behaviour of the InfA and the LA upon arrival of the RA . 40
3.6 ACLMessage from the RA to the LA for search request. ACLMessage re-

ceived by the LA from the RA using MessageTemplate and replying with
setContentObject or in blocked state. 41

3.7 Creation of the RA in the method onGUIEvent() from class InterfaceAgent . 43
3.8 ReceiveMessageRecon class showing blocked state of when reply received is

null and the MessageTemplate for receiving messages from the RA 43
3.9 Method getKeywords() for getting keywords and their frequencies and holding

in data structure TreeMap . 45
3.10 Realisation of Singular Value Decomposition from frequency based keyword-

resource or keyword node matrix . 46
3.11 Index Maintenance task performed recursively by Information Agent 47
3.12 Directory data structure used by BootStrapServer to pass clustered nodes

result to InformationAgent . 49

LIST OF FIGURES viii

3.13 Realisation of node searching and ranking . 51

4.1 Frequency distribution of response time analysis - Gnutella vs. A�nity 61
4.2 Query successful vs. unsuccessful - A�nity method 62
4.3 Query successful vs. unsuccessful - �ooding method 62
4.4 Division of packets for Gnutella . 63
4.5 Gnutella packets analysed using Wireshark . 64
4.6 Precision and recall results comparing LSI to TF-IDF indexing model 65
4.7 Pair-wise document similarity TF-IDF Jaccard vs. LSI Cosine 66
4.8 Number of times a document appears for 30 queries Jaccard similarity vs.

Cosine similarity . 68
4.9 Number of documents found for 30 separate queries on corpus of documents . 69
4.10 Similarity score distribution TF-IDF Jaccard vs. LSI Cosine 70

B.1 Classes for resource discovery system - A�nity 88

ix

List of Tables

2.1 A classi�cation of P2P routing infrastructures in terms of network structures
Source:Androutsellis-Theotokis & Spinellis (2004) 11

2.2 Summary of infrastructure for routing and resource discovery location Source:
Androutsellis-Theotokis & Spinellis (2004) . 12

2.3 Comparison of features of routing algorithms Source: Prakash (2006) 13
2.4 Qualitative Comparison Among Mobile Agent Platforms Source: Trillo et al.

(2007) . 25

4.1 Gnutella �ooding peers test bed . 58
4.2 MAS test bed . 59
4.3 Keywords used for sharing resource on each node 59

A.1 Similarity measures . 87
A.2 Local and global weighting functions . 87

1

Chapter 1

Introduction

1.1 Motivation & Background

The volume of data published online per year is estimated to be of an order of approximately

one terabyte and it is expected to grow exponentially. The solution o�ered to users is in form

of a search engine, for instance Google. However, these solutions su�er from requirement

of maintaining a large centralised database about online published information. In order

to support the solution and also o�er scalability, they require a large and highly costly

hierarchical infrastructure. Moreover, any newly published information requires time for

indexing and is often not indexed for weeks. Similarly, any information that has either been

removed or ceases to exist also results in dead-links for users because of delayed indexing.

These reasons call for a requirement of a scalable infrastructure that is capable of

indexing, routing and searching rich published content.

As opposed to centralised form for indexing o�ered by search engines, peer-to-

peer (P2P) networks o�er solution for resource discovery by making the task of hosting

distributed. The P2P networks consist of a number of decentralised nodes sharing their

resources on an overlay network. Here the resources mean services/�les that are hosted

on nodes of the network. P2P systems o�er low-cost sharing of information and with high

autonomy. P2P networks o�er characteristics such as high availability, low cost and ease of

deployment, data freshness and good scalability Yingwu Zhu (2005). Because of following

features P2P networks become ideal choice as opposed to centralised solutions o�ered by

search engines.

1. Autonomy: Autonomy of nodes allows them to join/leave at any time, control their

data with respect to other nodes i.e. shared resources are published and indexed

1. introduction 2

immediately.

2. Query expressiveness: Key-lookup, key-word search

3. E�ciency: E�cient use of bandwidth, computing power and storage

However, the process of discovery of this shared information is not very e�cient due to poor

search performance and unavailability of heuristics Tran & Schonwalden (2008).

A classical client and server based centralised solution to a location of resource is

o�ered by Napster Napster (2003); Aberer et al. (2004). In this approach, a client connects

to central server - that is responsible for indexing resources and their location. Upon query

about resource location from any other client, the central server issues the IP address of

the client where resource is located. This solution cripples autonomy of a client due to

centralised sever, as in case of server failure, clients cannot locate resources.

Another approach to resource location is o�ered by Gnutella, where the decen-

tralised peers communicate to other peers when the resource location query is issued by user

Chawathe et al. (2003); Forum (2002). This solution o�er high degree of autonomy as peers

can join or leave the overlay network without a�ecting rest of the network. When locat-

ing a resource, peer �oods the user query on the overlay network usually with time-to-live

constraint in order to query other peers about required resource. The ine�ciency in this

approach attributed to three facts:

1. The overlay network is created randomly as there is not structure associated with it

2. The queries for a resource location are forwarded �blindly� from one peer to another

peer using technique called �ooding due to which there is unnecessary quantity of

message on the network

3. Saturation as number of nodes increase.

A more �rigid� approach is taken by a structured overlay that is based on hash functions

supports key-based routing such that resource identi�ers are mapped to the peer identi�er

address space and a resource request is routed to the nearest peer in the peer address

space Ratnasamy et al. (2001); Rowstron & Druschel (2001); Stoica et al. (2001); Zhao et

al. (2001). Although such systems are better than unstructured overlay from performance

point of view as some heuristics are available for locating a resource (only where the search

1. introduction 3

keys are known exactly), but they are not as e�ective for approximate keywords, or text

based resource location Yingwu Zhu (2005); Tran & Schonwalden (2008).

1.2 Research Question

The author formulates the overall research question as following:

Can the process of resource discovery be improved for P2P systems in order
to increase search performance such that the higher number of relevant results
can be achieved and keep the possibility of saturation of network low that is a
resultant of routing on P2P network?

It is understood from literature that saturation can be decreased and hence improved, if

informed search is performed that is resultant of availability of heuristics and that the

search performance or recall can be increased if an e�cient indexing technique and similarity

functions are available. This results into breaking down of general research questions into:

1. Can global heuristics be distributed to nodes on the overlay network e�ciently with

constraint on communication overhead?

2. How can search performance or recall and routing be improved dynamically?

3. What type of characteristics and representation must the resource have in order to be

indexed and further be used for representing the node?

1.3 Aims and Objectives

The main aim of this research is to design and implement a novel routing and searching

technique based on Latent Semantic Indexing (LSI) and mobile agent technology in a P2P

network created by collaboration of multiple agents.

The main objective is to design and implement a resource discovery system that

uses mobile agent technology for discovering and selecting nodes and for routing the mobile

agent through overlay network based on content of query with purpose of minimising re-

sponse time, reducing possible delays, maximising network performance by reducing the pos-

sibility of saturation and maximising the recall by providing relevant results. Furthermore,

it is endeavoured that this system will o�er improvement over attributes of performance and

scalability.

1. introduction 4

1.4 Research Method

The �eld of using mobile agents on P2P networks using LSI is fairly new and most previous

attempts have been made using term-based matching techniques, �ooding, Distributed Hash

Table (DHT) on unstructured or structured networks. It can be concluded without a doubt

that this �eld is growing rapidly and is not very well understood at this stage. The author

concludes that the most suitable research method for this research project is experimental

research where the evaluation of various experiments conducted will be compared both

quantitatively and qualitatively to other related works in this �eld.

The author endeavours to conduct experiments in order to answer the research

question and prove the postulated hypothesis that mobile agent can be used e�ectively

for e�cient resource discovery when powered by content-based routing to create network

heuristics and discover the topology of overlay network for the purpose of maximising search

performance, minimising response time, have higher inter-cluster links and higher degree of

relevance of the obtained search results.

1.5 Contributions

The purpose of this research is to o�er the multi-agent system (MAS) and the resource dis-

covery based on content based routing of mobile agent that overcomes the disadvantages of

structured overlay i.e. be able to locate resources even when the keys are unknown, approx-

imate, or text based multiple keys and also o�er the �exibility characteristic of autonomous

unstructured overlay but by reducing number of message on the network and control or

remove unnecessary �ooding.

Through this research work, the author proposes the following:

• Autonomous MAS System: a �exible multi-agent based approach for dynamic organi-

sation of P2P network that is based on the similarity of content shared by peers. The

similarity of content between two or more peers is translated into similarity between

peers or a cluster of peers sharing similar content.

• Deterministic Content Driven Routing : the resource location mechanism that uses

semantic similarity between content shared by peers and search keywords to deter-

ministically route a mobile agent called the reconnaissance agent (RA) to peers that

host content that is similar to a user query.

1. introduction 5

• Use LSI Based Indexing and Query Matching : the use of LSI and cosine similarity by

RA to �nd relevance of resource(s) hosted by peer as a best match for a user query

(where the user query can be text based or an approximate query).

The author demonstrates that this method improves the resource discovery performance i.e.

�nding a relevant resource(s) with lower response time and hence reducing search load.

1.6 Structure of Report

The rest of the report is structured as follows.

Chapter 2 surveys the current literature and draws lessons to propose the capabil-

ities that a resource discovery system should obtain. In doing so, chapter 2 also collates a

large amount of research work relevant to �eld of study and also discusses the architecture

and platforms for development of MAS.

Chapter 3 describes the design features of proposed MAS based resource discovery

system, node clustering based on semantic similarity of content hosted by nodes and RA

routing, and the multi-agent collaboration for resource discovery. Furthermore, it describes

the implementation done using Java remote method invocation (RMI) and Java Agent De-

velopment Framework (JADE) Bellifemine et al. (2007).

Chapter 4 is dedicated for experimentation where the e�ectiveness of proposed

resource discovery algorithm and resource locating algorithm is compared against �ooding

(Gnutella) in terms of response time and search load. Furthermore, proposed node clustering

algorithm for routing the RA on the overlay network, messages on network and relevance

of results obtained due to user invoked query is compared to contemporary research work

done by other researchers in �eld of using mobile agents for resource discovery.

Chapter 5 is dedicated for discussions for assembling and comparing our concepts to

other related works in the �eld of resource discovery and further provide list the conclusions

and also presents the future work that can be conducted in this �eld.

Ending sections of report provide references, appendices, and program listings.

6

Chapter 2

Literature Survey

This chapter provides a detailed survey of current literature and draw lessons to propose the

capabilities that a resource discovery system should obtain. It also collates a large amount

of research work relevant to �eld of study and also discusses the architecture and platforms

for development of MAS.

As described by Singh et al., there are diverse set of solutions that are available

for resource discovery. These solutions are characterised through the routing strategy and

resource searching strategy that is applied by them Karnstedt et al. (2004); Singh et al.

(2009). The author have categorised and reviewed the resource searching techniques used

by unstructured and structured P2P systems by initially discussing architectures. The

author also presents most current search techniques that are being introduced to the resource

discovery domain.

2.1 Indexing Architectures used by P2P Systems

2.1.1 Centralised Indexing

The �rst most popular P2P Network was Napster, which used Central Indexing Server for

storing the locations of the resources Aberer et al. (2004). Using this network Napster

client's in the network can communicate with the other Napster clients. In Napster a

dedicated central server maintains an index of the �les shared by the active peers on the

network. Each peer in the network maintains a constant connection to one of the central

server through which the query for �le location is sent. When a central indexing server

receives the query for a �le location it cooperates to process the query and returns the

corresponding matching �le locations to the peer making the query. After the peer making

2. literature survey 7

Peer: A1

IP Address: 81.62.102.17

Port: 80

Web Server

Master Index List

Peers File List

A1 8, 9

B1 1,8,10

C1 1, 2, 3

Publish List of Files

Query Master Index List

Receive Report from Web

Server

Peer: B1

IP Address: 154.168.10.46

Port: 80

Publish List of Files

Query Master Index List

Receive Report from Web

Server

Peer: C1

IP Address: 91.167.30.9

Port: 80

Publish List of Files

Query Master Index List

Receive Report from Web

Server

Internet Cloud
P

:
A

1
:

8
,

9

P
:

B
1

:
1

,
8

,
1

0

P
:

C
1

:
1

,
2

,
3

Q
1

:A
1

:1
0

Q
1

:B
1

:3

R
1

:A
1

:B
1

R
1

:B
1

:C
1

T
1

:1
0

T
1

:3

Figure 2.1: A typical scenario of the centralised system. Source: Singh et al. (2009)

query receives response from the indexing server about the list of locations of the resource,

the peer can now make direct communication with the peers having the resources and initiate

the transfer of the resource. Besides maintaining the list of resources in the network, the

indexing server also keeps track of each peer that is active or monitors the state of the peer

like keeping track of the information of the peer for instance the duration the peer has been

active or the connection speed the peer is at Napster (2003). In Figure 2.1, the peer A1,

peer B1 and peer C1 are sharing resources 8, 9; 1,8,10 and 1, 2, 3 respectively. The central

server, �Napster.com� that keeps the index of all resources shared by the peers. The central

server is queried by the peer A1 and peer B2 for the resource 10 and resource 3 respectively.

The central server replies by providing the IP address of the resource providers to each of

the peers. The direct connection is established between two peers for downloading of the

resource.

2. literature survey 8

MATCH

STOP

SEEN ID

Search:
id = 1
ttl = 3 ttl = 3

ttl = 1

ttl = 0

ttl = 0

replies

requests

Figure 2.2: Illustration of the �ooding process.

2.1.2 Decentralised Indexing - Unstructured Network

An unstructured overlay like GNUTELLA is organised into random graph topology where

there is no speci�c topology that the overlay network follows and it uses �ooding or random

walks to discover resource in the network. This overlay is constructed easily when a node

wants to join the network. During the resource discovery each node visited will evaluate the

query locally on its data store. Before starting to exchange messages between the nodes, a

Gnutella node connects itself to the network by connecting with another well-known node

on the network. Once the connection is established, the addresses of one or more host

will be supplied as the node joins the network. The listening node is advertised by Pong

messages. When another node is located on the network TCP/IP connection is established

and a handshake sequence is initiated. In Figure 2.2, it is observed that when the search

begins from id=1, it is broadcasted to all the peers that are connected to the node with

TTL=3. The TTL is decreased by 1 after every hop until TTL drops to zero. If the matching

resource is found it is responding through the reverse path until it reaches to the originating

node id=1. Details of Gnutella resource discovery protocol are discussed in Section 2.2.1.

2. literature survey 9

2.1.3 Distributed Indexing - Structured Network

A structured overlay and DHT based systems like Chord, Pastry, Content Addressable

Network (CAN), and Tapestry are the improvement on unstructured overlay to improve

the performance of resource discovery Stoica et al. (2001); Rowstron & Druschel (2001);

Ratnasamy et al. (2001); Zhao et al. (2004). It ensures that any node can e�ciently route a

search to some peer that has the desired �le even in the rare availability Killmeyer (2006).

The nodes in the network impose constraints on the topology as well as on the data placement

to provide with e�cient search mechanism and resource discovery. In all the DHT systems

mentioned above �les are associated with a key and each node in the network is responsible

for storing list of resources hence having list of keys. The �rst and foremost operation in

the DHT system is the look up for the key as lookup(key) which returns a location of the

resource or the key and hence IP address.

Chord

Till date there are many load balancing approaches, Chord was the �rst to propose

the concept of virtual servers and hence address the load balancing by having each node

simulate a logarithmic number of virtual servers Zhu & Hu (2005). Using Chord, only log(N)

messages are required to �nd the resource in the Chord Network where N being the number

of active nodes in the network. Chord allows distributed nodes to agree on a single Chord

node as a rendezvous point for a given key without any central coordination Project (2010).

Chord algorithm does not particularly specify any means for storage of the resource; this is

done by DHash which is built on top of Chord and also handles storage of data blocks on

the active nodes reliably Project (2010). This is achieved using techniques like replication

and erasure coding. The logical application interface for DHT based systems is de�ned as:

Key = put(data) and Data = get(key) Project (2010).

Pastry

Pastry is completely decentralized, scalable and self organizing network which dy-

namically adapts to the addition or removal of nodes Guvnec & Urdaneta (2010). Each node

in Pastry Network has unique and random identi�er called NodeId in a circular 128-bit iden-

ti�er space. With a message and a numeric 128-bit key, a node can route the message to

a node with NodeId which is numerically close to the key within the live Pastry Network

Rowstron & Druschel (2001). This results in �rst order balancing of the storage require-

ments and query among the nodes in the Pastry network and also does not require global

2. literature survey 10

co-ordination Rowstron & Druschel (2001).

Routing in Pastry for a given message it checks the following conditions Guvnec &

Urdaneta (2010):

• If it falls within the NodeId's leafset then the message is directly forwarded to it.

• Else, the message is forwarded to a node that shares the most common pre�x with the

key using the routing table

• Else if the routing table is empty or the node is unreachable, then message is forwarded

to node that is numerically close to the key.

If given N as number of live nodes in the overlay Pastry Network then expected number

of forwarding steps O(logN) and size of routing table for each node O(logN) Rowstron &

Druschel (2001).

CAN

CAN is also a distributed system which is DHT based that maps keys to values

on big scale network like internet. As discussed above CANs basic idea is to build a hash

table and the basic operations performed are insertion, lookup and deletion of the key, value

pairs. In the CAN network each node stores a chunk (also called zone) of the total hash

table. Moreover it stores smaller amount of information of adjacent zones Ratnasamy et al.

(2001).

In CAN the network is formed in a tree like structure where each node is associated

to one, at the parent level and to a group at a child level. When a query is made, it travels

from the top most level going down through the network until the resource is discovered

or until the last leaf is reached Guvnec & Urdaneta (2010). The architecture of the CAN

is a virtual multi dimensional can be viewed as Cartesian coordinate space. CAN design

centres around a virtual d-dimensional Cartesian coordinate space on a d-torus which is

independent of the physical location and physical connectivity of the nodes Ratnasamy et

al. (2001). The overall Cartesian coordinate space is dynamically partitioned among all the

nodes such that each node belongs to one distinct zone with in the entire space Ratnasamy

et al. (2001). To route a query, node maintains a routing table which holds the IP locations

as well as the virtual coordinate zone of each of its neighbour. Using the co ordinates the

message is routed towards destination.

CAN construction take place in three steps:-

2. literature survey 11

1. A joining node must �nd a node which is already on the CAN network

2. Using the CAN routing mechanism, it must �nd a node whose zone will be split

3. Lastly, the neighbours of split zone are informed.

Tapestry

Tapestry is another P2P structured overlay network which provides high perfor-

mance, scalable as well as location independent routing of the messages. It uses adaptive

algorithm with soft state to maintain fault tolerance with regards to changing node mem-

bership and network faults. Tapestry provides decentralized object location and routing

(DOLR), the DOLR interface provides routing of messages to end points like nodes or ob-

ject replicas Zhao et al. (2004). Each Tapestry node is assigned a unique id and more than

one node can be hosted by a single physical host. Tapestry utilizes identi�er space of 160 bit

values with a 40 digit key. The e�ciency of the Tapestry increases with the increase in the

network size. Moreover to allow multiple applications every message contains an application

speci�c identi�er which helps the node to select a process or delivery of message to a speci�c

port Zhao et al. (2004).

Table 2.1 shows the classi�cation of P2P routing infrastructures in terms of their

network structure, with typical examples. Table 2.2 summarises infrastructure for routing

and resource discovery location.

Centralisation

Hybrid Partial None

Unstructured Napster Kazaa, Edutella Gnutella

Structured Chord, CAN, Tapestry, Pastry

Table 2.1: A classi�cation of P2P routing infrastructures in terms of network structures
Source:Androutsellis-Theotokis & Spinellis (2004)

2. literature survey 12

P2P

Infrastructure

Description for Routing and Location

Flooding Infrastructure that provides functionality for searching

�blindly� on overlay networks.

Chord A scalable peer-to-peer lookup service. Given a key it maps

the key to a node.

CAN Scalable content addressable network. A distributed

infrastructure that provides hash-table functionality for

mapping �le names to their locations.

Pastry Infrastructure for fault-tolerant wide-area location and

routing.

Tapestry Infrastructure for fault-tolerant wide area location and

routing.

Table 2.2: Summary of infrastructure for routing and resource discovery location Source:
Androutsellis-Theotokis & Spinellis (2004)

2.2 Resource Discovery and Routing

Table 2.3 compares various features of routing algorithms used in P2P systems.

2.2.1 Resource Discovery in Unstructured P2P Systems

In unstructured P2P systems for instance Gnutella, various nodes(peers) are organised into

a random graph where the edges of the graph are the links between various nodes this con-

structing an overlay network Chawathe et al. (2003); Forum (2002). Flooding technique is

used for routing a query through the overlay network. Upon query, the visited node com-

pares the query against its shared resources and is then requested to forward the query to

its neighbours. This system of resource discovery is highly robust and o�ers vast improve-

ment on factor of scalability as compared to Napster or other centralised search systems

but su�ers from an expensive cost of saturation of overlay network due to large bandwidth

consumption Chawathe et al. (2003); Forum (2002); Aberer et al. (2004); Napster (2003).

Various techniques have been introduced to improve the e�ciency of this system that in-

cludes random walks, informed searches, and node grouping Bawa et al. (2003); Zhu & Hu

2. literature survey 13

F
ea
tu
re

C
on
ve
n
ti
on
al
F
lo
o
d
in
g

R
an
d
om

W
al
k
s

D
H
T

R
an
ge

Q
u
er
y

In
fr
as
tr
u
ct
u
re

P
er
fo
rm

ed
on

u
n
st
ru
ct
u
re
d
P
2P

n
et
w
or
k
s

P
er
fo
rm

ed
on

u
n
st
ru
ct
u
re
d
P
2P

n
et
w
or
k
s

P
er
fo
rm

ed
on

st
ru
ct
u
re
d

(D
H
T
)
P
2P

n
et
w
or
k
s

P
er
fo
rm

ed
on

st
ru
ct
u
re
d

(D
H
T
)
P
2P

n
et
w
or
k
s

S
co
p
e

W
or
k
s
sa
m
e
w
it
h
an
y

n
et
w
or
k

W
or
k
s
b
es
t
w
it
h
m
u
lt
ip
le

q
u
er
ie
s
an
d
p
ee
r

cl
u
st
er
in
g

W
or
k
s
sa
m
e
w
it
h
al
l
th
e

D
H
T
s

W
or
k
s
b
es
t
w
h
en

se
m
an
ti
c
p
ro
x
im
it
y
of

ke
y
s
is
m
ai
n
ta
in
ed

S
ea
rc
h

C
om

p
le
x
it
y

O
n
av
er
ag
e
se
ar
ch

is
d
on
e

in
k
*N

ti
m
e
(k

=
av
er
ag
e

d
eg
re
e
of

n
o
d
es
,
N
=

to
ta
l
n
u
m
b
er

of
n
o
d
es
)

O
n
av
er
ag
e
se
ar
ch

is
d
on
e

in
lo
g
ti
m
e

O
n
av
er
ag
e
se
ar
ch

is
d
on
e

in
lo
g
ti
m
e

O
n
av
er
ag
e
se
ar
ch

is
d
on
e

in
lo
g
ti
m
e

R
el
ev
an
ce

an
d

R
es
u
lt
s

R
et
u
rn
s
si
n
gl
e
re
su
lt

R
et
u
rn
s
si
n
gl
e
re
su
lt

R
et
u
rn
s
si
n
gl
e
re
su
lt

R
et
u
rn
s
a
se
t
of

re
su
lt
s

C
os
t

A
ss
o
ci
at
ed

w
it
h
R
es
ou
rc
e

D
is
co
ve
ry

V
er
y
w
as
te
fu
l
of

re
so
u
rc
es
,
as

ev
er
y
p
ee
r

p
ro
ce
ss
es

ea
ch

q
u
er
y

L
es
s
ta
x
in
g
on

re
so
u
rc
es

N
ot

to
o
ta
x
in
g
on

re
so
u
rc
es

M
in
-m

ax
al
go
ri
th
m

u
se
s

re
so
u
rc
es

w
is
el
y

R
es
p
on
se

T
im
e
(R
ou
ti
n
g

an
d
S
ea
rc
h
in
g)

Is
n
ot

ve
ry

fa
st
,
as

ev
er
y

p
ee
r
p
ro
ce
ss
es

ea
ch

q
u
er
y

R
es
u
lt
ar
e
re
as
on
ab
ly
fa
st

R
ou
ti
n
g
is
ve
ry

fa
st

S
h
ow

er
al
go
ri
th
m

is
ve
ry

fa
st

T
a
b
l
e
2
.3
:
C
om

p
ar
is
on

of
fe
at
u
re
s
of

ro
u
ti
n
g
al
go
ri
th
m
s
S
ou
rc
e:

P
ra
ka
sh

(2
00
6)

2. literature survey 14

(2006); Lv et al. (2002); Crespo & Garcia-Molina (2002).

Random walks were introduced to improve the issue of saturation by introduction

of techniques time-to-live (TTL) and checking Lv et al. (2002). Like �ooding, random

walks, is uninformed search technique where the query is randomly forwarded to nodes. As

an answer to saturation of the overlay network, the total number of nodes to be visited

is de�ned using TTL. Also, checking technique is used where before forwarding to next

node, the query originator is �checked with�. These techniques of controlled �ooding re�ned

resource searching mechanism but su�ered from lack of results due to restrictions imposed

by TTL.

To increase the e�ectiveness of search mechanism, informed searches were intro-

duced that o�ered improvement in performance by using information on nodes and their

resources Lopes & Botelho (2008). This information is collected as part of previous queries.

Crespo et. al. introduced the technique routing indices (RI) for informed searches, where

queries are routed to nodes that were more likely to provide a resource Crespo & Garcia-

Molina (2002). In this technique uses distributed-index mechanism that maintains indices

on each node. Given a query, the RI data structure returns a list of ranked nodes for for-

warding a query. In informed searches, propagating a query to nodes where there is likeliness

of discovering a resource help reduce the network load because of less �ooding.

Other resource location techniques such as SETS and ESS, are based on a concept

of grouping content to organise nodes Bawa et al. (2003); Zhu & Hu (2004). The search in

SETS is based on topic-segmentation of overlay network. In other words, SETS partitions

nodes into topic segments such as nodes with similar content belong to same segment Zhu &

Hu (2006). SETS su�er from single point failure and hence has performance bottleneck Zhu

& Hu (2006). ESS is based on information retrieval algorithms to perform resource discovery

on Gnutella-like P2P systems. As in SETS, nodes with similar content are segmented into

same semantic group Zhu & Hu (2004). The concept used by ESS is to place indexes

of semantically close �les into same nodes with high probability of exploiting information

retrieval algorithms and locality sensitive hashing Zhu & Hu (2007).

A multiple keyword based searching technique called local indexing is used for

locating resource using multiple keywords Tang & Dwarkadas (2004). As seen in Figure

2.3(i), the record of terms contained in each resource is stored on that particular node.

Upon query, the search keywords are forwarded to each node using �ooding technique,

where they are compared for relevance. This technique is e�ective for getting better search

2. literature survey 15

results but su�ers from classical saturation factor on overlay network.

2.2.2 Resource Discovery in Structured P2P Systems

Structured P2P systems have been proposed to provide a more scalable solution as compared

to �rst generation unscalable unstructured P2P systems. In structured systems, a node is

associated with keys and their values. When a query is presented it is changed into the

search for the key. The hash table on the peer is used pass the query forward to other peer

whose address is numerically closer to requested key. The examples of structured systems

are Chord, and CAN Ratnasamy et al. (2001); Stoica et al. (2001). In hybrid systems for

instance Pastry, the routing structure is comparatively more �uid as compared to Chord as

the routing table can suggest the routing of the query to any node that is part of the de�ned

subspace Talai et al. (2006); Rowstron & Druschel (2001).

Structured systems perform better than unstructured systems with respect to scal-

ability, as DHT has many advantages, such as scalability, load balancing, logarithmic hop

routing, fault tolerance, and self organising nature Singh et al. (2009). Although self-

organising works as the advantage but as each peer must periodically update all its neigh-

bours and hence results in increased tra�c Mastroianni et al. (2005). When the nodes leave

or join the network the updated index need to be redistributed and hence the tables need to

be restructured. This is not the case in unstructured systems as node can leave or join the

network without sending stabilisation message. Unstructured systems have provided many

strategies for reducing tra�c like dynamic querying, routing indices, and super-peers archi-

tectures Chawathe et al. (2003); Karnstedt et al. (2004). Structured systems have advantage

over unstructured systems as these systems provide ability to route the queries in very small

number of hops. DHT-based systems are known for exact-match lookups, given a query

both Chord and Pastry resolve the queries in O(log(n)), while CAN requires O(n
1
d) steps,

where n is number of nodes and d is number of dimensions in CAN Stoica et al. (2001);

Ratnasamy et al. (2001). As the peers and the resources are based on the hash function �

key generated by the hash function is very speci�c Stoica et al. (2001); Ratnasamy et al.

(2001). As the queries may not be exact, it may be di�cult to �nd the resource in the

structured network Mastroianni et al. (2005); Singh et al. (2009).

However, in keyword-search the queries do not have to be exact and can comprise of

multiple-keywords. The information retrieved in such scenario consists of a set of resources

2. literature survey 16

that match the criteria given as a query. The proposed system that support keyword-search

on top of DHT-based structured P2P system are categorised by their indexing technique viz.

global indexing [Li et al. (2003); Reynolds & Vahdat (2003); Casey & Zhou (2009); Tang

& Dwarkadas (2004)], and hybrid indexing/optimised-hybrid indexing [Zaharia & Keshav

(2008); Tang & Dwarkadas (2004); Chen et al. (2008)].

In global indexing as seen in Figure 2.3(ii), the inverted list record is maintained

on every node - information about nodes that contain a particular term. Upon query that

contains multiple keywords, the query is routed to node containing that keyword. Then

the inverted lists are intersected to �nd resource that contains the requested keywords.

This largely reduces the number of nodes that need to be visited, however large amount

of communication is introduced during intersecting phase. Moreover, communication cost

grows with increase in length of inverted list Tang & Dwarkadas (2004); Zhu & Hu (2007).

In hybrid indexing as seen in Figure 2.3(iii), each node holds the complete inverted

list of terms describing the resources on that node and also the inverted list of terms that are

forwarding terms for resources shared on this node. Given a multiple keyword based query,

the query is routed to node containing the search keywords. Then, this node performs a

local search without connecting to other nodes about list of forwarding nodes by querying

the inverted list of each found resource on this node. The e�ciency of this type of indexing

is higher than that of global indexing but su�ers from increased cost of publishing term data

Zhu & Hu (2006).

In optimised hybrid indexing (See Figure 2.3(iv)), the terms that describe a re-

source is published under resource's top terms (terms that are central to a resource) Tang &

Dwarkadas (2004). Clearly, the search may be degraded because of limiting the publishing

of keywords under resource's top terms Zhu & Hu (2006).

Another e�ective way for resource discovery process is to establish semantic links

between the nodes that are based on node properties which are described by the resources

shared by those nodes Sun et al. (2006); Kang et al. (2007); Crespo & Garcia-Molina (2004);

Tang et al. (2003); Arabshian et al. (2009). In Kang et al., the semantics information is

used for searching resources in a scalable manner Kang et al. (2007). A. Crespo suggests the

semantic overlay network (SON) where the peers are organised based on logical similarity

between the content Crespo & Garcia-Molina (2004). Semantic information can be used to

create P2P networks that are more organised than unstructured overlay and are capable of

handling multiple keys for �nding resource on network unlike structured overlays. Locality

2. literature survey 17

I

Computer 1

X a, c

Computer 2

Y b, c

Computer 3

Z a, b, c

II

Computer 1

a X, Z

Computer 2

b Y, Z

Computer 3

c X, Y, Z

Computer 2

b Y, Z
 a, b, c

b, c

Computer 3

c X, Y, Z
 a, b, c

a, c
b, c

Computer 1

a X, Z
 a, b, c

a, c

Computer 2

b Y, Z
 a, b, c

b, c

Computer 1

a Z
 a, b, c

Computer 3

c X

a, c

III IV

Figure 2.3: Comparison of distributed indexing structures. (i) Gnutella-like local indexing.
(ii) Global indexing. (iii) Hybrid indexing. (iv) Optimized hybrid indexing. a, b, and c are
terms. X, Y, and Z are documents. Source: Tang & Dwarkadas (2004)

2. literature survey 18

awareness is another version where the peers are organised based on matching tags that are

used to describe a resource Sun et al. (2006). pSearch introduces the concept of semantic

overlay on top of a DHT based structured P2P system Tang et al. (2003). In this overlay,

the resources are organised based on their semantic vectors (such as distance). pSearch

proposed to integrate semantic storage and retrieval capabilities into CAN, where resource

index is stored by using its vector representation as coordinates Zhu et al. (2003). GloServ

uses a keyword-based search on a hierarchical hybrid P2P network to build semantic overlay

between nodes that operate in the same domain Lopes & Botelho (2008); Arabshian et al.

(2009). Even though this attempt at creating semantic links between nodes and resources

may help improve the resource discovery, but no test results have been published yet by the

authors.

Both structured and unstructured systems heavily rely on stationary software mod-

ules. These modules keep track of all resource discoveries. They use the host computer

resources and can potentially drain the local resources and may cause failure of host com-

puter. Backbone of both approaches is P2P communication. P2P communication blurs

the distinction between client and server computers. This can potentially saturate the net-

work. Unstructured resource discovery has a linear connection between computers where

each computer knows the ping computer. Failure of any computer in the chain results to

loss of all down stream resources.

2.2.3 Resource Discovery in Mobile Agent Systems

As an alternative to stationary software modules, multi-agent systems o�er following merits

that make mobile agents in particular suitable for resource discovery in P2P systems Dunne

(2001):

• Asynchronous: After a mobile agent is dispatched, there is no need for the creator peer

to keep track of mobile agent. The thread can be completely released. Theoretically

speaking, the creator peer does not even need to remain connected to a network. A

mobile agent will perform the given tasks completely in parallel with the creator peer

as a separate thread. After all of the tasks have been ful�lled, mobile agent will return

to the creator peer (when it is connected to the network).

• Autonomous: Mobile agents can compute its itinerary as it progresses through the

network. It is able to choose the next site according to conditions it has learnt about,

2. literature survey 19

and history of visited peers and current peer. Mobile agents may also visit peers that

were unknown when it was originally dispatched, which in particular suits network

based resource discovery.

• Compatibility: Agent based systems can be combined with successful features from

other resource discovery systems.

• Bandwidth Consumption: The mobile agents for resource discovery require lesser

bandwidth. As opposed to the multiple interactions between peers, mobile agent

packs these interactions and sends them as discrete piece of tra�c. Also mobile agents

are much smaller in size and grow dynamically as they accommodate more data. In

structured or unstructured systems, the communication is synchronous which is not

the case with mobile agent which can encapsulate its state and carry on the execution

on the di�erent node asynchronously Bellifemine et al. (2007).

Dasgupta et al and Kambayashi et al introduced multi-agent systems (MAS) for resource

discovery Dasgupta (2003); Kambayashi & Harada (2009). Both systems are inspired from

ant communities for development of their P2P system. They use Anthill MAS that emulates

the resource coordination behaviour as observed in ants Babaoglu et al. (2002); Babaoglu

& Jelasity (2008); Yang et al. (2007). In this MAS P2P system resources are known as

nests and user request to locate resources is carried out by ants. Upon query, the ants visit

various nests on overlay network. Ants restrict from communicating to each other but leave

information about the service they are implementing in the resource manager found at each

nest site. The behaviour has analogy to pheromones that has advantage of allowing network

to self-organise over a period of time Lopes & Botelho (2008). Ants greatly improve upon

the �ooding issue raised in unstructured P2P systems as only one ant visits the nest at one

time. The next nest chosen for ant to visit is either deterministic or random, which means

that search performance may be slow. This is observed in [Dasgupta (2003) and Kambayashi

& Harada (2009)], where overlay network becomes more �knowledgeable� over a period of

time. To improve upon this disadvantage, Kambayashi et al build their P2P system on top

of structured P2P system called Chord Stoica et al. (2001); Kambayashi & Harada (2009).

Mobile agents (ants) in their system may use <key, value> map to �nd resource in cases

when deterministic path cannot be calculated. Kambayashi et al also use indexing (TF-IDF)

to calculate logical distance between two nests based on correlation between keywords shared

between nodes. The correlation is calculated using primitive form of Jaccard similarity.

2. literature survey 20

2.3 Critical Review

For the research work, the author understands from the literature survey that semantic links

between the nodes is useful for resource location and for node coordination - to be used for

deterministic routing of the query which is also one of objectives of this research work. The

author further understands that MAS and mobile agents o�er nodes a greater degree of

autonomy as they can migrate to new nodes based on information provided by visited nodes

and hence o�er relevant results to user. It is further understood that search load can be

reduced by reducing number of messages or number of hops made by mobile agent during

migrations from one node to another. The author aims to exploit heterogeneity of resources

hosted by nodes on overlay network to locate resources in minimum number of hops i.e.

drive/route the mobile agent on overlay network based on the content hosted by nodes.

2.4 Agent Based System Development Frameworks

This section provides review of the di�erent mobile agent platforms and justi�es the choice

of the mobile agent platform - JADE Schoeman & Cloete (2003); Trillo et al. (2007):

Mobile Agent System Interoperability Facility (MASIF) standard OMG

organization de�ned a standard named as Mobile Agent Framework (MAF) (later on changed

to MASIF), which is aimed at promoting the interoperability of JAVA based mobile agent

systems developed by di�erent vendors Zhong & Liu (2003). MASIF presents a set of

de�nitions and interoperable interfaces for mobile agent systems. The MAFAgentSystem

interface and theMAFFinder interface are the two primary ones which are designed towards

the following interoperability concerns Schoeman & Cloete (2003):

1. Management of agent, including creation, suspension, resumption and termination;

2. Commonly accepted mobility infrastructure that enabling the communications be-

tween di�erent mobile agent systems and the transport of mobile agents;

3. A standardised syntax and semantics for naming services; and

4. A standardised location syntax for �nding agents.

MASIF also excludes the following important architectural components in its standardisation

attempts Schoeman & Cloete (2003):

2. literature survey 21

(1) It only addresses interoperability between agent systems written in Java, thus

brings the obstacle of the interoperability between non-Java based systems and MASIF

compliant systems;

(2) It does not address local agent operations such as agent interpretation and

execution;

(3) Some conventional issues of inter-agent communication are excluded Milojicic

et al. (1998).

Foundation for Intelligent Physical Agent (FIPA) is the standards organi-

sation for agents and multi-agent systems who promotes agent-based technology and the

interoperability of its standards with other technologies Vieira (2001). A collection of spec-

i�cations have been provided, which are intended to promote the interoperation of hetero-

geneous agents and the services they represents. However these speci�cations are focussed

on agent communication languages, agent management, message transport and the support

for the use of ontologies in general.

2.5 Qualitative Comparison of Mobile Agent Platforms

The following are the most popular mobile agent platforms Schoeman & Cloete (2003):

JADE Speci�cation of FIPA are implemented by Java Agent Development Frame-

work (JADE) that provides Application Programming Interfaces (API) for Java based im-

plementation of multi-agent systems Bellifemine et al. (2007). The agent platform can be

distributed on multiple hosts. Each platform only hosts one application and hence only one

Java Virtual Machine (JVM). JVM can allow several agents to execute concurrently on the

same host. The Agent interface is the primary interface that concerns is implemented for all

types of agents. JADE implements the complete Agent Management speci�cations suggested

by FIPA including services such as Agent Management System (AMS), Directory Facilita-

tor (DF), Message Transport Service (MTS), and Agent Communication Channel (ACC).

In addition JADE has implemented Agent Communication stack, ranging from FIPA-ACL

for message structure and FIPA-SL for message content and other FIPA interaction and

transport protocols Bellifemine et al. (2007).

The main drawback is that currently inter-platform mobility service is being de-

veloped and not available to researchers. Also, there are no proxies and agent searches the

current location of its target by querying the AMS.

2. literature survey 22

Figure 2.4: The SMART architecture Source: Wong et al. (2001)

Voyager is a commercial mobile agent platform supporting dynamic aggregation

feature. The basic idea behind Voyager and dynamic aggregation feature is to reuse existing

Java classes and make objects of such classes mobile by means of incorporating those objects

as its attachments (known as facets) and move from one site to another hence moving those

objects with itself. The objects will retain their internal state upon moving from one host to

another Wong et al. (2001). The main focus is on the management of remote communications

of traditional Common Object Request Broker Architecture (CORBA) and RMI protocols.

It also o�ers dynamic generation of CORBA proxies and mobile agents. Agents communicate

via RMI using proxies.

The main drawback of Voyager is that it is commercial product and is not freely

available.

Scalable Mobile and Reliable Technology (SMART) SMART Wong et al.

(2001) is a MASIF speci�cation compliant client-server based mobile agent platform. As

Figure 2.4 shows, there are four main components in smart architecture Wong et al. (2001):

Region administrator, which uses a �nder model to provide naming services to the region

administrator and also to the agent system; Agent system, enables mobile agents to create,

migrate and destroy themselves; Place, forms the execution environment; and Agent proxy,

provides the mobile agent API for applications written in SMART.

The main disadvantage of SMART is that it does not support agent communication

as described in MASIF standard. Also, it does not provide good security mechanisms.

D'Agents (Robert S. Gray) is a general purpose mobile agent system which was

developed to support distributed information retrieval and to support for strong mobility and

2. literature survey 23

Security

Virtual Machine

Persistence of State

Stub

Agents

Schema Java

C/C++ Core (Generic)

Server

Transport Layer (TCP/IP)

Figure 2.5: The D'Agent architecture

multi-agent languages. Using D'Agent, several information-retrieval applications, ranging

from searching three-dimensional drawings of mechanical parts for a needed part to support-

ing the operational needs of a platoon of soldiers have been implemented. The architecture

of D'Agent is shown in Figure 2.5. TCP/IP is used to provide transport mechanism. Server

layer is a multi-threaded process and runs multiple mobile agents as threads inside a single

process. The Generic C/C++ core layer holds shared C++ libraries used by agent threads.

The upper layer provides the execution environment for Java, Tcl, or Scheme. The agents

themselves are de�ned on the top layer Schoeman & Cloete (2003).

The disadvantage is that for deployment using Java platform the virtual machine

(VM) needs to be extended instead of agent server that resides on top of VM.

Grasshopper is an OMG MASIF and FIPA-conformant agent platform, which

consists of a Distributed Agent Environment (DAE) and a Distributed Processing Environ-

ment, as Figure 2.6 shows. A host in the distributed agent environment include an agency

that has access to the services including execution, transport, management, communication,

security, naming mechanism, adapter interfaces for external hardware/software, task con-

trol functions, and application-speci�c GUIs Schoeman & Cloete (2003). The distributed

processing environment is composed of following components: Regions, facilitates the man-

agement of the distributed components (agencies, places, and agents) in the Grasshopper

environment; Places, provides a logical grouping of functionality inside an agency; Agencies,

as well as their places can be associated with a speci�c region by registering them within the

accompanying region registry; and Di�erent types of agents � mobile agents and stationary

agents. Mobile agents move from one platform to another, whereas stationary agents reside

2. literature survey 24

 Agency

Basic Services

Enhanced Services

Communication Channel

Distributed Agent Environment

Distributed Processing Environment

Figure 2.6: The simpli�ed version of Grasshopper Architecture. The basic services include
MASIF and Core Services. MASIF includes agent creation, destruction, suspend, activate
and location services and Core services include agent execution, transport, management,
communication, security and naming. The enhanced services include APIs, GUIs and task
control features.

on one platform permanently (Grasshopper Mobile Agent Platform).

The main disadvantage of Grasshopper is that it is not available anymore and new

versions will not appear in the future. The region server could become a bottleneck, as it

must update every proxy right before using it Trillo et al. (2007).

Aglets (Aglet) is a well known Java based mobile agent platform, which contains

libraries for developing mobile agent based applications. This platform follows MASIF

speci�cation Trillo et al. (2007). Aglets are built around single-thread model for agents

and a communication infrastructure based on message passing. Both synchronous and a

synchronous messages are supported Trillo et al. (2007). Agents in Aglets use proxies as

abstraction to refer to remote agents for sending messages that is similar to stubs in Remote

Method Invocation (RMI). As Figure 2.7 shows, Aglets' architecture consists of two layers:

Runtime layer, consists of a core framework and sub-components to provide services such as

serialization/de-serialization, class loading and transfer, reference management and garbage

collection, persistence management, maintenance of byte code, and protecting hosts and

agents from malicious entities; and Communication layer, de�nes the methods for creating

and transferring agents, and tracking and managing agents in an agent-system-and-protocol-

independent way Schoeman & Cloete (2003).

The drawback of this platform is that the proxies it provides are not dynamic

proxies and hence cannot be used when the agent has migrated which means in case of using

it again, the proxy has to updated manually. Single thread model is also an issue as in case

of synchronous messages being sent by one agent to other agent at the same time can result

2. literature survey 25

Create
Destroy
Tracking
Transfer
Management

Serialisation
Deserialisation
Mobility
Naming
Locating
Persistence
Management
Security

Runtime Layer

Communication Layer

Figure 2.7: The Aglets architecture Source: Schoeman & Cloete (2003)

in a deadlock.

Table 2.4 summarises the main features of mobile agent platforms.

Table 2.4: Qualitative Comparison Among Mobile Agent

Platforms Source: Trillo et al. (2007)

Model Behaviours Events Procedural Procedural Procedural

Elements Containers

Main

containers

Platform

Agents

DF, AMS,

MTS

Contexts

Agents

(aglets)

Tahiti

Servers

Agents

Regions

Agents

Places

Regions

Agents

Places

Proxies No Yes Yes Yes Yes

Dynamic

proxies

No No Yes (for-

warding)

Yes Yes

Synchronous

communica-

tion

No Yes

(deadlocks)

Yes Yes Yes

2. literature survey 26

Feature JADE Aglets Voyager Grasshopper SMART

Available to

download

Open

Source

IBM

Public

Licence

Not Free Open

Source

Open

Source

Asynchronous

communica-

tion

Yes Yes Yes Yes Yes

Messages Yes (FIPA

Standard)

Yes No Yes (FIPA) Yes

Remote calls No No Yes Yes Yes

Callbacks after

migration

No No Yes No No

Call/messages

by name

Yes (Agent

Identi�er)

No No No No

Migration by

name

Yes (AMS) No No No No

GUI tools Yes Limited No No No

Level of

activity

Very High Very Low Medium None None

Security

mechanism

Yes Basic Yes

(security

managers)

Basic No

Some other

features

Ontology

Support,

FIPA

Compliant

Itinerary

Setup

Multicast

Publish and

Subscribe

MASIF

FIPA

MASIF

JADE was one of the �rst FIPA-compliant platforms developed. JADE o�ers an

agent runtime system and a prede�ned programmable agent model and of a set of man-

agement and testing tools that are missing features in other platforms. It simpli�es the

development of applications that requires negotiation and coordination that is one of the

highlights of MAS system developed as outcome of this project. With use of ACL and mail-

2. literature survey 27

boxes for each agent, developers steer clear of remote method invocations where the remote

references require updating upon migration - a facility that is required for mobile agent.

Not that it is required within the scope of this research work but due to JADE's compliance

with FIPA speci�cation end-to-end interoperability between agents of di�erent platforms is

possible. JADE's API is independent from underlying network and Java version and is stan-

dard across Java Enterprise Edition (J2EE) and Java Mobile Edition (J2ME) that allows

reusability of application code. Also, JADE has ontology support where this work can be

extended for future work.

2.6 Summary of the Chapter

In this chapter, the author has collated and researched the information in the �eld of resource

discovery on unstructured, structured, and MAS systems. Also, the author has categorised

the resource discovery techniques used in various types of overlay networks. This researched

information provided insights into resource discovery systems and clearly characterised the

properties that such systems should be attributed with. Based on these insights, in Section

2.3, the author proposed the characteristics that a successful resource discovery system

should have for achieving maximum search result relevance with minimum search load and

messages on the overlay network. In the penultimate section, the author discussed various

mobile agent platforms - their features and drawbacks and also justi�cation for use of JADE

platform for development of MAS system.

In next chapter, design features and implementation of the proposed system are

provided. The details about implementation of proposed design features are presented in

program listings section.

28

Chapter 3

Design Features and Implementation

The chapter details about system architecture and design features that implement the pro-

posed characteristics of a resource discovery system using mobile agent. The author has

conceived multi-agent resource discovery system using mobile agent called A�nity that

1. Captures the features of clustering of peers based on semantics of content shared,

2. Handles multiple keys to locate a resource by use of LSI similarity, and

3. Finally reduce the bandwidth consumption by providing mobile agent with ability to

negotiate with peers regarding �nding next site for migration and matching resource

hosted by peer to user query under given constraints from user.

The features have been divided into sections and each section of this chapter discusses that

feature and its realisation. The �nal section provides snippet of mobile agent communication

- agent communication language, based on FIPA standards implemented using JADE and

also implementation details of proposed features using JADE and Java. Detailed information

about code based implementation and its deployment are found in program listings section

of the thesis.

3.1 The Proposed Multi-Agent System for Resource Discovery - A�nity

3.1.1 The Proposed Global System Architecture

The architecture for the conceived system is illustrated in Figure 3.1. As articulated in

the �gure, the system has four layers - interface layer, reconnaissance layer, directory and

resource layer and visiting agents layer. Each layer contains agents dedicated to perform

certain task (detail speci�cations of agents are provided in Section 3.1.2).

3. design features and implementation 29

The purpose of each layer is as follows:

• Interface Layer : This layer contains the interface agent that is used by the client to

interrogate the system. The goal is to capture the requirements or needs of the user

and respond back to them appropriately. User's interaction with system is through

interface agent that helps in realisation of the given task. The request from user i.e. the

search query facilitates the function of reconnaissance layer. The additional function

of transformation of the submitted user request into a feature vector is also realised in

layer.

• Reconnaissance Layer : This layer contains the reconnaissance agent that is created

as a result of submitted query in the interface layer. The function of this layer is to

temporarily contain the new created mobile agent while it communicates to stationary

agents in directory and resource layer for node address where it can migrate to in order

to realise the submitted query.

• Directory and Resource Layer : The function of this layer is to receive requests from

reconnaissance agent, process them and return the results. This layer holds two sta-

tionary agent - local agent and information agent and is responsible for managing the

data associated to shared resources on the node and multiple sources of node addresses

that are semantically similar to content shared on this node. The task of determin-

ing appropriate node address and hence deterministic route to the node that hosts

resource similar to given query is completed in this layer. The management of direc-

tory of shared resources on this node that are transformed into feature matrix after

indexing is the function of local agent and the management of list of peers that are

semantically similar to content of this node is done by information agent. The func-

tionality to achieve autonomy is also achieved on this layer where information agent

communicates to bootstrap server about its status every 300, 000ms.

• Visiting Agent Layer : The function of this layer is to provide platform for the migrated

reconnaissance agent that is visiting a particular node. This layer is a class that is

capable to provide functionality of sending messages to and receiving messages from

directory and resource layer of the visited node. This layer also provides additional

functionality of query matching by collaborating with directory and resource layer for

3. design features and implementation 30

U
se

r
In

te
rf

ac
e

A
g

en
t

(I
n

tA
)

R
ec

o
n

n
ai

ss
an

ce

A
g

en
t

(R

A
 1

)

R
ec

o
n

n
ai

ss
an

ce

A
g

en
t

(R

A
 x

)

R
ec

o
n

n
ai

ss
an

ce
 L

ay
er

: :

L
o

ca
l

A
g

en
t

(L
A

 1
)

In
te

rf
ac

e
L

ay
er

In
fo

rm
at

io
n

A
g

en
t

(I

n
fA

 1
)

S
h

a
re

d

R
e

so
u

rc
e

s

D
ir

ec
to

ry
 a

n
d

 R
es

o
u

rc
e

L
ay

er

S
h

a
re

d

R
e

so
u

rc
e

s

L
o

ca
l

A
g

en
t

(L
A

 n
)

In
fo

rm
at

io
n

A
g

en
t

(I

n
fA

 n
)

S
h

a
re

d

R
e

so
u

rc
e

s

 N

O

D

E
 1
 N

O

D

E
 2
 N

O

D

E
 n

R
ec

o
n

n
ai

ss
an

ce

A
g

en
t

(R

A
 1

)

R
ec

o
n

n
ai

ss
an

ce

A
g

en
t

(R

A
 x

)
In

te
rf

ac
e

A
g

en
t

(I
n

tA
)

In
te

rf
ac

e
A

g
en

t
(I

n
tA

)

V
is

it
in

g
 A

g
en

ts

Q
u

er
y

R
es

p
o

n
se

R

ec
ei

v
ed

K
ey

w
o

rd
s

E
x

tr
ac

ti
o

n

K
ey

w
o

rd
s

R
eg

is
tr

at
io

n

M
ig

ra
ti

o
n

Q

u
er

y

L
o

ca
l

A
g

en
t

(L
A

 1
)

In
fo

rm
at

io
n

A
g

en
t

(I

n
fA

 1
)

M
ig

ra
ti

o
n

Q

u
er

y

M
ig

ra
ti

o
n

Q

u
er

y

R
es

o
u

rc
e

S
im

il
ar

it
y

to

 Q
u

er
y

R
es

o
u

rc
e

S
im

il
ar

it
y

to

 Q
u

er
y

R

es
p

o
n

se
 S

en
t

to
 C

re
at

o
r

F
ig
u
r
e
3
.1
:
G
lo
b
al
ar
ch
it
ec
tu
re

of
th
e
sy
st
em

3. design features and implementation 31

realising the task of �nding resource(s) hosted on this node that is semantically similar

to submitted query.

3.1.2 Speci�cation of Agents

The proposed system - A�nity is hybrid system based on the semantic overlay network,

unstructured P2P system, and MAS. All peers share their resources that are maintained by

the set of collaborating agents on each peer. The collaborating agents on each peer are

1. Interface Agent (IntA),

2. Local Agent (LA),

3. Information Agent (InfA), and

4. Reconnaissance Agent (RA).

The purpose of each is as follows:

• Interface Agent : IntA is a static agent that provides user interaction to the system.

The user interacts with IntA using the GUI interface that a.) shows search query, b.)

informs search results, and c.) inform active RA(s).

• Local Agent : LA is another static agent that holds information i.e. keys for de�ning

local resources and the corresponding location of resource on the peer. In addition,

it has tasks to serve InfA for keywords request and RA for keyword similarity. Local

indexing of shared resources is maintained by LA.

• Information Agent : InfA holds information about peers that are semantically similar

to this peer i.e. the indexing results propagated by bootstrap server are maintained

by this agent. It holds a data structure that contains all peer's GUID, similarity value

and keywords that it is sharing. InfA is responsible for computing routes for RA upon

request of migration query. InfA also communicates to LA to request a list of keywords

that a peer is sharing that it in turn is submitted to bootstrap server for registration

and �nding peers that belong to same cluster.

• Reconnaissance Agent : RA is a mobile agent for resource discovery; that is created by

the IntA upon user's search request. RA migrates to new peers by requesting node

3. design features and implementation 32

address from InfA. RA's task is to migrate to peers and to investigate LA that is

responsible for hosting resources (hence keywords) about their possible similarity to

user's query and report it to IntA.

In addition to the proposed multi-agent system, the overlay network organisation of this P2P

system is improved by InfA registration to bootstrap server. A bootstrap server maintains

a list of peers that are currently in the system. Upon registration/joining, the bootstrap

server replies with list of peers that are semantically similar to this peer.

As detailed in Section 3.2.1, the cosine similarity between peers is actually keyword

similarity of hosted resources of those peers. The result of this similarity is cluster e�ect as

illustrated in Figure 3.2. Although, the sparsity of keyword matrix on the bootstrap server

is large but still it is overlooked by potential advantage, that each peer is now organised in

overlay network (i.e. it only knows the address of neighbours in a cluster). The Globally

Unique Identi�er (GUID) of neighbours in cluster are used to prepare a hash table that

is maintained by InfA. When a neighbour disconnects from overlay network, it informs

bootstrap and its neighbours to remove its GUID from matrix and hash tables respectively.

Upon creation of RA, it communicates to InfA to provide it with itinerary (next site) for

migration. InfA uses the hash table provided it by bootstrap server to issue a peer GUID

that host resources/keywords that are close to requested user query.

3.2 The Proposed Mobile Agent Routing

Peer clustering is based on the conceptual content of resources shared by peers. The objective

is to organise an overlay network in such a way that when given a query, small number of

peers are selected based on �higher� chance of query hit. The bene�t of this strategy is two-

fold. First in context of peer clustering - the peers to which RA migrates to will have many

matches, so that the query is answered faster, and second in context of RA routing - the peers

with �lesser� chance of getting a query hit will be steered clear by the migrating RA, thus

avoiding wasting resources on that query (and allowing other queries to be processed faster).

Peer Clustering and Agent Routing are accomplished using LSI. The following Section 3.2.1

explains the state vector and singular vector decomposition (SVD) based semantics for peers

and keywords hosted.

3. design features and implementation 33

fertilizer, phosphorous

Cluster 3 ferrite, carbon, anthracite

Cluster 2

Cluster 1

LA1@1‐

pc:1099/JADE

LA4@4‐

pc:1099/JADE

LA2@2‐

pc:1099/JADE

LA6@6‐

pc:1099/JADE

LA3@3‐

pc:1099/JADE

LA5@5‐

pc:1099/JADE

gold, silver

gold, silver, nitrate

 nitrate, phosphorous, ferrite

ferrite, carbon, ferrite

Figure 3.2: Peer clustering and overlay organisation achieved using latent semantic index-
ing

3.2.1 Latent Semantic Indexing and Singular Value Decomposition (LSI-SVD) for Peer Clus-

tering and Mobile Agent Routing

Latent semantic indexing (LSI) is a variant of a vector space model, where low rank approx-

imation to the vector representation of the corpus is computed Gao & Zhang (2005). LSI

considers that latent structures may exist in documents that may not be visible and may

very well be hidden due to variability in word choice Gao & Zhang (2005). Singular value

decomposition (SVD) of the corpus is calculated to estimate the structure of lexicon usage

across the documents.

The nodes may be represented by number of keywords (lexicons) that it shares.

Hence, a set of nodes can be represented by a matrix called keyword-peer matrix A. The

elements of the keyword-peer matrix represent the frequency of each keyword f on a partic-

ular node. Let N be the number of peers in a P2P network, and K be number of distinct

keywords (lexicons). It should be noted that N can be resources when observed from RA-

LA point of view, but generically the author assumes it as number of peers. The feature

matrix called keyword-peer matrix is constructed as Aε [aij]KxN where aij =frequency of the

keyword i on node j. Aij = 0 if the peer j does not contain the keyword i. Not all keywords

appear on all peers and hence matrix A is generally it is a sparse matrix. Now, matrix

3. design features and implementation 34

A denotes <peer, keyword> pairs in the network, which is the knowledge of correlations

between peers and keywords. To properly characterise latent semantics and correlations

between peers in LSI, that matrix A is factored into product of three matrices using SVD

Golub & Loan (1996).

A = USV T (3.1)

UTU = IK and V TV = IN , IK and IN are identity matrices of order K and N respectively.

Matrix S is a diagonal matrix with elements diag[α1, α2, α3,αmin{K,N}], αi > 0 for 1 <

i ≤ d, and αj = 0 for j > d, where d is the dimensionally reduced matrix. SVD is a low rank

approximation of matrix A Golub & Loan (1996). SVD is used to �nd the singular vectors

corresponding to k largest singular values which dominate the original matrix. Peers and

keywords can be characterised by linear combination of singular values i.e. a k-dimensional

point in the feature space spanned by k singular vectors Liu et al. (2004). Deerwester

et al. (1990) shows the small dimensions are enough to express latent semantic i.e. k �
min{K,M}. The resulting singular vector and singular value matrices are used to may

keyword-based vectors for peers and queries into a subspace in which semantic relationships

from the keyword-peer matrix are preserved while keyword usage variations are suppressed

Hasan & Matsumoto (1999). The reduced dimension decomposed matrix as a new pseudo-

keyword-peer matrix is given by

Ak = UkSkV
T
k (3.2)

where columns of Uk contains the eigenvectors of the AkA
T
k matrix or �rst k columns of

matrix U and the rows of V T
k are the eigenvectors of the AT

kAk matrix or �rst k rows of

matrix V T . Sk is a diagonal matrix that has its diagonal elements with special kind of values

of the original matrix Deerwester et al. (1990); Golub & Loan (1996). These are termed the

singular values of Ak that has �rst k largest singular values.

In SVD representation of original vector space, AT
kAk is a N ∗N symmetric matrix

for inner products between peer vectors, where each peer is represented by a vector of

keyword weights. This matrix can be used for cluster analysis for collection of peers. Each

column of matrix, AT
kAk is a set of inner products between peer vectors in corresponding

column of the matrix A, and every peer in the collection. The cosine similarity measure of

peers i and j can be computed as follows:

3. design features and implementation 35

sim(i, j) =
〈i, j〉
|i||j|

(3.3)

For information retrieval in K-dimensional space query Q is treated as another

set of keywords and hence query Q becomes q = QTUKS
−1
K that is compared to the peer

represented by p = pTUkS
−1
K . These equations present the coordinates of the vectors in the

K-dimensional space and query-peer cosine similarity is given by

sim(q, p) =
〈q, p〉
|q||p|

(3.4)

All peers share the keywords that inform about the hosted resources. The similarity

between the keywords shared by various peers forms a cluster of peers that are similar to

each other and thus forming a cluster and in turn an organised overlay network. This

also increases the e�ciency of discovering a resource as number of hops that RA has to

take to �nd a resource are decreased. In order to get list of peers, another parameter -

minimum support is passed by user. The signi�cance of this parameter is to give user a

level of control over list of known peers by forming a �canopy� on known peers. The value

of minimum support ranges between −1.0 to +1.0 where −1.0 explains ambiguity - list of

all peers registered i.e. ignoring the similarity results, and +1.0 explains certainty - list of

all peers that are exactly similar to this peer i.e. only peers that are sharing same keywords

with same frequency.

RA's routing is directly a�ected by the minimum support value passed by user

during acquisition of peer list i.e. lesser the value of minimum support, larger set of peer

list and that means RA has larger number of ambiguous peers to choose from or vice versa.

However, another value of minimum support for resource discovery and this time it means

the similarity of query passed by user to the keywords shared by various peers in peer list

allows RA to �nd the peer where it will migrate to.

The exact value of minimum support has not been established but through exper-

imentation it is realised the initial value for peer registration can be +0.1 or higher and for

resource location +0.5 and higher can provide suitable results.

The unstructured network is created at random where to locate/search for partic-

ular resources, the message has to be forwarded to number of times. If this is limited by N

hops, where N is the number of nodes within the query message's reach, then query routing

complexity on an unstructured P2P network is of the order of N , or O(N). On structured

3. design features and implementation 36

networks, or the MAS that have underlying overlay network based on structured overlay the

query routing complexity is typically O(log(N)), where N is the number of network nodes

This is because the size of routing table increases according to power of two hence each

step cuts the distance to target resource by half thus resulting in a lookup complexity of

O(log(N)) Doval & O'Mahony (2003). In the proposed case, suppose N is the number of

nodes and m is the minimum support of a node that ranges as 0.0 ≤ m ≤ 1.0, and ND is the

maximum number of nodes that are semantically close where ND � N , then the complexity

of query routing is given as O(ND), when m = 0.0 and O(N− log(m)
D), when 0.0 < m ≤ 1.0.

As minimum support increases the number of nodes required to be visited by migrating

RA decrease logarithmically, and when minimum support is 0.0, it means the RA has to

visit all nodes ND in this particular domain. It is seen that the query routing complexity

for resource location is much more e�ective is our system as compared to structured and

unstructured system because of informed migrations performed by the RA. The results are

later justi�ed in experimentation in Chapter 4.

3.3 The Proposed Multi-Agent Collaboration for Resource Discovery

The system starts by starting up a bootstrap server. The LA locates all the resources that

are shared by the peer and preparing the keyword list that de�nes the resource. The InfA

requests the LA to inform it about the keyword list that in turn is used by the InfA to

register the peer on bootstrap server. This behaviour is a cyclic behaviour of InfA that is

scheduled every 300, 000ms. Upon registration, based on minimum support value, the InfA

receives the peer list containing list of peers, their similarity value and keywords shared by

those peers. User's request for resource location to the IntA is attributed by list of keywords

that form a query, minimum support value for acceptable results, and number of hops that

the RA can make. The detailed interactions between the collaborating agents are shown in

Figure 3.3.

The resource discovery is carried out using following algorithm:

1. When query is passed by user to the IntA, the IntA in turn creates the RA for that

speci�c query.

2. The RA is informed about query, minimum support, and number of hops by IntA.

3. The RA requests the InfA for peer name in order to create route for migration. The

3. design features and implementation 37

P
e

e
r

X

In
fA

B
o

o
ts

tr
a

p

S
e

rv
e

r

F
e

a
tu

re
s

a
n

d
 P

e
e

rs

M
a

tr
ix

LA

In
tA

P
e

e
r

Y

In
fA

LA

In
tA

N

e
tw

o
rk

K
e

y
w

o
rd

 L
is

t

Is
su

e
 K

e
y

w
o

rd
 L

is
t

R
e

g
is

te
r

(P
e

e
r

G
U

ID
,

K
e

y
w

o
rd

Li
st

)

A
d

d
 P

e
e

r
G

U
ID

a
n

d
 K

e
y

w
o

rd
 L

is
t.

Is
su

e
 P

e
e

r
Li

st
 w

it
h

cl
o

se
st

 s
e

m
a

n
ti

c

si
m

il
a

ri
ty

R
e

tu
rn

 P
e

e
r

Li
st

,

K
e

y
w

o
rd

s,
 a

n
d

S
im

il
a

ri
ty

 V
a

lu
e

s

R
e

g
is

te
r

(P
e

e
r

G
U

ID
,

K
e

y
w

o
rd

Li
st

)

P
a

ss
 Q

u
e

ry
 a

s

K
e

y
w

o
rd

/s

C
re

a
te

s
R

A

Is
su

e

It
in

e
ra

ry

n
e

x
t

S
it

e

P
e

e
r

G
U

ID
 w

h
o

se

k
e

y
w

o
rd

s
h

a
v
e

h
ig

h
e

st
 s

im
il

a
ri

ty
 t

o

q
u

e
ry

M
ig

ra
te

s

Is
su

e
 r

e
so

u
rc

e

n
a

m
e

 w
h

o
se

k
e

y
w

o
rd

s
a

re

si
m

il
a

r
to

 q
u

e
ry

re
so

u
rc

e

n
a

m
e

R
e

tu
rn

 P
e

e
r

Li
st

,

K
e

y
w

o
rd

s,
 a

n
d

S
im

il
a

ri
ty

 V
a

lu
e

s

Is
su

e
 K

e
y

w
o

rd
 L

is
t

K
e

y
w

o
rd

 L
is

t

Is
su

e

It
in

e
ra

ry

n
e

x
t

S
it

e

P
e

e
r

G
U

ID
 w

h
o

se

k
e

y
w

o
rd

s
h

a
v
e

h
ig

h
e

st
 s

im
il

a
ri

ty
 t

o

q
u

e
ry

In
fo

rm
s

re
su

lt
s

(r
e

so
u

rc
e

 n
a

m
e

,

p
e

e
r

G
U

ID
,

si
m

il
a

ri
ty

 v
a

lu
e

)

P
e

e
r

X

P
e

e
r

Y

B
e

in
g

 r
e

a
li

se
d

 i
n

to

a
n

 o
v
e

rl
a

y

n
e

tw
o

rk

P
e

e
r

B

P
e

e
r

A

P
e

e
r

C

C
lu

st
e

r
‐

1

C
lu

st
e

r
‐

2

C
lu

st
e

r
‐

3

F
ig
u
r
e
3
.3
:
In
te
ra
ct
io
n
s
b
et
w
ee
n
m
u
lt
ip
le
ag
en
ts
fo
r
re
so
u
rc
e
d
is
co
ve
ry

an
d
re
al
is
at
io
n
of

an
ov
er
la
y
n
et
w
or
k

3. design features and implementation 38

peer name is informed by the InfA to the RA by looking up the peer name in hash

table based on the semantic similarity of the query and the keywords shared by that

peer.

4. The RA requests the agent management service (AMS) to �nd the container/platform

where the selected peer is located.

5. The RA migrates to that peer and increments the number of hops by one.

6. The RA requests the LA of this peer to inform it about the resource name whose

keywords are semantically similar to the query and higher than minimum support

given by user. The LA provides the resource name to the RA.

7. The RA informs the IntA about located resource i.e. GUID of the peer where resource

is located, resource name, cosine similarity value.

8. If number of hops made by the RA is less than maximum number of hops allowed by

user then go to Step 9 otherwise, go to Step 10.

9. The RA requests the InfA of this peer for a new peer name where it should migrate to

(hops to previously visited peers and to creator peer are not allowed). Go to Step 3.

10. As, number of hops made by the RA are equal to maximum number of hops allowed,

the RA terminates itself.

Step 3 is shown in detail in Figure 3.4. The RA requests the InfA for GUID of

the peer that it should migrate to; to �nd the resource. The InfA refers to the directory

and calculates cosine similarity value based on degree of match between the query and list

of keywords available. The highest similarity value is used to determine the peer GUID

by looking up in the directory. Finally, the GUID of selected peer is informed to the RA.

The RA now uses the GUID to �nd the container name from AMS where the corresponding

peer GUID resides. The GUID of agents is generated based on container identi�er and

type of agent. This mechanism is better than �blind� or �ooding technique as in this case

the RA migrates with certain knowledge i.e. where and why to migrate to a certain peer

as opposed to �ooding the overlay network with communication messages or with multiple

clones of the RA. Essentially, it improves the routing of the RA. The behaviour of the RA

has been de�ned by beforeMove and afterMove methods. afterMove method is invoked just

3. design features and implementation 39

 Peer GUID: LA3@3‐pc:1099/JADE

InfA

Agent GUID: Reconnaissance_Agent_3301@1‐

pc:1099/JADE

Agent Creator: IntA1@1‐pc:1099/JADE

Query: ferrite nitrate

Agent GUID:

IA3@3‐

pc:1099/JADE

ACLMessage SEND

Performative: ACLMessage.REQUEST

Conversation‐ID: peer‐request

ACLMessage: REPLY

Performative: ACLMessage.INFORM

Conversation‐ID: peer‐request

Calculate cosine

similarity and

determine peer

name

Directory
Peer GUID Similarity Value Keywords

LA2@2‐pc:1099/JADE 0.5289 ferrite, carbon, ferrite

LA6@6‐pc:1099/JADE 0.2986 nitrate, phosphorous, ferrite

Figure 3.4: The RA's interaction with InfA for issuing new peer GUID

after migration to increment the number of hops made by the RA followed by checking the

termination conditions.

Figure 3.5 presents the �ow diagram for behaviour of the InfA and the LA when

the RA arrives at a certain peer. Shown in the �ow diagram are behaviours of three agents

the RA, the LA, and the InfA. In addition to behaviours of agents, blockedState of the

RA and blockingReceive of the RA is observed. These methods are invoked based on the

ACLMessages in the mailbox of each agent. Essentially, as long as the RA has not received

any message that matches theMessageTemplate (as seen in Figure 3.6), the RA is in blocked

state.

3.4 Implementation

This section presents in detail various functions that have been implemented for realising

the features viz. - feature matrix - indexing, clustering (nodes learning about other nodes),

ranking and selection (nodes ranked and selected for routing of mobile agent), similarity,

and behaviour of agents. The author has presented algorithm or pseudocode and its code

based realisation details. Detailed implementation details can be found in Appendix C for

3. design features and implementation 40

Migrated RA arrives
at new peer

RA Increment
number Of Hops

Sends ACL
Message to Local

Agent (LA) on this
peer

ACL Message
(REQUEST)

LA receives ACL
Message from the

visiting RA

LA performs LSI
similarity analysis
on local resource

database

If (similarity value >=
minimum support)?

RA sends ACL
Message to creator

IntA

ACL Message
(INFORM)

Yes

If(number Of Hops <
Maximum Allowed)? No

Sends ACL
Message to

Information Agent
(InfA) on this peer

Yes

ACL Message
(REQUEST)

InfA receives ACL
Message from

visiting RA
regarding next peer

to migrate to

InfA finds peer
using LSI cosine

similarity of query
and keywords

hosted by peers

If (peer!=visited peer &&
peer!=creator)

Add this peer to
visited peer list

RA receives ACL
Message containing

peer name

RA migrates

No

RA Terminates No

ACL Message
(INFORM)

Yes

 afterMove Behaviour of

migrated RA

 blockedState of RA

 behaviour of LA

 behaviour of InfA

 behaviour of RA

implementing

blockingReceive

 behaviour of RA

Figure 3.5: Flow diagram for behaviour of the InfA and the LA upon arrival of the RA

3. design features and implementation 41

ACLMessage request=new ACLMessage(ACLMessage.REQUEST);
request.addReceiver(new AID(destLAName,AID.ISGUID));
request.setConversationId("search-request");
request.setReplyWith("request"+System.currentTimeMillis());
request.setContent(cont);
send(request);

private class ServeIncomingMessage extends Behaviour
{

private MessageTemplate mt =
MessageTemplate.and(MessageTemplate.MatchConversationId("search-
request"),MessageTemplate.MatchPerformative(ACLMessage.REQUEST));
public void action()
{

try
{

ACLMessage request = receive(mt);
ACLMessage reply = request.createReply();
if(chosen!=null)
{

reply.setPerformative(ACLMessage.INFORM;
reply.setContentObject(matchStore);

}
myAgent.send(reply);

}else
{

System.out.println("No message yet");
block();

}
}catch(Exception e)
{
 e.printStackTrace();
}

}
}//end class

Figure 3.6: ACLMessage from the RA to the LA for search request. ACLMessage received
by the LA from the RA using MessageTemplate and replying with setContentObject or in
blocked state.

Program Listing or media disc.

The author has used Java remote method invocation (RMI) and Java Agent De-

velopment Framework (JADE) (Bellifemine et al. (2007)) to implement the multi agent

resource discovery using mobile agent system. Jade's agent management environment is

used for creating multiple containers emulating distributed environment where peers are

active. Java Remote Interface has been used for de�ning and implementing the bootstrap

server.

3.4.1 Agents Communication Implementation

All the agents are developed using FIPA complaint agent framework - JADE. Instead of

using RMI or socket based communication between various agents including the mobile agent

(RA), agent communication language (ACL) has been used for communication particularly

using performative (REQUEST, INFORM, and CLP (Call_For_Proposal)). In addition

as the RA is a mobile agent, it is further required to register FIPA standard FIPA_SL0

(slCodec) content language.

3. design features and implementation 42

Agents do not invoke methods on other agents and communicate through ACLMes-

sages. Hence, to handle messages from various agents and/or various kinds of messages the

author has implemented the use of MessageTemplate. A receive method takes a message

template as a parameter and only returns messages matching that template. This is an

important feature that is implemented for successful multi-agent communication system.

Figure 3.6 shows the snippet. The behaviour implemented by the LA includes case:

1. Where the RA communicates to the LA to locate resource name whose keywords are

semantically similar to user's query

2. Where the LA informs the RA about selected peer GUID using ACL.

The multi agent system has been designed to receive search requests from the users through

the IntA. IntA class has a graphical user interface associated with it that takes input pa-

rameters - keywords for the query (search terms for a resource). The minimum support and

the time to live (number of hops) parameters have been defaulted in the experimental setup

to be 0.00 and 3 hops respectively. Upon invoking the search, the RA is created by the IntA

in the method onGUIEvent() as shown in Figure 3.7 that has an identi�er - (GUID) and

the minimum support and number of hops as the parameters.

In addition to creation of the RA, the IntA is also responsible for displaying results

sent by the RA throughout its life cycle. As mentioned before in Section 3.4, the FIPA

speci�cation implemented by JADE does not allow agents to communicate to each other us-

ing method invocation or more speci�cally in this case remote method invocation, the IntA

hence, o�ers functionality for receiving messages from the RA through ACL implemented

in the inner class ReceiveMessageRecon. This inner class extends the CyclicBehaviour, that

creates instance of MessageTemplate for only receiving messages sent by instances of the

RA created by this instance of IntA using MatchCoversationId(�results�) and MatchPerfor-

mative(ACLMessage.INFORM). See Figure 3.8 for details of MessageTemplate for receiving

message from the RA. The IntA also has an inner class ReceiveTerminationRecon that ex-

tends SimpleBehaviour for receiving termination message from the RA when RA has reached

end of its life cycle or if a matching resource has been discovered.

The RA is responsible for discovering the resource on other nodes by migrating to

those nodes. The node that is most likely to host the resource is provided by the InfA that

holds directory of nodes for routing the RA on the overlay network. Again, the communi-

3. design features and implementation 43

protected void onGuiEvent(GuiEvent ev)
{
command=ev.getType();
....
 if(command==NEW_RECON_AGENT)
 {
 jade.wrapper.AgentController a = null;
 try
 {
 Object[] args=new Object[5];
 args[0]=getAID();
 System.out.println(args[0]);
 args[1]=gui.getQuery();//query
 args[2]="0.0";//minimum support
 args[3]=(Object)name;
 args[4]="2";//number of hops
 String name_of_Agent="Reconnaissance_Agent_"+(count++);
 a=home.createNewAgent(name_of_Agent,ReconnaissanceAgent.class.getName(),args);
 a.start();
 agents.add(name_of_Agent);
 gui.activeAgents(agents);
 }catch(Exception ee)
 {
 System.out.println("Problem while creating new agent "+ee);
 }
 return;
 }
}

Figure 3.7: Creation of the RA in the method onGUIEvent() from class InterfaceAgent

 //inner class
private class ReceiveMessageRecon extends CyclicBehaviour
 {
 MatchStore matchStore=null;
 MessageTemplate mt =
MessageTemplate.and(MessageTemplate.MatchConversationId("results"),MessageTemplate.MatchPerfor
mative(ACLMessage.INFORM));
 public void action()
 {
 try
 {
 ACLMessage reply = receive(mt);
 if(reply!=null)
 {
 matchStore=(MatchStore)reply.getContentObject();
 gui.setResult(matchStore);
 }else
 {
 block();
 }
 }catch(Exception e)
 {
 e.printStackTrace();
 }
 }
 }

Figure 3.8: ReceiveMessageRecon class showing blocked state of when reply received is null
and the MessageTemplate for receiving messages from the RA

3. design features and implementation 44

cation between the InfA and the RA is using ACL and the MessageTemplate uses Match-

Performative(ACLMessage.REQUEST). See InformationAgent.java code in Appendix - C.

Upon migration, the RA communicates to the LA as shown in Figure 3.6 for a

matching resource. All the results obtained are communicated back to the IntA through the

MessageTemplate described above.

3.4.2 Feature Matrix - Frequency-Based Indexing

Feature matrix is created for shared resources hosted by nodes. A modi�ed form of feature

matrix called feature vector is used to present node based on the content shared. The

process of indexing has two sub tasks. The �rst subtask is the assignment of tokens for a

resource and the second subtask is the assignment of weights to the tokens. The weight is

numeric value that is directly proportional to the importance of the token in a resource. The

weights are of type integers. These integers present the count of number of unique tokens

in a resource. The text for a resource is split into tokens where tokens are only content

keywords (adjectives, adverbs, nouns and verbs). The content keywords form index. The

representation for a node called feature vector is created by using the indexes for entire

collection of resources on that node. Number of feature vectors when collated on bootstrap

server form the master feature matrix for entire collection of participating nodes. Each node

also has keyword-resource feature matrix that is created by recording frequency of keywords

for each resource. The process of locating keywords is given in following pseudocode:

1. Receive the text to be parsed.

2. Build a custom stopword list based on the type of text.

3. Generate a list of tokens from the text of given resource.

4. Initialise a list of content words and loop through the list of tokens.

(a) Skip the token if it does not begin with a valid character.

(b) Skip tokens that are less than 3 characters long.

(c) Skip tokens that are found in the stopword list.

(d) Add the token to the list of content words.

5. Return the list of content words.

3. design features and implementation 45

public void getKeywords()
{
 int index=0;
 String keywordSet="";
 ArrayList keywords1 = message.getKeywords(); //Data Structure for holding keywords
 for(int i=0;i<keywords1.size();i++)
 {
 keywordSet+=(String)keywords1.get(i)+" "; //Concatenate Keywords
 }
 //Tokenise keywordSet based on Regular Expression
 StringTokenizer token = new StringTokenizer(keywordSet);
 //Get number of rows
 size=token.countTokens();
 //Create Array based on number of keywords found
 makeTKArray(size);
 //Loop and count keywords
 while(token.hasMoreTokens())
 {
 tk[index]=token.nextToken();
 findTokenFrequency(tk[index]);
 }
 //add keywords and their frequency into TreeMap
 database.addKeywords(map);
}

Figure 3.9: Method getKeywords() for getting keywords and their frequencies and holding
in data structure TreeMap

For �nding frequency of keywords found using the above psuedocode, method getKeyword()

in private class FrequencyFinder is invoked. The method stores all keywords in TreeMap

data structure as shown in snippet Figure 3.9. TreeMap guarantees that the map will be in

ascending key order, where keys are distinct keywords and values are the frequency of each

key. The list of tokens/keywords in step 3 is stored in ArrayList data structure. For loop is

used for getting frequency of each token and storing the counting as a value in TreeMap. This

forms a feature vector for each resource and the collection of feature vectors for all resources

on a node form a keyword-resource matrix. This functionality is achieved by concatenation

of all feature vectors to form a sparse matrix called masterKeywordMatrix in private class

LocalDatabase. The masterKeywordMatrix is a two-dimensional array of type double. Each

node is represented by concatenated list of keywords and their frequency that is globally

maintained by in class MasterList.

3.4.3 Implementation of Latent Semantic Indexing and Singular Value Decomposition

Frequency-based indexing method cannot utilise any global relationships with the resource

collection Konchady (2006). LSI indexing method based on the SVD transforms the keyword-

resource matrix such that major intrinsic associative patterns in the collection are revealed.

3. design features and implementation 46

Algorithm 3.1 Algorithm for Latent Semantic Indexing of keyword-resource or keyword-

node matrix
Input keyword− resource or keyword− node matrix A(i, j)
A = (A(i, j)) where i = 1, t , j = 1, r (t ∗ r)matrix of keywords and resources
Perform SV D : A = USV T

Set all but the k highest singular values to 0

Compute Ak = UkSkV
T
k by retaining the largest k singular values

OutputAk Latent Semantic Index

/**
 * SVD calculation
 */
 public void calculateSVD(double[][] matrix)
 {
 Matrix mat = new Matrix(matrix);
 SingularValueDecomposition svd = mat.svd();
 U = svd.getU();// Left Eigen Vectors
 S = svd.getS(); //Singular Values
 S_inverse = S.inverse();
 V = svd.getV(); //Right Eigen Vectors
 V_transpose= V.transpose();
 }

Figure 3.10: Realisation of Singular Value Decomposition from frequency based keyword-
resource or keyword node matrix

LSI does not depend on individual keywords to locate a resource, but rather uses concept

to �nd relevant resource. The main purpose of transforming the projection of resource from

vector space to LSI space is to locate groupings of resources and use a similar representation

for the group (hence a cluster). The algorithm for performing LSI on a group of resources

is given as follows (See Algorithm 3.1):

The implementation in the calculateSVD(double[][] matrix) method of MasterList

class the data structure called Matrix provided in JAMA API to create a clone of double[][]

array and then computes the decomposition of the matrix by invoking method svd() (See

snippet in Figure 3.10). The return type of this method is SingularValueDecomposition that

is further used to invoke accessor methods getU(), getS() and getV() for getting left eigen

vector (U), singular orthogonal matrix (S) and right eigen vector (V) respectively. The

output matrices are then subjected to dimensionality reduction based on top k sigma value

in singular matrix (S). The number of sigma values, k, is the �oor of the square root of

number of resource. A new keyword-resource matrix is generated using the truncated k

dimensions.

3. design features and implementation 47

private class KeywordRequestor extends TickerBehaviour
{
 private KeywordRequestor(Agent a)
 {
 super(a,300000); //Timer of 300,000ms
 }

 ...

 //Behaviour Implemented upon expiry of Timer
 public void onTick()
 {
 //Send Message
 ACLMessage request=new ACLMessage(ACLMessage.REQUEST);//Request Message
 request.addReceiver(new AID(nameLA,AID.ISGUID));//Receiver Local Agent
 request.setConversationId("keywords-request");//ID keywords-request
 request.setReplyWith("request"+System.currentTimeMillis());//Update Time
 myAgent.send(request);//Post Message

 callNodeRegistry();//Update Bootstrap Server
 }
 else
 {
 block();//Blocked State
 }
 }
}//end inner class

Figure 3.11: Index Maintenance task performed recursively by Information Agent

3.4.3.1 Index Maintenance

As the resource collection is dynamic and the nodes are autonomous, new resources and node

are added and existing resources and nodes are modi�ed or deleted. The index built from

SVD of a keyword-resource or keyword-node matrix is a snapshot of the document collection

at some earlier time. The changes made to the collection after the SVD computation, are

not re�ected in the index. For e�ective routing, clustering, the index of the bootstrap server

must re�ect the most recent state of the resource or node collection. Nodes are represented

by the content hosted by them and the mobile agent is routed based on most updated

state of index. To compensate for these changes, the information agent recursively (after

300, 000ms) updates the index by supplying bootstrap server with most recent state of a

node. This behaviour is implemented in the inner class - KeywordRequestor, that extends

TickerBehaviour that invokes method onTick() recursively after expiry of time passed as

parameter in constructor - shown in Figure 3.11.

3. design features and implementation 48

3.4.4 Similarity Function

The cosine measure is the ratio of sum of the products of common keywords to the products

of the lengths of the two vectors. It measures the degree of overlap and uses the presence

of keywords to compute similarity. As described in Section 3.2, the author has proposed

the use of cosine similarity function for clustering nodes, searching nodes based conceptual

similarity between node and query and also for matching the query resource hosted by a

node. In following sections, the author presents realisation of these functionalities.

3.4.4.1 Node Learning - Clustering

For the purpose of clustering nodes that are conceptually similar, node represented by key-

words is transformed into node vector of k dimensional space on bootstrap server. This

transformation is required for comparing node vector to existing other node vectors for cal-

culating cosine similarity. The similarity value of nodes that is less than minimum_support

constraint provided by user is returned to InformationAgent. The realisation of this func-

tionality is provided inMasterList class. The return type is serialised object called Directory

that contains the NodeId, similarity value and shared keywords. The Directory data struc-

ture forms a local repository and cluster of conceptually similar nodes. The pseudocode for

locating nodes belonging to same cluster is as follows:

1. Initialise local node vector based on concatenation of keywords and their weights.

2. Submit local node vector to BootstrapServer.

3. Transform local node vector into k dimensional space.

4. Run a loop until convergence.

(a) Calculate cosine similarity sim(lk, nk) between the transformed vector and other

available node vectors

(b) If (sim(lk, nk) > minimum support) then

i. Node belongs to the clustered.

ii. Add node GUID to Directory data structure.

iii. Add node's similarity value to Directory data structure.

iv. Add node's keywords to Directory data structure.

3. design features and implementation 49

(c) Else if (sim(lk, nk) < minimum support) then

i. Node does not belong to cluster, reject node.

5. Terminate when number of nodes converges.

The snippet in Figure 3.12 shows the serialised Directory data structure that holds the result

of clustered nodes. This object is passed by BootstrapServer to InformationAgent in order

to facilitate the functionality of plotting route upon query for ReconnaissanceAgent through

overlay network.

/**
 * Data Structure for holding the directory peer - keyword matrix used by
 * Information Agent and Bootstrap
 *
 */
public class Directory implements Serializable
{
 //Hold Similarity Value
 double similarityValue;
 //Hold Keyword Frequency Weights
 Matrix keyWeights;
 //Hold Keywords
 ArrayList keywords;
}

Figure 3.12: Directory data structure used by BootStrapServer to pass clustered nodes
result to InformationAgent

3.4.4.2 Node Searching and Ranking - Content Based Routing

For guided search on an overlay network and hence to reduce saturation, the mobile agent

is required to have some heuristics about nodes on the overlay network. As described and

implemented in Section 3.4.2, all nodes are represented by the concatenated set of keywords

and their respective weights. In order to guide ReconnaissanceAgent towards the node that

host resource that is conceptually similar to the query passed by user, cosine similarity

is measured between the query keywords and the list nodes available to node. Based on

minimum_support, the selected nodes are sorted and ranked such the node with highest

similarity value is ranked as 1. The ReconnaissanceAgent is issued with GUID of this selected

node that is further used by ReconnaissanceAgent to request AMS for container, where the

selected node exists. Once the container address is available, the ReconnaissanceAgent

migrates to this selected node for facilitating query resolving task. The pseudocode for

selection and ranking of node is as follows:

3. design features and implementation 50

1. Assuming that Directory containing list of nodes - their similarity values, keywords

and GUIDs is available to node.

2. For each node in Directory

(a) Measure cosine similarity between node and issued query

(b) Add node GUID and the similarity value to HashMap

3. Sort elements in HashMap based on similarity value - to get node with highest simi-

larity value as rank 1

4. While node is not selected

(a) If node GUID does not exists in visited nodes array then

i. Select node GUID

ii. Inform ReconnaissanceAgent about GUID of selected node

iii. Change state to node selected

(b) Else

i. Increment index of visited node array.

5. Migrate ReconnaissanceAgent

The pseudocode is implemented using a private class NodeRequestor that extends CyclicBe-

haviour. Upon receiving an ACLMessage.Request from ReconnaissanceAgent, the method

checks if the Directory is not empty or the list of clusterNeighbours exist. All the GUIDs

referred to as keysIPS are recalled to create a new matrix with their weights including the

keywords suggested by user in query. Cosine similarity is calculated and the results are

stored in simR matrix data structure. simR is checked to be valid against user provided

minimum_support parameter before the chosen node is submitted to ReconnaissanceAgent

agent. (See snippet in Figure 3.13)

3.4.4.3 Query Resolving

In order to resolve a query - it is represented in k dimensional space like a new resource.

The set of query keywords are projected on the existing keywords vector and weighted by

the k dimensions. The result of computation is a query vector that can be compared with

3. design features and implementation 51

if(clusterNeighbours!=null)
{
 //GET NODE GUIDs
 Set keysIPS = clusterNeighbours.keySet();
 //LOOP TO FORM WEIGHTED NODE_KEYWORD MATRIX
 for(int j=0;j<keysArray.length;j++)
 {
 ...
 double[][] weightsMatrix = weights.getArray();
 //UPDATE WEIGHTS
 for(int k=0;k<weights.getRowDimension();k++)
 {
 if(weightsMatrix[k][0]==0)
 {
 }else if(weightsMatrix[k][0]>=1)
 {
 for(int u=0;u<weightsMatrix[k][0];u++)
 {
 updated.add(a.get(k));
 }
 }
 }

 ...
 }
 ...
//SIMILARITY RESULTS
Matrix simR=database.getSimMatrix();
double mins = Double.parseDouble(minSup);
...
//CHECK SIMILARITY VALUE AGAINST MINIMUM SUPPORT
for(int q=0;q<simRArray.length;q++)
{
 simVal=simRArray[q][0];
 if(simVal>mins && simVal>temp)
 {
 ...
 }
}
//CHOOSE NODE
ArrayList clientAgents=database.getClientList();
String chosen = (String)clientAgents.get(indexer);
System.out.println("THE CHOSEN ONE IS "+chosen);
//CREATE REPLY TO RECONNAISSANCE AGENT
ACLMessage reply = messagerec.createReply();
if(keywords!=null)
{
 reply.setPerformative(ACLMessage.INFORM);
 reply.setContent(chosen);
}
myAgent.send(reply);

Figure 3.13: Realisation of node searching and ranking

3. design features and implementation 52

Algorithm 3.2 Algorithm for transforming query into k dimensional query vector, calcu-

lating similarity and ranking resources

Input

Ak = UkSkV
T
k Locally Shared Resources on Node

Query : Q

Perform QT

Perform S−1

Compute Qk = QTUkS
−1Transformed Query Vector in k dimensional space

Perform Cosine Similarity Test and Ranking

For i = 1 to n

Compute sim(Qk, Ri) =
〈Qk,Ri〉
|Qk||Ri|

Perform ranking

Next

Sort rank based on minimum support

Output

Return sim(Qk, Ri), rank

other resource vectors in the same k dimensional space. Details of transforming the query

to a query vector are provided in Section 3.2.1. Query resolving is performed by LocalAgent

upon request from ReconnaissanceAgent, when mobile agent visits a node. The algorithm

for transforming the query into a query vector in k dimensional space is shown in Figure

3.2.

The implementation of algorithm (Algorithm 3.2) is realised through the method

calculateSim() of private class LocalDatabase, used for computing cosine similarity between

the query vector and the keyword-resource matrix. The method returns the matrix data

structure that contains cosine similarities values for all local resources on a node as compared

to query vector. The method computes the numerator that is the sum of product of common

keywords. The denominator is computed by products of length of each vector. The ratio is

stored in a matrix simM and returned to mobile agent RA.

3.4.5 Mobile Agent - Reconnaissance Agent

ReconnaissanceAgent is a mobile agent that is responsible for discovering resources on the

overlay network. It is also responsible for migrating from node to node while comparing the

3. design features and implementation 53

search query against hosted resources. Important methods that have been implemented to

realise the responsibilities include:

1. takeDown(): This method is overridden and implements doDelete method for termi-

nating ReconnaissanceAgent.

2. afterMove(): This method is overridden and is responsible for �nding local LocalAgent

and compare the query against the catalog it is keeping. This method is responsible

for the following tasks. a.) if any of the results are greater than minimum support,

it is responsible for sending ACLMessage to its creator (InterfaceAgent) informing

about the discovery - name of �le and name of LocalAgent hosting it. b.) checks,

if it has made number of hops less than maximum number of hops allowed. If the

number of hops are less than maximum allowed then it should communicate to local

InformationAgent on this node and get the next migration address and container else

it kills itself.

3. commForJump(): This method implements the steps that required to be performed

by ReconnaissanceAgent before migration to new node.

4. sendRequest(): This method sends message to AMS for location of the named static

agent (InformationAgent, LocalAgent or InterfaceAgent).

5. setup(): This method is an overridden and is responsible for getting parameters for

ReconnaissanceAgent.

6. getNode(): This method is responsible for communication of ReconnaissanceAgent

with InformationAgent to get new node where it should migrate in order to perform

resource discovery in case number of hops are lesser than maximum number of hops

allowed.

This section includes details of realisation of features mentioned in contributions and objec-

tives in Chapter 1. The author has presented algorithms, pseudocodes and implementation

details of these features. In addition, the author also presented details of methods imple-

mented by mobile agent in order to realise its functionality.

3. design features and implementation 54

3.5 Discussion

In �ooding-based systems, upon receiving a query, each peer sends a list of all matching

resources to the originating node. This results in increase of load on each node that is

linearly proportional to the total number of queries. It must be noted that this load will

increase with growth in system size making �ooding based approach clearly not scalable.

To make unscalable systems scalable literature presents DHT-based system that has limita-

tion of search performance because of rigid key-value pairing for propagating the query to

resource Chawathe et al. (2003). In the proposed system, routing of RA is heuristic based

that provides �exible search semantics based on keyword-node pairs and supports attaching

keywords to shared resources and content-based similarity retrieval thus making it more

scalable. Scalability can also be attributed to the proposed resource discovery mechanism

that supports exact and similarity search based on keyword-resource matrix unlike �ooding-

based or DHT-based techniques. The author believes that the proposed system provides the

necessary �exibility and performance for e�ective use of LSI for searching and routing on

overlay networks.

Furthermore, it must be noted that this implementation has been realised keeping

intra-platform mobility in context. In case of inter-platform mobility - the GUIDs will be

undermined as container numbers are not unique across multiple platforms. In such case,

the author suggests the use of IP address concatenated with agent type and container id to

create a globally unique identi�er for an agent at global level.

3.6 Summary of the Chapter

The chapter discussed in detail all the design features that implement the characteristics of

resource discovery system as understood and informed in Section 2.3. Details of agent com-

munication that include MessageTemplate and MatchPerformative are described in Section

3.4.1. Furthermore, description of various features, their implementation and the required

algorithms have been discussed in Section 3.4. The details about extensive coding have been

removed from main report and added to program listings for readers (See Appendix - C).

In next chapter, experimentation is conducted to test the e�ciency and e�ective-

ness of A�nity. Also, included in next chapter are tests that compare results from proposed

system to current research works. In addition, evaluation of results is provided in detail in

3. design features and implementation 55

following chapter.

56

Chapter 4

Experiments, Results, and Evaluation

The experiments were conducted to evaluate the e�ectiveness of proposed method for re-

source discovery using mobile agents. The experiment is bifurcated into two parts. Part-1

investigates to �nd out the response time (in secs) that it takes to locate a resource (multiple

keywords based query) on an overlay network using RA in MAS as compared to �ooding.

Part-2 investigates the bene�t of using RA for informed search based on LSI as opposed to

�ooding and other routing algorithm inspired by AntHill (Babaoglu et al. (2002); Babaoglu

& Jelasity (2008)) and structured P2P systems by (Dasgupta (2003); Kambayashi & Harada

(2009)) by �nding out the amount of messages that are on an overlay network.

4.1 Design of Experiments

The design of experiments has been setup in order to compare the proposed technique for

content-based resource discovery in terms of heuristic search and search performance. The

benchmarks are provided by �ooding technique and by term-matching, Jaccard coe�cient

techniques Chawathe et al. (2003); Crespo & Garcia-Molina (2004); Zhu & Hu (2007); Das-

gupta (2008); Kambayashi & Harada (2009). Flooding technique was used as benchmark;

as it is widely accepted technique and has been used as backbone for purpose of routing

and searching in number of resource discovery techniques including the contemporary tech-

niques as proposed by Dasgupta et al. Dasgupta (2003, 2008). Furthermore, as Dasgupta

et al. is using this technique for routing in context to MAS, it becomes all the more impor-

tant to prove the e�ectiveness in terms of routing and searching of proposed technique in

this context. More contemporary researches from Zhu et al. and Kambayashi et al. have

proposed the usage of semantics links based on term-based matching or Jaccard coe�cient

4. experiments, results, and evaluation 57

for resource discovery. Kambayashi et al. uses mobile agent to traverse through overlay

network and their technique of preference for matching resources is logical similarity based

in Jaccard coe�cient Kambayashi & Harada (2009). Kambayashi et al. further uses DHT

based structured overlay for migration of mobile agent. Similar approaches has been used

in di�erent �avour however (for instance, using DHT for locating nodes, using �ooding for

routing mobile agent or using term matching for locating relevant results) have been used by

many contemporary research works. As Kambayashi et al. is using number of techniques in

their approach, the author believes comparing results of proposed method to their technique

would provide comparison and evaluation on high degree of intersection of attributes and

techniques and a good benchmark. The experiments conducted measure the performance of

the proposed method on the basis of following parameters:

• the response time test

• the e�ectiveness of search technique

• relevance of results

• degree of similarity

4.1.1 Experiment Environment and Test Bed

For comparison to �ooding technique as employed by Gnutella, the experimental setup used

the open source Java API, JTellav0.7 McCrary & Waters (2000); Forum (2002); Chawathe

et al. (2003). This API can be used to create a P2P overlay network and is well documen-

tation on the libraries as well as source code in Java. The setup included 4 peers where 3

peers hosted resources and fourth peer is used for searching resources. Details of each peer

including hardware speci�cations, operating system, IP addresses, number of resources and

types of resources is shown in table 4.1.

As seen in table 4.2 total number of nodes participating in A�nity were 10. For

the purpose of consistency with benchmark, 4 computers participated in this experiment.

In this setup, computer 1 hosted Bootstrap server and 3 computers participated in P2P

overlay network. Between these 3 computers, 10 nodes were created, where computer 1

hosted 4 containers hence 4 nodes, computer 2 hosted 3 containers hence 3 nodes and �nally

computer 3 hosted 3 containers hence 3 nodes. Each container simulated as di�erent node

participating in P2P overlay network. The hardware speci�cation of machines is as provided

4. experiments, results, and evaluation 58

Peer Name Peer 1 Peer 2 Peer 3

Operating

System

Microsoft Windows

Vista Home

Premium

Microsoft Windows

7 Home Premium

Microsoft Windows

XP Professional

Service Pack 2

Processor

AMD Athlon Dual

Core QL-62 2.00

GHz

Celeron (R) Dual

Core CPU T3000

@ 1.80 GHz

Intel Pentium 4 @

2.50 GHz

RAM 3 GB 3 GB 512 MB

IP Address 192.168.1.2 192.168.1.5 192.168.1.7

Number of

Resources

Shared

13 8 8

Type of

Resources

8 pdf �les

3 docx �les

2 doc �les

6 pdf �les

2 rar �les
8 pdf �les

Table 4.1: Gnutella �ooding peers test bed

4. experiments, results, and evaluation 59

Speci�cation Value

Total Number of Computers 4

Bootstrap Server 1

Computers Participating 3

Number of Nodes Participating 10

Maximum Number of Hops 2

Total Number of Shared Resources 27

Minimum Support 0.0

Table 4.2: MAS test bed

in table 4.1. Further speci�cations regarding MAS and keywords for resources shared are

shown in table 4.2 and table 4.3.

Local Agent Keywords Shared

LA1 sun moon earth mars mercury venus

LA2 moon pluto

LA3 sun stars one two

LA4 one two three four �ve six mars

LA5 moon

LA6 jupiter saturn neptune pluto

LA7 moon saturn pluto

LA8 two neptune

LA9 pluto earth one

LA10 one sun two moon

Table 4.3: Keywords used for sharing resource on each node

The objective in test 2 is to compare the e�ectiveness of indexing technique, rele-

vance of results and degree of similarity. The experiments in test 2 used a MEDLINE data

set that consisted of 1033 documents University (1999). After removing of stopwords and

�ltering of nouns, verbs, adjectives, and adverbs, 5735 indexing terms (lexicons) were found.

The details of data set can be found on media disc. This data set was used speci�cally as

4. experiments, results, and evaluation 60

all resources have already be categorised and attributed with features such as relevance and

similarity. The objective was to �nd out of the proposed technique provides similar results

and then to compare the results with techniques used by other research works. Hence, the

prepared results served as benchmark for comparing the e�ectiveness of proposed technique

to other relevant works.

4.2 Test 1 - Comparison to Flooding Technique

4.2.1 Experiment 1 - Response Time and Evaluation

The objective of experiment 1 was to calculate the response time for query on an overlay

network. The performance metric response time is de�ned as the time elapsed between a user

initiating a request and receiving the results. This includes the time taken for agent creation,

time taken to visit the node and the processing time to extract the required information.

Once the response time is available it can be concluded that which method is more e�ective

with respect to amount of time it takes to locate a resource on an overlay network. It is

observed from the bell curve that amount of time it takes to �nd a particular resource in

proposed method is consistent and ranges between 5s to 6s. Flooding however does not have

any consistency in response time. It is observed from bell curve shown in Figure 4.1 that

response time can vary from few seconds to few minutes. Furthermore, it is observed that in

�ooding 14 queries out of potential 28 queries has response time of < 5s which approximates

to 42% of total number of queries, where when using proposed method the author observed

that 67% of queries were replied with resource location in < 5s and 23% of queries replied

in < 6s.

It is evaluated that overall response time, when using the proposed method is lesser

than the case of Gnutella using �ooding technique. But it should be noted that a lower

response time does not measure the e�ectiveness of search technique in terms of successful

results as described further in Section 4.2.2. The author concludes that lower response time

is attributed to mainly two reasons. Firstly, as Gnutella is pure P2P network, it is required

of participating peers to communicate their status using PING and PONG messages on the

overlay network. This results in high amount of tra�c on overlay network and results in

saturation. It is observed, as mentioned in Section 4.2.3, that PING and PONG activity

together amount to 97.5% of messages. This results in latency and hence low response time.

Secondly, as resources to be located are searched based in multiple keywords do not always

4. experiments, results, and evaluation 61

Figure 4.1: Frequency distribution of response time analysis - Gnutella vs. A�nity

match the �le name of resource to be located, it amount to low response time as query may

not match the resource completely.

4.2.2 Experiment 2 - E�ectiveness of Search Technique and Evaluation

In experiment 2, the objective was to investigate the e�ectiveness of search using proposed

method as compared to �ooding. For achieving this objective, the experiment setup was

to compare successful queries to unsuccessful queries. It was realised through experiment

using proposed method that out of 30 queries, 24 responded with query hit, 4 queries did

not have any response, and 2 queries replied as NaN network (See Figure 4.2).

Furthermore, it was realised that NaN is due to explicit speci�cation of minimum

support parameter as 0.0. The nodes in similarity with 0.0 did not host the content that

was required by user. In case, of �ooding, 26 queries were passed through various nodes.

32% of queries had query hit and 68% of queries failed (See Figure 4.3).

4.2.3 Observations

Dasgupta (2003); Kambayashi & Harada (2009) has con�rmed that no matter how many

peers or resources are there on an overlay network, the �ooding technique generates a con-

4. experiments, results, and evaluation 62

Figure 4.2: Query successful vs. unsuccessful - A�nity method

Figure 4.3: Query successful vs. unsuccessful - �ooding method

4. experiments, results, and evaluation 63

Figure 4.4: Division of packets for Gnutella

sistent number of messages on an overlay. The author has observed in �ooding that the

amount of tra�c or messages on an overlay network or even response time increase or de-

crease is attributed to mainly the PING and PONG activity. This continuous stream of

messages is produced by the peers to check existence and current status of other peers. The

author used Wireshark to monitor the Gnutella packets Wireshark (2010). The screenshot

in Figure shows Gnutella packets upon �ltering. A total of 14008 Gnutella packets were

analysed when overlay network was subjected to 2 queries. It is clear from the pie chart

(Figure 4.4) that 84.7% of tra�c is related to PONG descriptors, 12.8% to PING, 2.22% to

QUERY, and 0.07% to re-transmission errors. Gnutella connections are relatively unstable,

which lead the nodes in iterative e�ort for discovering other nodes on overlay network as

opposed to nodes joining and leaving network autonomously.

It is also observed from the graph in (Kambayashi & Harada (2009)) that no matter

what is the number of resources shared, as long as number of peers is constant the number

of messages (bytes) will stay constant.

4.2.4 Critical Analysis

However, this raises another issue of why there is a decrease is number of messages also

claimed by Dasgupta (2003); Kambayashi & Harada (2007, 2009). The author observed and

4. experiments, results, and evaluation 64

Figure 4.5: Gnutella packets analysed using Wireshark

evaluated that the decrease in number of messages in these multi-agent systems is due to

decrease in number of hops to locate a resource. Kambayashi & Harada (2009), claims that

number of messages on overlay network will decrease with increase in number of resources.

This is because the overlay network has become more resourceful and hence almost all peers

have links to other peers, which means that when the SA enquires from directory services on

NA about peer to migrate to, it is capable of informing SA about the highest possible logical

distance value because of its resourcefulness. This is observed in proposed method too and

the author agrees with Dasgupta (2003); Kambayashi & Harada (2009). It is evaluated in

Section 4.3.1, that number of inter cluster links are on average higher than case where, logical

distance value was used to create semantic links between nodes. More number of links makes

the overlay network more resourceful thus reducing number of hops and reducing number

of messages on network. Furthermore, it is evaluated through precision-recall results where

the author de�nes precision as the ratio of number of relevant resources/nodes found during

search to number of search results and recall as the ratio of relevant resources/nodes found

to total number of relevant resources/nodes in corpus. Though, number of inter-cluster

links are higher that may result in compromise of precision, however, we achieve higher

4. experiments, results, and evaluation 65

Figure 4.6: Precision and recall results comparing LSI to TF-IDF indexing model

recall making degree of relevance higher (See Figure 4.6) due to e�cient indexing technique.

Together, with results from reduced response time, higher recall and greater number of

successful queries it can be concluded, that lesser number of messages exist on network.

In test 2 - Section 4.3, the author investigates the e�ectiveness of their tech-

niques/algorithms to reduce number of messages and compare them to proposed method.

4.3 Test 2 - Comparison to Other Routing Techniques/Algorithms

The aim of this test is to investigate the e�ectiveness of the routing mechanism employed

by Kambayashi et al. that calculates the logical distance between the nodes based on the

resources shared by that node as compared to LSI based clustering of nodes and routing

based on calculation of cosine similarity between search query and the lexicons shared by

nodes. This experiment also indirectly studies the e�ect on amount of message on overlay

network. Replicating exact environment as used by Kambayashi et al. has been a tedious

process as they are using Overlay Weaver and Agent Space both tools developed by them and

changed to accommodate messaging between agents through Overlay Weaver Kambayashi

4. experiments, results, and evaluation 66

Figure 4.7: Pair-wise document similarity TF-IDF Jaccard vs. LSI Cosine

& Harada (2009).

Though, the author evaluated their results and observed that the decrease in num-

ber of messages is due to increased similarity score (Jaccard Similarity) between shared

lexicons. In this context, the author designed another experiment that would compare their

indexing and routing algorithm to the proposed method by comparing its e�ectiveness on

third party data provided by University (1999). The e�ectiveness was evaluated in di�erent

experiments.

4.3.1 Experiment 1 - Pair-Wise Document Similarity And Evaluation

In experiment 1, pair-wise document similarity is investigated by comparing Jaccard similar-

ity (subset used by Kambayashi & Harada (2009)) and Cosine similarity (used by proposed

method Singh et al. (2009)). In case of Kambayashi et al., the test required normalising

the term-document matrix using term-frequency and inverse document frequency indexing

(TF-IDF) for measuring Jaccard similarity Kambayashi & Harada (2009). In proposed case,

4. experiments, results, and evaluation 67

the test required creating the normalised latent-semantic indexed matrix for measuring Co-

sine similarity as described in Section 3.2.1. The e�ectiveness in experiment 1 is studied by

�nding out number of documents that match where the minimum threshold is > 0.1. The

result of number of document will indicate the resourcefulness of overlay network, as that is

used to cluster the nodes. In other words, more is the number of matched documents, larger

is the cluster, and more are the chance for mobile agent to locate a resource which would

mean lesser number of migrations for mobile agent and hence, less number of messages on

overlay network. The author, evaluated from the following graph (Figure 4.7) that using LSI

and cosine similarity, clearly has larger number of pair-wise matches, between documents

and hence, provide larger cluster and links between clusters.

It is evaluated that larger is a set of similar documents, more resourceful is the

overlay network, hence lesser number of hops are require by RA to locate a resource. The

pair-wise documents similarity is large in case LSI technique used in proposed method,

hence number of messages required by RA to locate a resource will be lesser and in this case

much lesser than �ooding (Aberer et al. (2004); Chawathe et al. (2003)) and logical distance

method (Dasgupta (2003); Kambayashi & Harada (2007, 2009)) making proposed method

for routing RA through overlay network more e�cient in terms of time and bandwidth

consumption.

4.3.2 Experiment 2 - E�ectiveness of Search Technique And Evaluation

In experiment 2, the aim was to investigate number of documents that found to be similar

in to search query. Large number of documents e�ectively indicate:

1. Large number of nodes for the RA to migrate to for locating resources

2. Better inter-cluster link for routing the RA through overlay network.

It is highly important that mobile agent can traverse through overlay network for locating

the resource.

If routing links cannot be established between clusters - it would indicate:

1. Mobile agent cannot locate a resource because of its incapability to migrate to di�erent

clusters or

2. Mobile agent will provide results that are less precise.

4. experiments, results, and evaluation 68

Figure 4.8: Number of times a document appears for 30 queries Jaccard similarity vs.
Cosine similarity

It must be noted that larger number of matches also mean large number of nodes to be

visited by the RA hence more number of message on overlay network which in e�ect means

higher bandwidth consumption. This however is controlled in proposed case by introduction

of factor called minimum support as mentioned in Section 3.2.1, that is set by user to reduce

the number of selected nodes for the RA to visit. The author conducted similarity test on

corpus of 1033 documents by subjecting them to 30 di�erent queries University (1999). The

following graph (Figure 4.8) was obtained as a result of this experiment, informing number

times matched documents is found for 30 queries where minimum support is > 0.002.

It is observed that proposed method is resulting in larger inter cluster links and also

large number of nodes where the RA can potentially visit as compared to logical distance

method used by Kambayashi & Harada (2009).

4. experiments, results, and evaluation 69

Figure 4.9: Number of documents found for 30 separate queries on corpus of documents

4.3.3 Experiment 3 - E�ectiveness to Locate Resources and Evaluation

In experiment 3, the aim was to investigate e�ectiveness of proposed method to locate the

resource. Keeping that in context, in general terms it means - number documents found

per query using proposed method as compared to the logical distance method. Similar to

experiment 2, for achieving the aims of this test, the document corpus was subjected to

30 queries and number of documents found per query were obtained for minimum support

> 0. This number was compared for LSI based Cosine similarity and TF-IDF based Jaccard

similarity. The graph (Figure 4.9) shows that number of documents using LSI Cosine method

used in proposed method is higher than TF-IDF Jaccard method. It is further evaluated,

that a larger number of documents associated with a query means 1. higher cluster links 2.

larger set of relevant documents found as part of resource discovery. Of course, as mentioned

in experiment 2, larger set of documents can also indicate irrelevant information, but this

can be capped using parameter minimum support as mentioned in section 3.

4. experiments, results, and evaluation 70

Figure 4.10: Similarity score distribution TF-IDF Jaccard vs. LSI Cosine

4.3.4 Experiment 4 - Degree of Relevance of Results and Evaluation

In experiment 4, the aim was to investigate the degree of relevance of results obtained during

search process by the RA. Again, similar to experiment 2, the corpus was subjected to 30

queries to �nd out about similarity scores. The highest similarity score obtained is assumed

as resource that is best match to a given query. The objective was to collate the highest

similarity scores and �nd their frequency distribution. This process would:

1. o�er insights into relevance of results

2. inform which method is capable of extracting best match documents.

Perhaps, if the same document is found a result of search, using both methods, if logical

distance is low, it may safely be assumed that mobile agent may take more time or even

more number of hops to reach the node.

It is observed from the graph (Figure 4.10), that using proposed method the simi-

larity scores tend to be on higher end of frequency distribution as opposed to other research

4. experiments, results, and evaluation 71

works. This indicates that it is of utmost importance the similarity scores are high which

would e�ectively mean fewer messages on overlay network and better response time.

4.4 Discussion

In order to test the proposed method for content-based routing of mobile agents using LSI

on large scale network, the literature o�ers only a few simulation environments.

A simulator called Swarm is a general purpose software package for simulating,

distributed arti�cial worlds written in Tcl Lingnau & Drobnik (1999). It is particularly useful

for large number of autonomous entities (�agents� � not to be confused with �mobile agents�)

with an environment. Using this, the global and adaptive behaviour of the proposed system

can be studied Lingnau & Drobnik (1999). Anslem Lingnau et al. Through their research

o�er an extension to Swarm system by including infrastructure for mobile agents. Their

extension, allow mobile agent collaboration other agents and also allowing for computations

and migrations Lingnau & Drobnik (1999). Included, in this simulator are some routing

techniques for studying network load and response time for agent to complete a given task.

This environment is suitable for simulating the proposed technique, as long as it allows new

routing techniques to be added. One of the drawbacks of this environment is their non

standard use of messaging techniques by use of invocation of remote methods rather than

standard agent communication language. This will prevent accurate results with regard to

response time and e�ciency of network usage.

Another simulator that is written in Java and has been used by some researchers

for agent-based simulations is Repast North et al. (2006). Due to object-oriented nature

of the underlying programming language, it supports computational elements that make

agent autonomous (an important characteristic required for agents) Bandini et al. (2009).

Furthermore, object oriented nature of Java o�ers encapsulation of state, actions and action

choice mechanism in agent's class. It also simpli�es integration of external APIs such as

JADE in this case. This simulation platform does not speci�cally support realisation of

agents and interaction models as standardised by FIPA.

AgentSim developed by IBM has been used by researchers as simulator for simu-

lation of agents Trillo et al. (2007). The simulator is library built only for Aglet - agent

development platform Trillo et al. (2007). As mentioned in Chapter 2, Aglet does not sup-

port ACL, instead only o�er synchronous remote method invocations that are not favourable

4. experiments, results, and evaluation 72

for simulating proposed technique Trillo et al. (2007).

Chen et al. developed Mobile-C that conforms to the FIPA standards both at agent

and platform level. It also extends FIPA standard to support mobile agent protocol to direct

agent migration process. Agent migration is achieved through FIPA-ACL messages encoded

in XML Bo Chen (2006). FIPA ACL is e�ective way for inter-platform agent migration

in FIPA compliant Agent systems as both agent communication and migration share the

same communication mechanism. The development of simulator is done in C or C++ which

makes inter-language barrier for communication, as developments have been done in Java

and JADE API. However, the author believes that using CORBA, for inter-language com-

munication can be conceived for successful simulation. This may require extensive writing

of interfaces for the developed system and various computational models.

The author understands the issue to test scalability of system on large scale network

is important, which will be created as part of simulation in further work. The author believes

that Mobile-C o�ers promising simulation platform for simulating the proposed system on

large scale network.

4.5 Summary of the Chapter

In this chapter, the author has provided details of various experiments, that were conducted

and describe the characteristics of the resource discovery system, using mobile agent - A�n-

ity as well as provide insights into one-on-one comparison with other routing techniques used

in older and current research works. The author also discussed the choice of simulators, their

features and drawbacks for large scale mobile agent based simulation.

In next chapter, the author provides discussions on concepts provided by re-

searchers and compare them to concept listed by proposed work by benchmarking char-

acteristics of P2P and resource discovery systems using mobile agent.

73

Chapter 5

Discussion, Conclusions, and Future Work

This chapter discusses other related research works and critically analyse the concepts pre-

sented by them. The results obtained as part of experimentation in Chapter 4 are promising

and the author believes further discussion of the concepts presented by some of the related

works as collated in literature survey is useful for readers.

The works done by Zhu et al ESS, Dasgupta et al, Kambayashi et al, and Crespo

et al are related to this research work for development of P2P system for resource discovery

and the �rst sections of chapter provides related discussions Dasgupta (2003); Crespo &

Garcia-Molina (2004); Zhu & Hu (2007); Dasgupta (2008); Kambayashi & Harada (2009).

In ending sections, the author has collated the future works, that can be undertaken and

can be potentially useful with this research work in context. Also, the conclusions have been

provided.

5.1 Discussions - Analysis of Other Research Works

In this section, the author discusses related works similar to conducted research work un-

dertaken.

Crespo initially presented the idea of routing indices for controlling the amount

of �ooding and saturation of overlay network Crespo & Garcia-Molina (2002). The con-

cept however su�ered from maintenance of distributed-index on various nodes that itself

generated it own large amount of tra�c.

Later, Crespo et al. introduced the idea of semantic overlay networks (though not

in a P2P context) where the nodes can be clustered to form an overlay network Crespo &

Garcia-Molina (2004). Crespo et al. use explicit term semantics to building routing indices

5. discussion, conclusions, and future work 74

Crespo & Garcia-Molina (2004). They assign documents with terms indicating related

realms, and maintain in each peer a statistic table containing term-based routing indices,

which indicates how many documents would be found, if probes the query of that term to

a neighbour peer Liu et al. (2004).

The author, understands that Crespo et al brought improvement to searching but

as most latent semantics analysis proved, only terms-based statistics cannot fully capture

resource characteristics as terms also have underlying correlations and semantics Deerwester

et al. (1990); Liu et al. (2004). The author has been inspired from the idea to form rela-

tionship between nodes but proposed system uses these relationships for coordination of

resources that are managed by nodes and further use it for informed routing of the RA.

Zhu et al. presented the use of information retrieval from unstructured and struc-

tured P2P system by use of semantic links between the nodes Zhu & Hu (2007). The

query �ooding on P2P network is controlled using routing based on Jaccard similarity tech-

nique. However, as described in tests the results obtained from normalised LSI based cosine

similarity technique are far superior on terms of number of document matches and higher

similarity scores. Furthermore, their system is not a mobile agent based resource discovery

system which as mentioned in literature greatly improves upon the classical unstructured

and structured P2P system. Proposed work contributes towards the dynamic organisation

overlay network based on resources published by nodes. The relationship between nodes

and resources for guidance of agent (direction) on overlay network is central and crucial.

Dasgupta et al. (Dasgupta (2003, 2008)) research work is greatly inspired from

Babaoglu et al work on Anthill in Babaoglu et al. (2002); Babaoglu & Jelasity (2008). The

author here presents analysis of Dasgupta's research work as they have used MAS.

Dasgupta et al. introduced the used of mobile agents for P2P resource discovery

Dasgupta (2003, 2008). Their system is based on referrals made by search agents. Clearly,

in their system the behaviour of search agents evolve and get better, based on the trails

established by searches done before. In contrast to proposed work, they do not use the

routing tables for guiding the search agent through the overlay network as done in proposed

work using directory facility made during initial registration of peer on bootstrap server.

Furthermore, they did not introduce the use of peer-keyword semantics to form clusters

of semantically similar peers. Clearly, they are using the classical technique of �ooding

to discovery resources that improves over time based on the search trails left by previous

searches.

5. discussion, conclusions, and future work 75

Kambayashi et al. has provided method of resource discovery by using mobile agent

and DHT Kambayashi & Harada (2009). Like proposed work, their work also overcomes,

use of �ooding for �nding resources using node management table on each node (similar to

directory service on InfA). However, the node management table is constructed by calcu-

lating logical similarity of keywords on peers based on primitive form of Jaccard similarity

function as opposed to using latent semantics of keywords and �nding cosine similarity in

our case. Inspired from Crespo et al. (Crespo & Garcia-Molina (2004)) Kambayashi et al.

(Kambayashi & Harada (2009)) also used the terms to capture the realm of resources shared.

However, as mentioned before, matching only terms to cannot capture resource character-

istics, which is where the author introduced the idea of using latent semantic analysis. In

proposed case, the author has introduced the use of minimum support for peer discovery

and latent semantic indexing between peers to direct the RA towards resource.

Inspiring from Dasgupta's (Dasgupta (2003, 2008)) and Babaoglu et al. (Babaoglu

et al. (2002); Babaoglu & Jelasity (2008)) work, Kambayashi et al. (Kambayashi & Harada

(2009)) introduced the use of pheromone value (AntHill) (that is calculated taking param-

eters such as number of resources shared by peer and clustering value (logical distance

between peers). This feature is expected to guide search agents towards nodes with high

correlation by reducing free-riders. The author believes both, the techniques are equally

credible, however the work from Kambayashi et al. is discriminating free-rider which may

hold a resource that is relevant Kambayashi & Harada (2009). The aim in this work has been

to create harmony between nodes and relevance of resources to user's query. The author

believes that if resource is available it should be locatable. Finally, they also used DHT -

Chord structured P2P system for resource discovery, which the author believes is interesting

but opposes the original aim that DHTs cannot handle queries that are multi keyword or

text based and is also only viable when keyword for �nding resource is known exactly.

Kambayashi et al. techniques i.e. guiding search agents using pheromone values

and DHT for resource discovery may be leaving �ill-e�ect� Kambayashi & Harada (2009).

In former case, the credible peer by removing free-riders from list of peers that may be

holding a resource and in latter case to direct the search agent towards exactly known

resource keyword. They are undermining the level of ambiguity and introducing too much

certainty into searches which is not the case in proposed system, where user can increase

or decrease the search ambiguity/certainty by changing value of minimum support thus

providing bigger/smaller �canopy� for movement of RAs.

5. discussion, conclusions, and future work 76

One of the more recent works has been presented by Tan & Zheng (2009). This

work o�ers resource discovery solution, but has no indication of using semantic links for

routing the mobile agent. The solution o�ered seems to be in its earlier stages, implying

that all characteristics required by resource discovery system are not answered yet. Though,

from this early work it is indicated that there solution also seems to be implemented using

FIPA standards.

Other classical work from Dimakopoulos et al. has indicated the use of mobile

agent as architecture for resource discovery but there synchronisation for distributing local

directory (information about shared) resources is done using classical method of �ooding,

that clearly implies bottleneck of bandwidth limitations and hence saturation of network

Dimakopoulos & Pitoura (2003); Chawathe et al. (2003).

5.2 Applications for Research Conducted

Following are examples of few applications that can be developed as a result of this research:

1. Organisation of Documents with Reviewers: Hundreds of documents are submitted

to publishers for conference or journal publications that need to be reviewed by the

reviewers for �nding the worthiness of those documents for that speci�c conference or

journal. The task of matching the documents with reviewers based on their research

skills is time consuming and tedious. The outcome of this work can be used by the

reviewers to setup their pro�les and submit them to the publishers. Upon receiving

of documents, the publishers can match, create the keyword list based on content of

the document which, when submitted as query will �nd the appropriate reviewer. So,

instead of node-keyword matrix in this application reviewer-keyword matrix will be

calculated. This system will perform e�ciently and at the same time will o�er high

degree of e�ectiveness in terms of �nd appropriate reviewers.

2. Content-Similarity Check: The purpose of such system ranges from targeted e-marketing

to creating clustered documents to comparing two or more documents for similarity.

In an e-marketing system e.g. the content of email being received by user can be

matched against target advertisements that are of similar domain as the content of

the email. In clustered documents, documents belonging to same concept/domain can

be organised and furthermore checked for similarity among each other. As the core of

5. discussion, conclusions, and future work 77

this system is based on LSI-SVD on an overlay network, these services can be extended

to large number of nodes.

3. Searching and Locating of Resources: It is not always possible to locate a hosted

resource using indexing techniques such as, used by Google. It takes time for web

crawlers to scan the newly published website and rank it, resulting into null response

if such resource cannot be located. On an overlay network, such as one that is powered

by mobile agents, the query initiator need not �lter the results obtained to �nd the

suitable resource, once the criteria such as minimum support has been provided and

that the resource provider is participating on an overlay network, mobile agents can

locate a resource dynamically without requirement of web crawlers etc.

The author is sure that there can be many other applications where this system can be

applied and implemented. The �nal product is only limited by a conceivable idea.

5.3 Conclusions

The main objective was to design and implement a resource discovery system that uses

mobile agent technology for discovering and selecting nodes and for routing the mobile agent

through overlay network based on content of query with purpose of minimising response

time, reducing possible delays, maximising network performance by reducing the possibility

of saturation and maximising the recall by providing relevant results. Through the conducted

research work and the evaluations of experiments in Chapter 4, the author concludes that the

process of resource discovery can be improved for P2P system in terms of search performance

by increase of recall and hence success rate to resolve queries through use of e�cient indexing

technique viz. LSI and also that the routing of mobile agent to resolve query through overlay

network when supported by heuristics viz. o�ered using clustering technique will reduce

saturation due to higher number of inter-cluster links and decrease response time. The

author believes that this resolves the original research question mentioned in Chapter 1.

To summarise the author has proposed a novel resource discovery system that uses

mobile agent (RA) for discovering resources on an overlay network that is realised based

on semantic similarity of keywords that are shared by peers. The author further proposed

a �exible multi-agent based approach to P2P network organisation that is based on the

similarity of content shared by peers. The author claims that the use of semantic similarity

5. discussion, conclusions, and future work 78

between content shared by peers i.e. clustering e�ect can be e�ective technique to route the

RA to peers that host content that is similar to a user query and �nally, that LSI based

resource search by RA to �nd resources hosted by peers that are best match for a user query

(where the user query can be text based or an approximate query) is very e�ective whether

the query contains text, that is certain or ambiguous.

The author further demonstrated that proposed approach for resource discovery is

better than �ooding and further more that an informed search technique used to guide RAs

on an overlay network is better than controlled �ooding. The results have demonstrated that

the using �ooding increases the quantity of messages on a network and it can be reduced by

use of proposed technique.

In previous experiments, the author used �ooding technique to �nd resource on the

network i.e. the RA migrated from one peer to another in hope of �nding the resource Singh

et al. (2009). The author has realised the shortcoming of last technique and introduced the

use of guidance directory on each peer for providing the RA with better chance of �nding a

resource.

The author realises that initially as resources are scarce, some clusters may not

overlap, resulting into cases where resource cannot be located, but the author does under-

stand that as the peers become more resourceful, the clusters will start overlapping to higher

degree, hence resulting into better search results.

5.4 Future Work

Although, in ideal case the RA can migrate to suitable nodes and query them for resource,

the aspect of breach of security has not been researched in this project. Agents are open to

security lapses and hence can be compromised about what to search or what to deliver as

result back to query originator. This can jeopardise the integrity of results as well as the

RA. Furthermore, the compromised InfA where agent queries about routing for next node

for migration can guide the RA migrate towards nodes that do not hold any relevant results.

This is an area of future research work that requires attention.

As mentioned before in Section 3.2.1, keyword-peer and keyword-resource matrices

can be large sparse matrices. Holding these large matrices consumes memory which is not

always abundant on systems that are continuously publishing or are dynamic. Dimensional-

ity reduction used in proposed work o�ers a solution to some extent i.e. reduction in matrix

5. discussion, conclusions, and future work 79

size of an order of around 40%, but that can still be a large matrix. Some research works

have been done in this �eld but are out of scope for this work. Further work can be done in

this project to accommodate for this characteristic. The author believes that system archi-

tecture presented is very generic and can be further re�ned in order to support distributed

LSI where by the indexing could be decentralised and global search can be conducted for rel-

evant resources on pure P2P overlay network. The problem to generate globally-consistent

LSI structure is very challenging as the number of nodes presented by their content is large,

dynamic and distributed.

Some research work has been done where local cache is maintained by node to guide

the visiting mobile agent so as the computational load for calculating node for migration can

be bypassed. It is an interesting feature and can indirectly �nd its roots in Anthill system

used by Babaoglu et al. (2002); Dasgupta (2003); Babaoglu & Jelasity (2008); Kambayashi &

Harada (2009). But cache is not always up-to-date and hence can lead to incorrect decisions

for migration of mobile agent. In case, the cache can synchronised periodically, this feature

can be potentially useful. However, it must be noted that synchronised cache may lead to

�ooding that increases number of message on network. This area can be studied further to

�nd out its cost-to-bene�t ratio.

The author believes that conducted research has far greater potential and can still

form foundation for future research work.

80

References

Aberer, K., Punceva, M., Hauswirth, M., & Schmidt, R. (2004). Peer-to-peer systems. In

In practical handbook of internet computing. CRC press.

Androutsellis-Theotokis, S., & Spinellis, D. (2004, December). A survey of peer-to-peer

content distribution technologies. ACM Computing Surveys, 36 (4), 335�371. Available

from http://www.spinellis.gr/pubs/jrnl/2004-ACMCS-p2p/html/AS04.html

Arabshian, K., Dickmann, C., & Schulzrinne, H. (2009). The semantic web: Research and

applications. In (p. 684-696). Springer Berlin / Heidelberg.

Babaoglu, O., & Jelasity, M. (2008). Self-* properties through gossiping. Philiosophical

Transactions of the Royal Society A, 366 , 3747-3757.

Babaoglu, O., Meling, H., & Montresor, A. (2002). Anthill: A framework for the development

of agent-based peer-to-peer systems. In Ieee proceedings of 22nd international conference

on distributed computing systems (icdcs'02) (pp. 15�22).

Bandini, S., Manzoni, S., & Vizzari, G. (2009). Agent based modeling and simulation: An

informatics perspective. Journal of Arti�cial Societies and Social Simulation, 12 (4), 4.

Available from http://jasss.soc.surrey.ac.uk/12/4/4.html

Bawa, M., Manku, G. S., & Raghavan, P. (2003). Sets: search enhanced by topic segmen-

tation. In Sigir (p. 306-313).

Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing multi-agent systems with

jade. Wiley.

Bo Chen, J. P., Harry Cheng. (2006). Mobile-c: a mobile agent platform for mobile c/c++

agents. Software: Practice and Experience, 36 , 1711-1733.

REFERENCES 81

Casey, J., & Zhou, W. (2009). Reducing the bandwidth requirements of p2p keyword

indexing. International Journal of High Performance Computing and Networking , 6 , 119-

129.

Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., & Shenker, S. (2003). Making

gnutella-like p2p systems scalable.

Chen, H., Jin, H., Liu, Y., & Ni, L. M. (2008). Di�culty-aware hybrid search in peer-to-peer

networks. IEEE Transactions on Parallel and Distributed Systems, 20 , 71-82.

Crespo, A., & Garcia-Molina, H. (2002). Routing indices for peer-to-peer systems. Dis-

tributed Computing Systems, International Conference on, 0 , 23.

Crespo, A., & Garcia-Molina, H. (2004). Semantic overlay networks for p2p systems. In

Ap2pc (p. 1-13).

Dasgupta, P. (2003). Improving peer-to-peer resource discovery using mobile agent based

referrals. In Ap2pc (p. 186-197).

Dasgupta, P. (2008). A multiagent swarming system for distributed automatic target recog-

nition using unmanned aerial vehicles. IEEE Transactions on Systems, Man, and Cyber-

netics, Part A, 38 (3), 549-563.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990).

Indexing by latent semantic analysis. Journal of the American Society for Information

Science, 41 , 391�407.

Dimakopoulos, V. V., & Pitoura, E. (2003). A peer-to-peer approach to resource discovery

in multi-agent systems. In Cooperative information agents (p. 62-77).

Doval, D., & O'Mahony, D. (2003). Overlay networks: A scalable alternative for p2p. IEEE

Internet Computing , 7 (4), 79�82.

Dunne, C. R. (2001). Using mobile agents for network resource discovery in peer-to-peer

networks. ACM SIGecom Exchanges, 2 , 1�9.

Forum, G. D. (2002). Gnutella protocol speci�cation v0.4. Available from

http://rfc-gnutella.sourceforge.net/developer/stable/index.html

REFERENCES 82

Gao, J., & Zhang, J. (2005). Clustered svd strategies in latent semantic indexing. Informa-

tion Processing and Management , 41 (5), 1051�1063.

Golub, G. H., & Loan, C. F. V. (1996). Matrix computations. The John Hopkins University

Press.

Guvnec, I., & Urdaneta, J. J. (2010). Peer-to-peer �le sharing: A survey. Available from

http://www.cs.ucr.edu/ michalis/COURSES/179-03/p2psurvey.ppt

Hasan, M., & Matsumoto, Y. (1999). Document clustering: before and after the singular

value decomposition (Tech. Rep.). Nara Instritute of Science and Tecjnology. Technical

Report TR-99. Processing Society of Japan.

Kambayashi, Y., & Harada, Y. (2007). A resource discovery method based on multi-agents

in p2p systems. In Kes-amsta (p. 364-374).

Kambayashi, Y., & Harada, Y. (2009). A resource discovery method based on multiple

mobile agents in p2p systems. In Intelligent agents in the evolution of web and applications

(p. 113-135).

Kang, S., Lee, Y., Lee, D., & Youn, H. Y. (2007). A landmark-based scalable semantic

resource discovery scheme. IEICE - Trans. Inf. Syst., E90-D(6), 986�989.

Karnstedt, M., Hose, K., & Sattler, K. uwe. (2004). Query routing and processing in schema-

based p2p systems. In In proceedings of dexa workshops (pp. 544�548). IEEE Computer

Society.

Killmeyer, J. (2006). Information security architecture : an integrated approach to security

in the organization (2nd ed. ed.). Auerbach. Boca Raton, Fla. u.a.

Konchady, M. (2006). Text mining application programming. Charles River Media.

Li, J., Loo, B. T., Hellerstein, J. M., Kaashoek, M. F., Karger, D. R., & Morris, R. (2003).

On the feasibility of peer-to-peer web indexing and search. In Iptps (p. 207-215).

Lingnau, A., & Drobnik, O. (1999). Simulating mobile agent systems with swarm. Agent

Systems and Applications, International Symposium on / International Symposium on

Mobile Agents, 0 , 272.

REFERENCES 83

Liu, X., Chen, M., & Yang, G. (2004). Latent semantic indexing in peer-to-peer networks.

In Arcs (p. 63-77).

Lopes, A. L., & Botelho, L. M. (2008). Improving multi-agent based resource coordination

in peer-to-peer networks. Journal of Networks, 3 (2), 38-47.

Lv, Q., Cao, P., Cohen, E., Li, K., & Shenker, S. (2002). Search and replication in un-

structured peer-to-peer networks. In Proceedings of the 16th annual acm international

conference on supercomputing (ics) 2002.

Mastroianni, C., Talia, D., & Verta, O. (2005). A super-peer model for building resource

discovery services in grids: Design and simulation analysis. In Egc (p. 132-143).

McCrary, K., & Waters, B. (2000, October). Jtella v0.7. Available from

http://jtella.sourceforge.net/

Milojicic, D. S., Breugst, M., Busse, I., Campbell, J., Covaci, S., Friedman, B., et al. (1998).

Masif: The omg mobile agent system interoperability facility. Personal and Ubiquitous

Computing , 2 (2).

Napster. (2003). Napster. Available from http://www.napster.com

North, M. J., Collier, N. T., & Vos, J. R. (2006). Experiences creating three implementations

of the repast agent modeling toolkit. ACM Trans. Model. Comput. Simul., 16 (1), 1�25.

Prakash, A. (2006, May). A survey of advanced search in p2p

networks. Department of Computer Science. Available from

http://www.medianet.kent.edu/surveys/IAD06S-p2psearch-alok/index.html

Project, T. C. (2010). Chord faq. Available from http://pdos.csail.mit.edu/

Ratnasamy, S., Francis, P., Shenker, S., Karp, R., & Handley, M. (2001). A scalable

content-addressable network. In In proceedings of acm sigcomm (pp. 161�172).

Reynolds, P., & Vahdat, A. (2003). E�cient peer-to-peer keyword searching. In Middleware

'03: Proceedings of the acm/i�p/usenix 2003 international conference on middleware (pp.

21�40). New York, NY, USA: Springer-Verlag New York, Inc.

Rowstron, A., & Druschel, P. (2001). Pastry: Scalable, distributed object location and routing

for large-scale peer-to-peer systems.

REFERENCES 84

Schoeman, M., & Cloete, E. (2003). Architectural components for the e�cient design of

mobile agent systems. In Saicsit '03: Proceedings of the 2003 annual research confer-

ence of the south african institute of computer scientists and information technologists on

enablement through technology (pp. 48�58). , Republic of South Africa: South African

Institute for Computer Scientists and Information Technologists.

Singh, M., Cheng, X., & He, X. (2009). Multimedia resource discovery using mobile agent.

New York,: IGI Global.

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., et al.

(2001). Chord: A scalable peer-to-peer lookup protocol for internet applications. In Acm

sigcomm (pp. 149�160).

Sun, Y., Sun, L., Huang, X., & Lin, Y. (2006). Resource discovery in locality-aware group-

based semantic overlay of peer-to-peer networks. In Infoscale '06: Proceedings of the 1st

international conference on scalable information systems (p. 40). New York, NY, USA:

ACM.

Talai, P. T. D., Fragopoulou, P., Mordacchini, M., Pennanen, M., Popov, K., & Haridi,

V. V. S. (2006). Peer-to-peer models for resource discovery on grids (Tech. Rep.). Insti-

tution of System Architecture.

Tan, Y., & Zheng, Z. (2009). A multi-agent based resource discovery scheme for p2p systems.

In International workshop on intelligent systems and applications - isa 2009 (p. 1-4).

Tang, C., & Dwarkadas, S. (2004). Hybrid global-local indexing for e�cient peer-to-peer

information retrieval. In Nsdi (p. 211-224).

Tang, C., Xu, Z., & Dwarkadas, S. (2003). Peer-to-peer information retrieval using self-

organizing semantic overlay networks. In Proceeding of acm sig-comm (p. 178-186).

Tran, H. M., & Schonwalden, J. (2008, March). Distributed case-based reasoning for fault

management. 1st EMANICS Workshop on Peer-to-Peer Management.

Trillo, R., Ilarri, S., & Mena, E. (2007). Comparison and performance evaluation of mo-

bile agent platforms. In Icas '07: Proceedings of the third international conference on

autonomic and autonomous systems (p. 41). Washington, DC, USA: IEEE Computer

Society.

REFERENCES 85

University, C. (1999, August). Cornell university: Medline text collection. Smart System.

USA. Available from ftp://ftp.cs.cornell.edu/pub/smart/med/

Vieira, R. (2001). Foundation of intelligent agents - agent communication language (Tech.

Rep.). FIPA.

Wireshark. (2010). Wireshark go deep. Online. Available from http://www.wireshark.org

Wong, J., Helmer, G., Naganathan, V., Polavarapu, S., Honavar, V. G., & Miller, L. (2001).

Smart mobile agent facility. Journal of Systems and Software, 56 (1), 9�22.

Yang, K.-H., Wu, C.-J., & Ho, J.-M. (2007). Antsearch: An ant search algorithm in

unstructured peer-to-peer networks. IEICE Transactions, 89-B(9), 2300-2308.

Yingwu Zhu, Y. H. (2005). Handbook on theoretical and algorithmic aspects of sensor, ad

hoc wireless, and peer-to-peer networks - semantic search in peer-to-peer systems (J. Wu,

Ed.). CRC Press.

Zaharia, M., & Keshav, S. (2008). Gossip-based search selection in hybrid peer-to-peer

networks: Research articles. Concurr. Comput. : Pract. Exper., 20 (2), 139�153.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., & Kubiatowicz, J. D.

(2004). Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal

on Selected Areas in Communications, 22 , 41�53.

Zhao, B. Y., Kubiatowicz, J., Joseph, A. D., Zhao, B. Y., Kubiatowicz, J., & Joseph, A. D.

(2001). Tapestry: An infrastructure for fault-tolerant wide-area location and routing (Tech.

Rep.).

Zhong, Y., & Liu, J. (2003). The mobile agent technology. ISBN 7-89494-143-3.

Zhu, Y., & Hu, Y. (2004). Ess: E�cient semantic search on gnutella-like p2p systems (Tech.

Rep.). Department of ECECS, University of Cincinnati.

Zhu, Y., & Hu, Y. (2005). E�cient, proximity-aware load balancing for dht-based p2p

systems. IEEE Trans. Parallel Distrib. Syst., 16 (4), 349�361.

Zhu, Y., & Hu, Y. (2006). Handbook of theoretical and algorithimic aspects of ad hoc,

sensor, and peer-to-peer networks. In J. Wu (Ed.), (p. 634-664). Auerbach Publications.

REFERENCES 86

Zhu, Y., & Hu, Y. (2007). E�cient semantic search on dht overlays. Journal of Parallel

and Distributed Computing , 67 (5), 604 - 616.

Zhu, Y., Wang, H., & Hu, Y. (2003). Intergrating semantics-based access mechanisms

with p2p �le systems. In Proceedings of third international conference on peer-to-peer

computing.

87

Appendix A

Similarity Measures and Weighting Functions

Assuming two n-dimensional vectors X = (x1, x2, x3, . . . , xn) and Y = (y1, y2, y3, . . . , yn).

Name of Measure Formula

Euclidean Distance
√∑n

i=1(xi − yi)2

Dot Product
∑n

i=1 xiyi

Jaccard Similarity |X∩Y |
|X∪Y |

Cosine Similarity
∑n

i=1 xiyi√∑n
i=1 xi

∑n
i=1 yi

Table A.1: Similarity measures

Local Weighting Functions L(m,n) and Global Weighing Functions G(m):

Type L(m,n) G(m)

Binary

0 tfmn = 0

1 tfmn > 0

√
1∑

n(tfmn)2

Term-Frequency tfmn
GlobalFreqencyOfTerm”m”

FrequencyOfNodesInWhichTerm”m”Appears

log ln(tfmn + 1) ln(NumberOfDocuments
FrequencyOfNodesInWhichTerm”m”Appears) + 1

Table A.2: Local and global weighting functions

Where

tfmn =Frequency of term m in node n

88

Appendix B

Classes Realised - Affinity

Figure B.1: Classes for resource discovery system - A�nity

89

Appendix C

Program Listings - Affinity

C.1 Interface BootInf.java

1 import java . rmi . ∗ ;
2 import java . u t i l . ∗ ;
3 /∗∗
4 ∗ Remote RMI I n t e r f a c e f o r Bootstrap Server

5 ∗
6 ∗ @author M. Singh

7 ∗ @version 1 .0

8 ∗/
9

10 pub l i c i n t e r f a c e BootInf extends Remote

11 {

12 pub l i c HashMap<Str ing , Directory> r e g i s t e r (Repos i tory message , double

min_Sup) throws RemoteException ;

13 pub l i c void d i s connec t (S t r ing r e g i s t r a t i o n IP) throws RemoteException ;

14 }

c. program listings - affinity 90

C.2 Class Bootstrap.java

1 import java . rmi . ∗ ;
2 import java . rmi . s e r v e r . ∗ ;
3 import java . u t i l . ∗ ;
4 import Jama . ∗ ;
5 /∗∗
6 ∗ Implementation o f BootInf Remote Methods . These methods a v a i l a b l e to

7 ∗ In format ion Agent f o r r e g i s t e r i n g the Node

8 ∗
9 ∗ @author M. Singh

10 ∗ @version 2 .0

11 ∗/
12 pub l i c c l a s s Bootstrap extends UnicastRemoteObject implements BootInf

13 {

14 p r i va t e MasterList database ;

15 p r i va t e Extractor ex t r a c t o r ;

16 p r i va t e HashMap<Str ing , Directory> map ;

17

18 pub l i c Bootstrap (MasterList database) throws RemoteException

19 {

20 t h i s . database=database ;

21 /∗∗
22 ∗ Dummy Repos i tory added to compensate f o r nu l l po in t e r

23 ∗/
24 St r ing dummyIP=" boots t rap " ;

25 ArrayList dummyKeyword = new ArrayList () ;

26 dummyKeyword . add (" y t i n i f f a ") ;

27 dummyKeyword . add ("metsys") ;

28 //dummyKeyword . add (" shipment ") ;

29 //dummyKeyword . add (" o f ") ;

30 //dummyKeyword . add (" gold ") ;

31 //dummyKeyword . add ("damaged") ;

32 //dummyKeyword . add (" in ") ;

33 //dummyKeyword . add (" a ") ;

34 //dummyKeyword . add (" f i r e ") ;

35 Repos i tory dummyMessage = new Repos i tory (dummyIP, dummyKeyword) ;

36 database . add (dummyIP) ;

37 ex t r a c t o r = new Extractor (database , dummyMessage) ;

38 }

c. program listings - affinity 91

39

40 pub l i c HashMap<Str ing , Directory> r e g i s t e r (Repos i tory message , double

min_Sup) throws RemoteException

41 {

42 System . out . p r i n t l n ("\nSubmitted keywords by c l i e n t "+message . getIP ()+"

\n"+message . getKeywords ()) ;

43 //Add ip to MasterList

44 database . add (message . getIP ()) ;

45 ex t r a c t o r = new Extractor (database , message) ;

46 //Prepare Reply f o r the C l i en t based on i t s p r e f e r e n c e s

47 HashMap<Str ing , Directory> hashmap = prepareSimReply (min_Sup) ;

48 re turn hashmap ;

49 }

50

51 pub l i c HashMap<Str ing , Directory> prepareSimReply (double min_Sup)

52 {

53 map=new HashMap<Str ing , Directory >() ;

54 //ReportSim repor t = new ReportSim () ;

55 Matrix sim = database . getSimMatrix () ;

56 ArrayList c l i e n t s = database . g e tC l i e n tL i s t () ;

57 Matrix master = database . getMasterKeywordList () ;

58

59 ArrayList indexHolder = new ArrayList () ;

60

61 // f i nd index in sim repor t that i s h igher than user minimum support

p r e f e r en c e

62 double [] [] simArray = sim . getArray () ;

63 f o r (i n t a=0;a<sim . getRowDimension () ; a++)

64 {

65 i f (simArray [a] [0] >min_Sup)

66 {

67 indexHolder . add (a) ;

68 }

69 }

70 ArrayList<Directory> d i r e c to ryHo lde r=new ArrayList<Directory >() ;

71 f o r (i n t i =0; i<indexHolder . s i z e () ; i++)

72 {

73 Di rec tory d i r e c t o r y = new Direc tory () ;

74 d i r e c to ryHo lde r . add (d i r e c t o r y) ;

75 }

c. program listings - affinity 92

76 // s e t s im i l a r i t y sub matrix based on index ho lder

77 Object [] rowI = indexHolder . toArray () ;

78 i n t [] rows = new in t [rowI . l ength] ;

79 i n t [] c o l s = {0} ;

80 f o r (i n t i =0; i<rows . l ength ; i++)

81 {

82 In t eg e r r = (In t eg e r) rowI [i] ;

83 i n t r s = r . intValue () ;

84 rows [i]= r s ;

85 }

86 Matrix tempSim = sim . getMatrix (rows , c o l s) ;

87 System . out . p r i n t l n ("SIMILARITY MATRIX FOR LATEST CLIENT") ;

88 tempSim . p r i n t (tempSim . getColumnDimension () ,3) ;

89 // repor t . s e t S im i l a r i t y (tempSim) ;

90 double [] [] arraySim = tempSim . getArray () ;

91 f o r (i n t i =0; i<d i r e c to ryHo lde r . s i z e () ; i++)

92 {

93 Di rec tory d = d i r e c to ryHo lde r . get (i) ;

94 d . s im i l a r i t yVa lu e=arraySim [i] [0] ;

95 d i r e c to ryHo lde r . s e t (i , d) ;

96 }

97

98 // s e t c l i e n t s based on index ho lder

99 ArrayList tempClients = new ArrayList () ;

100 f o r (i n t i =0; i<indexHolder . s i z e () ; i++)

101 {

102 tempClients . add ((S t r ing) c l i e n t s . get (((In t eg e r) indexHolder . get (i)) .

intValue ())) ;

103 }

104 System . out . p r i n t l n ("CLIENTS WITH BEST SIMILARITY − IN CLUSTER") ;

105 System . out . p r i n t l n (tempClients) ;

106 // repor t . s e tC l i e n t s (tempClients) ;

107

108 // s e t temp master sub matrix based on index ho lder

109 Object [] c o l I = indexHolder . toArray () ;

110 i n t [] colm = new in t [c o l I . l ength] ;

111 f o r (i n t i =0; i<colm . l ength ; i++)

112 {

113 In t eg e r c = (In t eg e r) c o l I [i] ;

114 i n t cs= c . intValue () ;

c. program listings - affinity 93

115 colm [i]= cs ;

116 }

117 i n t [] rowm = new in t [master . getRowDimension ()] ;

118 f o r (i n t i =0; i<rowm . l ength ; i++)

119 {

120 rowm [i]= i ;

121 }

122 Matrix tempWeights = master . getMatrix (rowm, colm) ;

123 System . out . p r i n t l n ("WEIGHTS FOR CLIENTS KEYWORDS − IN CLUSTER") ;

124 tempWeights . p r i n t (tempWeights . getColumnDimension () , 1) ;

125 // repor t . setKeywordsWeights (tempWeights) ;

126 double [] [] tempWeightsArray = tempWeights . getArray () ;

127 f o r (i n t m=0;m<tempWeightsArray [0] . l ength ;m++)

128 {

129 Di rec tory d = d i r e c to ryHo lde r . get (m) ;

130 double [] [] keywordWeight = new double [tempWeightsArray . l ength] [1] ;

131 f o r (i n t n=0;n<tempWeightsArray . l ength ; n++)

132 {

133 keywordWeight [n] [0]= tempWeightsArray [n] [m] ;

134 }

135 Matrix keyWeight = new Matrix (keywordWeight) ;

136 d . keyWeights= keyWeight ;

137 d i r e c to ryHo lde r . s e t (m, d) ;

138 }

139

140 // s e t keyword L i s t

141 // repor t . setKeywordList (database . getKeywordList ()) ;

142 f o r (i n t i =0; i<d i r e c to ryHo lde r . s i z e () ; i++)

143 {

144 Di rec tory d = d i r e c to ryHo lde r . get (i) ;

145 d . keywords=database . getKeywordList () ;

146 d i r e c to ryHo lde r . s e t (i , d) ;

147 }

148

149 /∗∗
150 ∗ Test Purpose Only

151 ∗/
152 /∗
153 f o r (i n t h=0;h<d i r e c to ryHo lde r . s i z e () ; h++)

154 {

c. program listings - affinity 94

155 Di rec tory b = d i r e c to ryHo lde r . get (h) ;

156 System . out . p r i n t l n ("SEEMS UPDATED") ;

157 System . out . p r i n t l n (b . s im i l a r i t yVa lu e) ;

158 Matrix a = b . keyWeights ;

159 a . p r i n t (a . getColumnDimension () ,1) ;

160 System . out . p r i n t l n (b . keywords) ;

161 }

162 ∗/
163

164 f o r (i n t i =0; i<d i r e c to ryHo lde r . s i z e () ; i++)

165 {

166 Di rec tory d = d i r e c to ryHo lde r . get (i) ;

167 //d . r epor t = repor t ;

168 d i r e c to ryHo lde r . s e t (i , d) ;

169 }

170

171 f o r (i n t i =0; i<tempClients . s i z e () ; i++)

172 {

173 map . put ((S t r ing) tempClients . get (i) , d i r e c to ryHo lde r . get (i)) ;

174 }

175

176 re turn map ;

177 }

178

179 pub l i c void d i s connec t (S t r ing r e g i s t r a t i o n IP) throws RemoteException

180 {

181 System . out . p r i n t l n ("Removed IP "+r e g i s t r a t i o n IP) ;

182 map . remove (r e g i s t r a t i o n IP) ;

183 database . remove (r e g i s t r a t i o n IP) ;

184 }

185

186 }//end c l a s s

c. program listings - affinity 95

C.3 Class BootstrapServer.java

1 import java . rmi . ∗ ;
2 import java . u t i l . ∗ ;
3 import java . net . ∗ ;
4 /∗∗
5 ∗ RMI Bootstrap Server

6 ∗
7 ∗ @author M. Singh

8 ∗ @version 1 .1

9 ∗/
10 pub l i c c l a s s Bootst rapServer

11 {

12 pub l i c s t a t i c void main (S t r ing argv [])

13 {

14 St r ing l o c a l IP="" ;

15 St r ing r e f e r e n c e="" ;

16 try

17 {

18 InetAddress local_Address = InetAddress . getLocalHost () ;

19 l o c a l IP = local_Address . getHostAddress () ;

20 } catch (java . net . UnknownHostException e)

21 {

22 System . out . p r i n t l n ("Error g e t t i n g IP Address "+e) ;

23 }

24

25 try

26 {

27 //ArrayList<Repository> database = new ArrayList<Repository >() ;

28 MasterList database = new MasterList () ;

29 Bootstrap boots t rap = new Bootstrap (database) ;

30 r e f e r e n c e = "rmi :// "+l o ca l IP+"/Server_1" ;

31 Naming . reb ind (r e f e r enc e , boots t rap) ;

32 System . out . p r i n t l n ("Bootstrap s e r v e r in s t anc e "+r e f e r e n c e+"

Running \nWaiting f o r Nodes to r e g s i t e r ") ;

33 } catch (Exception e)

34 {

35 System . out . p r i n t l n ("Error S ta r t i ng Bootstrap Server "+e) ;

36 }

37 }

c. program listings - affinity 96

38 }//end c l a s s

c. program listings - affinity 97

C.4 Class Extractor.java

1 import java . u t i l . ∗ ;
2 /∗∗
3 ∗ Extractor i s he lpe r c l a s s f o r MasterList used f o r ex t r a c t i n g keywords from

Repos i tory

4 ∗
5 ∗ @author M. Singh

6 ∗ @version 1 .5

7 ∗/
8 pub l i c c l a s s Extractor

9 {

10 p r i va t e MasterList database ;

11 p r i va t e Repos i tory message ;

12 p r i va t e S t r ing tk [] ;

13 p r i va t e i n t s i z e ;

14 p r i va t e SortedMap map ;

15

16 pub l i c Extractor (MasterList database , Repos i tory message)

17 {

18 t h i s . database=database ;

19 t h i s . message=message ;

20 map=new TreeMap () ;

21 getKeywords () ;

22 }

23

24 pub l i c void getKeywords ()

25 {

26 i n t index=0;

27 St r ing keywordSet="" ;

28 ArrayList keywords = message . getKeywords () ;

29 f o r (i n t i =0; i<keywords . s i z e () ; i++)

30 {

31 keywordSet+=(St r ing) keywords . get (i)+" " ;

32 }

33 //Tokenize

34 Str ingToken ize r token = new Str ingToken ize r (keywordSet) ;

35 s i z e=token . countTokens () ;

36 makeTKArray(s i z e) ;

37 whi l e (token . hasMoreTokens ())

c. program listings - affinity 98

38 {

39 tk [index]=token . nextToken () ;

40 findTokenFrequency (tk [index]) ;

41 }

42 database . addKeywords (map) ;

43 }

44

45 pub l i c void makeTKArray(i n t s i z e)

46 {

47 tk = new St r ing [s i z e] ;

48 }

49

50 pub l i c void findTokenFrequency (St r ing token)

51 {

52 i f (!map . containsKey (token))

53 {

54 map . put (token . toLowerCase () , 1) ;

55 } e l s e

56 {

57 In t eg e r f requency = (In t eg e r)map . get (token) ;

58 i n t f r eqVal = frequency . intValue () ;

59 f r eqVa l+=1;

60 map . remove (token) ;

61 map . put (token , f r eqVa l) ;

62 }

63 }

64

65 }

c. program listings - affinity 99

C.5 Class ReportSim.java

1 import Jama . ∗ ;
2 import java . u t i l . ∗ ;
3 import java . i o . ∗ ;
4 /∗∗
5 ∗ S e r i a l i z e d c l a s s S im i l a r i t y Report sent between Bootstrap Server and Node

6 ∗
7 ∗ @author M. Singh

8 ∗ @version 1 .1

9 ∗/
10 pub l i c c l a s s ReportSim implements S e r i a l i z a b l e

11 {

12 p r i va t e ArrayList c l i e n t s ;

13 p r i va t e Matrix s im i l a r i t y ;

14 p r i va t e Matrix weights ;

15 p r i va t e ArrayList keywordList ;

16

17 pub l i c ReportSim (ArrayList c l i e n t s , Matrix s im i l a r i t y , Matrix weights ,

ArrayList keywordList)

18 {

19 t h i s . c l i e n t s=c l i e n t s ;

20 t h i s . s im i l a r i t y=s im i l a r i t y ;

21 t h i s . we ights=weights ;

22 t h i s . keywordList=keywordList ;

23 }

24

25 pub l i c ReportSim ()

26 {

27 }

28

29 pub l i c void s e tC l i e n t s (ArrayList c l i e n t s)

30 {

31 t h i s . c l i e n t s=c l i e n t s ;

32 }

33

34 pub l i c ArrayList g e tC l i e n t s ()

35 {

36 re turn c l i e n t s ;

37 }

c. program listings - affinity 100

38

39 pub l i c void s e t S im i l a r i t y (Matrix s im i l a r i t y)

40 {

41 t h i s . s im i l a r i t y=s im i l a r i t y ;

42 }

43

44 pub l i c Matrix g e t S im i l a r i t y ()

45 {

46 re turn s im i l a r i t y ;

47 }

48

49 pub l i c void setKeywordsWeights (Matrix weights)

50 {

51 t h i s . we ights=weights ;

52 }

53

54 pub l i c Matrix getKeywordsWeights ()

55 {

56 re turn weights ;

57 }

58

59 pub l i c void setKeywordList (ArrayList keywordList)

60 {

61 t h i s . keywordList=keywordList ;

62 }

63

64 pub l i c ArrayList getKeywordList ()

65 {

66 re turn keywordList ;

67 }

68 }

c. program listings - affinity 101

C.6 Class Directory.java

1 import java . i o . ∗ ;
2 import Jama . ∗ ;
3 import java . u t i l . ∗ ;
4 /∗∗
5 ∗ Data S t r u c t i r e f o r ho ld ing the d i r e c t o r y peer − keyword matrix used by

6 ∗ In format ion Agent and Bootstrap

7 ∗
8 ∗ @author M. Singh

9 ∗ @version 1 .1

10 ∗/
11 pub l i c c l a s s Di rec to ry implements S e r i a l i z a b l e

12 {

13 double s im i l a r i t yVa lu e ;

14 Matrix keyWeights ;

15 ArrayList keywords ;

16 //ReportSim repor t ;

17 }

c. program listings - affinity 102

C.7 Class MasterList.java

1 import java . u t i l . ∗ ;
2 import Jama . ∗ ;
3 /∗∗
4 ∗ Master L i s t c l a s s ho lds the g l oba l peer − keyword matrix

5 ∗
6 ∗ @author M. Singh

7 ∗ @version 2 .1

8 ∗/
9 pub l i c c l a s s MasterList

10 {

11 p r i va t e ArrayList ipCo l s ;

12 p r i va t e ArrayList<SortedMap> tempMaster ;

13 p r i va t e double [] [] masterKeywordMatrix ;

14 p r i va t e double [] [] joiningNodeKeywords ;

15 p r i va t e ArrayList<Str ing> l istOfKeywords ;

16 p r i va t e Matrix U;

17 p r i va t e Matrix S ;

18 p r i va t e Matrix V;

19 p r i va t e Matrix S_inverse ;

20 p r i va t e Matrix V_transpose ;

21 p r i va t e Matrix Q_transpose ;

22 p r i va t e Matrix q ;

23 p r i va t e Matrix simM ;

24 p r i va t e S t r ing fo r IP="" ;

25

26 pub l i c MasterList ()

27 {

28 ipCo l s = new ArrayList () ;

29 tempMaster = new ArrayList<SortedMap>() ;

30 }

31

32 pub l i c void add (St r ing ip)

33 {

34 // ipCo l s . add (ip) ;

35 i f (! ipCo l s . conta in s (ip))

36 {

37 ipCo l s . add (ip) ;

38 fo r IP=ip ;

c. program listings - affinity 103

39 } e l s e

40 {

41 i n t index=ipCol s . indexOf (ip) ;

42 ipCo l s . remove (index) ;

43 tempMaster . remove (index) ;

44 ipCo l s . add (ip) ;

45 fo r IP=ip ;

46 }

47 }

48

49 pub l i c void remove (St r ing ip)

50 {

51 i f (ipCo l s . conta in s (ip))

52 {

53 i n t index=ipCol s . indexOf (ip) ;

54 ipCo l s . remove (index) ;

55 tempMaster . remove (index) ;

56 }

57 }

58

59 pub l i c void addKeywords (SortedMap map)

60 {

61 tempMaster . add (map) ;

62 prepareMatr ix () ;

63 }

64

65 pub l i c void prepareMatr ix ()

66 {

67 SortedMap completeL i s t = new TreeMap () ;

68 SortedMap temp = new TreeMap () ;

69 f o r (i n t i =0; i<tempMaster . s i z e () ; i++)

70 {

71 temp=tempMaster . get (i) ;

72 Set keywords = temp . keySet () ;

73 I t e r a t o r i tKeys = keywords . i t e r a t o r () ;

74 whi l e (i tKeys . hasNext ())

75 {

76 St r ing key = (St r ing) i tKeys . next () ;

77 i f (! comple teL i s t . containsKey (key))

78 {

c. program listings - affinity 104

79 completeL i s t . put (key , 0) ;

80 }

81 }//end whi le

82 }//end loop

83

84 setCompleteLi s t (comple teL i s t) ;

85

86 masterKeywordMatrix = new double [comple teL i s t . s i z e ()] [ipCo l s . s i z e ()] ;

87 i n t rows = masterKeywordMatrix . l ength ;

88 i n t c o l s = masterKeywordMatrix [0] . l ength ;

89 f o r (i n t n=0;n<c o l s ; n++)

90 {

91 temp= new TreeMap () ;

92 Set completeKeys = completeL i s t . keySet () ;

93 I t e r a t o r i t = completeKeys . i t e r a t o r () ;

94 temp=tempMaster . get (n) ;

95 f o r (i n t m=0;m<rows ;m++)

96 {

97 whi l e (i t . hasNext ())

98 {

99 St r ing key = (St r ing) i t . next () ;

100 i f (temp . containsKey (key))

101 {

102 i n t va l = ((In t eg e r) temp . get (key)) . intValue () ;

103 masterKeywordMatrix [m] [n]= va l ;

104 } e l s e

105 {

106 masterKeywordMatrix [m] [n]=0 . 0 ;

107 }

108 m++;

109 }

110 }

111 }

112

113 i f (c o l s==1)

114 {

115 //do nothing

116 // to p ro t e c t system from i s s u i n g dummy

117 } e l s e

118 {

c. program listings - affinity 105

119 // d i sp l ay

120 System . out . p r i n t l n ("Master Matrix") ;

121 d i sp layMatr ix (masterKeywordMatrix , c o l s) ;

122 // c a l c u l a t e SVD con s i d e r i ng the j o i n i n g column ip address and i t s

keywords i s the new query (j o i n i n g node keywords) .

123 double [] [] tempKeywordMatrix = new double [rows] [co l s −1] ;

124 joiningNodeKeywords=new double [rows] [1] ;

125 i n t runner=0;

126 f o r (i n t b=0;b<c o l s ; b++)

127 {

128 f o r (i n t a=0;a<rows ; a++)

129 {

130 i f (b==ipCol s . indexOf (fo r IP))

131 {

132 //do not get that column

133 //make i t j o i n i n g node

134 // j o in ed keywords

135 f o r (i n t z=0;z<rows ; z++)

136 {

137 joiningNodeKeywords [z] [0]= masterKeywordMatrix [z] [b

] ;

138 }

139 } e l s e

140 {

141 tempKeywordMatrix [a] [runner]=masterKeywordMatrix [a] [b

] ;

142 }

143 }

144 runner++;

145 }

146

147 /∗
148 f o r (i n t b=0;b<co l s −1;b++)

149 {

150 f o r (i n t a=0;a<rows ; a++)

151 {

152 tempKeywordMatrix [a] [b]=masterKeywordMatrix [a] [b] ;

153 }

154 }

155

c. program listings - affinity 106

156 // j o in ed keywords

157 f o r (i n t a=0;a<rows ; a++)

158 {

159 joiningNodeKeywords [a] [0]= masterKeywordMatrix [a] [ipCo l s . s i z e ()

−1];

160 }

161 ∗/
162

163 System . out . p r i n t l n ("Compared Against Matrix") ;

164 d i sp layMatr ix (tempKeywordMatrix , tempKeywordMatrix [0] . l ength) ;

165 System . out . p r i n t l n (" Jo in ing Matrix") ;

166 d i sp layMatr ix (joiningNodeKeywords , joiningNodeKeywords [0] . l ength) ;

167 Matrix Q = new Matrix (joiningNodeKeywords) ;

168 Q_transpose=Q. t ranspose () ;

169 calculateSVD (tempKeywordMatrix) ;

170 c a l c u l a t e q () ;

171 Matrix sim = ca l cu la t eS im () ;

172 System . out . p r i n t l n (" S im i l a r i t y Report") ;

173 sim . p r i n t (sim . getColumnDimension () ,3) ;

174 }

175 }

176

177 /∗∗
178 ∗ Disp lays matrix

179 ∗/
180 pub l i c void d i sp layMatr ix (double [] [] matrix , i n t c o l s)

181 {

182 Matrix mat = new Matrix (matrix) ;

183 mat . p r i n t (co l s , 1) ;

184 }

185

186 /∗∗
187 ∗ SVD ca l c u l a t i o n

188 ∗/
189 pub l i c void calculateSVD (double [] [] matrix)

190 {

191 Matrix mat = new Matrix (matrix) ;

192 SingularValueDecomposit ion svd = mat . svd () ;

193 U = svd . getU () ;

194 //U. p r i n t (ipCo l s . s i z e () , 3) ;

c. program listings - affinity 107

195 S = svd . getS () ;

196 //S . p r i n t (ipCo l s . s i z e () , 3) ;

197 S_inverse = S . i nv e r s e () ;

198 V = svd . getV () ;

199 //V. p r i n t (ipCo l s . s i z e () , 3) ;

200 V_transpose= V. t ranspose () ;

201 }

202

203 /∗∗
204 ∗ Computing query vec to r

205 ∗/
206 pub l i c void c a l c u l a t e q ()

207 {

208 q = (Q_transpose . t imes (U)) . t imes (S_inverse) ;

209 }

210

211 pub l i c Matrix ca l cu la t eS im ()

212 {

213 double [] [] vofQuery = q . getArray () ;

214 double [] [] vofTerm = V_transpose . getArray () ;

215 double [] [] sim=new double [vofQuery [0] . l ength] [1] ;

216 double [] num=new double [vofTerm . l ength] ;

217 double den1=0;

218 double [] den2=new double [vofTerm . l ength] ;

219

220 f o r (i n t x =0;x<vofTerm . l ength ; x++)

221 {

222 f o r (i n t i =0; i<vofQuery [0] . l ength ; i++)

223 {

224 num[x] +=vofQuery [0] [i]∗ vofTerm [i] [x] ;

225 }

226 }

227

228 f o r (i n t x=0;x<vofQuery [0] . l ength ; x++)

229 {

230 den1+=vofQuery [0] [x]∗ vofQuery [0] [x] ;

231 }

232

233 den1 = Math . sq r t (den1) ;

234

c. program listings - affinity 108

235 f o r (i n t i =0; i<den2 . l ength ; i++)

236 {

237 f o r (i n t x=0;x<vofTerm . l ength ; x++)

238 {

239 den2 [i]+=vofTerm [x] [i]∗ vofTerm [x] [i] ;

240 }

241 }

242

243 f o r (i n t x=0;x<den2 . l ength ; x++)

244 {

245 den2 [x] = Math . s q r t (den2 [x]) ;

246 }

247

248 f o r (i n t i =0; i<sim . l ength ; i++)

249 {

250 sim [i] [0]=num[i] / (den1∗den2 [i]) ;
251 }

252

253 simM = new Matrix (sim) ;

254 re turn simM ;

255 }

256

257 pub l i c Matrix getSimMatrix ()

258 {

259 re turn simM ;

260 }

261

262 pub l i c ArrayList g e tC l i e n tL i s t ()

263 {

264 re turn ipCo l s ;

265 }

266

267 pub l i c Matrix getMasterKeywordList ()

268 {

269 Matrix master = new Matrix (masterKeywordMatrix) ;

270 re turn master ;

271 }

272

273 pub l i c void setCompleteLi s t (SortedMap comple teL i s t)

274 {

c. program listings - affinity 109

275 Set keys = completeL i s t . keySet () ;

276 l i stOfKeywords = new ArrayList<Str ing >() ;

277 I t e r a t o r i t = keys . i t e r a t o r () ;

278 whi l e (i t . hasNext ())

279 {

280 l i stOfKeywords . add ((S t r ing) i t . next ()) ;

281 }

282 }

283

284 pub l i c ArrayList getKeywordList ()

285 {

286 re turn l i stOfKeywords ;

287 }

288 }//end c l a s s

c. program listings - affinity 110

C.8 Class Repository.java

1 import java . i o . ∗ ;
2 import java . u t i l . ∗ ;
3 /∗∗
4 ∗ S e r i a l i s e d Repos i tory Data St ruc ture

5 ∗
6 ∗ @author M. Singh

7 ∗ @version 1 .0

8 ∗/
9 pub l i c c l a s s Repos i tory implements S e r i a l i z a b l e

10 {

11 p r i va t e S t r ing ip_Address ;

12 p r i va t e ArrayList keywords ;

13

14 pub l i c Repos i tory (S t r ing ip_Address , ArrayList keywords)

15 {

16 t h i s . ip_Address=ip_Address ; ;

17 t h i s . keywords=keywords ;

18 }

19

20 pub l i c void set IP (St r ing ip_Address)

21 {

22 t h i s . ip_Address=ip_Address ;

23 }

24

25 pub l i c S t r ing getIP ()

26 {

27 re turn ip_Address ;

28 }

29

30 pub l i c void setKeywords (ArrayList keywords)

31 {

32 t h i s . keywords=keywords ;

33 }

34

35 pub l i c ArrayList getKeywords ()

36 {

37 re turn keywords ;

38 }

c. program listings - affinity 111

39

40 }//end c l a s s

c. program listings - affinity 112

C.9 Class Node.java

1 import java . rmi . ∗ ;
2 import java . net . ∗ ;
3 import java . u t i l . ∗ ;
4 import jade . core . ∗ ;
5 /∗∗
6 ∗ Node c l a s s p r e s en t s the peer and i s r e s p on s i b l e f o r communication with RMI

Bootstrap s e r v e r

7 ∗ and r e g i s t e r the peer and keyword matrix

8 ∗
9 ∗ @author M. Singh

10 ∗ @version 1 .0

11 ∗/
12 pub l i c c l a s s Node

13 {

14 St r ing name="" ;

15 St r ing r e f e r e n c e="" ;

16 BootInf boot=nu l l ;

17 InformationAgent i a ;

18 HashMap<Str ing , Directory> c lu s t e rNe ighbour s ;

19

20 pub l i c Node ()

21 {

22 try

23 {

24 r e f e r e n c e = "rmi : / /192 . 1 68 . 1 . 1 44/ Server_1" ;

25 boot = (BootInf)Naming . lookup (r e f e r e n c e) ;

26 System . out . p r i n t l n ("Connected to "+r e f e r e n c e+" s u c c e s s f u l l y . ") ;

27 } catch (Exception e)

28 {

29 System . out . p r i n t l n ("Error on Node "+e) ;

30 try

31 {

32 //boot . d i s connec t (name) ;

33 } catch (Exception ee)

34 {

35 System . out . p r i n t l n (e) ;

36 }

37 }

c. program listings - affinity 113

38 }

39

40 pub l i c void setAgent (InformationAgent agent)

41 {

42 t h i s . i a=i a ;

43 }

44

45 pub l i c void connectToBootStrap (St r ing nameLocalAgent , ArrayList<Str ing>

keywords)

46 {

47 name=nameLocalAgent ;

48 try

49 {

50 Repos i tory message = new Repos i tory (nameLocalAgent , keywords) ;

51 c lu s t e rNe ighbour s = boot . r e g i s t e r (message , 0 . 0) ;

52 } catch (Exception e)

53 {

54 try

55 {

56 //boot . d i s connec t (nameLocalAgent) ;

57 } catch (Exception ee)

58 {

59 System . out . p r i n t l n ("Error Disconnect ing "+ee) ;

60 }

61 }

62 }

63

64 pub l i c void remove ()

65 {

66 try

67 {

68 boot . d i s connec t (name) ;

69 System . e x i t (0) ;

70 } catch (Exception e)

71 {

72 System . out . p r i n t l n (e) ;

73 }

74 }

75

76 pub l i c HashMap<Str ing , Directory> getNeighbours ()

c. program listings - affinity 114

77 {

78 re turn c lu s t e rNe ighbour s ;

79 }

80 }//end c l a s s

c. program listings - affinity 115

C.10 Class InformationAgent.java

1 import jade . core . ∗ ;
2 import jade . lang . a c l . ∗ ;
3 import jade . core . behaviours . ∗ ;
4 import java . u t i l . ∗ ;
5 import javax . swing . ∗ ;
6 import Jama . ∗ ;
7

8 /∗∗
9 ∗ In format ion Agent ho lds in fo rmat ion about pee r s that are s emant i ca l l y

s im i l a r to t h i s peer .

10 ∗
11 ∗ @author M. Singh

12 ∗ @version 1 .5

13 ∗/
14 pub l i c c l a s s InformationAgent extends Agent

15 {

16 p r i va t e S t r ing nameLA="" ;

17 p r i va t e ArrayList<Str ing> keywords ;

18 p r i va t e Node node=new Node () ;

19 p r i va t e HashMap<Str ing , Directory> c lu s t e rNe ighbour s ;

20 p r i va t e S t r ing cont ;

21 p r i va t e S t r ing query ;

22 p r i va t e S t r ing minSup ;

23 p r i va t e Database database = new Database () ;

24 p r i va t e Finder f i n d e r ;

25

26 protec ted void setup ()

27 {

28 //Display the GUID name o f agent

29 St r ing name = getAID () . getName () ;

30 System . out . p r i n t l n (" Information−agent GUID "+name+" s t a r t ed . ") ;

31 // the re f o r the IA name must be

32 i f (name . startsWith (" I "))

33 {

34 nameLA=name ;

35 nameLA=nameLA . r ep l a c e (" I " , "L") ;

36 }

37 node . setAgent (t h i s) ;

c. program listings - affinity 116

38

39 addBehaviour (new KeywordRequestor (t h i s)) ;

40 addBehaviour (new NodeRequestor ()) ;

41 }

42

43 protec ted void takeDown ()

44 {

45 doDelete () ;

46 }

47

48 pub l i c void ca l lNodeReg i s t ry ()

49 {

50 i f (keywords != nu l l)

51 {

52 node . connectToBootStrap (nameLA, keywords) ;

53 }

54 }

55

56 // inner c l a s s Keyword Requestor

57 p r i va t e c l a s s KeywordRequestor extends TickerBehaviour

58 {

59 p r i va t e KeywordRequestor (Agent a)

60 {

61 super (a ,20000) ;

62 }

63

64 pub l i c void onStart ()

65 {

66 // some th ing f o r s t a r t

67 }

68

69 pub l i c void onTick ()

70 {

71 //Send Message

72 ACLMessage r eque s t=new ACLMessage (ACLMessage .REQUEST) ;

73 reque s t . addReceiver (new AID(nameLA,AID . ISGUID)) ;

74 r eque s t . s e tConver sa t ion Id ("keywords−r eque s t ") ;

75 r eque s t . setReplyWith (" reques t "+System . cur rentT imeMi l l i s ()) ;

76 myAgent . send (r eques t) ;

77

c. program listings - affinity 117

78 //Prepare message r e c e i v i n g template

79 MessageTemplate mt = MessageTemplate . and (MessageTemplate .

MatchConversationId ("keywords−r eque s t ") ,MessageTemplate .

MatchInReplyTo (r eques t . getReplyWith ())) ;

80 ACLMessage r ep ly = myAgent . r e c e i v e () ;

81

82 i f (r ep ly != nu l l)

83 {

84 i f (r ep ly . getPer format ive ()==ACLMessage .INFORM)

85 {

86 try

87 {

88 keywords=(ArrayList<Str ing >) r ep ly . getContentObject () ;

89 } catch (Exception e)

90 {

91 e . pr intStackTrace () ;

92 }

93 }

94 ca l lNodeReg i s t ry () ;

95 }

96 e l s e

97 {

98 //System . out . p r i n t l n (" This w i l l take 60000 msecs − Current

State Block ") ;

99 // block () ;

100 }

101 }

102 }//end inner c l a s s

103

104 // inner c l a s s Node Requestor

105 p r i va t e c l a s s NodeRequestor extends Cycl icBehaviour

106 {

107 p r i va t e MessageTemplate mt = MessageTemplate . MatchPerformative (

ACLMessage .REQUEST) ;

108 pub l i c void ac t i on ()

109 {

110 c lu s t e rNe ighbour s=node . getNeighbours () ;

111 try

112 {

113 ACLMessage messagerec=myAgent . r e c e i v e (mt) ;

c. program listings - affinity 118

114 i f (messagerec != nu l l)

115 {

116 System . out . p r i n t l n ("Request from "+messagerec . getSender () .

getLocalName ()+"\n"+" reconna i s sance agent to i s s u e the

 node") ;

117 St r ing cont = messagerec . getContent () ;

118 St r ing [] myCont = cont . s p l i t (" : ") ;

119 query=myCont [0] ;

120 minSup=myCont [1] ;

121 System . out . p r i n t l n ("QUERY −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
"+query) ;

122 //Finding Node with best match us ing the d i r e c t o r y

r e c e i v ed from the Boot s t rap s e r v e r

123 //update a r r a y l i s t to i n c l u c e query words

124 i f (c lu s t e rNe ighbour s != nu l l)

125 {

126 Set keysIPS = c lus t e rNe ighbour s . keySet () ;

127 Object [] keysArray = (Object []) keysIPS . toArray () ;

128 Di rec to ry d i r=nu l l ;

129 f o r (i n t j =0; j<keysArray . l ength ; j++)

130 {

131 ArrayList updated=new ArrayList () ;

132 d i r = c lu s t e rNe ighbour s . get ((S t r ing) keysArray [j]) ;

133 ArrayList a = d i r . keywords ;

134 System . out . p r i n t l n (a) ;

135 Matrix weights = d i r . keyWeights ;

136 double [] [] weightsMatr ix = weights . getArray () ;

137

138 f o r (i n t k=0;k<weights . getRowDimension () ; k++)

139 {

140 i f (weightsMatr ix [k] [0]==0)

141 {

142 } e l s e i f (weightsMatr ix [k] [0] >=1)

143 {

144 f o r (i n t u=0;u<weightsMatr ix [k] [0] ; u++)

145 {

146 updated . add (a . get (k)) ;

147 }

148 }

149 }

c. program listings - affinity 119

150

151 Message message = new Message ((S t r ing) keysArray [j

] , updated) ;

152 database . add (message . getIP ()) ;

153 f i n d e r = new Finder (message) ;

154 }

155 // query

156 Str ingToken ize r s t = new Str ingToken ize r (query) ;

157 ArrayList queryL i s t = new ArrayList () ;

158 whi l e (s t . hasMoreTokens ())

159 {

160 queryL i s t . add ((S t r ing) s t . nextToken ()) ;

161 }

162 Message mQ = new Message ("QUERY" , queryL i s t) ;

163 database . add (mQ. getIP ()) ;

164 f i n d e r = new Finder (mQ) ;

165 database . compute () ;

166 cont="" ;

167 query="" ;

168 } e l s e

169 {

170 System . out . p r i n t l n (" Clus te r Neighbours got i s s u e or

the Informat ion Agent i s not on l i n e yet . ") ;

171 }

172

173 Matrix simR=database . getSimMatrix () ;

174 double [] [] simRArray = simR . getArray () ;

175 double mins = Double . parseDouble (minSup) ;

176 i n t indexer =0;

177 double simVal =0.0 ;

178 double temp=0.0 ;

179

180 f o r (i n t q=0;q<simRArray . l ength ; q++)

181 {

182 simVal=simRArray [q] [0] ;

183 i f (simVal>mins && simVal>temp)

184 {

185 indexer=q ;

186 temp=simVal ;

187 }

c. program listings - affinity 120

188 }

189

190 ArrayList c l i en tAgent s=database . g e tC l i e n tL i s t () ;

191 St r ing chosen = (St r ing) c l i en tAgent s . get (indexer) ;

192 System . out . p r i n t l n ("THE CHOSEN ONE IS "+chosen) ;

193

194 ACLMessage r ep ly = messagerec . c reateReply () ;

195 i f (keywords != nu l l)

196 {

197 rep ly . s e tPer fo rmat ive (ACLMessage .INFORM) ;

198 r ep ly . setContent (chosen) ;

199 }

200 myAgent . send (r ep ly) ;

201 System . out . p r i n t l n (keywords != nu l l ? " Informed "+messagerec

. getSender () . getLocalName ()+" about chosen node − "+

rep ly . getContent () : "Node did not e x i s t ") ;

202 } e l s e

203 {

204 block () ;

205 }

206 } catch (Exception e)

207 {

208 e . pr intStackTrace () ;

209 }

210 }

211 }//end inner c l a s s Node Requestor

212

213 p r i va t e c l a s s Message

214 {

215 p r i va t e S t r ing ip_Address ;

216 p r i va t e ArrayList keywords ;

217

218 pub l i c Message (S t r ing ip_Address , ArrayList keywords)

219 {

220 t h i s . ip_Address=ip_Address ; ;

221 t h i s . keywords=keywords ;

222 }

223

224 pub l i c void set IP (St r ing ip_Address)

225 {

c. program listings - affinity 121

226 t h i s . ip_Address=ip_Address ;

227 }

228

229 pub l i c S t r ing getIP ()

230 {

231 re turn ip_Address ;

232 }

233

234 pub l i c void setKeywords (ArrayList keywords)

235 {

236 t h i s . keywords=keywords ;

237 }

238

239 pub l i c ArrayList getKeywords ()

240 {

241 re turn keywords ;

242 }

243

244 }//end inner c l a s s

245

246 // inner c l a s s to f i nd node

247 p r i va t e c l a s s Finder

248 {

249 p r i va t e Message message ;

250 p r i va t e S t r ing tk [] ;

251 p r i va t e i n t s i z e ;

252 p r i va t e SortedMap map ;

253

254 pub l i c Finder (Message message)

255 {

256 t h i s . message=message ;

257 map=new TreeMap () ;

258 getKeywords () ;

259 }

260

261 pub l i c void getKeywords ()

262 {

263 i n t index=0;

264 St r ing keywordSet="" ;

265 ArrayList keywords1 = message . getKeywords () ;

c. program listings - affinity 122

266 f o r (i n t i =0; i<keywords1 . s i z e () ; i++)

267 {

268 keywordSet+=(St r ing) keywords1 . get (i)+" " ;

269 }

270 //Tokenize

271 Str ingToken ize r token = new Str ingToken ize r (keywordSet) ;

272 s i z e=token . countTokens () ;

273 makeTKArray(s i z e) ;

274 whi l e (token . hasMoreTokens ())

275 {

276 tk [index]=token . nextToken () ;

277 findTokenFrequency (tk [index]) ;

278 }

279 database . addKeywords (map) ;

280 }

281

282 pub l i c void makeTKArray(i n t s i z e)

283 {

284 tk = new St r ing [s i z e] ;

285 }

286

287 pub l i c void findTokenFrequency (St r ing token)

288 {

289 i f (!map . containsKey (token))

290 {

291 map . put (token . toLowerCase () , 1) ;

292 } e l s e

293 {

294 In t eg e r f requency = (In t eg e r)map . get (token) ;

295 i n t f r eqVal = frequency . intValue () ;

296 f r eqVa l+=1;

297 map . remove (token) ;

298 map . put (token , f r eqVa l) ;

299 }

300 }

301 }//end inner c l a s s

302

303 p r i va t e c l a s s Database

304 {

305 p r i va t e ArrayList ipCo l s ;

c. program listings - affinity 123

306 p r i va t e ArrayList<SortedMap> tempMaster ;

307 p r i va t e double [] [] masterKeywordMatrix ;

308 p r i va t e double [] [] joiningNodeKeywords ;

309 p r i va t e ArrayList<Str ing> l istOfKeywords ;

310 p r i va t e Matrix U;

311 p r i va t e Matrix S ;

312 p r i va t e Matrix V;

313 p r i va t e Matrix S_inverse ;

314 p r i va t e Matrix V_transpose ;

315 p r i va t e Matrix Q_transpose ;

316 p r i va t e Matrix q ;

317 p r i va t e Matrix simM ;

318 p r i va t e S t r ing fo r IP="" ;

319

320 pub l i c Database ()

321 {

322 ipCo l s = new ArrayList () ;

323 tempMaster = new ArrayList<SortedMap>() ;

324 }

325

326 pub l i c void add (St r ing ip)

327 {

328 // ipCo l s . add (ip) ;

329 i f (! ipCo l s . conta in s (ip))

330 {

331 ipCo l s . add (ip) ;

332 fo r IP=ip ;

333 } e l s e

334 {

335 i n t index=ipCol s . indexOf (ip) ;

336 ipCo l s . remove (index) ;

337 tempMaster . remove (index) ;

338 ipCo l s . add (ip) ;

339 fo r IP=ip ;

340 }

341 }

342

343 pub l i c void remove (St r ing ip)

344 {

345 i f (ipCo l s . conta in s (ip))

c. program listings - affinity 124

346 {

347 i n t index=ipCol s . indexOf (ip) ;

348 ipCo l s . remove (index) ;

349 tempMaster . remove (index) ;

350 }

351 }

352

353 pub l i c void addKeywords (SortedMap map)

354 {

355 tempMaster . add (map) ;

356 prepareMatr ix () ;

357 }

358

359 pub l i c void prepareMatr ix ()

360 {

361 SortedMap completeL i s t = new TreeMap () ;

362 SortedMap temp = new TreeMap () ;

363 f o r (i n t i =0; i<tempMaster . s i z e () ; i++)

364 {

365 temp=tempMaster . get (i) ;

366 Set keywords = temp . keySet () ;

367 I t e r a t o r i tKeys = keywords . i t e r a t o r () ;

368 whi l e (i tKeys . hasNext ())

369 {

370 St r ing key = (St r ing) i tKeys . next () ;

371 i f (! comple teL i s t . containsKey (key))

372 {

373 completeL i s t . put (key , 0) ;

374 }

375 }//end whi le

376 }//end loop

377

378 setCompleteLi s t (comple teL i s t) ;

379

380 masterKeywordMatrix = new double [comple teL i s t . s i z e ()] [ipCo l s . s i z e

()] ;

381 i n t rows = masterKeywordMatrix . l ength ;

382 i n t c o l s = masterKeywordMatrix [0] . l ength ;

383 f o r (i n t n=0;n<c o l s ; n++)

384 {

c. program listings - affinity 125

385 temp= new TreeMap () ;

386 Set completeKeys = completeL i s t . keySet () ;

387 I t e r a t o r i t = completeKeys . i t e r a t o r () ;

388 temp=tempMaster . get (n) ;

389 f o r (i n t m=0;m<rows ;m++)

390 {

391 whi l e (i t . hasNext ())

392 {

393 St r ing key = (St r ing) i t . next () ;

394 i f (temp . containsKey (key))

395 {

396 i n t va l = ((In t eg e r) temp . get (key)) . intValue () ;

397 masterKeywordMatrix [m] [n]= va l ;

398 } e l s e

399 {

400 masterKeywordMatrix [m] [n]=0 . 0 ;

401 }

402 m++;

403 }

404 }

405 }

406 }

407

408 pub l i c void compute ()

409 {

410 i n t rows = masterKeywordMatrix . l ength ;

411 i n t c o l s = masterKeywordMatrix [0] . l ength ;

412 i f (c o l s==1)

413 {

414 //do nothing

415 // to pro t e c t system from i s s u i n g dummy

416 } e l s e

417 {

418 // d i sp l ay

419 System . out . p r i n t l n ("Master Matrix") ;

420 d i sp layMatr ix (masterKeywordMatrix , c o l s) ;

421 // c a l c u l a t e SVD con s i d e r i ng the j o i n i n g column ip address and

i t s keywords i s the new query (j o i n i n g node keywords) .

422 double [] [] tempKeywordMatrix = new double [rows] [co l s −1] ;

423 joiningNodeKeywords=new double [rows] [1] ;

c. program listings - affinity 126

424 i n t runner=0;

425 f o r (i n t b=0;b<c o l s ; b++)

426 {

427 f o r (i n t a=0;a<rows ; a++)

428 {

429 i f (b==ipCol s . indexOf (fo r IP))

430 {

431 //do not get that column

432 //make i t j o i n i n g node

433 // j o in ed keywords

434 f o r (i n t z=0;z<rows ; z++)

435 {

436 joiningNodeKeywords [z] [0]= masterKeywordMatrix [

z] [b] ;

437 }

438 } e l s e

439 {

440 tempKeywordMatrix [a] [runner]=masterKeywordMatrix [a

] [b] ;

441 }

442 }

443 runner++;

444 }

445

446 System . out . p r i n t l n ("Compared Against Matrix") ;

447 d i sp layMatr ix (tempKeywordMatrix , tempKeywordMatrix [0] . l ength) ;

448 System . out . p r i n t l n (" Jo in ing Matrix") ;

449 d i sp layMatr ix (joiningNodeKeywords , joiningNodeKeywords [0] .

l ength) ;

450 Matrix Q = new Matrix (joiningNodeKeywords) ;

451 Q_transpose=Q. t ranspose () ;

452 calculateSVD (tempKeywordMatrix) ;

453 c a l c u l a t e q () ;

454 Matrix sim = ca l cu la t eS im () ;

455 System . out . p r i n t l n (" S im i l a r i t y Report") ;

456 sim . p r i n t (sim . getColumnDimension () ,3) ;

457 }

458 }

459

460 /∗∗

c. program listings - affinity 127

461 ∗ Disp lays matrix

462 ∗/
463 pub l i c void d i sp layMatr ix (double [] [] matrix , i n t c o l s)

464 {

465 Matrix mat = new Matrix (matrix) ;

466 mat . p r i n t (co l s , 1) ;

467 }

468

469 /∗∗
470 ∗ SVD ca l c u l a t i o n

471 ∗/
472 pub l i c void calculateSVD (double [] [] matrix)

473 {

474 Matrix mat = new Matrix (matrix) ;

475 SingularValueDecomposit ion svd = mat . svd () ;

476 U = svd . getU () ;

477 //U. p r i n t (ipCo l s . s i z e () , 3) ;

478 S = svd . getS () ;

479 //S . p r i n t (ipCo l s . s i z e () , 3) ;

480 S_inverse = S . i nv e r s e () ;

481 V = svd . getV () ;

482 //V. p r i n t (ipCo l s . s i z e () , 3) ;

483 V_transpose= V. t ranspose () ;

484 }

485

486 /∗∗
487 ∗ Computing query vec to r

488 ∗/
489 pub l i c void c a l c u l a t e q ()

490 {

491 q = (Q_transpose . t imes (U)) . t imes (S_inverse) ;

492 }

493

494 pub l i c Matrix ca l cu la t eS im ()

495 {

496 double [] [] vofQuery = q . getArray () ;

497 double [] [] vofTerm = V_transpose . getArray () ;

498 double [] [] sim=new double [vofQuery [0] . l ength] [1] ;

499 double [] num=new double [vofTerm . l ength] ;

500 double den1=0;

c. program listings - affinity 128

501 double [] den2=new double [vofTerm . l ength] ;

502

503 f o r (i n t x =0;x<vofTerm . l ength ; x++)

504 {

505 f o r (i n t i =0; i<vofQuery [0] . l ength ; i++)

506 {

507 num[x] +=vofQuery [0] [i]∗ vofTerm [i] [x] ;

508 }

509 }

510

511 f o r (i n t x=0;x<vofQuery [0] . l ength ; x++)

512 {

513 den1+=vofQuery [0] [x]∗ vofQuery [0] [x] ;

514 }

515

516 den1 = Math . sq r t (den1) ;

517

518 f o r (i n t i =0; i<den2 . l ength ; i++)

519 {

520 f o r (i n t x=0;x<vofTerm . l ength ; x++)

521 {

522 den2 [i]+=vofTerm [x] [i]∗ vofTerm [x] [i] ;

523 }

524 }

525

526 f o r (i n t x=0;x<den2 . l ength ; x++)

527 {

528 den2 [x] = Math . s q r t (den2 [x]) ;

529 }

530

531 f o r (i n t i =0; i<sim . l ength ; i++)

532 {

533 sim [i] [0]=num[i] / (den1∗den2 [i]) ;
534 }

535

536 simM = new Matrix (sim) ;

537 re turn simM ;

538 }

539

540 pub l i c Matrix getSimMatrix ()

c. program listings - affinity 129

541 {

542 re turn simM ;

543 }

544

545 pub l i c ArrayList g e tC l i e n tL i s t ()

546 {

547 re turn ipCo l s ;

548 }

549

550 pub l i c Matrix getMasterKeywordList ()

551 {

552 Matrix master = new Matrix (masterKeywordMatrix) ;

553 re turn master ;

554 }

555

556 pub l i c void setCompleteLi s t (SortedMap comple teL i s t)

557 {

558 Set keys = completeL i s t . keySet () ;

559 l i stOfKeywords = new ArrayList<Str ing >() ;

560 I t e r a t o r i t = keys . i t e r a t o r () ;

561 whi l e (i t . hasNext ())

562 {

563 l i stOfKeywords . add ((S t r ing) i t . next ()) ;

564 }

565 }

566

567 pub l i c ArrayList getKeywordList ()

568 {

569 re turn l i stOfKeywords ;

570 }

571 }//end inner c l a s s Message

572 }//end c l a s s

c. program listings - affinity 130

C.11 Class LocalAgent.java

1 import jade . core . ∗ ;
2 import java . u t i l . ∗ ;
3 import jade . core . behaviours . ∗ ;
4 import jade . lang . a c l . ∗ ;
5 import Jama . ∗ ;
6

7 /∗∗
8 ∗ Local Agent i s an agent that ho lds in fo rmat ion i . e .

9 ∗ keys f o r d e f i n i n g l o c a l r e s ou r c e s and the corre spond ing l o c a t i o n o f

r e s ou r c e on the peer .

10 ∗
11 ∗ @author M. Singh

12 ∗ @version 1 .3

13 ∗/
14 pub l i c c l a s s LocalAgent extends Agent

15 {

16 p r i va t e S t r ing hos taddres s="" ;

17 p r i va t e S t r ing name="" ;

18 p r i va t e LocalUI u i ;

19 p r i va t e Hashtable<Str ing , Str ing> tab l e = new Hashtable<Str ing , Str ing >() ;

20 p r i va t e ArrayList<Str ing> keywords = new ArrayList<Str ing >() ;

21 p r i va t e LocalDatabase database = new LocalDatabase () ;

22 p r i va t e FrequencyFinder f i n d e r ;

23 protec ted void setup ()

24 {

25 //welcome

26 name = getAID () . getName () ;

27 System . out . p r i n t l n ("He l lo I am Local Agent and my name i s "+name) ;

28

29 // in s t ance o f GUI

30 u i=new LocalUI () ;

31 u i . setAgent (t h i s) ;

32 ca l lAskUser () ;

33

34 // behaviour

35 addBehaviour (new Ca l lFo rReg i s t r a t i on ()) ;

36

37 // behaviour

c. program listings - affinity 131

38 addBehaviour (new ServeIncomingMessage ()) ;

39 }

40

41 protec ted void takeDown ()

42 {

43 u i . d i spo s e () ;

44 System . out . p r i n t l n ("Local Agent "+getAID () . getName ()+" Terminating ") ;

45 }

46

47 pub l i c void ca l lAskUser ()

48 {

49 u i . askUser () ;

50 }

51

52 pub l i c void updateTable (Hashtable<Str ing , Str ing> ca ta l og)

53 {

54 addBehaviour (new FileManager (th i s , c a ta l og)) ;

55 }

56

57 // inner c l a s s F i l e Manager

58 p r i va t e c l a s s FileManager extends TickerBehaviour

59 {

60 p r i va t e FileManager (Agent a , Hashtable<Str ing , Str ing> ca ta l og)

61 {

62 super (a ,300000) ;

63 t ab l e=ca ta l og ;

64 }

65

66 pub l i c void onStart ()

67 {

68 Set keys = tab l e . keySet () ;

69 I t e r a t o r <Str ing> i t = keys . i t e r a t o r () ;

70 whi l e (i t . hasNext ())

71 {

72 St r ing key=i t . next () ;

73 St r ing va lue s=tab l e . get (key) ;

74 St r ingToken ize r s t = new Str ingToken ize r (va lue s) ;

75 whi l e (s t . hasMoreTokens ())

76 {

77 keywords . add (s t . nextToken ()) ;

c. program listings - affinity 132

78 }

79 }//end whi le

80 System . out . p r i n t l n (keywords) ;

81 }//end ons ta r t

82

83 pub l i c void onTick ()

84 {

85 ca l lAskUser () ;

86 }

87 }//end inner c l a s s F i l e Manager

88

89 // inner c l a s s Ca l l f o r Reg i s t r a t i on

90 p r i va t e c l a s s Ca l lFo rReg i s t r a t i on extends SimpleBehaviour

91 {

92 p r i va t e MessageTemplate mt = MessageTemplate . and (MessageTemplate .

MatchConversationId ("keywords−r eque s t ") ,MessageTemplate .

MatchPerformative (ACLMessage .REQUEST)) ;

93 pub l i c boolean done ()

94 {

95 return f a l s e ;

96 }

97

98 pub l i c void ac t i on ()

99 {

100 try

101 {

102 ACLMessage message=myAgent . r e c e i v e (mt) ;

103 i f (message != nu l l)

104 {

105 u i . informUser ("Request from "+message . getSender () .

getLocalName ()+"\n"+" in fo rmat ion agent to i s s u e the

keywords") ;

106 ACLMessage r ep ly = message . createReply () ;

107 i f (keywords != nu l l)

108 {

109 rep ly . s e tPer fo rmat ive (ACLMessage .INFORM) ;

110 r ep ly . setContentObject (keywords) ;

111 }

112 myAgent . send (r ep ly) ;

113 u i . informUser (keywords != nu l l ? " Informed "+message .

c. program listings - affinity 133

getSender () . getLocalName ()+" about "+rep ly .

getContentObject () : "Keywords did not e x i s t ") ;

114 }

115 /∗ e l s e
116 {

117 block () ;

118 }

119 ∗/
120 } catch (Exception e)

121 {

122 e . pr intStackTrace () ;

123 }

124 }

125 }//end inner c l a s s Ca l lFo rReg i s t r a t i on

126

127 // inner c l a s s Serve Incoming Message

128 p r i va t e c l a s s ServeIncomingMessage extends Behaviour

129 {

130 p r i va t e MessageTemplate mt = MessageTemplate . and (MessageTemplate .

MatchConversationId (" search−r eque s t ") ,MessageTemplate .

MatchPerformative (ACLMessage .REQUEST)) ;

131

132 pub l i c boolean done ()

133 {

134 re turn f a l s e ;

135 }

136

137 pub l i c void ac t i on ()

138 {

139 try

140 {

141 ACLMessage r eque s t = r e c e i v e (mt) ;

142 // whi l e (r eque s t==nu l l)

143 {

144 // reques t=r e c e i v e (mt) ;

145 i f (r eque s t != nu l l)

146 {

147 u i . informUser ("Request r e c e i v ed from "+reques t .

getSender () . getLocalName ()) ;

148 St r ing cont = reques t . getContent () ;

c. program listings - affinity 134

149 St r ing [] myCont = cont . s p l i t (" : ") ;

150 St r ing query=myCont [0] ;

151 double minSup=Double . parseDouble (myCont [1]) ;

152 System . out . p r i n t l n ("THE QUERY RECEIVED BY LOCAL AGENT

"+query) ;

153

154 // a l l keywords f o r a l l documents are s to r ed in hash

tab l e −> tab l e as (f i l ename−>keywords) as key−>
value pa i r s

155 Set keys=tab l e . keySet () ;

156 Object [] key=(Object []) keys . toArray () ;

157 f o r (i n t i =0; i<key . l ength ; i++)

158 {

159 ArrayList keySet = new ArrayList () ;

160 St r ing tempKey = (St r ing) t ab l e . get (key [i]) ;

161 Str ingToken ize r s t = new Str ingToken ize r (tempKey) ;

162 whi l e (s t . hasMoreTokens ())

163 {

164 keySet . add ((S t r ing) s t . nextToken ()) ;

165 }

166 Transport message = new Transport ((S t r ing) key [i] ,

keySet) ;

167 database . add (message . getIP ()) ;

168 f i n d e r = new FrequencyFinder (message) ;

169 }

170 // query

171 Str ingToken ize r s t = new Str ingToken ize r (query) ;

172 ArrayList queryL i s t = new ArrayList () ;

173 whi l e (s t . hasMoreTokens ())

174 {

175 queryL i s t . add ((S t r ing) s t . nextToken ()) ;

176 }

177 Transport mQ = new Transport ("QUERY" , queryL i s t) ;

178 database . add (mQ. getIP ()) ;

179 f i n d e r = new FrequencyFinder (mQ) ;

180 database . compute () ;

181

182 // prepare r ep ly

183 Matrix simR=database . getSimMatrix () ;

184 double [] [] simRArray = simR . getArray () ;

c. program listings - affinity 135

185 i n t indexer =0;

186 double simVal =0.0 ;

187 double temp=0.0;

188

189 f o r (i n t q=0;q<simRArray . l ength ; q++)

190 {

191 simVal=simRArray [q] [0] ;

192 i f (simVal>minSup && simVal>temp)

193 {

194 indexer=q ;

195 temp=simVal ;

196 }

197 }

198

199 ArrayList docs=database . g e tC l i e n tL i s t () ;

200 St r ing chosen = (St r ing) docs . get (indexer) ;

201 System . out . p r i n t l n ("THE CHOSEN DOCUMENT IS "+chosen) ;

202 MatchStore matchStore = new MatchStore (chosen ,

getLocalName () , simVal) ;

203

204 // r ep ly

205 ACLMessage r ep ly = reques t . c reateReply () ;

206 i f (chosen != nu l l)

207 {

208 r ep ly . s e tPer fo rmat ive (ACLMessage .INFORM) ;

209 r ep ly . setContentObject (matchStore) ;

210 }

211 myAgent . send (r ep ly) ;

212 System . out . p r i n t l n (keywords != nu l l ? " Informed "+

reques t . getSender () . getLocalName ()+" about chosen

document " : "Document did not e x i s t ") ;

213 } e l s e

214 {

215 System . out . p r i n t l n ("No message yet ") ;

216 block () ;

217 }

218 }//end whi le

219 } catch (Exception e)

220 {

221 e . pr intStackTrace () ;

c. program listings - affinity 136

222 }

223 }

224 }//end inner c l a s s s e rve incoming message

225

226 p r i va t e c l a s s Transport

227 {

228 p r i va t e S t r ing ip_Address ;

229 p r i va t e ArrayList keywords ;

230

231 pub l i c Transport (S t r ing ip_Address , ArrayList keywords)

232 {

233 t h i s . ip_Address=ip_Address ; ;

234 t h i s . keywords=keywords ;

235 }

236

237 pub l i c void set IP (St r ing ip_Address)

238 {

239 t h i s . ip_Address=ip_Address ;

240 }

241

242 pub l i c S t r ing getIP ()

243 {

244 re turn ip_Address ;

245 }

246

247 pub l i c void setKeywords (ArrayList keywords)

248 {

249 t h i s . keywords=keywords ;

250 }

251

252 pub l i c ArrayList getKeywords ()

253 {

254 re turn keywords ;

255 }

256

257 }//end inner c l a s s

258

259 // inner c l a s s to f i nd r e sou r c e

260 p r i va t e c l a s s FrequencyFinder

261 {

c. program listings - affinity 137

262 p r i va t e Transport message ;

263 p r i va t e S t r ing tk [] ;

264 p r i va t e i n t s i z e ;

265 p r i va t e SortedMap map ;

266

267 pub l i c FrequencyFinder (Transport message)

268 {

269 t h i s . message=message ;

270 map=new TreeMap () ;

271 getKeywords () ;

272 }

273

274 pub l i c void getKeywords ()

275 {

276 i n t index=0;

277 St r ing keywordSet="" ;

278 ArrayList keywords1 = message . getKeywords () ;

279 f o r (i n t i =0; i<keywords1 . s i z e () ; i++)

280 {

281 keywordSet+=(St r ing) keywords1 . get (i)+" " ;

282 }

283 //Tokenize

284 Str ingToken ize r token = new Str ingToken ize r (keywordSet) ;

285 s i z e=token . countTokens () ;

286 makeTKArray(s i z e) ;

287 whi l e (token . hasMoreTokens ())

288 {

289 tk [index]=token . nextToken () ;

290 findTokenFrequency (tk [index]) ;

291 }

292 database . addKeywords (map) ;

293 }

294

295 pub l i c void makeTKArray(i n t s i z e)

296 {

297 tk = new St r ing [s i z e] ;

298 }

299

300 pub l i c void findTokenFrequency (St r ing token)

301 {

c. program listings - affinity 138

302 i f (!map . containsKey (token))

303 {

304 map . put (token . toLowerCase () , 1) ;

305 } e l s e

306 {

307 In t eg e r f requency = (In t eg e r)map . get (token) ;

308 i n t f r eqVal = frequency . intValue () ;

309 f r eqVa l+=1;

310 map . remove (token) ;

311 map . put (token , f r eqVa l) ;

312 }

313 }

314 }//end inner c l a s s

315

316 p r i va t e c l a s s LocalDatabase

317 {

318 p r i va t e ArrayList ipCo l s ;

319 p r i va t e ArrayList<SortedMap> tempMaster ;

320 p r i va t e double [] [] masterKeywordMatrix ;

321 p r i va t e double [] [] joiningNodeKeywords ;

322 p r i va t e ArrayList<Str ing> l istOfKeywords ;

323 p r i va t e Matrix U;

324 p r i va t e Matrix S ;

325 p r i va t e Matrix V;

326 p r i va t e Matrix S_inverse ;

327 p r i va t e Matrix V_transpose ;

328 p r i va t e Matrix Q_transpose ;

329 p r i va t e Matrix q ;

330 p r i va t e Matrix simM ;

331 p r i va t e S t r ing fo r IP="" ;

332

333 pub l i c LocalDatabase ()

334 {

335 ipCo l s = new ArrayList () ;

336 tempMaster = new ArrayList<SortedMap>() ;

337 }

338

339 pub l i c void add (St r ing ip)

340 {

341 // ipCo l s . add (ip) ;

c. program listings - affinity 139

342 i f (! ipCo l s . conta in s (ip))

343 {

344 ipCo l s . add (ip) ;

345 fo r IP=ip ;

346 } e l s e

347 {

348 i n t index=ipCol s . indexOf (ip) ;

349 ipCo l s . remove (index) ;

350 tempMaster . remove (index) ;

351 ipCo l s . add (ip) ;

352 fo r IP=ip ;

353 }

354 }

355

356 pub l i c void remove (St r ing ip)

357 {

358 i f (ipCo l s . conta in s (ip))

359 {

360 i n t index=ipCol s . indexOf (ip) ;

361 ipCo l s . remove (index) ;

362 tempMaster . remove (index) ;

363 }

364 }

365

366 pub l i c void addKeywords (SortedMap map)

367 {

368 tempMaster . add (map) ;

369 prepareMatr ix () ;

370 }

371

372 pub l i c void prepareMatr ix ()

373 {

374 SortedMap completeL i s t = new TreeMap () ;

375 SortedMap temp = new TreeMap () ;

376 f o r (i n t i =0; i<tempMaster . s i z e () ; i++)

377 {

378 temp=tempMaster . get (i) ;

379 Set keywords = temp . keySet () ;

380 I t e r a t o r i tKeys = keywords . i t e r a t o r () ;

381 whi l e (i tKeys . hasNext ())

c. program listings - affinity 140

382 {

383 St r ing key = (St r ing) i tKeys . next () ;

384 i f (! comple teL i s t . containsKey (key))

385 {

386 completeL i s t . put (key , 0) ;

387 }

388 }//end whi le

389 }//end loop

390

391 setCompleteLi s t (comple teL i s t) ;

392

393 masterKeywordMatrix = new double [comple teL i s t . s i z e ()] [ipCo l s . s i z e

()] ;

394 i n t rows = masterKeywordMatrix . l ength ;

395 i n t c o l s = masterKeywordMatrix [0] . l ength ;

396 f o r (i n t n=0;n<c o l s ; n++)

397 {

398 temp= new TreeMap () ;

399 Set completeKeys = completeL i s t . keySet () ;

400 I t e r a t o r i t = completeKeys . i t e r a t o r () ;

401 temp=tempMaster . get (n) ;

402 f o r (i n t m=0;m<rows ;m++)

403 {

404 whi l e (i t . hasNext ())

405 {

406 St r ing key = (St r ing) i t . next () ;

407 i f (temp . containsKey (key))

408 {

409 i n t va l = ((In t eg e r) temp . get (key)) . intValue () ;

410 masterKeywordMatrix [m] [n]= va l ;

411 } e l s e

412 {

413 masterKeywordMatrix [m] [n]=0 . 0 ;

414 }

415 m++;

416 }

417 }

418 }

419 }

420

c. program listings - affinity 141

421 pub l i c void compute ()

422 {

423 i n t rows = masterKeywordMatrix . l ength ;

424 i n t c o l s = masterKeywordMatrix [0] . l ength ;

425 i f (c o l s==1)

426 {

427 //do nothing

428 // to pro t e c t system from i s s u i n g dummy

429 } e l s e

430 {

431 // d i sp l ay

432 System . out . p r i n t l n ("Master Matrix") ;

433 d i sp layMatr ix (masterKeywordMatrix , c o l s) ;

434 // c a l c u l a t e SVD con s i d e r i ng the j o i n i n g column ip address and

i t s keywords i s the new query (j o i n i n g node keywords) .

435 double [] [] tempKeywordMatrix = new double [rows] [co l s −1] ;

436 joiningNodeKeywords=new double [rows] [1] ;

437 i n t runner=0;

438 f o r (i n t b=0;b<c o l s ; b++)

439 {

440 f o r (i n t a=0;a<rows ; a++)

441 {

442 i f (b==ipCol s . indexOf (fo r IP))

443 {

444 //do not get that column

445 //make i t j o i n i n g node

446 // j o in ed keywords

447 f o r (i n t z=0;z<rows ; z++)

448 {

449 joiningNodeKeywords [z] [0]= masterKeywordMatrix [

z] [b] ;

450 }

451 } e l s e

452 {

453 tempKeywordMatrix [a] [runner]=masterKeywordMatrix [a

] [b] ;

454 }

455 }

456 runner++;

457 }

c. program listings - affinity 142

458

459 System . out . p r i n t l n ("Compared Against Matrix") ;

460 d i sp layMatr ix (tempKeywordMatrix , tempKeywordMatrix [0] . l ength) ;

461 System . out . p r i n t l n (" Jo in ing Matrix") ;

462 d i sp layMatr ix (joiningNodeKeywords , joiningNodeKeywords [0] .

l ength) ;

463 Matrix Q = new Matrix (joiningNodeKeywords) ;

464 Q_transpose=Q. t ranspose () ;

465 calculateSVD (tempKeywordMatrix) ;

466 c a l c u l a t e q () ;

467 Matrix sim = ca l cu la t eS im () ;

468 System . out . p r i n t l n (" S im i l a r i t y Report") ;

469 sim . p r i n t (sim . getColumnDimension () ,3) ;

470 }

471 }

472

473 /∗∗
474 ∗ Disp lays matrix

475 ∗/
476 pub l i c void d i sp layMatr ix (double [] [] matrix , i n t c o l s)

477 {

478 Matrix mat = new Matrix (matrix) ;

479 mat . p r i n t (co l s , 1) ;

480 }

481

482 /∗∗
483 ∗ SVD ca l c u l a t i o n

484 ∗/
485 pub l i c void calculateSVD (double [] [] matrix)

486 {

487 Matrix mat = new Matrix (matrix) ;

488 SingularValueDecomposit ion svd = mat . svd () ;

489 U = svd . getU () ;

490 //U. p r i n t (ipCo l s . s i z e () , 3) ;

491 S = svd . getS () ;

492 //S . p r i n t (ipCo l s . s i z e () , 3) ;

493 S_inverse = S . i nv e r s e () ;

494 V = svd . getV () ;

495 //V. p r i n t (ipCo l s . s i z e () , 3) ;

496 V_transpose= V. t ranspose () ;

c. program listings - affinity 143

497 }

498

499 /∗∗
500 ∗ Computing query vec to r

501 ∗/
502 pub l i c void c a l c u l a t e q ()

503 {

504 q = (Q_transpose . t imes (U)) . t imes (S_inverse) ;

505 }

506

507 pub l i c Matrix ca l cu la t eS im ()

508 {

509 double [] [] vofQuery = q . getArray () ;

510 double [] [] vofTerm = V_transpose . getArray () ;

511 double [] [] sim=new double [vofQuery [0] . l ength] [1] ;

512 double [] num=new double [vofTerm . l ength] ;

513 double den1=0;

514 double [] den2=new double [vofTerm . l ength] ;

515

516 f o r (i n t x =0;x<vofTerm . l ength ; x++)

517 {

518 f o r (i n t i =0; i<vofQuery [0] . l ength ; i++)

519 {

520 num[x] +=vofQuery [0] [i]∗ vofTerm [i] [x] ;

521 }

522 }

523 System . out . p r i n t l n ("NUMERATOR "+num [0]) ;

524 //−−−−−−−−−−−−
525 f o r (i n t x=0;x<vofQuery [0] . l ength ; x++)

526 {

527 den1+=vofQuery [0] [x]∗ vofQuery [0] [x] ;

528 }

529

530 den1 = Math . sq r t (den1) ;

531 System . out . p r i n t l n ("DENOMINATOR PART 1 "+den1) ;

532

533 f o r (i n t i =0; i<den2 . l ength ; i++)

534 {

535 f o r (i n t x=0;x<vofTerm . l ength ; x++)

536 {

c. program listings - affinity 144

537 den2 [i]+=vofTerm [x] [i]∗ vofTerm [x] [i] ;

538 }

539 }

540

541 f o r (i n t x=0;x<den2 . l ength ; x++)

542 {

543 den2 [x] = Math . s q r t (den2 [x]) ;

544 System . out . p r i n t l n ("DENOMINATOR PART 2 "+den2 [x]) ;

545 }

546

547 f o r (i n t i =0; i<sim . l ength ; i++)

548 {

549 sim [i] [0]=num[i] / (den1∗den2 [i]) ;
550 System . out . p r i n t l n ("SIMILARITY CALC "+sim [i] [0]) ;

551 }

552

553 simM = new Matrix (sim) ;

554 re turn simM ;

555 }

556

557 pub l i c Matrix getSimMatrix ()

558 {

559 re turn simM ;

560 }

561

562 pub l i c ArrayList g e tC l i e n tL i s t ()

563 {

564 re turn ipCo l s ;

565 }

566

567 pub l i c Matrix getMasterKeywordList ()

568 {

569 Matrix master = new Matrix (masterKeywordMatrix) ;

570 re turn master ;

571 }

572

573 pub l i c void setCompleteLi s t (SortedMap comple teL i s t)

574 {

575 Set keys = completeL i s t . keySet () ;

576 l i stOfKeywords = new ArrayList<Str ing >() ;

c. program listings - affinity 145

577 I t e r a t o r i t = keys . i t e r a t o r () ;

578 whi l e (i t . hasNext ())

579 {

580 l i stOfKeywords . add ((S t r ing) i t . next ()) ;

581 }

582 }

583

584 pub l i c ArrayList getKeywordList ()

585 {

586 re turn l i stOfKeywords ;

587 }

588 }//end inner c l a s s

589

590 }//end c l a s s

c. program listings - affinity 146

C.12 Class LocalUI.java

1 import java . i o . ∗ ;
2 import java . u t i l . ∗ ;
3 import javax . swing . ∗ ;
4 import jade . core . ∗ ;
5 /∗∗
6 ∗ User I n t e r f a c e f o r Local Agent

7 ∗
8 ∗ @author M. Singh

9 ∗ @version 1 .1

10 ∗/
11 pub l i c c l a s s LocalUI extends JFrame

12 {

13 p r i va t e Hashtable<Str ing , Str ing> ca ta l og ;

14 p r i va t e LocalAgent myAgent ;

15 pub l i c LocalUI ()

16 {

17 ca ta l og=new Hashtable<Str ing , Str ing >() ;

18 }

19

20 pub l i c void setAgent (LocalAgent agent)

21 {

22 myAgent=agent ;

23 }

24

25 pub l i c void askUser ()

26 {

27 St r ing opt ion = JOptionPane . showInputDialog (" Please ente r YES/NO f o r

updating the ca ta l og ") ;

28 i f (opt ion . toLowerCase () . equa l s (" yes "))

29 {

30 try

31 {

32 F i l e f o l d e r = new F i l e ("Shared") ;

33 F i l e [] l i s t O f F i l e s = f o l d e r . l i s t F i l e s () ;

34

35 f o r (i n t i =0; i<l i s t O f F i l e s . l ength ; i++)

36 {

37 i f (l i s t O f F i l e s [i] . i s F i l e ())

c. program listings - affinity 147

38 {

39 System . out . p r i n t l n (" F i l e "+l i s t O f F i l e s [i] . getName ()) ;

40 St r ing keywords = JOptionPane . showInputDialog (" Please

ente r the keywords d e s c r i b i n g f i l e − "+l i s t O f F i l e s

[i] . getName ()+"\n"+"and separa te us ing space . ") ;

41 ca ta l og . put (l i s t O f F i l e s [i] . getName () , keywords .

toLowerCase ()) ;

42 }

43 }

44 } catch (Exception e)

45 {

46 e . pr intStackTrace () ;

47 }

48 myAgent . updateTable (ca ta l og) ;

49 }

50 }

51

52 pub l i c void informUser (S t r ing message)

53 {

54 JOptionPane . showMessageDialog (nu l l , message) ;

55 //System . out . p r i n t l n (message) ;

56 }

57

58 }//end c l a s s

c. program listings - affinity 148

C.13 Class MatchStore.java

1 import java . i o . ∗ ;
2 import java . u t i l . ∗ ;
3 /∗∗
4 ∗ S e r i a l i s e d Data St ruc ture

5 ∗
6 ∗ @author M. Singh

7 ∗ @version 1 .2

8 ∗/
9 pub l i c c l a s s MatchStore implements S e r i a l i z a b l e

10 {

11 St r ing chosenDocs ;

12 St r ing nameLA ;

13 double s im i l a r i t yVa l u e s ;

14

15 pub l i c MatchStore (S t r ing chosenDocs , S t r ing nameLA, double

s im i l a r i t yVa l u e s)

16 {

17 t h i s . chosenDocs=chosenDocs ;

18 t h i s . nameLA=nameLA ;

19 t h i s . s im i l a r i t yVa l u e s=s im i l a r i t yVa l u e s ;

20 }

21 }

c. program listings - affinity 149

C.14 Class InterfaceAgent.java

1 import jade . core . ∗ ;
2 import jade . core . behaviours . ∗ ;
3 import jade . lang . a c l . ∗ ;
4 import jade . gu i . ∗ ;
5 import jade . content . ∗ ;
6 import jade . content . onto . ba s i c . ∗ ;
7 import jade . content . lang . ∗ ;
8 import jade . content . lang . s l . ∗ ;
9 import jade . domain . ∗ ;

10 import jade . domain . mob i l i ty . ∗ ;
11 import jade . domain . JADEAgentManagement . ∗ ;
12 import java . u t i l . ∗ ;
13

14 /∗∗
15 ∗ I n t e r f a c e Agent i s an agent that prov ides user i n t e r a c t i o n to the system .

16 ∗
17 ∗ @author M. Singh

18 ∗ @version 1 .7

19 ∗/
20 pub l i c c l a s s Inte r faceAgent extends GuiAgent

21 {

22 p r i va t e S t r ing name="" ;

23 p r i va t e SearchGUI gui ;

24 jade . core . Runtime runtime=jade . core . Runtime . i n s t ance () ;

25 p r i va t e jade . wrapper . AgentContainer home ;

26 p r i va t e i n t command ;

27 p r i va t e i n t count=(i n t) (Math . random () ∗100)+3000;

28 Vector agents=new Vector () ;

29

30 pub l i c s t a t i c f i n a l i n t QUIT=0;

31 pub l i c s t a t i c f i n a l i n t NEW_RECON_AGENT=1;

32 pub l i c s t a t i c f i n a l i n t KILL_AGENT=4;

33

34 protec ted void setup ()

35 {

36 //welcome

37 name=getAID () . getName () ;

38 System . out . p r i n t l n (" I n t e r f a c e Agent "+name+" s t a r t ed . ") ;

c. program listings - affinity 150

39

40 // r e g i s t e r language and onto logy

41 getContentManager () . r eg i s t e rLanguage (new SLCodec ()) ;

42 getContentManager () . r e g i s t e rOnto l ogy (Mobi l i tyOntology . g e t In s tance ()) ;

43

44 // c r e a t e agent conta ine r

45 home = runtime . createAgentConta iner (new Pro f i l e Imp l ()) ;

46 doWait (2000) ;

47

48 // s t a r t gui

49 gui=new SearchGUI () ;

50 gui . setAgent (t h i s) ;

51 gui . show () ;

52

53 addBehaviour (new ReceiveMessageRecon ()) ;

54

55 addBehaviour (new ReceiveTerminationRecon ()) ;

56 }

57

58 protec ted void onGuiEvent (GuiEvent ev)

59 {

60 command=ev . getType () ;

61 i f (command==QUIT)

62 {

63 try

64 {

65 home . k i l l () ;

66 } catch (Exception e)

67 {

68 e . pr intStackTrace () ;

69 }

70 gui . s e tV i s i b l e (f a l s e) ;

71 gui . d i spo s e () ;

72 doDelete () ;

73 System . e x i t (0) ;

74 }

75 i f (command==NEW_RECON_AGENT)

76 {

77 jade . wrapper . AgentContro l l e r a = nu l l ;

78 System . out . p r i n t l n ("MUST BE CREATED") ;

c. program listings - affinity 151

79 try

80 {

81 Object [] a rgs=new Object [5] ;

82 args [0]= getAID () ;

83 System . out . p r i n t l n (args [0]) ;

84 args [1]= gui . getQuery () ; // query

85 args [2]= " 0 .0 " ; //minimum support

86 args [3]=(Object)name ;

87 args [4]= "2" ; //number o f hops

88 St r ing name_of_Agent="Reconnaissance_Agent_"+(count++) ;

89 a=home . createNewAgent (name_of_Agent , ReconnaissanceAgent . c l a s s .

getName () , a rgs) ;

90 a . s t a r t () ;

91 agents . add (name_of_Agent) ;

92 gui . act iveAgents (agents) ;

93 } catch (Exception ee)

94 {

95 System . out . p r i n t l n ("Problem whi l e c r e a t i n g new agent "+ee) ;

96 }

97 return ;

98 }

99 }

100

101 protec ted void takeDown ()

102 {

103 i f (gu i != nu l l)

104 {

105 gui . s e tV i s i b l e (f a l s e) ;

106 gui . d i spo s e () ;

107 }

108

109 System . out . p r i n t l n (" I n t e r f a c e terminat ing f o r "+name+"\n"+"Thank you

f o r us ing AFFINITY. ") ;

110 System . e x i t (0) ;

111 }

112

113 // inner c l a s s

114 p r i va t e c l a s s ReceiveMessageRecon extends Cycl icBehaviour

115 {

116 MatchStore matchStore=nu l l ;

c. program listings - affinity 152

117 MessageTemplate mt = MessageTemplate . and (MessageTemplate .

MatchConversationId (" r e s u l t s ") ,MessageTemplate . MatchPerformative (

ACLMessage .INFORM)) ;

118 pub l i c void ac t i on ()

119 {

120 try

121 {

122 ACLMessage r ep ly = r e c e i v e (mt) ;

123 i f (r ep ly != nu l l)

124 {

125 matchStore=(MatchStore) r ep ly . getContentObject () ;

126 gui . s e tRe su l t (matchStore) ;

127 } e l s e

128 {

129 block () ;

130 }

131 } catch (Exception e)

132 {

133 e . pr intStackTrace () ;

134 }

135 }

136 }

137

138 // inner c l a s s

139 p r i va t e c l a s s ReceiveTerminationRecon extends SimpleBehaviour

140 {

141 p r i va t e boolean check=f a l s e ;

142 MessageTemplate mt = MessageTemplate . and (MessageTemplate .

MatchConversationId (" terminat ion−i n s t r u c t i o n ") ,MessageTemplate .

MatchPerformative (ACLMessage .INFORM)) ;

143

144 pub l i c boolean done ()

145 {

146 re turn check ;

147 }

148

149 pub l i c void ac t i on ()

150 {

151 try

152 {

c. program listings - affinity 153

153 ACLMessage message = r e c e i v e (mt) ;

154 i f (message != nu l l)

155 {

156 agents . remove (message . getSender () . getLocalName ()) ;

157 gui . act iveAgents (agents) ;

158 check=true ;

159 } e l s e

160 {

161 block () ;

162 }

163 } catch (Exception e)

164 {

165 e . pr intStackTrace () ;

166 }

167 }

168 }

169 }//end c l a s s

c. program listings - affinity 154

C.15 Class SearchGUI.java

1 import java . awt . ∗ ;
2 import java . awt . event . ∗ ;
3 import javax . swing . ∗ ;
4 import javax . swing . border . ∗ ;
5 import javax . swing . event . ∗ ;
6 import jade . core . ∗ ;
7 import java . u t i l . ∗ ;
8 import jade . gu i . ∗ ;
9

10 /∗∗
11 ∗ SearchGUI i s User i n t e r f a c e f o r I n t e r f a c e Agent

12 ∗
13 ∗/
14 pub l i c c l a s s SearchGUI extends JFrame

15 {

16 p r i va t e Inte r faceAgent myAgent ;

17 p r i va t e S t r ing query="" ;

18 // Var iab l e s d e c l a r a t i on

19 p r i va t e JLabel jLabe l2 ;

20 p r i va t e JLabel jLabe l3 ;

21 p r i va t e JTextArea jTextArea1 ;

22 p r i va t e JScro l lPane jSc ro l lPane3 ;

23 p r i va t e JL i s t j L i s t 1 ;

24 p r i va t e DefaultListModel l i s tMode l1 ;

25 p r i va t e JScro l lPane jSc ro l lPane2 ;

26 p r i va t e JTabbedPane jTabbedPane1 ;

27 p r i va t e JPanel contentPane ;

28 //−−−−−
29 p r i va t e JLabel jLabe l1 ;

30 p r i va t e JTextFie ld jTextF ie ld1 ;

31 p r i va t e JButton jButton1 ;

32 p r i va t e JPanel jPane l1 ;

33 //−−−−−
34 // End o f v a r i a b l e s d e c l a r a t i on

35

36 pub l i c void setAgent (Inte r faceAgent a)

37 {

38 myAgent=a ;

c. program listings - affinity 155

39 s e tT i t l e (" A f f i n i t y − Search Node − "+myAgent . getName ()) ;

40 }

41

42 pub l i c SearchGUI ()

43 {

44 super () ;

45 JFrame . setDefaultLookAndFeelDecorated (t rue) ;

46 JDialog . setDefaultLookAndFeelDecorated (t rue) ;

47 t ry

48 {

49 UIManager . setLookAndFeel ("com . sun . java . swing . p l a f .

windows .WindowsLookAndFeel") ;

50 }

51 catch (Exception ex)

52 {

53 System . out . p r i n t l n (" Fa i l ed load ing L&F: ") ;

54 System . out . p r i n t l n (ex) ;

55 }

56 addWindowListener (new WindowAdapter () {

57 pub l i c void windowClosing (WindowEvent e) {

58 myAgent . doDelete () ;

59 }

60 }) ;

61 in i t i a l i z eComponent () ;

62 }

63

64 p r i va t e void in i t i a l i z eComponent ()

65 {

66 jLabe l2 = new JLabel () ;

67 jLabe l3 = new JLabel () ;

68 jTextArea1 = new JTextArea () ;

69 jSc ro l lPane3 = new JScro l lPane () ;

70 l i s tMode l1 = new DefaultListModel () ;

71 j L i s t 1 = new JL i s t (l i s tMode l1) ;

72 jSc ro l lPane2 = new JScro l lPane () ;

73 jTabbedPane1 = new JTabbedPane () ;

74 contentPane = (JPanel) t h i s . getContentPane () ;

75 //−−−−−
76 jLabe l1 = new JLabel () ;

77 jTextF ie ld1 = new JTextFie ld () ;

c. program listings - affinity 156

78 jButton1 = new JButton () ;

79 jPane l1 = new JPanel () ;

80 //−−−−−
81

82 //

83 // jLabe l2

84 //

85 jLabe l2 . setText ("Search Resu l t s f o r Query : ") ;

86 //

87 // jLabe l2

88 //

89 jLabe l3 . setText ("Active Reconnaissance Agents") ;

90 //

91 // jTextArea1

92 //

93 jTextArea1 . setFont (new java . awt . Font ("Tahoma" , 0 , 11)) ;

94 jTextArea1 . setToolTipText ("Search Resu l t s ") ;

95 jTextArea1 . s e tEd i t ab l e (f a l s e) ;

96 jTextArea1 . setLineWrap (t rue) ;

97 //

98 // jSc ro l lPane3

99 //

100 jSc ro l lPane3 . setViewportView (jTextArea1) ;

101 //

102 // j L i s t 1

103 //

104 j L i s t 1 . setVisibleRowCount (7) ;

105 j L i s t 1 . s e tF ixedCe l lHe ight (18) ;

106 j L i s t 1 . se tSe lect ionMode (L i s tSe l e c t i onMode l .

SINGLE_INTERVAL_SELECTION) ;

107 //

108 // jSc ro l lPane2

109 //

110 jSc ro l lPane2 . setViewportView (j L i s t 1) ;

111 //

112 // jTabbedPane1

113 //

114 jTabbedPane1 . addTab("Search " , jPane l1) ;

115 jTabbedPane1 . setBackground (new Color (255 , 255 , 255)) ;

116 jTabbedPane1 . addChangeListener (new ChangeListener () {

c. program listings - affinity 157

117 pub l i c void stateChanged (ChangeEvent e)

118 {

119 jTabbedPane1_stateChanged (e) ;

120 }

121

122 }) ;

123 //

124 // contentPane

125 //

126 contentPane . setLayout (nu l l) ;

127 contentPane . setBorder (BorderFactory . c reateRaisedBeve lBorder ())

;

128 addComponent (contentPane , jLabel2 , 211 ,15 ,337 ,18) ;

129 addComponent (contentPane , jLabel3 , 550 ,15 ,157 ,18) ;

130 addComponent (contentPane , jScro l lPane3 , 210 ,33 ,337 ,328) ;

131 addComponent (contentPane , jScro l lPane2 , 550 ,33 ,157 ,100) ;

132 addComponent (contentPane , jTabbedPane1 , 4 ,11 ,200 ,350) ;

133 //

134 // jLabe l1

135 //

136 jLabe l1 . setText ("Enter Search Query") ;

137 //

138 // jButton1

139 //

140 jButton1 . setText ("Search ") ;

141 jButton1 . setToolTipText ("Cl i ck to Star t Search ") ;

142 jButton1 . addAct ionListener (new Act ionL i s t ene r () {

143 pub l i c void act ionPerformed (ActionEvent e)

144 {

145 jButton1_actionPerformed (e) ;

146 }

147

148 }) ;

149 //

150 // jPane l1

151 //

152 jPane l1 . setLayout (nu l l) ;

153 jPane l1 . setBorder (new Tit ledBorder ("Search Query Window")) ;

154 jPane l1 . setBackground (new Color (255 , 254 , 254)) ;

155 jPane l1 . setOpaque (f a l s e) ;

c. program listings - affinity 158

156 jPane l1 . setToolTipText ("Search ") ;

157 addComponent (jPanel1 , jLabel1 , 5 ,50 ,100 ,18) ;

158 addComponent (jPanel1 , jTextFie ld1 , 5 ,70 ,180 ,22) ;

159 addComponent (jPanel1 , jButton1 , 48 ,92 ,83 ,28) ;

160 //

161 // SearchGUI

162 //

163 t h i s . s e tLocat i on (new Point (0 , 0)) ;

164 t h i s . s e t S i z e (new Dimension (730 , 400)) ;

165 t h i s . s e tRe s i z ab l e (f a l s e) ;

166 }

167

168 /∗∗ Add Component Without a Layout Manager (Absolute Po s i t i on i ng) ∗/
169 p r i va t e void addComponent (Container conta iner , Component c , i n t x , i n t y ,

i n t width , i n t he ight)

170 {

171 c . setBounds (x , y , width , he ight) ;

172 conta ine r . add (c) ;

173 }

174

175 p r i va t e void jTabbedPane1_stateChanged (ChangeEvent e)

176 {

177 System . out . p r i n t l n ("NOTHING SHOULD BE HAPPENING HERE") ;

178 }

179

180 p r i va t e void jButton1_actionPerformed (ActionEvent e)

181 {

182 query = jTextFie ld1 . getText () ;

183 jTextF ie ld1 . setText ("") ;

184 jLabe l2 . setText ("Search Resu l t s f o r Query : "+query) ;

185 GuiEvent ge = new GuiEvent (th i s , myAgent .NEW_RECON_AGENT) ;

186 myAgent . postGuiEvent (ge) ;

187 }

188

189 pub l i c Object getQuery ()

190 {

191 re turn (Object) query ;

192 }

193

194 pub l i c void act iveAgents (Vector agents)

c. program listings - affinity 159

195 {

196 l i s tMode l1 . c l e a r () ;

197 f o r (i n t i =0; i<agents . s i z e () ; i++)

198 {

199 l i s tMode l1 . addElement (agents . get (i)) ;

200 }

201 }

202

203 pub l i c void s e tRe su l t (MatchStore matchStore)

204 {

205 jTextArea1 . append ("Manu Manu Manu\n") ;

206 jTextArea1 . append (matchStore . nameLA+"\n") ;

207 jTextArea1 . append (matchStore . chosenDocs+"\n") ;

208 jTextArea1 . append (""+matchStore . s im i l a r i t yVa l u e s+"\n") ;

209 jTextArea1 . append ("\n") ;

210 }

211 }//end c l a s s

c. program listings - affinity 160

C.16 Class ReconnaissanceAgent.java

1 import jade . core . ∗ ;
2 import jade . core . behaviours . ∗ ;
3 import jade . lang . a c l . ∗ ;
4 import jade . domain . ∗ ;
5 import jade . domain . mob i l i ty . ∗ ;
6 import jade . domain . JADEAgentManagement . WhereIsAgentAction ;

7 import jade . domain . JADEAgentManagement . Ki l lAgent ;

8 import jade . content . ∗ ;
9 import jade . content . onto . ba s i c . ∗ ;

10 import jade . content . lang . ∗ ;
11 import jade . content . lang . s l . ∗ ;
12 import java . u t i l . ∗ ;
13 /∗∗
14 ∗ ReconnaissanceAgent i s a mobile agent that i s c r ea ted by the I n t e r f a c e

Agent

15 ∗ upon user search reques t .

16 ∗
17 ∗ @author M. Singh

18 ∗ @version 2 .5

19 ∗/
20 pub l i c c l a s s ReconnaissanceAgent extends Agent

21 {

22 p r i va t e S t r ing c r e a t o r="" ;

23 p r i va t e S t r ing query="" ;

24 p r i va t e S t r ing minSup="" ;

25 p r i va t e i n t maxHops ;

26 p r i va t e S t r ing nameIA="" ;

27 p r i va t e S t r ing cont="" ;

28 p r i va t e Map l o c a t i o n s=new HashMap() ;

29 p r i va t e S t r ing destName="" ;

30 p r i va t e S t r ing destLAName="" ;

31 p r i va t e i n t hopNumber=0;

32

33 protec ted void setup ()

34 {

35 // r e g i s t e r language and onto logy

36 getContentManager () . r eg i s t e rLanguage (new SLCodec ()) ;

37 getContentManager () . r e g i s t e rOnto l ogy (Mobi l i tyOntology . g e t In s tance ()) ;

c. program listings - affinity 161

38

39 System . out . p r i n t l n ("Hi , I am Reconnaissance Agent − "+getLocalName ()) ;

40

41 // get arguments passed whi le c r e a t i on o f r e conna i s sance agent

42 Object [] a rgs = getArguments () ;

43 c r e a t o r=(St r ing) args [3] ;

44 i f (c r e a t o r . s tartsWith ("S"))

45 {

46 nameIA=cr ea t o r ;

47 nameIA=nameIA . r ep l a c e ("S" , " I ") ;

48 }

49 query=(St r ing) args [1] ;

50 minSup=(St r ing) args [2] ;

51 cont=query+" : "+minSup ;

52 maxHops=In t eg e r . pa r s e In t ((S t r ing) args [4]) ;

53

54 // reques t l o c a t i o n

55 St r ing nameofAgent=getNode (nameIA) ;

56 destLAName=nameofAgent ;

57 System . out . p r i n t l n (nameofAgent) ;

58 commForJump(nameofAgent) ;

59

60 }

61

62 protec ted void takeDown ()

63 {

64 System . out . p r i n t l n ("Terminating Mysel f ") ;

65 }

66

67 protec ted void afterMove ()

68 {

69 // r e g i s t e r language and onto logy

70 getContentManager () . r eg i s t e rLanguage (new SLCodec ()) ;

71 getContentManager () . r e g i s t e rOnto l ogy (Mobi l i tyOntology . g e t In s tance ()) ;

72

73 hopNumber++;

74 // 1 . recon agent has to f i nd l o c a l agent and compare the query aga in s t

the ca ta l og i t i s keeping

75 // i f any o f the r e s u l t s are good us ing MinSup i t Sends ACL Message to

c r e a t o r (I n t e r f a c e Agent)

c. program listings - affinity 162

76 // in forming about the f i nd (p o s s i b l e name o f f i l e and i t s name o f

l o c a l agent keep i t .

77

78 //Send Message to LA

79 System . out . p r i n t l n ("THE DESTINATION LOCAL AGENT IS "+destLAName) ;

80 ACLMessage r eque s t=new ACLMessage (ACLMessage .REQUEST) ;

81 r eques t . addReceiver (new AID(destLAName ,AID . ISGUID)) ;

82 r eques t . s e tConver sa t ion Id (" search−r eque s t ") ;

83 r eques t . setReplyWith (" reques t "+System . cur rentT imeMi l l i s ()) ;

84 r eques t . setContent (cont) ;

85 send (r eque s t) ;

86 System . out . p r i n t l n ("Message sent to "+destLAName) ;

87

88 //Prepare message r e c e i v i n g template from LA about the matches found

89 MessageTemplate mt = MessageTemplate . and (MessageTemplate .

MatchConversationId (" search−r eque s t ") ,MessageTemplate .

MatchInReplyTo (r eques t . getReplyWith ())) ;

90 ACLMessage r ep ly = block ingRece ive (mt) ;

91 MatchStore matchStore=nu l l ;

92 i f (r ep ly != nu l l)

93 {

94 i f (r ep ly . getPer format ive ()==ACLMessage .INFORM)

95 {

96 try

97 {

98 matchStore = (MatchStore) r ep ly . getContentObject () ;

99 } catch (Exception e)

100 {

101 e . pr intStackTrace () ;

102 }

103 }

104 }

105

106 // prepare to send message to i n t e r f a c e agent (home) about the matches

found

107 try

108 {

109 System . out . p r i n t l n ("Sending Message to home") ;

110 ACLMessage inform = new ACLMessage (ACLMessage .INFORM) ;

111 inform . addReceiver (new AID(creator ,AID . ISGUID)) ;

c. program listings - affinity 163

112 inform . se tConver sa t ion Id (" r e s u l t s ") ;

113 inform . setContentObject (matchStore) ;

114 send (inform) ;

115 } catch (Exception e)

116 {

117 e . pr intStackTrace () ;

118 }

119

120 // 2 . recon agent checks i f i t has made number o f jumps l e s s than

maximum number o f hops a l lowed .

121 // i f i t i s l e s s then i t communicate to in fo rmat ion agent here on t h i s

node and get the next jump

122 // address and conat ine r

123 // e l s e i t k i l l s i t s e l f .

124 i f (hopNumber<maxHops)

125 {

126 System . out . p r i n t l n ("TIME TO JUMP TO NEXT DESTINATION") ;

127 St r ing nameI="" ;

128 // reques t l o c a t i o n

129 i f (c r e a t o r . s tartsWith ("S"))

130 {

131 nameI=destLAName ;

132 nameI=nameI . r ep l a c e ("L" , " I ") ;

133 }

134 St r ing nameofAgent=getNode (nameI) ;

135 destLAName=nameofAgent ;

136 St r ing creatorLA="" ;

137 i f (c r e a t o r . s tartsWith ("S"))

138 {

139 creatorLA=cr ea t o r ;

140 creatorLA=creatorLA . r ep l a c e ("S" , "L") ;

141 }

142 i f (! destLAName . equa l s (creatorLA))

143 {

144 System . out . p r i n t l n ("NEXT JUMP IS TOWARDS CONTAINER CONTAINING

AGENT NAME:− "+nameofAgent) ;

145 // jumping time

146 commForJump(nameofAgent) ;

147 } e l s e

148 {

c. program listings - affinity 164

149 System . out . p r i n t l n ("NO SUITABLE NODES FOUND") ;

150 doDelete () ;

151 }

152 } e l s e

153 {

154 // Prepar ing to d i e

155 ACLMessage message = new ACLMessage (ACLMessage .INFORM) ;

156 message . addReceiver (new AID(creator ,AID . ISGUID)) ;

157 message . s e tConver sa t i onId (" terminat ion−i n s t r u c t i o n ") ;

158 send (message) ;

159 // time to d i e

160

161 System . out . p r i n t l n ("Terminating Mysel f ") ;

162

163 /∗
164 Ki l lAgent ka=new Kil lAgent () ;

165 ka . setAgent (getAID ()) ;

166 sendRequest (new Action (getAID () , ka)) ;

167 ∗/
168 doWait (3000) ;

169 doDelete () ;

170 }

171 }

172

173

174 pub l i c void commForJump(St r ing nameofAgent)

175 {

176 try

177 {

178 AID aid = new AID(nameofAgent ,AID . ISGUID) ;

179 WhereIsAgentAction where = new WhereIsAgentAction () ;

180 where . s e tAg en t I d e n t i f i e r (a id) ;

181 // send message to AMS

182 sendRequest (new Action (getAMS() , where)) ;

183

184 // r e c e i v i n g message from AMS

185 MessageTemplate mt = MessageTemplate . and (MessageTemplate .

MatchSender (getAMS()) ,MessageTemplate . MatchPerformative (

ACLMessage .INFORM)) ;

186 ACLMessage resp = block ingRece ive (mt) ;

c. program listings - affinity 165

187 ContentElement ce = getContentManager () . extractContent (re sp) ;

188 Result r e s u l t = (Result) ce ;

189 jade . u t i l . l eap . I t e r a t o r i t = r e s u l t . get Items () . i t e r a t o r () ;

190 whi l e (i t . hasNext ())

191 {

192 Locat ion l o c=(Locat ion) i t . next () ;

193 l o c a t i o n s . put (l o c . getName () , l o c) ;

194 destName=lo c . getName () ;

195 }

196

197 doWait (5000) ;

198 System . out . p r i n t l n ("Wait Fin i shed ") ;

199 //name o f agent to be t r an f e r ed that i s r e conna i s sance agent

i t s e l f

200 AID a i d i = new AID(getLocalName () ,AID .ISLOCALNAME) ;

201 Locat ion dest = (Locat ion) l o c a t i o n s . get (destName) ;

202 Mobi leAgentDescr ipt ion mad = new Mobi leAgentDescr ipt ion () ;

203 mad . setName (a id) ;

204 mad . s e tDe s t i na t i on (des t) ;

205 MoveAction ma = new MoveAction () ;

206 ma. setMobi l eAgentDescr ipt ion (mad) ;

207 sendRequest (new Action (aid ,ma)) ;

208 doMove(des t) ;

209 System . out . p r i n t l n ("SHOULD HAVE MOVED BY NOW") ;

210 } catch (Exception e)

211 {

212 e . pr intStackTrace () ;

213 }

214 }

215

216 // get node

217 pub l i c S t r ing getNode (S t r ing agentName)

218 {

219 St r ing nodeName="" ;

220

221 //Send Message to IA

222 ACLMessage r eques t=new ACLMessage (ACLMessage .REQUEST) ;

223 reques t . addReceiver (new AID(agentName ,AID . ISGUID)) ;

224 reques t . s e tConver sa t ionId ("node−r eque s t ") ;

225 reques t . setReplyWith (" reques t "+System . cur rentT imeMi l l i s ()) ;

c. program listings - affinity 166

226 reques t . setContent (cont) ;

227 send (r eque s t) ;

228

229 //Prepare message r e c e i v i n g template

230 MessageTemplate mt = MessageTemplate . and (MessageTemplate .

MatchConversationId ("node−r eque s t ") ,MessageTemplate . MatchInReplyTo

(r eques t . getReplyWith ())) ;

231 ACLMessage r ep ly = block ingRece ive (mt) ;

232

233 i f (r ep ly != nu l l)

234 {

235 i f (r ep ly . getPer format ive ()==ACLMessage .INFORM)

236 {

237 try

238 {

239 nodeName=(St r ing) r ep ly . getContent () ;

240 } catch (Exception e)

241 {

242 e . pr intStackTrace () ;

243 }

244 }

245 }

246

247 re turn nodeName ;

248 }//end get Node

249

250 // send message to AMS f o r l o c a t i o n o f the named s t a t i c agent

251 pub l i c void sendRequest (Action ac t i on)

252 {

253 ACLMessage r eque s t = new ACLMessage (ACLMessage .REQUEST) ;

254 reques t . setLanguage (new SLCodec () . getName ()) ;

255 r eques t . setOntology (Mobi l i tyOntology . g e t In s tance () . getName ()) ;

256 try

257 {

258 getContentManager () . f i l l C o n t e n t (request , a c t i on) ;

259 reque s t . addReceiver (ac t i on . getActor ()) ;

260 send (r eques t) ;

261 } catch (Exception e)

262 {

263 e . pr intStackTrace () ;

c. program listings - affinity 167

264 }

265 }

266

267 }//end c l a s s

