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ABSTRACT This paper proposes an adaptive image enhancement method for electrical impedance tomogra-
phy (EIT). The images are enhanced based on a steerable and multi-scale resolution enhancement algorithm.
It is initiated by capturing the spatial variations in decomposition orientations, and decomposition scales
of the EIT image. The interpretation of projected image sub-bands is translated into resolution through
statistical processes. A steerable filter containing Gaussian basis function derivatives captures the statistical
information. Using the regional quantization method (RQM) proposed in this paper, projection weights
are computed through spatial statistics of the image sub-bands and tuned adaptively. RQM assigns more
resolution to those directional edges which have higher standard deviation and embeds high-order curvatures
into the EIT images while suppressing noise. Comparison with conventional image enhancement methods
demonstrates the superior performance of RQM. Using RQM it is shown that for 16, 32 and 64 electrode
configurations with noise-free recording of 32 × 32 EIT images the number of electrodes can be reduced
by 5, 7 and 12 respectively without loss of detail.

INDEX TERMS Adaptive resolution enhancement, contrast improving index, distortion embedding, elec-
trical impedance tomography, electrodes optimization, local statistics, signal-to-noise ratio, steerable filter.

I. INTRODUCTION
Electrical impedance tomography (EIT) provides a continu-
ous, real-time and non-invasive imaging technique for mea-
suring the internal impedance fluctuations of a body from a
series of surface electrodes placed on it [1]. In recent years
there has been considerable interest in monitoring regional
lung functionality using EIT, especially when designing
patient-specific ventilation systems which assist clinicians
in the reduction of lung non-functionalities and improved
regional air exchange. A number of wearable EIT systems in
the form of a belt around the thorax with embedded electron-
ics have been recently developed [2]–[7]. They usually use at
least 16 electrodes for adequate image quality.

To achieve acceptable image quality a common design
strategy is to increase the number of electrodes which results
in a larger EIT system with increased power demands.

The associate editor coordinating the review of this manuscript and
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Resolution enhancement [8]–[12] can be employed to either
enhance the image quality or reduce the number of electrodes
while maintaining the image quality with a relatively small
power increase. In the case of neonates the interest is to
reduce the bulk by reducing the number of electrodes since
there is very limited space for monitoring lung functional-
ity. In other applications enhancement is necessary when a
conventional EIT image has insufficient detail, for example
where clinicians are using EIT on adult patients or the appli-
cation of EIT to reliably extract motor commands to control
a hand prosthesis [13].

This paper proposes a new adaptive multi-scale spatial
resolution enhancement algorithm exploiting distortion
embedding in such a way that low contrast features have
more visibility. Its performance is investigated and com-
pared against three conventional image enhancement meth-
ods [14]–[16] with two metrics. 1) Pixel detection ratio
(PDR); this investigates image pixel recovery in noisy condi-
tions. 2) Contrast improvement index (CII); this compares the
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proposed resolution enhancement against conventional image
enhancementmethods using synthetic phantoms. A thirdmet-
ric, ElectrodesOpt , is used to identify the number of redundant
electrodes in EIT systems by considering the signal-to-noise
(SNR) of the enhanced and original EIT images.

The rest of the paper is organized as follows. In Section II
the image resolution enhancement algorithm is explained.
Section III first compares the noise robustness of the proposed
regional quantization method (RQM) against conventional
methods when performing edge detection. This is followed
by two different tests for resolution enhancement investiga-
tion, namely the CII of simulated phantoms and identifica-
tion of the optimized number of electrodes (ElectrodesOpt ).
Concluding remarks are provided in Section IV.

II. ADAPTIVE IMAGE RESOLUTION ENHANCEMENT
USING MULTI-SCALE DISTORTION EMBEDDING
In this section, a new method is presented for image regional
variation enhancement based on embedding multi-scale two-
dimensional (2D) resolution enhancement layers (L1, L2 . . .,
L5) within different regions of interest as shown in Fig. 1.
The aim is to capture and project the regional variations in
both scale and orientation, and to superimpose adaptively
weighted features with coarse-fine scales into the original
image. The enhanced image, IEnhanced (x, y), is

IEnhanced (x, y)= IEIT (x, y)+
n∑

k=1

AGak (x, y)Hk (x, y) (1)

where n is the number of kernels used in the steerable con-
volution, and AGak (x, y) is the signal-adaptive gain for K th

image convolution. Hk (x, y) is the gradient image obtained
by convolving the image IEIT (x, y) with K th kernel. This can
be done by linear spectral decomposition of the EIT image
into scale and orientation sub-bands, i.e. separating the image
into a series of disjoint scales in different directions.

FIGURE 1. Given a low-resolution image, the convolutional layer of the
proposed method projects the input image onto different layers.
The second layer maps these projections nonlinearly to high-resolution
representations. The last layer integrates the resolution enhanced layers
(L1, L2 . . . , L5) to produce the final high-resolution image.

Fig. 2 shows the block diagram of the proposed method
for image spatial resolution enhancement. The algorithm
employs steerable filters [17] using the Gaussian kernel
and its derivatives (D1, D2, D3, D4) to perform the image
synthesis. The proposed filter bank forms a very intuitive

FIGURE 2. Block diagram of the resolution enhancement method.
HK {1,...4}

(
x, y

)
are the gradients of the steerable convolution with low

resolution image IEIT
(
x, y

)
. The gradients HK {1,...4}

(
x, y

)
are checked for

highest intensity and fed to the gain stage. The gain stage AGaK {1,...,4}
(x, y ) adaptively tunes the regional resolution to highlight the hidden
variations. (b) Descriptions of the kernel operators used in the steerable
convolution stage.

resemblance of EIT images, so they precisely capture the
non-stationary localized variations in sub-bands representing
different decomposition scales. To realize a steerable convo-
lution, the orientation and scales of the basis kernel functions
are swept to better detect geometrical structures in the image.
Consider the basic derivatives of Gaussian filter ∂/∂x and
∂/∂y along the x-axis and y-axis respectively:

∂Gaus (x, y)
∂x

=
−x

2πσ 4 .e
−
x2+y2

2σ2

∂Gaus (x, y)
∂y

=
−y

2πσ 4 .e
−
x2+y2

2σ2

(2)

where σ is the standard deviation of the Gaussian filter
and determines the shape of the filter envelope. Directional
Gaussian derivatives DK {1,...4} (σ, θ) at an angle can be gen-
erated by a linear combination of a rotation of the basic
derivatives of isotropic Gaussian filters:

DK {1,...4}σ,θ (x, y)

= cos (θ) .
∂DK {1,...4}

∂x
(x, y)+ sin (θ) .

∂DK {1,...4}
∂y

(x, y) .

(3)

The image derivative HK {1,...4} (x, y) is obtained by convolv-
ing (∗) the resized image IEIT (x, y)with the steered Gaussian
derivative kernels DK {1,...4} (σ, θ):

Hσ,θ (x, y) =
(
IEIT (x, y) ∗ DK {1,...4}σ,θ

)
(x, y) . (4)

Finally, the magnitude and the direction of image derivatives
at a pixel (x, y) are measured as follows:{

‖∇I (x, y)‖ =
(∣∣Hσ,θ (x, y)∣∣)θε[0,360]

θm =
(∣∣Hσ,θ (x, y)∣∣)θε[0,360] . (5)

Since the regional variations can occur for any magnitude
and direction, a set of directional filters whose responses are
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selected to cover the whole range of possible orientations
is employed. In this work, the steerable filter bank includes
derivatives D1, D2, D3, D4 of the Gaussian kernel function
angled in different directions corresponding to eight orienta-
tions 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦.
The set of convolution kernels used in this operation

is shown in Fig. 2(b). To distinguish the slight changes
in the EIT images, σ = 0.7 was chosen, with a filter
kernel size of 3 × 3 pixels for the defined rotation angles
θε{0◦, . . . , 180◦ + 1θ . . . 315◦} where θ and 1θ are the
direction and rotation step size respectively. For each pixel
(x, y) the highest filter response is retained for adaptive gain
adjustment. RQM realizes pixel-wise adaptive gain tuning to
generate the optimal amount of distortion in each projected
image after convolution. RQM modifies and generalizes the
method described in [18] which adaptively weights the pixels
using the local statistics of the original image. In RQM,
the gain function is computed for the finalized outputs of the
steerable filtering after intensity inspection.

The adaptive gains, AGak (x, y), which adaptively weight
the projected images at the current pixel (x, y) for the Gaus-
sian derivatives are [18]:

AGak={1,...,4} (x, y)

=

−
Ĝmax
k (x, y)−1

σ Imax
0

σIEIT(x,y)+Ĝ
max
k (x, y), if U (x, y)=1

1, if U (x, y)=0
(6)

where σIEIT(x,y) is the local standard deviation of the low
resolution EIT image with a proper window size centered on
the current pixel (x, y), σ Imax

0 is the maximum value of the
local standard deviation in IEIT (x, y), and Ĝmax

k (x, y) is the
maximum gain in the pixel location (x, y) of the K th image
gradient. In (6), the adaptive gain is applied to a specific pixel
(x, y) when the non-maximum deletion U (x, y) condition is
satisfied; U (x, y) identifies the edge direction [19]. To cal-
culate this parameter the gradient magnitude and direction is
defined at each pixel (x, y). The steerable filter calculates the
convolution for four different derivatives quantized at eight
orientations, and the filter kernel with maximum response is
retained: 

M (x, y) = max
k={1...4}

(∣∣Hσ,θ (x, y)∣∣)
θmax = argmax

k={1...4}

(∣∣Hσ,θ (x, y)∣∣) . (7)

A 3×1window is placed along the gradient direction centered
on the current pixel (x, y). The binary edge value U (x, y) is
defined as follows:

U (x, y) =


1, ifM (x, y) is maximum in the

3× 1 window along θmax(x, y)
0, otherwise

. (8)

When the conditionU (x, y) is satisfied, the gain is calculated
using the local statistics and the gain factor Ĝmax

k (x, y) at the

FIGURE 3. (a) An illustration of multi-scale embedded regional
quantization. Each layer (L1, L2. . . , L5) adaptively modifies image
intensity distribution at specific decomposition scale based on a defined
gain function (AGa1,AGa2 . . . ,AGa5). (b) The defined quantization limits
for linear or non-linear regional variations mapping.

pixel (x, y) of K th gradient image. Ĝmax
k (x, y) assigns more

visibility to the directional edges with higher standard devia-
tion by superimposing magnified pixels in specific locations
of the image as shown in Fig. 3(a). The regional quantization
limits are:

Ĝmax
k={1,...,k} (x, y)

=



A′
(
Û + ω̂

)
, if mHk+(

4
5
σ
Hk
) ≤Hk < mHk+σHk

B′
(
Û + ω̂

)
, if mHk+(

3
5
σ
Hk
) ≤Hk < mHk+(

4
5
σ
Hk
)

...

E′
(
Û + ω̂

)
, if mHk+(

1
5
σ
Hk
) ≤Hk < mHk+(

2
5
σ
Hk
)

Û , otherwise
(9)

where Û and ω̂ are σmax
H /σHk and σHk /σH1+σH2 + . . .+ σH4 ,

respectively. In the defined limits, mHk is the overall mean
of K th image gradient, σHk is the overall standard deviation
of K th image gradient and σmax

H is the maximum standard
deviation of swept window over K th gradient.

The defined limits in (9) quantize the regional variations
using linear or non-linear functions. For example, in the case
of non-linear mapping, the gain factors (A′, B′, . . .E′) can
form an exponential function as shown in Fig. 3(b). Finally,
a high-resolution image, IEnhanced (x, y), is reconstructed
using the gain-tuned image projections. The weighted con-
volution layers to the original EIT image are aggregated for
generating the high-resolution image.

III. EVALUATION
A. NOISE ROBUSTNESS USING EDGE DETECTION TEST
Edge detection evaluation can be exploited as an objec-
tive metric which produces results compatible with standard
human-machine perceptionmechanisms. This suggests that if
the image resolution is improved, the percentage of detected
edge pixels increases.

Fig. 4 shows the test procedure to compare the perfor-
mance of the RQM method with three conventional image
enhancement methods. Fig. 4(a) shows a noise-free image
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FIGURE 4. (a) Noise free test template. The intensity is changed on each
individual circle, from inner to outer layers {A>B>C>D>E}. (b) Gaussian
noise is added to the image having standard deviation (σN) of 0.05, 0.1,
0.15 and 0.2. Enhanced images using the multi-scale retinex function
(MSR), adaptive histogram equalization (AHE), unsharp masking (UM),
and regional quantization method (RQM). (c) Percentage of pixel
detection ratio (PDR) versus the input edge SNR.

test containing five concentric circles. The intensity of the
circles reduces from the first inner circle to the outer cir-
cle identified by A, B, C, D and E. In the first column of
Fig. 4(b) noise has been generated and superimposed on the
noise-free image of Fig. 4(a) using a random Gaussian noise
distribution. The noise standard deviation (σN) was set to
0.05, 0.01, 0.15 and 0.2. Fig. 4(b) shows from left to right the
recovered images with increasing noise levels using four dif-
ferent resolution enhancement methods: multi-scale retinex
(MSR) [14], adaptive histogram equalization (AHE) [15],
unsharp masking (UM) [16] and RQM. Increasing the noise
level adversely affects the structural integrity of the recon-
structed images and may result in detecting or introducing
wrong edges. As observed in the last column in Fig. 4(b),
RQMoffers a more solid image recovery even with σN = 0.2.
The pixel detection ratio (PDR) for each resolution

enhancement method versus the edge SNR is shown
in Fig. 4(c). Identification and summation of the edges in the
noise free image of Fig. 4(a) using the Canny edge detec-
tor [20] is used as a reference. The number of edge pixels
in each circular ring is summed by applying a Canny edge
detector to the noise free test template from the inner to the
outer perimeters of the rings: 2π

(
rin(A...E)

)
+2π

(
rout (A...E)

)
where rin and rout are inner and outer radii. For the

three alternative methods [14]–[16] and RQM the edges are
detected and recorded with the added Gaussian noise (σN =
0.05, 0.1, 0.15 and 0.2). PDR is defined as:

PDR =
TPS

TPS+ FP+MP
× 100% (10)

where TPS is the number of truly regained edge pixels,
FP (false pixels) are those due to randomly superimposed
noise, and MP is the number of missed pixels. This equation
is designed to ensure that missed and false pixels carry the
same weight in accuracy calculations. Fig. 4(c) shows the
superiority of RQM recovery in comparison with the other
methods [14]–[16] over a range of edge SNRs.

B. ENHANCEMENT ANALYSIS
Resolution enhancement is measured through contrast eval-
uation of a chosen region in the original and the enhanced
images. The contrast is usually defined as the difference in
mean luminance between an object and its surroundings. The
statistical assessment uses CII (contrast improvement index)
proposed in [21]:

CII =
Cprocessed

Coriginal
(11)

where Cprocessed and Coriginal are the contrasts for a region
of interest in the processed and original images, respectively.
The contrast C of a region is defined by:

C =
f − b
f + b

(12)

where f is the mean gray-level value of the particular region
in the image, or foreground, and b is themean gray-level value
of the surrounding region or background. When an image
is composed of textured regions (representative of multiple
phantoms) such as EIT images, identifying multiple regions
of interest to calculate CII is difficult and time consuming.

A universal operator such as SNR is more suited in the
enhancement analysis of EIT images. SNR also is a goodmet-
ric to quantify the resolution enhancement of RQM, which
improves resolution by emphasizing image details and sup-
pressing noise. The SNR of an image is expressed as [22]:

SNR =

∑N−1
i=0

∑N−1
j=0 U (i, j)2∑N−1

i=0
∑N−1

j=0

[
U (i, j)2 − Ú (i, j)

2
] (13)

whereU (i, j) andÚ (i, j) represent enhanced and the original
images. In the following sections, CII and SNR are used for
enhancement improvement analysis of the EIT images from
the synthetic phantoms.

C. CII EVALUATION OF SYNTHETIC PHANTOMS
For the evaluation of the local contrast enhancement in the
proposed and publishedmethods [14]–[16], images from syn-
thetic phantoms imitating various texture features with ampli-
tude intensity and direction are reconstructed (see Fig. 5).
Figs 5(b)-(e) from left to right show the magnified artifi-
cial textures from MSR, AHE, UM and RQM respectively.
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FIGURE 5. The rows (R1 . . .R4) are synthetic simulated images emulating
texture features with amplitude intensity and direction variations. Red
and yellow squares identify foregrounds and backgrounds. The columns
illustrate the images enhanced by four methods: (a) multi-scale retinex
(MSR), (b) unsharp masking (UM), (c) adaptive histogram equalization
(AHE), and (e) regional quantization method (RQM).

As seen in Fig. 5(e), the embedded regional variations in the
image templates (R1-R4) using RQM significantly improve
the visual observation. With the aid of the images in Fig. 5,
local masks are designed for separating the foreground (red
squares) from background (yellow squares). Table 1 shows
the CII comparison results of the different features illustrated
in Fig. 5. Note that themulti-scale distortion embedding using
RQM performs significantly better than other methods, with
adaptive contrast improvement of each specific region.

TABLE 1. CII comparison of generated synthetic phantoms.

D. EIT ELECTRODE OPTIMIZATION ANALYSIS
This section proposes a test to quantify the effect of resolution
enhancement on the generated EIT images using different
numbers of electrodes, namely, 16, 32 and 64 electrodes.

1) IMAGE RECONSTRUCTION
The EIT phantom image generation uses the boundary data
simulator in [23]. The number of recording electrodes, inho-
mogeneity geometry (shape, size, and position) of phantoms,
background conductivity, and inhomogeneity conductivity
are all set in the boundary data simulator to emulate various
EIT scenarios. The surface potential differences are then
reconstructed usingGREIT software [24] with 32×32 resolu-
tion. Reconstruction of images using fewer than 16 electrodes
is not viable as shown in Fig. 6, where regions of errors are
highlighted for the 4 and 8 electrode systems.

FIGURE 6. The reconstructed EIT images using 4, 8 and 16 electrodes.
The reconstruction errors are evident when using 4 and 8 electrodes.
The regional error is surrounded by black dotted lines.

2) DATA GENERATION
Two additional components, namely, noise factor and image
resizing are embedded into the electrode optimization anal-
ysis. Noise has been added to the generated raw EIT volt-
ages (vr ) by superimposing white Gaussian noise (σN =
0.025, 0.05 and 0.075) [25]. The noisy EIT data (vn) were
then reconstructed using GREIT with the recommended
setting to ensure optimal performance. Each electrode con-
figuration offers the standard resolution; however, the recon-
struction size (32 × 32) may not be optimal for enhancing
image resolution. Resolution enhancement highlights edges,
manipulates curvature amplitude and changing slope transi-
tions. Increasing the grid size has key role in changing image
resolution spatially but at a computational cost (i.e. number
of additions and multiplications).

The EIT images were upscaled using bicubic interpolation
with interpolation factors of 2, 4, 8 and 16 before resolution
enhancement. The image expansion process aids finding the
optimal embedding of the spatial accuracy. For electrode
optimization purposes, three EIT image datasets each con-
taining three noise levels and four interpolated images were
generated. The three datasets are E16-IF-noise, E32-IF-noise
and E64-IF-noise, where E16 shows the number of recording
electrodes, noise denotes the noise level, and IF is the inter-
polation factor.

The procedure used to assess the effect of RQM in opti-
mizing the number of electrodes is shown in Fig. 7(a).

FIGURE 7. Block diagram of the system used to quantify the resolution
enhancement and the optimized number of electrodes (a) Data
preparation for different numbers of electrodes, noise level and resizing
of EIT images. (b) Manipulated (noise enhanced and resized) error-free
EIT images are fed to two processing paths, one without RQM and with
RQM. The proposed customized setup is used to quantify the resolution
enhancement and the number of electrodes optimized.
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FIGURE 8. The columns are the EIT images from different electrode configurations (E16, E32, and E64). Color-coded rectangles are superimposed on
the EIT images at different regions to visually assess the resolution enhancement. Regions R1 and R2 are placed on the edges and curvatures to
capture luminance variation as a result of resolution enhancement. Regions R1 and R2 are different at E16, E32, and E64 to include a wide variety of
variations in the generated original EIT image. The first row shows the partially sampled original images in regions R1 and R2. The second row shows
the resolution enhanced EIT images without resizing En(32× 32), the third and the fourth rows show the effect of resolution enhancement on the
resized EIT images En(64× 64) and En(128× 128). Contour plots are superimposed to make the regional variations clearer. Finer resolution is observed
as the grid size varies in each column as En(32× 32)→ En(64× 64)→ En(128× 128) which is the result of embedding high-resolution features in
smaller image patches.

In the first path, the reconstructed and manipulated EIT
images using different electrode configurations without
applying RQM are used for enhancement analysis. The sec-
ond path applies RQM on EIT images before feeding them
to the enhancement analysis unit. The final unit in Fig. 7(b)
quantifies the number of electrodes optimized based on the
RQM efficacy.

3) SNR ANALSIS OF GENERATED EIT IMAGES AND NUMBER
OF ELECTRODES OPTIMIZED
This section studies the effect of RQM on SNR based on
the generated EIT image datasets using different numbers
of electrodes. To visualize the effectiveness of resolution
enhancement using RQM, the original reconstructed images
are compared to the enhanced ones after resizing using
IF = 2 and 4. This is shown in Fig. 8 which also identifies
color-coded rectangles at different regions for visual assess-
ment of the resolution enhancement. The regions R1 and R2
are placed on the edges and curvatures of EIT images to

capture and visualize enhancement intensity distributions.
Columns in Fig. 8 are associatedwith 16, 32 and 64 electrodes
and the rows show the enhanced resolution of 32×32, 64×64
and 128 × 128 images in R1 and R2. RQM maps hardly
distinguishable spatial variations to high-resolution features
and higher resolution is embedded with varying the grid size
[e.g. (32 × 32)→ (64 × 64)→ (128 × 128)] as interpreted
from Fig. 8. Restoration quality is due to selecting finer
image patches and exploring more accurate adaptive gain for
reshaping the image variations.

Fig. 9 shows IEnhanced (x, y) at 128 × 128 for a differ-
ent phantom configuration. The enhanced resolution can be
observed because the embedded statistical quantized image
sub-bands are seen as regional shadowing effects. The phan-
toms in Fig. 8 and Fig. 9 have non-linearity and show extreme
asynchronous filling behaviors in different regions of the left
and right lungs. They consist of multiple peaks and valleys,
curvatures and edges, suited to validate resolution (contrast)
enhancement using RQM.
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FIGURE 9. Effect of RQM on resolution enhancement. IEIT
(
x, y

)
shows

the original EIT image resized to 128× 128 and IEnhanced
(
x, y

)
shows the

enhanced resolution EIT image. The RQM highlights the embedded
variations in the EIT images. The difference between the original and the
enhanced templates is equivalent to adding 10 more electrodes according
to Eq. (14) for E32.

In order to quantify the optimized number of electrodes for
different conditions, ElectrodesOpt is proposed:

ElectrodesOpt =
SNREnhanced

SNRElectrode
(14)

where SNREnhanced is defined based on (13) for enhanced
U (i, j) and original Ú (i, j) images. SNRElectrode is defined

as SNR(A−B)
(A−B) where A and B represent specific electrode con-

figurations. For example, to quantify the number of elec-
trodes optimized between E16 and E32, the SNRElectrode is
expressed as SNR(32−16)

16 to identify electrode strength con-
tributing to overall SNR.

Fig. 10 shows the number of electrodes optimized
(ElectrodesOpt ) for a specific number of electrodes when
the noise level and interpolation factors are considered. The
y-axis is the derived ElectrodesOpt and the x-axis shows the
interpolation factors (IF = 1, 2, 4, 8 and 16). ElectrodesOpt
is also a factor illustrating the number of electrodes resulting
in higher resolution in EIT images. For example, in Fig. 10,
for E32 and IF = 4, ElectrodesOpt = 10. This means that
with enhancement the standard 32 electrode image can be
matched with an enhanced image captured by 22 electrodes
or can enhance the 32 electrode image [IEnhanced (x, y)] to
match a standard 42 electrode image. As shown in Fig. 10,
at {E16,E32 and E64}, when IF = 1 and σN = 0,
ElectrodesOpt are 5, 7 and 12 respectively. Applying RQM
as a back-end processing unit at E64 results in 12 fewer
electrodes needed (and their accompanying components), for
the same image quality. According to [6], the overall power
consumption of a 12 electrode system is about 4 mW. It could
be replaced with a RQM processor consuming much lower
power.

Note that the increasing noise level adversely affects
the SNR and consequently ElectrodesOpt . Although the
noise level is increased linearly (σN = 0.025, 0.05 and
0.075), the calculated ElectrodesOpt shows that RQM per-
forms reverse functioning on the noisy images to retain the
SNR values almost unchanged, especially for noise σN of
(0.025 and 0.05).

FIGURE 10. Identified number of electrodes optimized (ElectrodesOpt )
versus noise and image grid size. The noise standard deviation was set to
σN = 0.025, 0.05 and 0.075 and the grid size was manipulated using
bicubic interpolation factors (1 < IF < 16). (a), (b) and (c) show the
ElectrodesOpt graphs for E16, E32 and E64 respectively. Note that the
optimal resolution embedding is a function of image resizing.

Eq. (14) can be alternatively interpreted as the number of
recovery electrodes (ElectrodesRec) in noisy conditions. For
example, at E32, RQM consistently assists the recovery of
useful information from noisy images, or it can be seen as
providing extra electrodes (ElectrodesRec = 7 at IF = 2 and
σN = 0.025). A final point about ElectrodesOpt is the effect
of IF. As shown in Fig. 10, as IF increases, the rate of increase
of ElectrodesOpt is initially high and gradually reduces at
higher IF. This means that the optimal point for reducing the
number of electrodes does not occur when IF = 1. This also
highlights the fact that resolution embedding is a function of
the initial resolution captured by the recording process and
the spatial resolution of the image. For example, embedding
a high-order curvature in an EIT image depends on the initial
resolution and the image grid size. Thus, an optimum IF
offers a reasonable value of ElectrodesOpt at the expense of
enhanced image resolution.
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FIGURE 11. Required processing time to generate an enhanced EIT image
as a function of image size.

4) COMPUTATIONAL EFFICIENCY
A recognised technique is to compare the computational
complexity of algorithms bymeasuring their execution times,
which are effectively correlated with the number of arith-
metic operations (i.e. additions or subtractions and multipli-
cations or divisions). For example, in RQM the arithmetic
operations are related to extracting rotative sub-bands, cal-
culating adaptive gains and superposition of tuned sub-bands
to finally obtain the resolution enhanced EIT image. The
processing time required for the proposed and the alterna-
tive enhancement algorithms in this paper (MSR, AHE and
UM [14]–[16]), were derived and compared when the image
size was upscaled using bicubic interpolation. The processing
time of each of the algorithms was recorded using the same
machine (Intel Dual Core 2.4 GHz processor with 16 GB
RAM). As shown in Fig. 11, the RQM processing time
increases almost exponentially with respect to the size of
the image (or IF). It has a longer processing time compared
to the other enhancement algorithms,which is as a result
of the number of rotational decompositions and identify-
ing image statistics required to spatially enhance the EIT
image resolution. When IF = 4, the RQM processing time
is 3.54, 4.79 and 6.26 times longer than UM, AHE and MSR
respectively. Another reason contributing to RQM processing
time is the choice of decomposition kernel size. In order to
enable very deep decomposition, small kernels are utilized
to extract desirable local characteristics corresponding to,
e.g., edges and curvatures in the image. The RQM achieves
better performance but at the cost of processing time. The
RQM processing time could be accelerated, for example by
enlarging the rotation angle steps in the steerable filter, with
possible slight degradation in performance.

IV. CONCLUSION
The adaptive image enhancement proposed in this paper
using RQM is a valuable tool for improving resolution of
EIT images. RQM effectively utilizes a reverse approach of
EIT recording to evaluate the captured information with deep
rotational projection of EIT images in different directions

θε{0◦, . . . , 180◦ + 1θ . . . 315◦} and frequency sub-bands
(D1. . .D4 in Fig. 2). The deep decomposition approach helps
to derive statistical image information in specific directions
and sub-bands; therefore, the image data can be adaptively
weighted to superimpose high-order transitions and edges
resulting in higher resolution in the original images.

Two tests were designed to compare RQM with other
image enhancement methods (MSR, AHE and UM).
The first test compared the noise robustness of RQM using
the pixel detection ratio (PDR). The second test compared the
contrast improvement index (CII) of RQM. In both tests the
performance of RQM was superior. In a third test the RQM
was evaluated based on ElectrodesOpt to relate enhanced res-
olution to an equivalent number of electrodes. For noise-free
electrodes at {E16,E32 and E64},ElectrodesOpt showed that
the number of electrodes are reduced by 8, 10, and 15 respec-
tively at IF = 4. Alternatively, the image enhancement can
be interpreted as additional electrodes to transform them into
{E24,E42 and E79}. Two additional parameters were also
considered in ElectrodesOpt analysis including σN (0.025,
0.05 and 0.075) and interpolation factor (1 < IF < 16). The
noise tests showed that RQM assists image recovery and
optimal resolution enhancement occurs at higher grid sizes
(e.g. 64 × 64 at E16). The results potentially promise high
resolution and/or compact EIT systems which can be used in
clinical or portable applications.
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