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ABSTRACT 
 

 
 

 

Unmanned Ground Vehicles (UGVs) play a vital role in preserving human life during 

hostile military operations and extend our reach by exploring extraterrestrial worlds 

during space missions. These systems generally have to operate in unstructured 

environments which contain dynamic variables and unpredictable obstacles, making the 

seemingly simple task of traversing from A-B extremely difficult.  

 

Terrain is one of the biggest obstacles within these environments as it could potentially 

cause a vehicle to become stuck and render it useless, therefore autonomous systems 

must possess the ability to directly sense terrain conditions. Current autonomous 

vehicles use look-ahead vision systems and passive laser scanners to navigate a safe 

path around obstacles; however these methods lack detail when considering terrain as 

they make predictions using estimations of the terrain’s appearance alone. 

 

This study establishes a more accurate method of measuring, classifying and monitoring 

terrain in real-time. A novel instrument for measuring direct terrain features at the 

wheel-terrain contact interface is presented in the form of the Force Sensing Wheel 

(FSW). Additionally a classification method using unique parameters of the wheel-

terrain interaction is used to identify and monitor terrain conditions in real-time. The 

combination of both the FSW and real-time classification method facilitates better 

traversal decisions, creating a more Terrain Capable system. 
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CHAPTER 1 
INTRODUCTION 
 
 

 

1.1 Background 
 

In the early 20th century Czech writer Karel Čapek first used the word ‘Robot’ to 

describe the mechanical beings in his play Rossum's Universal Robots (Capek, Playfair 

et al. 1920). Following that, science fiction author Isaac Asimov (1950) wrote about a 

future where humans would coexist with intelligent robots that would follow set laws. 

Later in 1965 Intel co-founder Gordon E. Moore predicted that the capability of 

computing systems will grow exponentially (Moore 1965). This prediction, which later 

became known as Moore’s Law, led to a technological revolution at the turn of 

millennium and could be seen as one of the most significant factors in making advanced 

robotic systems possible. Today robots are omnipresent, used to carry out a variety of 

tasks from assembling components on the factory floor to cleaning the floors in our 

homes.  

 

Robots are generally used to carry out tasks where humans are either unwilling or 

unable to safely function. P.W Singer (2009) better describes this as the “three ‘D’s - 

Dull, Dirty and Dangerous”. Robots will happily do the dull repetitive tasks that we 

dislike without complaint and operate for extended periods of time in dirty and 

dangerous environments without losing concentration and needing rest. 

 

Modern systems have evolved to become highly capable and many industries have 

invested in robotic solutions because in some cases they are more accurate, productive 

and efficient than a human doing the same task (Miller, Atkinson 2013). Two industries 

standout at the forefront of advancing robotic technologies mainly because the systems 

they operate have more critical roles: the Unmanned Systems used to preserve human 

life during military operations and the Space Rovers used to explore unreachable 

worlds. 
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1.1.1 Unmanned Systems 
 

Robots are an integral part of 21st century military operations worldwide, better known 

as unmanned systems they are used to assist soldiers in their mission in order to keep 

them alive by informing them of any potential dangers before arriving at hostile areas, 

as well as keeping them away from perils on the battlefield when they arrive.  

 

There are a range of unmanned systems deployed by the military: Unmanned Aerial 

Vehicles (UAVs) provide aerial reconnaissance, Unmanned Ground Vehicles (UGVs) 

drive forward ground operations, Unmanned Underwater Vehicles (UUVs) monitor the 

seas and Unmanned Surface Vehicles (USVs) patrol the shores. These systems serve as 

an extension of the soldier’s capability on the battlefield and carry out many critical 

missions because if a robot can replace a soldier in one of the most hostile environments 

on the planet and becomes damaged or destroyed, then it is a far smaller price to pay 

than to risk human life. This was greatly realised during the recent conflicts in Iraq and 

Afghanistan where insurgents targeted coalition forces with small homemade bombs 

that could be hidden easily (usually by the roadside) and be detonated either remotely or 

by proximity; known as Improvised Explosive Devices (IEDs) they became the 

insurgents’ primary weapon and quickly became the single biggest killer of coalition 

troops (Schmitt 2004) accounting for 2,545 U.S. service member deaths since 2001 as 

reported by The Washington Post (2014). 

 

A typical tour in Iraq would see each team going on more than six hundred IED calls, 

diffusing two a day (Singer 2009). This would be done by skilled Explosive Ordnance 

Disposal (EOD) teams whom quickly became critical in the fight against IEDs. These 

valuable soldiers would get extremely close to volatile explosives that could detonate 

without warning and with zero chance of survival at that proximity if they didn’t 

succeed it would be fatal. There was a need for a better solution and in 2004 to counter 

these attacks, 150 iRobot Packbot UGVs (Figure 1.1) were deployed in Iraq to help 

EOD operations (Schmitt 2004).  
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Figure 1.1 – iRobot Packbot 510 UGV used for Explosive Ordnance Disposal. This robot 

soldier keeps its EOD operator at a safe distance from IEDs (iRobot 2014). 

 

This capable robotic companion was well received as it allowed EOD soldiers to 

operate at a safer distance while diffusing harmful devices, potentially saving dozens of 

lives in the process; and if it failed its mission then it meant that the (replaceable) 

machine got damaged or destroyed rather than the soldier getting killed (Figure 1.2). 

 

 
Figure 1.2 – Packbot #129 killed in action on April 8th 2004. Far better a robot gets 

destroyed than the loss of a human life (Matson 2010). 
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It was quickly realised that robots were helping to save multiple human lives which led 

to the number of robotic systems deployed on the ground in Iraq going from zero in 

2003, to 12,000 by the end of 2008 (Singer 2009). This countermeasure helped 

neutralize the lethal threat and as seen in Figure 1.3 the number of fatalities caused by 

IEDs began to fall.  
 

 
Figure 1.3 – IED Fatalities during the conflict in Iraq. IEDs were eventually neutralised with the 

introduction of more advanced counter measures including robots (iCasualties 2009). 

 

1.1.2 Space Rovers 
 

The late 20th century Space Race saw the launch of the first satellite, the first person in 

space and land a man on the moon, giving belief to the possibility of reaching new 

worlds. Today with the advancement of technology there are many Earth orbiting 

satellites, probes roaming outer space and a habitable International Space Station (ISS); 

however it is still beyond our reach to safely send a manned mission to another planet. 

Even though this hasn’t happened yet, we already possess a wealth of knowledge about 

the surface of our neighbouring planet Mars thanks to numerous robotic missions. 

 

The National Aeronautics and Space Agency (NASA) in collaboration with the Jet 

Propulsion Laboratory (JPL) have spearheaded robotic missions to search for signs of 

life on Mars. On July 4th 1997 after travelling 309 million miles, the Pathfinder 

spacecraft successfully landed on Mars and opened to deploy a small Space rover 

named Sojourner (Figure 1.4). Initially planned to operate for between a week to a 

month, Sojourner surpassed expectations and spent the next three months traversing 
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across 328ft of Martian terrain while conducting 15 chemical analyses of rocks and soil 

using special on-board instruments (Wilcox, Nguyen 1998). This mission provided 

invaluable data about the Martian environment and with an excess of 16,500 images 

sent back, offered a never before seen view of the red planet. 

 

 
Figure 1.4 – Sojourner drives onto the Martian surface for the first time. This demonstrated that 

robotic systems can help extend our reach (NASA/JPL 1999). 

 

The Pathfinder mission was a success and after analysing the data that was collected, 

Mars was seen as having once been more Earth-like than previously imagined. Images 

showed deep valleys within the craters, symbolizing that there could have once been a 

presence of water and therefore sustained life (Stoker 1998). NASA/JPL made plans to 

send better equipped rovers to carry out more advanced geological experiments to 

search for solid evidence that there is, or once was water on Mars (Squyres 2005). 

 

In 2003 NASA/JPL launched two identical Mars Exploration Rovers (MER) to opposite 

sides of the planet and on January 3rd 2004 Spirit successfully landed followed on 

January 24th 2004 by its twin Opportunity. Larger and more capable than their 

predecessor, they carried out more advanced experiments and sent back some of the 

highest resolution colour images ever seen of another planet, showing an immensely 

clear view of the Martian landscape. Figure 1.5 shows one such image which was 

described as “one of the most important findings by either rover” as it carried with it 

evidence that there once was water on Mars (Webster 2011). The white layer seen 

beneath the Martian surface in the image was exposed by Spirit’s wheel tracks and with 
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further scientific investigation using on-board instruments it was confirmed that the 

substance was nearly pure Silica usually found in hot springs and its formation would 

have involved a volcanic environment and water which could have provided favourable 

conditions for microbial life (Smith, Onstott 2011). Both rovers continued to gather 

further evidence while impressively exceeding their planned three month mission with 

Spirit operating for more than six years before going quiet and Opportunity still 

operating today over ten years later. 

 

 
Figure 1.5 – White Martian soil uncovered by Spirit. The rover’s wheel tracks expose proof that there 

once was water present on Mars (NASA/JPL 2009).   

 

With the discovery made by Spirit (Figure 1.5) it became apparent that there would be 

more valuable information about the history of Mars under the surface and so nearly a 

decade after the launch of the previous mission and with greater advancements in 

technology, NASA/JPL were preparing to launch the Mars Science Laboratory (MSL); 

a veritable giant compared to previous Mars missions as seen in Figure 1.6. The larger 

rover named Curiosity would include a scientific payload nine times heavier than 

carried by each of the twin rovers and be able to see better with a host of cameras for 

scientific analysis and navigation (Baker 2013). Most significantly, Curiosity was 

equipped with drill and laser systems to be able to examine geological features under 

the top layer. 
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Figure 1.6 – Three generations of Mars rovers. Engineers sit with (clockwise from 

bottom left) Sojourner, Spirit/Opportunity and Curiosity (NASA/JPL 2012). 

 

Curiosity successfully landed on Mars on August 5th 2012 and set out to carry out more 

detailed environmental experiments than before. After roaming the planet for six 

months Curiosity finally carried out its first sample drilling on a rock situated in the 

middle of what looked like a valley that would have once flowed with water. A sample 

of powdered rock was transferred from the drill to the rover’s scoop where it was 

delivered to on-board chemistry and mineralogy laboratories to be analysed (Figure 

1.7), the results of which confirmed evidence of an ancient lake. Curiosity is still 

operational today and has since found all the essential elements required for habitability 

to be present on Mars (Amos 2013). 
 

 
Figure 1.7 – Curiosity’s first sample drilling on Mars. The drill first penetrates the 

Martian surface before samples are collected and analysed (NASA/JPL 2013). 
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1.2 Motivation 
 

Robots have helped to save a countless number of lives in the battle against terror and 

searched for evidence of alien life on a distant planet; albeit great accomplishments they 

still require comprehensive commands in order to function and therefore need dedicated 

resources. This can be costly not only financially but more importantly to mission 

success because certain situations will require immediate decisions that cannot be made 

from a distance by an uninformed operator. Systems have to become more 

knowledgeable about their environment (increased situational awareness), be able to 

make immediate decisions accordingly (more autonomy) and possess the ability to cope 

with critical conditions (advanced configurations).  

 

This is primarily the case when having to identify and avoid (or overcome) perilous 

environmental obstacles that could cause the vehicle in question to fail; aerial systems 

will be affected by strong wind speeds and waterborne vehicles have extreme sea 

conditions to deal with, however UGVs have the hardest task of navigating their 

environment due to the range of terrain types within sometimes unknown and generally 

unstructured environments, that could include dynamic variables and unpredictable 

obstacles. This makes the seemingly simple task of traversing from A-B on the ground 

extremely difficult and a lack of information in an environment littered with potential 

pitfalls can be terminal. 
 

 
Figure 1.8 – Spirit embeds itself in soft Martian soil. The rover unknowingly drove 

into a sand trap ending the mission (NASA/JPL 2009). 
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This was the case for the Mars rover Spirit when it unknowingly became stuck in soft 

terrain where it stayed for the next eight months while engineers tried to extricate it 

(Figure 1.8). After numerous attempts to free it, they decided it was irrecoverable and 

three months later Spirit stopped communicating, ending the mission (Webster 2011). 

 

Another example can be seen during the first ‘Grand Challenge’ set by the Defense 

Advanced Research Projects Agency (DARPA) in 2004 to accelerate the development 

of autonomous UGVs for potential military exploitation. The challenge was to create a 

vehicle capable of autonomously traversing across 142 miles of the Mojave Desert and 

even though 15 teams made it to the start line, none finished the course with many 

teams becoming stuck in unforgiving terrain as seen in Figure 1.9 (Hooper 2004). 

 

 

 
Figure 1.9 – DARPA Grand Challenge UGVs getting stuck in rough terrain. Autonomous vehicles get 

into trouble due to a lack of real-time information regarding ground conditions (DARPA 2014). 

 
 

1.2.1 UGV Perception 
 

Over the past decade there have been a number of advancements in creating more 

perceptive UGVs. DARPA’s subsequent 2005 and 2007 Grand Challenges have helped 

develop advanced algorithms and navigation sensors, such as look-ahead vision systems 

and passive laser scanners, giving autonomous platforms the ability to map their 

environments and carry out on-board image processing to search for the safest path. 
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While these are great innovations, the ‘safe path’ determined by these systems might not 

be ideal in a military context because “the best route for covert missions will most likely 

not coincide with the easiest mobility route and timely mission accomplishment cannot 

be achieved if the platform has to spend its time searching for an easy path” (Rose 2002: 

76). The U.S. Department of Defense (DoD) state that “the ability of a UGV to navigate 

autonomously is largely dependent on the accuracy and robustness of its perception 

system” (Winnefeld, Kendall 2013, p87). This highlights the fact that current systems, 

albeit sophisticated, become ineffective when coping with adverse terrain conditions 

because they use passive look-ahead sensors to make decisions on terrain traversability 

based on the appearance and measurements of the top layer alone, which is fine when 

navigating a safe path across flat structured ground; however many military and space 

exploration scenarios (where these systems need to operate) include unchartered 

territories featuring unstructured terrain that could change without warning, exposing 

potential pitfalls under the surface. The DoD acknowledges that “current state-of-the-art 

UGVs are designed from the ground up to operate within assumed environments. If 

these assumptions are valid, the UGV often operates effectively, however when 

circumstances are different from assumed, the UGV will fail to operate as intended” 

(Winnefeld, Kendall 2013, p87). This could cause systems to use up (power) resources 

either by trying to drive through unfriendly terrain, or by looking for a safe path, 

potentially leading one of two terminal mission outcomes: becoming stuck or running 

out of power. This makes terrain the principal obstacle for UGVs and coping with it is 

paramount to mission success, emphasizing the requirement for a more comprehensive 

approach to measuring and coping with terrain conditions. 

 
1.2.2 Improving the Terrain Capability of UGVs 
 

This study is motivated by a broader research program aiming to create a more ‘Terrain 

Capable’ system that can directly measure the terrain, classify it and then choose the 

best configuration to traverse it, all in real-time; lowering the limitations on where the 

vehicle can go and increasing the system’s operational range (Figure 1.10). This is 

supported again by the DoD who state that “it is desirable to have a perception system 

that can adapt to various environments. To be able to adapt, the UGV must understand 

the context of its environment and recognize when that context changes” (Winnefeld, 

Kendall 2013, p87). 
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Figure 1.10 – The different ways in which to cope with terrain. Intelligent systems 

with advanced configurations can potentially go anywhere (Odedra, Prior et al. 2007). 

 

The development towards creating a more Terrain Capable system is split into two 

phases each with a hardware and software component, as seen in Table 1.1. This study 

focuses on Phase 1 by aiming to increase the system’s perception of the terrain and 

creating a unique method of classifying it in real-time. This approach aligns with the 

DoD’s Roadmap on Robotic Evolution (Figure 1.11) where Situational Awareness and 

Feature Identification are currently at the forefront of robotic developments; relating in 

this study to Terrain Perception and Terrain Classification respectively. 

 
Table 1.1 – Development phases required to create more Terrain Capable systems. Each of the two 

phases has hardware and software components that need further development. 

 

Phase 1 
Hardware Increased Perception: greater sense of environmental conditions. 

Software Enhanced Autonomy (part 1): on-line terrain classification. 

Phase 2 
Hardware Advanced Mobility: better choice of configuration options. 

Software Enhanced Autonomy (part 2): real- time configuration selection. 
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Figure 1.11 – DoD Robotic Evolution Roadmap. This highlights the development steps required to 

create autonomous systems and where we currently stand (Cambone, Krieg et al. 2005). 

 
 

1.3 Problem Statement 
 

In summary, current autonomous UGVs navigate their environments using passive 

look-ahead sensors for obstacle avoidance and path planning. These sensors however, 

are also used to (indirectly) sense the terrain and predictions on traversability are made 

using these inaccurate measurements. There are two problems with this, firstly the 

system has no way of validating initial terrain estimations and traversability predictions, 

and therefore the system has no way of evaluating accuracy in order to improve future 

predictions. Secondly the system lacks the ability to monitor immediate terrain 

conditions in real-time, meaning that if earlier predictions were wrong or terrain 

conditions suddenly change, the (uninformed) system will continue without warning, 

potentially causing it to become stuck. 
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1.4 Research Objectives 
 

The scope of this research was to establish a more accurate method of measuring, 

classifying and monitoring terrain in real-time. The aim was to develop a novel terrain 

sensing method to increase terrain perception by using a unique classification method to 

identify and monitor terrain in real-time.  

 

1.4.1 Research Questions and Hypothesis 
 

The hypothesis for this study is as follows: 

 
Data gathered from performance measurements of the vehicle’s reaction to the terrain 

(the interaction) can be used as a unique method of classifying terrain in real-time. 

 

The study was driven by the following research questions: 

 

1. What sensory modes have been utilised to identify terrain? 

2. What are the significant parameters during wheel-terrain interaction? 

3. How could new sensor technologies/methods be used to better identify terrain? 

4. What parameters can be utilised to classify terrain in real-time? 

 

1.4.2 Contribution to Knowledge 
 

This research proposes a new method of sensing and classifying terrain in real-time. The 

principle contributions to knowledge are summarised as: 

 

- A novel sensing method capable of directly measuring pressure distribution across 

the contact interface during wheel-terrain interaction. 

 

- An on-line terrain classification algorithm that uses unique parameters of the 

wheel-terrain contact interface to accurately identify terrain features in real-time. 

 
- A number of contributions made towards international research papers (listed in 

the Publications Section). 
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1.4.3 Boundaries and Assumptions 
 

The following boundaries and assumptions were considered for this study: 

 

a) The vehicle class is a small UGV < 50kg. 

b) The vehicle is wheeled. 

c) The wheels are rigid. 

d) The terrain is deformable. 

e) Single wheel-terrain model considered (not vehicle model). 

f) No heating and wearing factors are considered. 

g) No turning moments are considered. 

h) No slip or shear stresses are considered 

 
 

1.5 Thesis Outline 
 

Chapter 1: Introduction (this chapter) - introduces the topic area and discusses the 

motivation behind the study. The research objectives and contributions are outlined and 

the boundaries of the study are stated. 

 
Chapter 2: Terrain Sensing – is the initial literature review looking at elements of 

terrain and previous work carried out by various research institutions in the area of 

terrain sensing.  

 
Chapter 3: Proprioceptive Sensing – describes early empirical work carried out to 

identify terrain properties using internal measurements of vehicle parameters in reaction 

to terrain conditions. The chapter includes sensor research and an additional review into 

terrain properties, followed by the initial experiment. Finally the test results are 

discussed and conclusions drawn. 

 
Chapter 4: Methodology – discusses the research methods that were utilised to 

complete the main part of the study. The quantitative research methods, chosen 

experimental approach and variables of the study are highlighted. 
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Chapter 5: Terramechanics – is an additional review investigating the fundamentals 

of terrain mechanics and complex quantitative parameters of the interaction between the 

wheel and terrain.  

 
Chapter 6: Measuring the Wheel-terrain Interface – discusses the novel Force 

Sensing Wheel developed to measure the radial pressure distribution across the 3D 

contact patch of the wheel-terrain interface in real-time. 

 
Chapter 7: Terrain Sensing and Classification – presents the main empirical study, 

which was designed to determine potential relationships between terrain properties and 

features of the contact interface. The results are analysed and used to create the unique 

classification technique, which is outlined and tested. 

 
Chapter 8: Conclusions and Further Work – concludes the study by discussing the 

outcomes of the research, developments and experiment. The contributions to 

knowledge are highlighted and ideas for further work are presented. 
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CHAPTER 2 
TERRAIN SENSING 
 
 

 

2.1 Terrain 
 

Terrain has a great deal of unpredictability especially in unchartered areas. It is 

therefore vital for autonomous UGVs to be able to measure, classify and monitor 

ground conditions to avoid potential pitfalls. To fulfil the research objective and to 

create a novel method of sensing and classifying terrain, a deeper understanding of it 

was required. 

 

Terrain can be split into three types: solid, granular and liquid. Manufactured hard and 

flat roads made from materials such as concrete or tarmac are the best example of solid 

terrain. They have extremely good frictional properties and virtually no deformation, 

making them easily traversable. Granular terrain types, better known as soil, are those 

generally found off-road. These are classed as granular because the composition of 

natural soil contains percentages of three different types of solid grains: sand, silt and 

clay (Coleman, Crossley Jr 2004). The percentage of each grain type that a soil contains 

affects its textural properties and is used in geology to classify it, which is usually 

displayed in a Soil Triangle (Figure 2.1). 

 

Grain type will determine the soil’s textural properties, however the size of the grains 

have a greater bearing on the soil’s mechanical characteristics. This makes grain size 

more important from an engineering perspective and thus it is the main characteristic 

used by the International Organization for Standardization (ISO) to classify soil, which 

is shown in Table 2.1. 
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Figure 2.1 – Soil textural triangle. Soil texture is determined by the percentage of 

sand, silt and clay within it (Coleman, Crossley Jr 2004). 

 

 
Table 2.1 – Soil classification table from ISO 14688-1:2002 Geotechnical investigation and testing - 

Identification and classification of soil - Part 1: Identification and description (ISO 2002). 

 

Soil Fractions Sub-Fractions Symbols Grain Size (mm) 

Very coarse soil 
Large boulder LBo >630 

Boulder Bo >200 - 630 
Cobble Co >63 - 200 

Coarse Soil 

Gravel 
(Gr) 

Coarse gravel CGr >20 - 63 
Medium gravel MGr >6.3 - 20 

Fine gravel FGr >2 - 6.3 

Sand 
(Sa) 

Coarse sand CSa >0.63 - 2 
Medium sand MSa >0.2 - 0.63 

Fine sand FSa >0.063 - 0.2 

Fine Soil 
Silt 
(Si) 

Coarse silt CSi >0.02 - 0.063 
Medium silt MSi >0.0063 - 0.02 

Fine silt FSi >0.002 - 0.0063 
Clay Cl ≤0.002 
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With a number of grain types and sizes, a natural soil’s overall structure will typically 

contain void spaces that will be filled by air or water (Figure 2.2). The volume of air 

between particles and/or the amount of water retained by the soil (better known as 

moisture content) will adversely affect the terrain’s physical properties and therefore its 

behaviour, especially from a traversability perspective. These elements cause off-road 

terrain to possess ‘plastic’ properties that deforms when under load, impacting on the 

terrain’s ability to support a vehicle; known as Trafficability (Muro, O'Brien 2004). 

 

 
Figure 2.2 – Typical soil structure. Void spaces between particles are filled with air 

or water, which will affect the soil’s physical properties (Muro, O'Brien 2004). 

 

If the soil structure contains more than 23.2% water content then the terrain is classed as 

being in “a liquid state” (Bekker 1969), the third terrain type mentioned earlier. This 

viscous terrain has extremely poor traversability/trafficability characteristics because of 

its liquid behaviour. 

 

Other factors that will affect the terrain’s properties are climatic conditions such as 

weather. Rain for example can saturate the soil in water, instantly changing its 

properties and therefore its traversability characteristics. Terrain will therefore act 

differently during various weather conditions as seen in Table 2.2, where sixteen terrain 

types could be in up to forty-eight different states during three different weather 

conditions. This demonstrates that terrain characteristics can suddenly change without 

warning, highlighting the unpredictability of unstructured terrain. Other environmental 

factors that will affect terrain traversability are the gradient or slope of the land, and 

positive and negative obstacles. Positive obstacles include vegetation, rocks, fences and 

hills; negative obstacles include cliffs and valleys. 
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Table 2.2 – Table of terrain types and their properties. Terrain can be affected by climatic 

conditions such as weather, changing its traversability characteristics (Odedra, Prior et al. 2007). 

 
   Effect of weather 

<<
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r 
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>>

 Terrain 
type 

General surface 
properties Sun Rain Snow/ice

Sand sinkage, slippage hot hydrocolloid n/a 
Mud sinkage, slippage soft liquefaction hard 
Clay slippage, sinkage hard liquefaction slippage 

Rocks uneven, hard dry, hot slippage slippage 
Forest long grass, foliage, dazzle marsh hard 

Short grass can get tangled μ = 0.35 μ = 0.2 μ = 0.15 
Gravel loose, uneven, slippage dry, hot slippage slippage 

Dirt track dusty, level dry  liquefaction slippage 
Paved road gaps, flat, high friction μ = 0.7 μ = 0.5 μ = 0.08 

Asphalt flat, high friction μ = 0.8 μ = 0.4 μ = 0.06 
Concrete flat, high friction μ = 0.7 μ = 0.5 μ = 0.08 

 

 

2.2 Terrain Sensing 
 

UGVs must have a high level of perception regarding terrain conditions to facilitate 

autonomous operation. Previous work has been done in the area of terrain sensing, 

which can also be known as terrain classification, terrain trafficability or terrain 

traversability. Discussed here are some examples of work carried out in this area which 

is by no means a complete catalogue of all the work completed in the field, but a 

selection of works related to this study. 

 
2.2.1 Vision-based Sensing 
 

Research into terrain sensing can be seen as early as 1962 in the technical report 

Feasibility Study of Terrain Sensors and Terrain Sensing carried out by Emerson 

Electric for the U.S. Army. The objective of the report was to find an appropriate 

method of sensing terrain to provide information for the actuation of an active vehicle 

suspension system, in order to allow ordnance military vehicles to maintain greatly 

increased speeds over cross-country terrain (Gilmore, Ramsey et al. 1962). The study 

elects to use a passive optical ranging technique to measure the profile and consistency 
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of the terrain ahead of a cross-country military vehicle. Analysis is carried out on the 

feasibility of such a system and “its effectiveness in determining terrain contour and 

consistency under various climatic, tactical and terrain conditions” (Gilmore, Ramsey et 

al. 1962, p2). The report concludes by saying that this method does meet tactical and 

environmental requirements but highlights that lighting conditions such as time of day 

and atmospheric conditions such as fog, haze, dust, rain or snow can degrade the 

performance of optical instruments. 

 

With the advancement of optical technology and image processing techniques, vision 

based sensing has been refined over the years. Systems were developed to use stereo 

cameras and triangulation to create three-dimensional images, used to measure their 

environments for path planning and navigation. Work done by Lacroix et al (1994) 

shows an example of a system that looks at the path ahead and segments the images into 

simple cells based on three–dimensional image data. These cells are labelled into four 

categories: flat, uneven, obstacle and unknown; using certain terrain characteristics such 

as point density, altitude, and mean vector. This classification method is then used to 

make navigational decisions. 

 

A similar approach was taken by Gennery (1999) who also suggested using the analysis 

of a three-dimensional data produced by a stereo vision system to plan a path for a 

vehicle. The aim of this study was to produce more robust results from data classed as 

“sparse and of varying accuracy” generally expected from this type of sensing method. 

This was done by producing estimates for slope and roughness of each data point at 

equally spaced grid points to compute the (power) cost of driving over each grid point. 

A parallel search algorithm was then used to find the path of minimum cost. 

 

Seraji and Howard (2002) also use a vision-based system to decide on the best route but 

use a novel measure of terrain traversability. They create a traversability index using 

fuzzy rules to detect terrain using four key elements: roughness, slope, discontinuity and 

hardness. Roughness indicates coarseness and surface irregularity; slope looks at the 

surfaces incline/decline; discontinuity looks at the end of the surface such as cliffs; and 

the surface hardness is measured to see how it affects traction. The rules for each set are 

simple, for example roughness is either smooth, rough or rocky and slope is classified as 
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flat, sloped or steep. The system uses this information to detect the terrain’s 

traversability and identifies it simply as a low, medium or high risk. 

 

These examples show that for vision-based sensing the algorithms used for image 

processing are vital. This has led to systems utilising more complex processing methods 

to classify terrain. Shirkhodaie (2007) work in this area is a good example of this, where 

a number of images are taken from different poses and are fused together with data from 

range sensors and environmental landmarks. The terrain is then classified using a fusion 

of three different techniques: a rule-based terrain classifier, a neural network based 

terrain classifier and a fuzzy-logic terrain classifier. Each terrain classifier divides a 

region of natural terrain within the image into finite sub-terrain regions, and then it 

classifies the terrain conditions exclusively within each sub-terrain region based on 

terrain visual clues. 

 
2.2.2 Developments from the DARPA Grand Challenge 

 

The winner of DARPA’s second Grand Challenge in 2005 was Stanley, a modified 

Volkswagen Touareg from the University of Stanford, who crossed the line in the 

fastest time after traversing the rugged off-road course in a little less than seven hours 

(Orenstein 2005). Terrain sensing was a vital part of the systems successful traversal of 

the 132-mile course. Stanley was equipped with five single-scan laser range finders 

mounted on the roof, tilted downward to scan the road ahead for short and medium 

range obstacle avoidance, illustrated in Figure 2.3.  

 

 
Figure 2.3 – Stanford’s Stanley scanning the road ahead. Laser scanners mounted on the roof of the 

vehicle scan the environment to detect obstacles and adverse terrain (Thrun, Montemerlo et al. 2006). 
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The point cloud data acquired by all the different sensors is then positioned into the 

“global coordinate frame according to the estimated pose of the vehicle” (Thrun, 

Montemerlo et al. 2006, p669) resulting in a 3D map of the surrounding environment as 

seen in Figure 2.4. This data is also organized into a 2D surface grid where each point is 

given one of three possible values: occupied, free, and unknown. The information is 

then used to decide on traversability by creating a “final drivability map that is provided 

to the vehicle’s navigation engine” (Thrun, Montemerlo et al. 2006, p669). 

 

 
Figure 2.4 – 3D map of the area surrounding the vehicle. Data gathered from various sensors is overlaid 

to create an accurate three-dimensional model of the environment (Thrun, Montemerlo et al. 2006). 

 

In addition to the laser scanners, stereo cameras are used to look beyond the laser range 

to make predictions on features further afield; however these camera images alone are 

not reliable enough for robot navigation. To combat this, point cloud data from the laser 

scanner is overlaid and the system uses machine learning algorithms to validate 

decisions and grow with experience. With adequate training then more accurate 

predictions are made regarding the area beyond the laser range so that the vehicle can 

travel and operate at a greater velocity. 

 
2.2.3 Extraterrestrial Systems  
 

Terrain sensing is crucial to extraterrestrial planet exploration because systems have to 

roam unknown environments containing benign terrain, and with communication 

limited to twice a day then the rover has to have the ability to cope with situational 

changes. 
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Early work by Volpe, Estlin et al (2000) from the Jet Propulsion Lab (JPL) looked to 

employ stereo imagery techniques similar to those previously discussed, to give the 

system some on-board decision making capabilities; alleviating the burden on ground 

controllers found during the previous Pathfinder mission. Long range navigation 

planning is done by ground operators however while traversing along this path the 

system only has an envelope of 20 metres (at best resolution) of the immediate 

environment in front of the rover. The rover breaks down the overall goal by processing 

the stereo imagery within that range to form a partial panorama and elevation map of 

the terrain in the desired direction (Figure 2.4), it then “selects a path through the terrain 

to the edge of the effective stereo range, and repeats the process until the goal is 

achieved” (Volpe, Estlin et al. 2000, p1). This method was successfully deployed and 

used on the 2004 Spirit and Opportunity Mars rovers. 

 

 
Figure 2.4 – Partial panorama and terrain elevation map. A terrain elevation map is created from stereo 

imagery and used for short range path planning (Volpe, Estlin et al. 2000). 

 

Further work towards terrain sensing for planetary exploration has been carried out by 

Iagnemma, Shilby and Dubowsky (2002) from the Massachusetts Institute of 

Technology (MIT) who look at terrain classification, taking into account vehicle 

capabilities such as mobility. They propose a novel approach of ‘estimating’ parameters 

of the terrain on which the rover is currently traversing, by measuring rover-based 

properties such as torque and wheel angular velocity. Simplified forms of equations 

from the study of terrain mechanics, known as Terramechanics, is used to predict 

terrain properties such as cohesion and internal friction angle. This method not only 
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helps characterise terrain and predict traversability, but also enhances the understanding 

of planetary surface composition. 

 
2.2.4 Reaction-based Sensing  
 

The work discussed above demonstrates that using measurements of the vehicle’s 

reaction to terrain conditions is a more accurate method of classifying the terrain, 

especially for traversability calculations. Sadhukhan (2004) also takes this approach by 

using internal sensors to classify terrain. A novel algorithm is proposed that uses the 

vehicle’s internal sensors to measure vibration and noise to categorize the terrain type 

being traversed.  

 

Leppanen et al (2008) propose that terrain slope and roughness are the main 

characteristics that express the geometry of the terrain. They emphasise that touch is a 

better method of sensing the terrain surface because this could potentially be hidden 

under snow or vegetation and other methods would fail to accurately measure it. They 

use a hybrid wheel-leg robot to determine the quality of terrain by measuring the 

vertical, horizontal and rotational strain forces affecting its wheels or feet. The 

measured parameters are then used for mapping, path planning or to select the best 

mode of locomotion. 

 

Brooks and Iagnemma (2007) use a combination of visual and vibration-based sensing 

at the wheel-terrain interaction to classify the terrain. A belly-mounted camera looks at 

the point where the wheel and terrain interact and classifies the terrain based on the 

image alone which proved to be inaccurate. Vibration data is then used to supply 

‘training data’ for the visual classifier, which increased the accuracy of classification 

predictions. They state that stereo vision is a good method of remotely detecting 

environmental (geometric) hazards such as large rocks but “little research has addressed 

remote sensing of non-geometric hazards, such as the loose drift material in which the 

Mars Exploration Rover Spirit became entrenched in” (Brooks, Iagnemma 2007, p1). 
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2.3 Discussions 
 

As discussed, off-road terrain generally contains granular elements which include a 

number of variables that determine the terrain’s physical properties. The large number 

of different soil types, each with very different characteristics, are ever-changing with 

climatic conditions; meaning that the terrain’s ability to support a vehicle could 

suddenly change without warning, demonstrating the highly unpredictable nature of 

terrain. This highlights the need for autonomous systems to be able measure the terrain 

and monitor for situational changes. 

 

The review of previous work shows that vision and radar systems are predominantly 

used for terrain sensing, which look ahead at the terrain and ‘estimate’ terrain conditions 

to make traversability decisions. This method takes into account larger geometric 

obstacles within the environment and broader terrain features for path planning and 

navigation; however more detailed terrain parameters that affect traversability are 

overlooked. 

 

Work on reaction-based sensing of the vehicles internal conditions, also known as 

Proprioceptive sensing, take into account direct terrain parameters during interaction. 

This is far more valuable when classifying terrain from a traversability perspective 

because a vehicle can manoeuvre better over a surface that it has more knowledge 

about. More direct terrain measurements can also be used to ‘train’ learning algorithms 

to validate earlier estimations made by look-ahead sensors, creating a system that will 

make more accurate predictions with experience. 
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CHAPTER 3 
PROPRIOCEPTIVE SENSING 
 
 

 

3.1 Additional Research 
 

3.1.1 Sensor Review 
 
A sensor review was completed in order to get an insight into technologies that could be 

exploited to directly sense terrain and its elements. This helped to recognise the range of 

current sensor technologies available; however it was realised that finding the right 

sensor requires knowledge of what elements need to be sensed. This led to a further 

study into what terrain parameters could be measured, which is discussed later. This 

helped focus the initial sensor list which contained 150 sensors down to 10 sensors that 

could potentially be utilised to sense terrain, as seen in Table 3.1 below. 
 
Table 3.1 – Table of the Top 10 sensors that could be utilised to sense terrain parameters. 

Sensor type Used to measure How it could be used to sense terrain 

Tilt/Gyro Angle Could measure the slope or gradient of the terrain. 

Contact Contact Used to measure the contact between the vehicle 
and terrain. 

Strain Gauge Force/moment Measuring the force between vehicle and terrain. 

Hygrometer Humidity The difference in humidity could help define terrain 
type. 

Contact Image (Scanner) Contact image Could be utilised to scan an image of the contact 
area. 

Impedance Moisture Measuring the terrains moisture could help 
differentiate its type. 

Laser Rangefinder 
(LADAR) 

Proximity/distance  
(3d scanner) Used to build up 3D image of the terrain. 

Acoustic Sound Measure the sound difference across various terrain 
types. 

Piezoelectric 
accelerometer Vibration The vibration feedback could define the surface 

roughness. 

Stereo camera 3d image A stereo image could be used to build an accurate 
3d image of the terrain. 
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Further work was done to analyse the suitability of these sensors by looking at attributes 

such as their size, weight, cost, availability and whether they are contact or non-contact 

as well as their range and resolution. From this analysis, certain sensors were chosen for 

the initial experiment, discussed later in this chapter.  

 

3.1.2 Terrain Parameters 
 

Unstructured off-road terrain contains many different elements (as presented in the 

previous chapter) which required further investigation. Soil properties, test methods and 

even different terminologies used across many industries were looked into and a large 

number of measurable properties and test methods were discovered (listed in Appendix 

A). This list was condensed to a top 20 list of measurable properties and possible test 

methods that could potentially be used to support the research, seen in Table 3.2. This 

investigation informed the sensor research discussed earlier by highlighting what terrain 

parameters could be sensed. 

 

3.1.3 Testing Methods 
 

In addition to looking at sensor technologies and terrain parameters, research was 

carried out into what tests are done on off-road vehicles to validate them. Millbrook 

Proving Ground is the main U.K centre that carries out these tests using specialist 

vehicle test and development facilities to approve off-road vehicle capabilities. They use 

specific test specifications including environmental obstacles such as hills and ditches, 

as well as tough terrain types such as sand and gravel. This research was initially done 

to search for any existing terrain classification lists; however the main outcome of the 

study was the understanding that certain (environmental) conditions such as slope and 

gradient of the ground or positive/negative obstacles such as hills and ditches, are just as 

important to vehicle performance. 
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Table 3.2 – Table showing the Top 20 soil properties and test methods. 
 

Soil Property Description 

Friction Angle resistance due to roughness of surfaces. 

Permeability rate of seepage - linked to hydraulic conductivity. 

Porosity a measure of the void spaces in materials. 

Dielectric permittivity relating to a materials ability to transmit (or permit) an electric 
field. 

Density the ratio of the amount of matter in an object compared to its 
volume (mass per unit volume). 

Bulk density a property of particulate materials relating to the mass of many 
particles of the material divided by the volume they occupy. 

Reynolds' dilatancy is the observed tendency of a compacted granular material to 
dilate (expand in volume) as it is sheared. 

Deformation relating to the shear, sliding, distortion and compression under 
load. 

Shear Strength maximum strength of soil at which point significant plastic 
deformation (or yielding) occurs due to stress. 

Plasticity the point at which the material changes or deforms. 

Moisture content the percentage of liquid water. 

Triaxial shear measurement of the mechanical properties of many deformable 
soils.  

Test method/equipment Description 

Hydrometer an instrument used to measure the specific gravity (or relative 
density) of liquids. 

Standard penetration test used to determine the geotechnical engineering properties of 
soil. 

Cone penetration test test method consisting of pushing an instrument cone tip into 
the ground at a controlled rate. 

California Bearing Ratio (CBR) another penetration test measuring pressure required to 
penetrate soil with a standard sized plunger. 

Atterberg limits  
used to measure nature of soil; soil is defined by its moisture 
content for which there are 4 states -solid, semi-solid, plastic 
and liquid. 

Atterberg limits - shrinkage limit relating to water content where the loss of moisture results in 
the reduction of volume. 

Atterberg limits - plastic limit when soil starts to exhibit plastic behaviour. 

Atterberg limits - liquid limit relating to water content where a soil changes from plastic to 
liquid behaviour. 
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3.2 Experimental Design  
 

3.2.1 Rationale  
 

The objective of this experiment was to identify the relationship between terrain and 

vehicle performance. A data collection instrument in the form of a sensor rich vehicle 

platform was used to measure variables of the vehicle-terrain interaction with the aim to 

use the data gathered from the elements relating to vehicle performance during various 

terrain scenarios to search for a unique method of terrain classification. 

 

3.2.2 Variables 
 

Since this experiment related to the effect the terrain has on the vehicle, the terrain was 

the independent variable with the elements pertaining to vehicle performance being the 

dependant variables. The independent variables were the terrain’s slope, gradient, 

surface roughness and surface continuity (also known as topology). The dependant 

variables were those affected by the independent variables, which in this case were the 

vehicle’s power consumption (or rolling resistance), ride quality (or vibration), and 

orientation (or tilt angle). These variables were measured using proprioceptive sensing; 

Table 3.3 shows how the measured vehicle properties relate to the terrain variables.  

 
Table 3.3 – Selected properties of the interaction and how they are measured. 

 

Property to be measured Method 

Rolling Resistance 
The vehicles power consumption is affected by the rolling resistance 

which can be identified by measuring the current draw 
(Taking slope/gradient into consideration).  

Slope Vehicle tilt angle (Around the x-axis). 

Gradient Vehicle tilt angle (Around the y-axis). 

Surface Roughness Measured by the frequency of suspension travel  
(Rate of vibration). 

Topology Measured by the suspension stroke 
(Amount of travel). 
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Rolling resistance will greatly affect vehicle performance because it will cause an 

increase in the vehicles power consumption. This was measured using a current sensor. 

Linear potentiometers at each wheel were used to measure the frequency of the 

suspension to measure the roughness of the surface, and the suspension stroke used to 

measure its topology. Alongside these measurements, the vehicles orientation was 

measured using tilt sensors in order to monitor the terrain’s slope/gradient. Further 

information on the selected suite of sensors that were used on the vehicle platform can 

be seen Appendix B. 

 

3.2.3 Control Variables 
 

In order to keep the tests fair, other variables were controlled. The control variables 

were those of the vehicle that influenced vehicle performance, which were the vehicle’s 

mass, power input, distance travelled, suspension properties (spring rate/stroke length), 

centre of gravity, wheel size, and tyre deflection. Note that speed and time are variables 

that weren’t controlled; this is because controlling them would have affected the results 

pertaining to power consumption. Instead the power input and the distance travelled was 

controlled, and the speed/time was dictated by how hard the vehicle was working. This 

gave a better measure of vehicle performance. 

 

3.2.4 Sampling (Site Selection) 
 

For comparability this experiment involved a test being carried out to gather a (datum) 

set of results in order to compare to the results of the other tests. The datum set of 

results were gathered by driving the platform across an indoor sports hall with a 

laminated floor. This was selected as the controlled test because it is flat and level and 

had the least effect on vehicle performance, making it ideal to compare to other terrain 

test results. 

 

For the main experiment, terrain types were chosen that each represent one of three 

main divisions: hard, soft and loose terrain. Site selection included a tarmac road (hard 

terrain), a grassy bank (soft terrain) and gravel (loose terrain). These were chosen to 

ensure equal representation of the three main divisions of terrain to give comparable 

results. 
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3.2.5 Sample Size 
 

The sample size was kept to three runs for every test. This can be considered as a low 

sample size, however it was sufficient for this experiment because the aim at this stage 

was to recognise and measure the effect terrain has on vehicle performance and 

therefore the degree of accuracy of these experiments didn’t need to be high. The choice 

of three runs can also be justified by the outcome of initial tests which have shown that 

by the third run there was a low degree of variance between results, which can be 

classed as the saturation point. Finally the sample size needed to be kept low in order to 

limit intervening variables, yet to be discussed. 

 

The distance of each run was set to 5 metres to provide a regulated sample. This helped 

to cap the amount of data being gathered, which was necessary because only enough 

data needed to be obtained to identify the terrain type and too much data would have 

overwhelmed data processing and analysis. Additionally the available length of regular 

terrain at some of the test sites was limited. 

 

3.2.6 Experiment Instrumentation/ Test-Rig 
 

The instrument used in this experiment was a sensor rich vehicle platform. An off-the-

shelf vehicle was selected as the test-platform that would represent the size and weight 

of the UGV class this study is focused on. This was in the form of the TRAXXAS E-

Maxx (Figure 3.1), a highly capable 1/10 scale radio controlled off-road vehicle which 

was selected because it was affordable and sufficient to house the relevant sensors. 

 

3.2.7 Hardware Developments 
 

The platform was equipped with a suite of sensors used to measure various states of the 

vehicles reaction to the terrain conditions. Modifications were carried out in order to 

integrate these sensors (Figure 3.2), linkages and support brackets to connect the linear 

potentiometers to the suspension were added, tilt sensors were correctly positioned, and 

a flat panel was added to house the electronics and hold the additional power source for 

the sensors.  
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Figure 3.1 – The TRAXXAS E-Maxx off-road vehicle. This highly capable platform has 

been selected for the initial terrain interaction experiment (TRAXXAS 2014). 

 

 

 
Figure 3.2 – Final modified test-rig/platform. Modifications have been made to the original 

chassis in order to house all the sensors, electronics and additional power source. 
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With the addition of this extra mass, the standard suspension was found to be 

insufficient, therefore a new set of dampers and springs were sourced and installed, 

which gave better feedback. A method of indicating when to start and stop logging data 

was also added to the platform, which needed to be done accurately and kept the same 

throughout the experiment in order to eliminate inaccuracies. This was done using an 

Infrared (IR) sensor which was placed on one side of the platform. This sensor looked 

for vertical markers at the start and finish placed exactly 5 metres apart, which told the 

system when to start and stop logging the data. The full range of all these developments 

can be seen in Appendix C. 
 

3.2.8 Gathering/Storing Data  
 

The system needed to be able to manage the sensors, gather data and then store it on-

board to be analysed off-line; for which the PICAXE microcontroller and an EEPROM 

chip were selected. The PICAXE microcontroller was programmed in order to manage 

the sensors and read data at the correct time, as well as send the data to the EEPROM 

for storage. An EEPROM memory chip was used to store the data so it could be 

accessed offline as well as act as a failsafe in case of a power failure. The power source 

for all the electronics was kept separate from the drive system’s power source. This was 

because the drive system has a greater current draw which would not only drain the 

power source quicker, but could potentially affect the sensors performance and create 

false data. Each of the sensors were wired directly into the PICAXE which supplied 

them with the correct (regulated) voltage, and the data read from them was stored on the 

EEPROM. 

 

3.2.9 Constraints and Limitations 
 

Weather is an intervening variable that could affect the characteristics of the terrain and 

consequently the vehicle’s performance.  It has already been discussed that sample size 

was kept low to help limit differences within the same patch of terrain. Additionally 

tests over the same type of terrain were carried out successively during the same day at 

the same time.  
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Another constraint within the experiment was with the capabilities of the test 

equipment. The first was the limitations of the sensors such as their resolution and 

reliability. Secondly, the range of the vehicle in terms of battery capacity because as it 

dissipated the power input would also drop, affecting the speed and time taken during 

the tests. This also limited the window in which successive tests could be carried out 

and is another reason why sample size was low.  

 

The final and most significant constraint was with the PICAXE microcontroller which 

was selected as an affordable option that could be easily integrated, however its 

capabilities are limited in terms of sampling rate with a maximum clock speed of 

64MHz, therefore it cannot control and monitor many complex situations; making its 

reliability and repeatability questionable. 

 

3.2.10 Calibration Test (error elimination) 
 

Once integrated, the sensors needed to be tested and calibrated to eliminate any errors 

and help find the relationship between raw data and actual values to assist in the data 

processing stage. To do this a test runway was developed with an obstacle of known 

dimensions (seen in Figure 3.3). The platform was driven over the obstacle and data was 

successfully logged and processed off-line. The raw data gathered from these calibration 

tests have been used to calculate actual measurements and create a set of formulas that 

are used to process data gathered from the main experiment. The results from this 

calibration test are displayed in Appendix D. 

 

 
Figure 3.3 – Obstacle used for calibration tests. A ramp of known dimensions was 

used to calibrate the sensors and help convert raw data into meaningful measurements. 
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3.2.11 Experiment Procedure/Protocol 
 

The test procedure consisted of the vehicle platform being set-off 1m before the start 

marker (to account for acceleration); it then drove 5m in a straight line and in a single 

direction across the selected terrain while logging the sensor data. Once it reached the 

finish marker the logging of data automatically stopped and the vehicle drove another 

metre before stopping (to account for deceleration). This procedure was carried out 

three times in succession over all sites before the data was downloaded for review, 

processing and analysis.  

 

3.2.12 Displaying the Results 
 

After all the tests were completed, the data received was downloaded and organised for 

processing. The raw sensor values were then converted to actual data, calculated using 

the formulas previously conceived from the calibration tests. The average of the data 

received from the three runs of each terrain test was taken and arranged graphically for 

comparisons to be made. The information displayed on these graphs includes the sensor 

data (performance) versus the time taken to traverse the 5m site. For each test there are 

two graphs, the first includes the suspension data, and the second includes the current 

and tilt angle data. This culminated in a graph comparing the data gathered from all 

terrain types using the same data set. 

 

3.3 Results and Analysis 
 

The full range of results from these experiments is also displayed in Appendix D. They 

validate the hypothesis that performance measurements (in this case using 

proprioceptive sensing) can be used to classify some terrain conditions. Data obtained 

from suspension stroke can be used to determine the surface roughness (topology) of the 

terrain (Figure 3.4). The frequency of the stroke is used to measures the vibration 

reaction (or turbulence) caused by crossing the terrain, which helps determine surface 

roughness. Additionally the variance of the suspension stroke can be used to determine 

how uneven the surface is; for example the stroke variance across a flat tarmac road was 

±2mm, compared to gravel which showed a variance of ±6mm. 
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Figure 3.4 – Graph comparing suspension stroke data. The results show that suspension stroke 

measurements can be used to classify terrain surface properties (Odedra 2011). 

 

In addition to suspension stroke measurements there were also current draw and tilt 

angle results. The current draw displays how hard the vehicle had to work in order to 

cross the terrain, and the tilt angle informs of the vehicles orientation due to the 

slope/gradient of the terrain. The current draw results not only display the affect the 

terrain had on the vehicle but are used to determine power consumption which is used 

for efficiency and range calculations. The results from the current draw measurements 

demonstrated that various terrain types affect the vehicle’s performance at different 

rates and can therefore be used to classify terrain types using a ‘difficulty rating’. 

Current draw will ultimately tell you how hard the vehicle had to work to cross the 

terrain and therefore is the ultimate measure of performance; however a rise in current 

draw could also be caused by environmental conditions such as the slope/gradient, 

which do need to be accounted for but aren’t direct terrain properties. Tilt angle was 

therefore used to measure the vehicle’s orientation which would be affected by slope 

and gradient. This was then used to distinguish whether a rise/fall in current draw was 

due to terrain properties or environmental conditions.  
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In summary, the state of the surface can be recognized in terms of how level it is and its 

roughness by using the suspension stroke data; and the measurement of the vehicles 

power consumption can help to detect the affect the terrain has on the vehicle, taking 

external factors into consideration such as slope/gradient that affected vehicle 

orientation. To conclude, this method of detecting the vehicle’s reaction to terrain 

properties can be used to determine terrain types and classify them using a difficulty 

rating using the two key parameters discussed: the surface type and the rate at which it 

affects the vehicle. 

 

3.4 Discussions 
 

The additional research highlighted the measurable terrain conditions and what sensor 

technologies could be exploited to measure them. The previous review of terrain 

sensing and the subsequent research into testing methods has shown that the conditions 

which affect vehicle performance can be used to classify terrain. It was proposed that 

these parameters could be measured by monitoring the vehicle’s performance while it is 

traversing the terrain, which was confirmed through experimentation. The results 

gathered from the tests carried out using the test-rig/platform was extremely useful in 

validating the theory that the interaction will cause a reaction to the vehicle and it’s 

performance, which can be measured and used to identify the properties of the terrain 

and environment. The results were scrutinised off-line and the differences across 

various terrain types were identified, which helped classify the terrain type. 

 

This initial experiment validated the possibility of using performance data from the 

vehicle-terrain interaction to classify terrain; however using proprioceptive sensing 

lacks accuracy, reliability and the ability to measure direct elements of the terrain. This 

area required further exploration with greater rigor in order to help develop a novel 

method of directly measuring terrain conditions. A further investigation was carried out 

into the area of terramechanics (Chapter 5) to better understand the complex parameters 

of the direct wheel-terrain interaction to find a unique method of gathering more direct 

quantitative data (Chapter 6). Additionally more scientific methods and tools are utilised 

to process and analyse collected data, and used to create a unique algorithm capable of 

more accurately classifying terrain (discussed in Chapter 7). 
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CHAPTER 4 
METHODOLOGY 
 
 

 

“Quantitative research is explaining phenomena by collecting numerical data that are 

analysed using mathematically based methods” (Aliaga, Gunderson 1999). 

 

The primary aim of this study was to develop a novel method of measuring and 

classifying terrain in order to increase UGV system’s perception and understanding of 

terrain conditions. This was done using quantitative research methods and an 

experimental approach, discussed further in this chapter. 

 

4.1 Formulating a Research Problem 
 

An extensive research study was carried out into the topic area in order to formulate a 

definitive research problem. The initial literature review helped to understand the topic 

area as well as highlight opportunities to contribute new knowledge. This focused the 

study towards a specific problem within the field of UGV development; identified as a 

UGV’s ability to cope with terrain. Following the review, a better understanding of the 

problem allowed the main concept of the study to be derived, a hypothesis to be 

formulated and specific research questions to be generated; bringing clarity to the 

research problem. 

 

In order to have a deeper understanding of the research problem and to further help 

answer the research questions, a second more in-depth review into the area of 

terramechanics was carried out. The aim of this additional study was to further focus the 

study on specific aspects of the research problem by gaining a better understanding of 

the properties pertaining to the wheel-terrain interaction; in particular the measureable 

variables within the interface which led to the construction of a research design that was 

used to validate the hypothesis (Kumar 2005). 
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4.2 Conceptualising a Research Design 
 

There were two main functions of the research design, the first was to help identify the 

relevant methods and operational procedures in order to complete the study and the 

second was to help ensure the quality and validity of these procedures in order to 

accurately answer the research questions.  

 

4.2.1 Variables 
 

Before selecting the correct research design method, the variables within the study 

needed to be recognised. Creswell (2003) discusses how there are two main types of 

variables to consider: independent variables which influence or affect outcomes, and 

dependant variables which depend on, and are influenced by the independent variables. 

Additionally the control variables need to be taken into account, which are those that are 

constrained and kept the same throughout the study to ensure accuracy. Kumar (2005) 

best summarises this by stating that during the study the independent variable(s) need to 

be allowed to have the maximum effect on the dependant variable(s), while the effect of 

extraneous and chance variables are minimised. 

 

The preliminary experiment discussed in Chapter 3 focused on variables of the vehicle-

terrain interaction. For the main study however the independent, dependant and control 

variables were derived from properties of the wheel-terrain interaction; and the measure 

of their relationship was paramount to the outcome of the study. 

 

4.2.2 Research Design Method 
 

With the existence of quantitative variables and due to the scientific nature of the 

investigation, the type of research design method this project relates to is experimental. 

There are many types of experimental design methods which all involve data being 

gathered during a series of experiments. This study employed the matched-control 

method where one experiment was considered as a controlled test and the others 

experimental. This type of method was selected because it is systematic in manipulating 

and controlling one or more of the variables in order to measure the change in others 
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and then relating the results to those from the controlled case. This was ideal for 

measuring the difference between terrain experiments in this study. 

 

This method is sometimes classed as challenging because of the difficulty in selecting a 

suitable variable as the basis for matching when more than one variable has to be 

manipulated. The selection of this method was justified however because the increased 

complexity of the variables formed the basis of the unique method of terrain 

classification, the principal aim of this study. 

 

4.3 Constructing an Instrument for Data Collection 
 

“There are two major approaches to gathering information about a situation, person, 

problem or phenomenon. Sometimes, information required is already available and need 

only be extracted. However, there are times when the information must be collected” 

(Kumar 2005, p118). 

 

This approach lends itself to two types of data: primary and secondary. Primary sources 

of information are ‘extracted’ by interrogating or observing the subject, whereas 

secondary sources of data collection are in the literature of previously collected data. 

Secondary data from previously documented work is generally easier to obtain however 

its validity and reliability is always questionable and with the fast pace of technological 

developments within the field of robotics, secondary data can quickly become dated and 

obsolete; highlighting the need for collecting new (primary) data within this project. 

There are three primary data collection sources: observation, interviewing and 

questionnaires; however due to this project not including a human element, the only 

way to gather new data was with the observation method. The observation in this study 

was of the terrain, which could have been made under two main conditions: natural 

which requires observing the subject in its natural operation/environment, and 

controlled which includes introducing a ‘stimulus’ for the subject to react to and 

observing the reaction. With the primary focus of this study being on the wheel-terrain 

interaction then the controlled method was deployed where the vehicle was introduced 

as the stimulus and the measure of the terrain at the wheel-terrain interaction was 

scrutinised to help classify the terrain.   
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4.3.1 Recording the Data 
 

During the experiment ‘observations’ needed to be recorded, which in this study were of 

the parameters pertaining to the wheel-terrain interaction. There are a number of 

different observation recording methods including the narrative method where the 

observation is merely described, the scaling method which allows the observer to rate 

various aspects of the interaction; however for this study the best method of recording 

data was using data capturing equipment/instruments.  

 

This method was ideal for this study firstly because it is a more accurate way of 

measuring quantitative variables and secondly it allows more complex variables to be 

measured that could not be done any other way. Another advantage of using this method 

is the ability to revisit and examine the data long after the experiment has been 

completed (off-line analysis), which means that the process of data analysis can be more 

thorough. 

 

4.3.2 Constraints 
 

The final elements that needed to be considered when constructing the instrument for 

data collection were the constraints, such as the limitations of test equipment and 

facilities. The limitations were dictated in this case by the availability of certain terrain 

types and the capabilities of the test equipment such as accuracy, reliability and 

resolution to name but a few. All these elements established the validity and reliability 

of the data collection method and quality of results and therefore they needed to be 

identified and limited/controlled (if possible). 

 

4.4 Selecting a sample 
 

In this study (as in many studies) it was not possible to measure all the individual 

elements/variables that make up the study; therefore the concept of sampling had to be 

employed. Sampling includes selecting a sample which represents the total ‘population’ 

where the average of the data collected becomes an estimation of the overall outcome. 

Sampling is usually employed to make the study feasible as it saves time and resources.  
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There are three categories of sampling strategies: random/probability sampling, non-

random/non-probability sampling, and finally mixed sampling. Selecting the correct 

sampling type is very important as it will form the strategy of the study and will help to 

achieve maximum precision in the estimates, however all selections must be justified 

and made rationally, avoiding bias (Creswell 2003). 

 

For this study non-random/non-probability sampling was selected where a particular 

terrain type was selected for the experiments and variations within that type represented 

a change in terrain conditions. This method of non-random/non-probability sampling is 

called judgemental or purposive sampling for which the primary selection is judged by 

the researcher who selects the elements that are likely to provide the best information. 

Kumar (2005) states that this type of sampling is extremely useful when you want to 

develop something about which only little is known; which in this case was to help 

discover more about terrain. 

 
4.4.1 Sample Size 
 

Alongside selecting the sampling type, the required amount of (gathered) data needed to 

be to be decided upon. Better known as the sample size, this determines the accuracy of 

the results. In this study enough data needed to be gathered to have a greater level of 

confidence in the results, however in the pursuit of increasing the degree of accuracy in 

the results there was a risk of gathering too much data, causing problems in sorting and 

processing the data.  

 

The key was to select a sample size depending on the level of accuracy required and 

limit it to the point where no new data was being acquired, known as the saturation 

point. An important consideration that needed to be taken into account when deciding 

the sample size in this study was the number of times tests could be repeated before 

terrain conditions dramatically changed.  
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4.5 Research Proposal  
 

The write up of the research proposal preceded the experiment. The proposal included 

the framework of the study, discussing the findings and highlighting the total intended 

research process. It informed of what was going to be done (research questions), how it 

was going to be done (research methods/tools) and why certain methods were selected 

(justification). The key part of the proposal was in the discussion of the experimental 

design, which highlighted the main rationale of the experiment and detailed all the 

elements of the study/experiment. 

 

4.6 Collecting Data 
 

Once the research design and experimental design stages were completed, collecting the 

data became procedural. The independent and dependant variables needed to be 

measured, the relevant control variables needed to be fixed and monitored, and tests 

were carried out in such a way to limit any external interference (such as environmental 

conditions that could affect the terrain). The emphasis was on accuracy, repeatability 

and reliability within the constraints and limitations of the experiment previously 

discussed. 

 

4.7 Processing Data 
 

Once the experiment was successfully completed and the data gathered, it needed to be 

sorted and processed for analysis. The first stage was to sort the gathered data to check 

for errors and inconsistencies and convert the raw data into a logical format that was 

then displayed it in a readable format (e.g. in a table or graph), which made it easier to 

make sense of the information. Subsequently for this study, statistical analysis was used 

to interrogate the quantitative data to create a unique classification method. All these 

stages of data processing were done with the assistance of computer software, which 

helped to convert, display and analyse the data quickly and accurately. Advanced 

software programs were also used to handle more complex statistical and mathematical 

procedures to develop a unique algorithm capable of terrain analysis and classification. 
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4.8 Research Report 
 

The final step of the research process was to compile a scientific research report. 

Discussed in this report are the details of the study, the research process, the experiment 

details and the results. After displaying and analysing the results of the experiment, 

discussions are made and conclusions drawn where the research questions and 

hypothesis is revisited to measure the outcome of the study. Finally ideas for further 

work are presented. 

 

4.9 Discussions 
 

In this chapter the research methods used to complete the study are discussed. The 

research problem was formulated through a thorough research review which helped 

develop the research questions and create a hypothesis. With the study including 

numerous quantitative variables and the generally scientific nature of the investigation, 

an experimental approach was employed to prove (or disproved) the hypothesis.  

 

The selection of the different variables within the experiment was vital to the outcome 

of the study. The independent and dependant variables were chosen from the parameters 

of the wheel-terrain interaction (discussed in later chapters), while the extraneous and 

chance variables that needed to be controlled and limited were those of the environment, 

equipment and facilities. With such a large range of terrain types in existence, not all of 

them could be used and therefore a sample was used to represent a terrain class with 

specific (measurable) conditions. A relevant sample size was also selected to gather the 

correct amount of data before the saturation point, giving confidence in the results.   

 

Finally the (novel) data collection instrument was used to gather raw data. This went 

through a number of processes to organise, sort and convert into a more logical format. 

The results were not only graphically displayed to highlight the outcomes, but more 

significantly used to create a unique classification algorithm. 
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CHAPTER 5 
TERRAMECHANICS 
 
 

 

An additional review investigating the fundamentals of terrain mechanics and complex 

quantitative parameters of the wheel-terrain interaction was carried out for this study; 

the findings of which are discussed further in this chapter. 

 

“Terramechanics is a field study that deals with the physical mechanics of land 

locomotion; it concerns itself with the interaction problems that occur between terrain 

and various kinds of mobile plant” (Muro, O'Brien 2004). This area has stimulated a 

great deal of interest in the study of vehicle mobility over unprepared terrain within a 

number of industries such as construction, agriculture, cross-country transport and even 

the military. The aim of terramechanics is to “provide guiding principles for the rational 

development, design, and evaluation of off-road vehicles and terrain-working 

machinery” (Wong 2010). Established mathematical models for vehicle-terrain systems 

have enabled engineers to “evaluate, on a rational basis, a wide range of options and to 

select the appropriate vehicle configuration for a given mission and environment” 

(Wong 2010). 

 

5.1 Measuring Terrain Values 
 

The discipline of terramechanics has been said to be ‘invented’ by Dr Mieczyslaw 

Gregory Bekker during his study on land locomotion mechanics (Muro, O'Brien 2004). 

Bekker wrote extensively on the subject over a period of approximately 20 years from 

1950-70 with his pioneering work presented across three published books: Theory of 

Land Locomotion (1956), Off-the-road Locomotion (1960), and Introduction to Terrain-

vehicle Systems (1969). This work famously led to the development of the Lunar Rover 

(Figure 5.1) used during the 1971-2 Apollo missions to the Moon. One of the most 

significant outcomes of this work, however, was the development of the Bevameter 

technique which has become widely used in terramechanics to measure terrain values. 
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Figure 5.1 – Ferenc Pavlics, Mieczyslaw Bekker & Sam Romano with the Lunar Buggy. Dr Bekker’s 

pioneering work in the area of terramechanics led to the development of wire mesh tyres that could 

efficiently traverse the surface of the Moon (BME Omikk 2000). 

 

 

5.1.1 Bevameter 
 

The ‘Bekker Value Meter’ better known as the bevameter technique, is based on the 

“premise that terrain properties pertinent to vehicle mobility can best be measured under 

loading conditions similar to those exerted by an off-road vehicle” (Wong 2010, p68). 

Mechanical properties of soils, like properties of any other solid, are defined by stress-

strain relationships. Vehicles traveling across terrain produce horizontal loads balanced 

by soil thrust and vertical loads indirectly balanced by motion resistance, therefore “any 

empirical approach to the measurement of soil properties must entail the determination 

of both the horizontal and vertical stress-strain relationships” (Bekker 1969, p5). The 

bevameter technique therefore comprises of two separate tests to simulate vertical and 

horizontal loads to derive mechanical terrain values.  
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The horizontal load is better categorized as the tangential or shear stress. The shear tests 

involve pressing a treaded circular plate or ‘shear ring’ into the soil at different normal 

loads, rotating it and measuring the resulting torque and angular displacement. The 

results are used to derive the shear stress-strain relationship which is based on the Mohr-

Coulomb’s Equation (1) where shear stress τ is related to two soil parameters: cohesion 

c and internal friction φ through normal stress σ at the loading area (Bekker 1969). 

 

 ߬ = ܿ + ߪ tan ߮ (1)

 

Cohesion is defined as the bond that cements particles of the terrain together regardless 

of the normal stress between the particles; however the internal friction angle is also 

significant because ‘frictional’ particles can only be held together when a normal stress 

is present (Wong 2001). The calculated shear stress - shear displacement relationship is 

then used to estimate the tractive-effort slip characteristics and in turn the maximum 

traction of a vehicle.  

 

To simulate the normal (vertical) pressure distribution on the vehicle-terrain interface, a 

plate comparable to the contact area of a vehicle wheel (or track) is penetrated into the 

terrain a number of times and the results are plotted. The resulting empirical curves (ݖ)݌ are fitted with sinkage Equation (2) where z is the sinkage depth, ݌ is the normal 

pressure, k is a modulus of soil deformation and n is an exponent of deformation.  

 

݌  = ௡ (2)ݖ݇
 

݌  = ൣ(݇௖/ܾ) + ݇ఝ൧ݖ௡ (3)

 

Bekker (1969) later stated that the k-value in Equation (2) was very sensitive to the form 

of the test plate greatly affecting the results, which he classed as ‘unacceptable’ in 

characterising soil parameters. Further work led to the Bernstein-Goriatchkin Equation 

(3) being utilised where ݇௖ and ݇ఝ are ‘cohesive’ and ‘frictional’ moduli of 

deformation, and b is the smaller dimension of the rectangular loading plate (or the 

radius of a circular plate). Two tests with different sized plates are carried out to create 

redundancy and the overall results are used to obtain the pressure-sinkage relationship 

of the given soil, from which vehicle sinkage and motion resistance can be predicted. 
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The results from both the shear strength and plate penetration tests are combined and 

fitted into mathematical models where the soil is characterised and its overall mobility 

performance is predicted, completing the bevameter technique. 

 
5.1.2 Cone Penetrometer 
 

The Cone Penetrometer technique developed during the Second World War is another 

empirical method used to measure and characterise terrain. The Waterways Experiment 

Station (WES) of the U.S. Army Corps of Engineers developed this method to provide 

military intelligence and reconnaissance personnel with a simple field device for 

assessing terrain trafficability on a ‘go/no go’ basis, taking vehicle mobility into account 

(WES 1948). 

 

The instrument used for this technique comprises of a 1.59cm diameter rod with a 30-

degree circular cone and a 3.23cm² base area. The technique requires the cone to be 

penetrated into the soil at 3cm/s and force measurements displayed on a dial are taken at 

intervals throughout the experiment. A dimensionless parameter known as ‘cone index’ 

(CI) is then derived using the force per unit of the cone’s base area, which represents 

both the shear strength and deformation characteristics of the terrain. 

 

This simple method was suitable for its original purpose of making ‘go/no go’ decisions 

during the “emergencies of World War II” (WES 1948); however Wong (2010) states 

that “this method alone is not sufficient for adequately defining the mechanical 

properties of the terrain that are pertinent to vehicle mobility”. 

 

5.2 Ground Pressure 
 

In the measurement techniques discussed, terrain values and mobility characteristics are 

derived by using instruments to apply vertical and horizontal loads. These loads are 

used to simulate the pressure exerted on the terrain by a vehicle, known as ground 

pressure. Ground pressure (denoted p) is a vehicular parameter measured in Pascals (Pa) 

defined as the force per unit area. This can be calculated by using the standard pressure 

Equation (4) where and F is the force acting on the contact surface area A.  
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݌  = (4) ܣ/ܨ

 

Ground pressure is important to vehicle mobility (especially in soft terrain) because it 

defines the amount of pressure that will be exerted by the vehicle on the ground, 

affecting sinkage and increasing motion resistance. The normal force exerted by a 

vehicle is relative to its weight; however the contact surface area (or contact patch) is 

dependent on the interaction between the drive system and terrain, making it vital to 

ground pressure. An early test using a passenger vehicle was carried out to demonstrate 

the effect contact surface area has on ground pressure. During the experiment the tyre 

pressure was adjusted to change the contact surface area (Figure 5.2), which had a great 

effect on the ground pressure (Figure 5.3). 

 

 
Figure 5.2 – Two tyre footprints with different contact surface areas. This experiment 

demonstrates that contact surface area affects ground pressure (Odedra, Prior et al. 2009).  

 

5.2.1 Defence Standards 
 

“One of the most demanding features hoped for modern military wheeled tactical 

vehicles is to achieve a high degree of mobility” (Kaczmarek 1984). To better 

understand this, an extensive review was carried out looking at the specifications of a 

large range of worldwide military vehicles including DARPA Grand Challenge entrants. 

This study led to the discovery of strict military standards that vehicles have to adhere 

to in order to operate in the field. 
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Figure 5.3 – Graph displaying results from the ground pressure experiment. The results show the 

relationship between contact surface area and ground pressure (Odedra, Prior et al. 2009).  

 

The U.K. Ministry of Defence (MoD) require all operational vehicles to meet Defence 

Standard (DEF-STAN) 23-06. Within the specifications there are five mobility classes 

ranging from Low Mobility Load Carrier (LMLC) to High Mobility Load carrier 

(HMLC) for which ground pressure is a key criterion alongside ground clearance and 

tilt angle stability (Ministry of Defence 2000). Figure 5.4 displays the ground pressure 

limits set by the MoD for vehicles weighing less than 4 tonnes, highlighting the 

relationship between ground pressure and mobility. 
 

 
Figure 5.4 – Graph showing ground pressure limits for military vehicles. This emphasises the importance 

of ground pressure on mobility (Odedra, Prior et al. 2009).  
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5.2.2 Central Tire Inflation System 
 

The earlier experiment that involved adjusting a passenger vehicle’s tyre pressure, 

established the relationship between contact surface area and ground pressure (Figures 

5.2 & 5.3). With ground pressure being vital to mobility then the idea of being able to 

adjust the vehicle’s ground pressure (and mobility characteristics) by varying the tyre 

pressures greatly interested military organisations worldwide; therefore after the Second 

World War, both the U.S. and Soviet Union experimented with a system that “permitted 

the vehicle tyre pressures to be regulated by the vehicle driver/crew from within the 

vehicle cab, while on the move” (Kaczmarek 1984, p1255). This system is now widely 

used in off-road military vehicles and is known as the Central Tire Inflation System 

(CTIS), which gives the driver the ability to inflate/deflate the tyres with the press of a 

button, maximizing the vehicle’s mobility by dynamically controlling the vehicle’s 

ground pressure. 

 

5.3 Wheel-Terrain Interaction 
 

“A vehicle of adequate power moves across country if the strength of the ground is 

sufficient to support its weight without much resistance to motion and to provide the 

thrust required for propulsion” (Bekker 1960, p25).  

 

Terramechanics at its core is focused on better understanding this physical relationship, 

with a fundamental emphasis on the interaction between the wheel and terrain. This is a 

complex problem and extensive work has been done to explore the mechanics of the 

wheel-terrain interaction.  

 

There are four possible wheel-terrain scenarios (Figure 5.5) defined by the “mechanical 

properties of the materials involved in the construction of both the wheel and the road” 

(Bekker 1956, p186): 
 

a) A rigid wheel travelling over deformable terrain 

b) A rigid wheel travelling over rigid terrain 

c) A deformable wheel travelling over rigid terrain 

d) A deformable wheel travelling over deformable terrain 
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Figure 5.5 – The four possible wheel-terrain interaction scenarios. a) rigid wheel travelling over 

deformable terrain, b) rigid wheel travelling over rigid terrain, c) deformable wheel travelling over 

rigid terrain, d) deformable wheel travelling over deformable terrain (Iagnemma, Dubowsky 2004). 

 

The scenario of a rigid wheel travelling over deformable terrain (a) has been the 

principal focus of many terramechanics investigations. This is because deformable 

terrain will greatly affect a vehicle’s mobility performance and even pneumatic tyres 

can behave like a rigid rim if the inflation pressure is sufficiently high and the terrain is 

soft enough (Bekker 1969). This scenario is also significant to this study because 

military and space UGVs (the vehicle type this study is motivated by) predominantly 

possess rigid wheels and have to operate in unstructured environments consisting of 

deformable terrain.   

 

5.3.1 Analytical Model 
 

Bekker (1956) set out to simplify the problem and proposed an analytical model of the 

interaction between a rigid wheel and deformable terrain. This model is used to 

calculate the significant parameters of the interaction during soil deformation and now 

forms the basis of most equations within the field of terramechanics to help predict 

vehicle performance. Figure 5.6 shows a simplified version of this model by Wong and 

Reece (1967), which displays the significant parameters and stresses that occur at the 

wheel-terrain interface. 
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Figure 5.6 – Analytical model of a driven rigid wheel on deformable terrain. This model displays 

the parameters and stresses involved during the wheel-terrain interaction (Wong, Reece 1967). 
 

 

The wheel-terrain interaction model displayed above in Figure 5.6 shows a rigid wheel 

of radius r and width b driving through deformable terrain. The wheel has a vertical 

load W and a horizontal force D more commonly categorized as drawbar pull1 and 

denoted DP. An actuator (motor) applies torque T to the wheel’s rotation axis, giving 

the wheel centre a linear velocity V.  

 

At the wheel-terrain contact interface, ߠ represents an arbitrary angle from the vertical 

axis. The angle from where the wheel first makes contact with the terrain to the vertical 

axis is denoted as ߠଵ (also known as the front region). Likewise the angle from the 

vertical to where the wheel loses contact with the terrain is denoted ߠଶ (also known as 

the rear region); the entire contact region is therefore defined as ߠଵ +  ଶ. There is radialߠ

stress across the contact interface acting normal to the wheel denoted as ߪ and shear 

stress acting tangentially denoted as ߬.  

                                                 
 
1  Drawbar pull is the net traction force which is described further in Section 5.3.3 
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The equilibrium of a driven rigid wheel travelling across the ground is well known by 

Equations (5-7), which highlight that it is necessary to determine the relationships 

between radial/tangential stresses and other parameters in order to predict wheel 

performance (Wong, Reece 1967). 

 

 

 ܹ = ܾݎ ቈන (ߠ)ߪ cos ఏభఏమߠ ߠ݀ + න (ߠ)߬ sin ߠ ఏభఏమߠ݀ ቉ 
(5)

  

ܲܦ  = ܾݎ ቈන (ߠ)߬ cos ߠ ఏభఏమߠ݀ − න (ߠ)ߪ sin ߠ ఏభఏమߠ݀ ቉ 
(6)

  

 ܶ = ଶܾݎ න ఏభఏమ(ߠ)߬  ߠ݀
(7)

 
5.3.2 Pressure Distribution 
 

Bekker (1956) predicted that the soil’s reaction to a (rigid) wheel rim was the same as 

beneath a plate penetrated to the same depth as per bevameter tests, assuming that the 

distribution of pressure is situated ‘bottom dead centre’ under the wheel. However 

further investigation by Wong and Reece (1967) found that the location of maximum 

normal radial pressure (denoted ߠ௠) is located further forward and situated within the 

front region ߠଵ, shown in Figure 5.7 below. 

 
Figure 5.7 – Diagram showing the location of maximum pressure on the contact interface. The location 

of maximum pressure is further forward than results from plate penetration tests (Wong, Reece 1967). 

 ௠ߠ
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Deformation occurs during wheel-terrain interaction due to soil failure. There are two 

soil failure zones located either side of  ߠ௠ illustrated in Figure 5.7 by the two flow 

curves. Figure 5.8 shows a free body diagram of the wheel-terrain interface developed 

by Iagnemma and Dubowsky (2004) where  ߠ௠ is the (angular) location of maximum 

pressure from the vertical axis, with the two stress regions ߪଵ and ߪଶ situated either side. 

(Additional parameters include sinkage depth z and angular velocity ω). 

 
Figure 5.8 – Free-body diagram of a rigid wheel on deformable terrain. This diagram highlights the 

stress distribution under a rigid wheel at the contact interface (Iagnemma, Dubowsky 2004). 
 

 

Wong and Reece (1967) carried out a number of experiments to verify their earlier 

claims, which not only verified that ߠ௠  is situated in region ߠଵ  but also indicated that 

its position is related to slip and shifts forward with increasing slip (Figure 5.9). Slip i 

can either be negative or positive and is calculated using wheel angular velocity and 

wheel linear velocity as seen in Equation (8) below (Senatore, Iagnemma 2014): 

 

 ݅ = 1 − (8) ݎܸ߱
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Figure 5.9 – Measured normal and shear stress on the contact patch. The position of the maximum 

stress is related to slip as it shifts forward with increasing slip percentage (Wong, Reece 1967).  

 

The results of Wong and Reece’s experiments, seen in Figure 5.9 above, display a 

significant change in the location of normal and shear stress distribution during tests of 

varying slip amounts. This relationship can be expressed by Equation (9) where ܿଵ and ܿଶ are coefficients related to soil conditions: 

 

௠ߠ  = (ܿଵ + ܿଶ ݅) ଵ (9)ߠ

 

These results verify that  ߠ௠ is further forward than ‘bottom dead centre’ and relates to 

slip. This study also indicated that ߠ௠ depends on the compressibility of the terrain, 

represented by the coefficients in Equation (9). These results also show a relationship in 

the rate of change of normal and shear stress distribution. Shilby, Iagnemma et al. 

(2005) carried out experiments taking normal and shear stress distribution 

measurements around a driven rigid wheel while it travelled across a diverse range of 

terrain types. The results seen in Figure 5.10 verify that an (approximate) linear 

relationship does exist between normal and shear stress distribution regardless of terrain 

type and therefore normal stress measurements could be used to estimate shear stress 

values. 
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Figure 5.10 – Normal & shear stress distribution results across various terrain types. These results 

show the linear relationship between normal and shear stress (Shibly, Iagnemma et al. 2005). 
 

5.3.3 Thrust and Drawbar Pull 
 

The maximum thrust a vehicle possesses will determine its (traversing) performance; 

however this becomes affected by resistance due to environmental conditions which in 

this case is due to parameters of the wheel-terrain interaction. A vehicle’s horizontal 

thrust H (or tractive effort) is developed through its shearing action on the terrain 

surface and therefore can be estimated using Equation (1). If the wheel-terrain contact 

area is known and the pressure distribution on the contact patch is uniform, then the 

maximum thrust (across a known terrain) can be predicted using Equation (10)2 where A 

is the contact area of the wheel and W is the load on the wheel (Wong 2010): 

 

ܪ  = ܣ߬ = (ܿ + ߪ tan ܣ(߮ = ܿܣ + ܹ tan ߮ (10)

 
                                                 
 
2 The equation is dependent on soil properties cohesion c and internal friction angle φ. 
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Drawbar pull (which was mentioned earlier) is therefore defined as the net traction 

force, calculated as the difference between thrust and the sum of all the resisting forces ∑ ܴ acting on the vehicle: 

ܲܦ  = ܪ − ෍ ܴ (11)

 
5.3.4 Wheel Diameter  
 

Bekker’s early theories have successfully been used for decades to model large vehicle 

mobility performance; however the accuracy of these theories are called into question 

when dealing with smaller vehicles. Bekker (1956) himself stated that his theories 

“become less accurate” when dealing with wheels smaller than 50cm in diameter, but 

during that time smaller wheels were not as common so didn’t need to be considered. 

Today’s modern UGVs however, possess smaller diameter wheels and therefore wheel-

terrain interaction models are needed to be modified to account for this. Extensive work 

has been done in this area, for example Senatore and Iagnemma (2014) have developed 

vehicle interaction models for small lightweight vehicles; and Meirion-Griffith, Nie and 

Spenko (2014) have modified Bekker’s original pressure-sinkage models to include 

wheel diameter and width, enabling more accurate mobility predictions for smaller 

vehicles. This investigation also found that smaller diameter wheels act significantly 

different from flat plate approximations due to the increased curvature of the wheel-soil 

interface. 

 

5.4 Discussions 
 

This additional review into the area of terramechanics highlighted the parameters 

involved during wheel-terrain interaction, which was greatly valuable to this study. 

Bekker’s early works proposed the bevameter technique used to measure and classify 

terrain. The tractive (shear) capabilities of the terrain are calculated using the Mohr-

Coulomb Equation (1) and deformation calculated using Bekker’s pressure-sinkage 

Equation (3). These models have been used to successfully predict vehicle performance, 

however they require prior knowledge of terrain parameters such as cohesion and 

internal friction properties and therefore cannot easily be utilised for real-time 

classification while traversing unknown terrain. 
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The simplified analytical model of the wheel-terrain interaction was greatly insightful 

and highlighted the importance of stresses across the contact interface in relation to 

equilibrium Equations (5-7). Work by Wong and Reece took this further and proved that 

maximum radial pressure at the contact interface between a rigid wheel and deformable 

terrain is not situated ‘bottom dead centre’ as per plate penetration tests. Their findings 

expressed a relationship between the location of maximum stress and slip illustrated in 

Equation (9); however this calculation is dependent on terrain compressibility as 

represented by coefficients ܿଵ and ܿଶ and therefore prior knowledge of terrain conditions 

are again required. 

 

The analytical models of the wheel-terrain interaction discussed (as well as many others 

not mentioned) have been used by many to predict mobility performance; however they 

present the interaction problem as two dimensional (2D) and calculate stress across the 

three dimensional (3D) contact patch through simply multiplying stress values by the 

wheel width b. These models therefore assume that the distribution of pressure exerted 

by the wheel across the width of the contact interface is uniform, which is known from 

contact mechanics not to be true (Meirion-Griffith, Spenko 2010). Nagatani et al. (2009) 

validated this through experimentation by measuring radial pressure at four points 

across the wheel width during wheel-terrain interaction. The results showed 

that  ߠ௠ was different in all measurements, confirming that the distribution of pressure 

along the wheel width is not uniform. 

 

As mentioned, stress values are important to mobility performance calculations as per 

balance Equations (5-7); however inaccuracies can occur due to the assumption that 

pressure is equally distributed across the width of the wheel as discussed above. This 

required further exploration for which a novel instrument needed to be developed, 

capable of measuring the radial pressure distribution across the 3D contact patch of the 

wheel-terrain interface. 
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CHAPTER 6 
MEASURING THE WHEEL-TERRAIN INTERFACE 
 
 

 

6.1 Context 
 

Earlier experiments discussed in Chapter 3 demonstrated that vehicle performance 

measurements could be used to (approximately) detect terrain properties; however these 

related to environmental conditions rather than direct terrain parameters. A further 

investigation highlighted the basic properties of the interaction between a vehicle and 

the terrain (Figure 6.1) which are more significant to the study because they consist of 

elements that are “far more measurable” (Bekker 1969). 

 

 
Figure 6.1 – Diagram displaying key elements of the wheel-terrain interaction. The basic vehicle and 

terrain properties that determine interaction parameters slip and sinkage are shown (Odedra 2011). 
 

A more comprehensive study into the area of terramechanics (discussed in the previous 

chapter) uncovered the quantitative parameters that exist during the interaction between 

the wheel and terrain (Figure 6.2), which relate to the two main conditions that will 

affect mobility performance: sinkage and slippage.  
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Figure 6.2 – The key quantitative parameters of the wheel-terrain interaction. This diagram shows the 

links between parameters derived from terramechanics, with those most significant to this study in bold. 

 

The diagram in Figure 6.2 above, derived from terramechanics, presents the key 

parameters of the wheel-terrain interaction and displays relationships that exist between 

them. Terrain based parameters can be seen on the left, with vehicle based parameters 

on the right and the parameters that exist due to the interaction in the centre. This 

highlights that slip and sinkage are determined by conditions of the terrain and are 

related to pressure distribution across the wheel-terrain interface produced by vehicle 

parameters. 

 

The contact angle ߠ and the location of maximum pressure ߠ௠ (shown in bold at the 

centre of Figure 6.2) are those most significant to this study because a system capable of 

directly measuring (and monitoring) them during wheel-terrain interaction, could 

potentially classify terrain conditions in real-time. 
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6.2 Force Sensing Wheel Construction 
 

6.2.1 Concept 
 

The objective of the main experiment was to determine the contact angle ߠ, pressure 

distribution and the location of maximum pressure ߠ௠ during wheel-terrain interaction. 

In order to do this a wheel embedded with an array of exteroceptive force sensors across 

its entire surface was developed to actively measure pressure distribution on the (3D) 

contact patch at the wheel-terrain interface. The self-contained unit known as the Force 

Sensing Wheel (FSW) includes embedded electronics capable of taking real-time force 

measurements and communicating them wirelessly to the Main System Controller to be 

stored and/or analysed. 

 
6.2.2 Sensor Exploration 
 

A suitable tactile sensor capable of measuring force needed to be selected for the FSW. 

A review of existing sensors led to the discovery of a material known as Quantum 

Tunnelling Composite (QTC). QTC is a flexible polymer that exhibits an extraordinary 

electrical property as a result of applied mechanical pressure; when compressed the 

material changes from an insulator to a conductor with resistance decreasing 

exponentially with force. This material was an ideal choice for the FSW because of its 

electrical properties, size, cost, availability and durability. 

 

These sensors required testing to verify their capabilities and to find the best way of 

mounting and integrating them onto the surface of the wheel. A number of tests were 

carried out where the QTC sensors were placed on various circuit board configurations 

(Figure 6.3) and the voltage (V) relative to force (N) was measured using a simple 

LabVIEW test program as seen in Figure 6.4. These tests verified that the QTC sensors 

exhibit an exponential relationship between force and voltage and can therefore be 

utilised for the Force Sensing Wheel. 
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Figure 6.3 – QTC sensors and various circuit board configurations. Different configurations were 

tested to find the best method of mounting these sensors onto the Force Sensing Wheel. 

 

 
Figure 6.4 – LabVIEW test program for QTC sensor validation. The test program measured 

voltage relative to force with QTC pills mounted in different configurations.  
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To measure the 3D contact patch at the wheel-terrain interface the QTC sensors needed 

to be mounted across the both the circumference and width of the entire wheel, meaning 

a large sensor array was required. In order to physically measure and manage this large 

quantity of individual analogue sensors in real-time multiplexers were used. 

 

The Texas Instruments CD74HC4067 multiplexer was selected for the system, which 

comprises of 16 input channels that can be electrically switched to connect to one 

common output within nanoseconds (ns). This meant that 16 sensors could almost 

simultaneously be measured using only one input. 

 

A breakout board for the selected multiplexer was sourced to test the component’s 

compatibility with the QTC sensors, which was carried out using an embedded 

development board as seen in Figure 6.5 below. This test successfully demonstrated that 

the multiplexer can manage data from a number of QTC sensors and was therefore a 

good choice for the FSW system. 

 

 
Figure 6.5 – QTC array tested with a 16-channel multiplexer. This test was done to check component 

compatibility between the multiplexer and QTC sensors using an embedded development board.  
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A bespoke Printed Circuit Board (PCB) was designed to mount the QTC sensors onto 

the surface of the wheel. With the successful multiplexer tests, it was decided that 16 

sensors would be mounted on a single PCB to be managed by a single multiplexer. 

Known as a Sensor Board, they would be placed radially on the wheel to cover the 

entire wheel surface. 

 

The layout of the Sensor Board was designed to hold 16 QTC sensors arranged in two 

alternating rows of eight (Figure 6.6). This pattern was chosen as it proved to be the 

optimum array, allowing 16 sensors to be mounted in close proximity while covering a 

greater surface area across the width as well as the (arc) length of the contact interface.  

 

 
Figure 6.6 – Sensor Board layout. This custom PCB holds 16 sensors arranged in 2 

alternating rows of 8 in order to cover an optimum surface area of the wheel. 

 

The Sensor Board design was developed through a number of iterations until the final 

design was reached as seen in Figure 6.7. The final design includes an 18-pin surface 

mount connector to accept an 18-way Flexible Flat Cable (FFC), connecting each 

Sensor Board to other parts of the system where they are managed by multiplexers (to 

be discussed later). FFCs were chosen for this system to save space, make cable 

management easier and allow easy ‘plug and play’ between the system’s various 

elements. 
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Figure 6.7 – Sensor Board design iterations. Each Sensor Board holds 16 QTC sensors in an optimised 

array and includes an 18-pin surface mount connector to connect to other parts of the system. 

 

6.2.3 Wheel Structure 
 

With the design of the Sensor Boards complete then the next task was to mount them on 

a wheel structure. To start with Computer Aided Design (CAD) software was used to 

precisely calculate the best pattern in which to create an optimal sensing array. The 

compact size of the Sensor Boards meant that 48 boards could be placed radially, 

spaced 7.5 degrees apart, creating a 70mm wide sensing area with an alternating 

resolution pattern of 5mm around the entire 360 degree wheel circumference (Figure 

6.8). The resulting wheel diameter of 190mm by 80mm width was ideal as it is 

comparable to wheels on existing small UGVs while still being proportionate to the 

vehicle chassis.   

 

The initial concept for mounting the Sensor Boards in this radially pattern on the FSW 

was to use a number of structural elements, each one housing a single Sensor Board 

(Figure 6.9), which would slot together to make up a complete wheel rim (Figure 6.10). 

The idea behind this modular system was to enable the integration of the many custom 

electronic components in addition to making installation and maintenance easier.  
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Figure 6.8 – Sensor Board radial array. This shows that 48 boards could be placed around the wheel 

resulting in a large radial sensing area and an ideal wheel diameter comparable to other small UGVs. 

 

The structural element concept was designed using CAD software and quickly validated 

using rapid prototyping tools to create 3D printed models as seen in Figure 6.9 below. 

The initial concept was to create a complete wheel by slotting together eight of these 

elements to create a ‘Wheel Segment’ of which six are needed to make a complete 

wheel as seen in Figure 6.10.  

 

 
Figure 6.9 – Individual Sensor Board structural element. The image on the left shows the CAD design of 

a Sensor Board element and the image on the right displays the 3D printed prototype. 
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Figure 6.10 – Structural slotted wheel rim concept. The left image shows 8 elements slotted together to 

make a wheel segment, of which 6 are needed to make up a complete wheel rim as seen on the right. 

 

This initial concept was tested and it was found that having a large number of individual 

Sensor Board elements only weakened the overall wheel structure and added 

unnecessary complexity. After a number of design developments the concept was 

improved to house eight sensor boards on one complete Wheel Segment as seen in 

Figure 6.11. This simplified the design and strengthened the wheel structure while 

retaining enough modularity for the integration and maintenance of embedded 

electronics. 
 

 
Figure 6.11 – Final Wheel Segment design. Each Wheel Segment houses 8 Sensor Boards, strengthening 

and simplifying the design while retaining enough modularity for easy integration of electronics. 
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The final design was produced using 3D printing tools as it enabled rapid manufacture 

while maintaining the accuracy and intricacy of the CAD model. Figure 6.12 below 

displays the final manufactured Wheel Segment complete with 8 Sensor Boards. This 

final design also needed to accommodate another bespoke PCB known as a ‘Segment 

Board’ which manages the sensor data within each segment (discussed later), seen 

mounted in the bottom image of Figure 6.12. 

 

 
Figure 6.12 – Assembled 3D printed Wheel Segment. Each Wheel Segment was 

manufactured using 3D printing to keep the accuracy and intricacy of the CAD model. 

 

The Wheel Segment was also designed to slot together with 5 other segments to create a 

full wheel structure as seen in Figure 6.13. The full wheel structure is then mounted 

onto an aluminium ‘Wheel Disc’ (Figure 6.14) which is used to attach the assembled 

wheel to the chassis while strengthening the structure by holding it all together. 
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Figure 6.13 – Complete wheel structure comprising of 6 Wheel Segments. The Wheel 

Segments were designed to slot together, with 6 required to make a complete wheel.   
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Figure 6.14 – Wheel Disc used for holding together the wheel structure. An aluminium disc is used to 

mount the assembled wheel to the chassis as well as giving strength to the wheel structure. 
 

The final integral part of the FSW is known as the ‘Core’ which has a number of 

functions. This star shaped cage houses the system’s power supply and microcontroller 

(discussed later) and slots into the centre of the wheel structure (Figure 6.15) providing 

structural integrity while also holding in the ‘Junction Board’ yet to be discussed. 

 

 
Figure 6.15 – The FSW’s integral star-shaped Core. The Core houses important components and slots 

into the centre of the wheel providing structural integrity to the entire assembly.  
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As discussed, the inside wheel rim is securely held together by the aluminium Wheel 

Disc; to secure the outside rim a component known as the ‘Lock Rim’ is used. The Lock 

Rim slots onto the front of the wheel assembly and is rotated clockwise (Figure 6.16) 

securing the outer rim of the Wheel Segments in addition to locking the Core in place. 

Finally, the closed position of the Lock Rim aligns the mounting holes for the Wheel 

Lid, which is the final structural component of the wheel assembly seen in Figure 6.17.  
 

 
Figure 6.16 – The wheel’s outer Lock Rim. The Lock Rim is slotted in place and rotated 

clockwise to secure the Core as well as lock the outer rim of the Wheel Segments together. 

 
 

 
Figure 6.17 – All the structural components of the FSW. This image displays all the wheel 

components: Wheel Segments on the Wheel Disc, Core, Lock Rim and Wheel Lid. 
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6.2.4 Electronic Design 
 

The central electronic component embedded in the Force Sensing Wheel is the 

microcontroller (MCU) which is based on the mbed development platform. The mbed 

suite was chosen because it offers a professional environment while offering flexibility 

for rapid prototyping and off-the-shelf development boards are readily available. 

Additionally supporting development tools including modular software libraries and a 

C/C++ compiler are easily accessible online. 

 

The selected development board is based on the NXP LPC1768 microcontroller, a 

highly capable 32-bit ARM Cortex M3 processor, which boasts an impressive CPU 

frequency of up to 100MHz and includes 512KB of Flash memory and 64KB of data 

memory (RAM). This low power MCU offers several communication interfaces with 

plug and play peripherals and a number of digital and analogue Inputs/Outputs (I/O). 

This powerful board offers high level integration within a small form factor of 54mm x 

26mm on a convenient 40-pin dual in-line (DIP) package as seen in Figure 6.18 below. 
 

 
Figure 6.18 – 32-bit ARM mbed development board. The mbed offers a powerful 

ARM M3 core which has impressive specifications all within a small form factor. 

 

The mbed was ideal for the FSW as its small form factor meant it could easily be 

embedded into the wheel while offering powerful capabilities and development 

flexibility. The main function of the mbed was to control data flow and manage sensor 

data from a large array of sensors; however only six analogue inputs are available out of 

the many I/O pins on the development board, hence an intelligent use of multiplexers 

was required. 
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As discussed the FSW system comprises of 48 Sensor Boards each containing 16 

sensors, meaning that the number of individual sensors across the wheel surface totals to 

768. With such a large array of analogue sensors and only six inputs, a novel approach 

was needed to manage and control data flow in real-time.  

 

The problem was simplified by controlling data flow from the eight Sensor Boards on 

each of the 6 Wheel Segments through a central control point and into each of the six 

analogue inputs on the MCU. This was made possible by using multiplexers, enabling 

all 768 sensors to be read into six analogue inputs within nanoseconds. A simplified 

diagram of the system architecture can be seen in Figure 6.19 below where each 

Segment Board labelled 1-6 manages its eight Sensor Boards labelled A-H and connects 

to the (hexagonal) Junction Board, which centralises data flow to the mbed MCU. 

 

 
Figure 6.19 – Simple diagram of the FSW system architecture. With 768 analogue sensors 

the problem had to be broken down in order to control and manage sensor data in real-time. 
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The Segment Boards situated within each segment are integral to controlling data flow. 

Their main task is to multiplex the sensors integrated onto their segment so that data 

from 128 sensors can be read into a single analogue input on the MCU. To enable this, 

these bespoke PCBs include eight multiplexer ICs which are each wired to an FFC 

connector, that are spaced accordingly to connect to eight Sensor Boards. A single FFC 

connector is located on the reverse to connect to the MCU via the Junction Board. The 

Segment Board was prototyped to test and validate the electrical design (Figure 6.20), 

check connector alignment and to make sure the board physically fit into the segment 

structure. Once verified the final Segment Boards were professionally manufactured and 

assembled ready for installation into the wheel structure (Figure 6.21). 
 

 
Figure 6.20 – Segment Board prototypes. The Segment Board design was prototyped using rapid 

prototyping tools to verify the electrical layout and check for physical fit into the Wheel Segment. 

 

As mentioned, data is sent back to the MCU from the Segment Boards via a central 

PCB known as the Junction Board. The hexagonal shaped Junction Board sits in the 

middle of the assembled wheel structure and centralises data flow from the Segment 

Boards through six FFC connectors (Figure 6.22). The Junction Board also includes a 2-

pin connector for power input to distribute power to the Segment Boards and a central 

FFC connector passes data to and from the MCU by connecting to the ‘Main Board’. 
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Figure 6.21 – Final manufactured Segment Board. Each Wheel Segment houses a Segment Board which 

controls the data flow of 128 sensors into a single analogue input on the MCU within nanoseconds.  

 

 
Figure 6.22 – Junction Board centrally located. The Segment Boards all connect to the hexagonal 

Junction Board which distributes power and centralises data flow to and from the MCU. 
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The Main Board is housed inside the Core (Figure 6.23) and includes the mbed MCU 

and a Bluetooth module for wireless data transfer to the Main System Controller. The 

selected Bluetooth module is Roving Networks RN42, a fully certified (class 2) low 

power Bluetooth radio that offers data transfer rates of up to 3Mbps. The ‘postage stamp 

sized’ module includes an on-board trace antenna and communicates with the MCU 

using serial communication protocols.  

 

 
Figure 6.23 – Main Board housed in the Core. The Main Board includes the mbed MCU and RN42 

Bluetooth module and connects to the Junction board to supply power and control data flow. 

 

The Master Board connects to the Junction Board to supply power through a 2-pin 

connector and for data transfer/control via a single FFC connector on the reverse. A 4-

pin connector (also on the reverse) supplies power to the Main Board from the ‘Power 

Board’ in addition to connecting the MCU to the status LED integrated into the main 

on/off switch (situated on the lid). This LED notifies different states of the system by 

using various blinking patterns to show when the system is reading and/or sending data.  

 

The Power Board situated on top of the Core (left image in Figure 6.24) is where the 

main power is supplied from. It also includes a small off-the-shelf circuit which 

indicates when the power supply is low via a small red LED. Finally the power supplied 

to the entire system is in the form of a rechargeable 850mAh, 7.4V Lithium-ion 

Polymer (Li-Po) battery also housed in the Core (right image in Figure 6.24). The 

battery slots into the middle of the Core; placed centrally to keep weight distribution 

equal within the Force Sensing Wheel.  
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Figure 6.24 – Power Board and power source. A compact LiPo battery is housed centrally in the core and 

supplies power to the entire system through the Power Board which includes a low-power indicator. 

 

 

6.2.5 Sensor Development 
 

The QTC Sensors were installed onto the Sensor Boards using a special conductive 

adhesive supplied by 3M; however this method produced mixed results during testing. 

The sensitivity of the sensors varied across boards and it was discovered that this was 

because the uncoated copper pads where the sensors are mounted became tarnished over 

time, affecting conductivity (Figure 6.25). This also affected the strength of the 

adhesive meaning that without any external protection the QTC sensors became prone 

to peeling off, especially when interacting with the rough surface of certain terrain. 

 

 
Figure 6.25 – Tarnishing of uncoated copper pads. The bare copper pads on the Sensors Boards became 

tarnished over time, affecting conductivity and in turn sensor sensitivity and the strength of the adhesive. 
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The first solution was to coat the pads on the Sensor Boards to stop them tarnishing. 

This was professionally done using an electroplating process to gold plate the pads, 

giving consistency to their conductivity (Figure 6.26). The second solution was not as 

easy as the QTC sensors needed to be protected from excessive external forces while 

retaining their ability to measure force.  
 

 
Figure 6.26 – Gold plated sensor pads. The pads on the Sensor Boards where the 

sensors are mounted were gold plated to stop them tarnishing. 

 

To protect the QTC sensors the initial concept was to cover them with a rubber casing. 

This was prototyped using CAD and 3D printing to create simple rubber moulds from 

which silicone covers were cast (Figure 6.27). After testing the initial design it was 

found that the rubber casing affected sensor performance by dampening the majority of 

forces acting on the wheel surface; therefore the design needed improvements. 
 

 
Figure 6.27 – Casting protective rubber casings. These casings were designed to protect the QTC sensors.   
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Firstly a harder rubber was used to eliminate some of the dampening and secondly the 

casing design was modified to include a number of peaks intended to focus any applied 

force onto the surface of the QTC sensors inserted under them (Figure 6.28). The test 

results showed an improvement from previous tests; however there were problems with 

this design. The inclusion of the peaks meant that the size of the area used to detect 

normal force was now considerably smaller and the slopes on the peaks meant that side 

forces were easily transferred onto the QTC sensors giving false results. This led to the 

conclusion that this method would not suffice for the FSW. 
 

 
Figure 6.28 – Developed QTC sensor casing. The design of the protective casing was 

modified to include peaks to focus applied force onto the QTC sensors situated below. 
 

The next approach was to move away from the QTC sensors and create a more rugged 

‘rubber sensor’ that could be moulded into a single strip, capable of measuring force 

across its entire surface. This was be done by developing a custom conductive rubber 

compound that would exhibit similar behaviours to QTC material. A number of 

different compounds were developed and cast into moulds to create sensor strips (Figure 

6.29). These sensor strips were tested and they all displayed a relationship between 

voltage and force; however their consistency was hugely unreliable even within the 

same unit. This was found to be because uniform conductivity could not be guaranteed 

during the construction of the compound, therefore it was not a viable option for the 

Force Sensing Wheel. 



Measuring the Wheel-Terrain Interface 
 

  81 
 

 
Figure 6.29 – Creating a customisable force-sensing compound. A conductive compound was developed 

to create a more rugged ‘rubber sensor’ capable of exhibiting similar behaviour to QTC material.  
 

The developments discussed led to the realisation that QTC sensors were not right for 

the FSW as they could not easily be protected without affecting sensor performance. 

Furthermore a bespoke material-based solution was not possible within the constraints 

of the study, therefore another method of measuring (normal) force was required. 

 

The solution to this problem was found in the tried-and-tested method found in existing 

Human Interface Devices (HID) such as silicone keypads, which use conductive carbon 

pills as tactile electrical switches. This method was ideal for the FSW because it offers a 

mechanical-based solution where the contact area of a domed-shaped carbon pill across 

PCB traces, increases with applied force causing a change in resistance. Additionally, 

carbon pills (generally) need to be pressed in the normal direction of the pill meaning 

they are less susceptive to side forces. Finally they are usually moulded with a silicone 

outer layer which acts as a good insulator and adds strength and durability while the 

carbon pill situated below retains sensitivity. Moulds were created for the new design of 

a silicone ‘Sensor Unit’ where 8 carbon pills, arranged in the same pattern as before, 

were inserted ready to be bonded into place by a two-part silicone mix (Figure 6.30). 

Before the silicone mix was injected into the moulds it was put into a vacuum degasser 

to remove any air introduced during the mixing process, which would affect sensor 

performance. Additionally a number of air bleed holes/slots were included in the mould 

design to allow air to disperse when the rubber mix was inserted. The mould design also 

included ‘pill pockets’ that surround the carbon pills to create a flexible membrane, 

allowing them to return to their normal position (Figure 6.31).  
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Figure 6.30 – Sensor Unit mould with carbon pills. The mould design included bleed holes to stop any air 

getting trapped. The carbon pills were carefully inserted before silicone was injected.  

 

 
Figure 6.31 – Carbon pills moulded into Sensor Units. The carbon pills were placed in the same pattern 

as before. The flat surrounding area is the surface where the units are bonded onto the Sensor Boards. 
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These Sensor Units were designed to easily attach to the Sensor Boards, adding 

simplicity to the installation process (Figure 6.32). Once removed from their moulds 

and cleaned up they were bonded to the Sensor Boards using the flat sections 

surrounding the carbon pills as seen in Figure 6.31. This gave a greater bonding surface 

area while not affecting the carbon pills or sensor pads. The top part of the Sensor Unit 

includes a number of raised ‘tread’ which help to depress the carbon pills located below, 

increasing sensor sensitivity (Figures 6.32 and 6.33). The Sensor Units were tested for 

performance and produced good results. They exhibited an exponential relationship 

between force and voltage with a good level of sensitivity and minimal variance across 

different sensors; making them the ideal choice for the FSW. 

 

 
Figure 6.32 – Final Sensor Unit / Sensor Board installation. These images show the final installed Sensor 

Units which include raised tread, making them more sensitive while offering protection.  
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Figure 6.33 – Sensor Unit tread. The raised rubber tread helps depress the carbon pills situated below. 

 

6.2.6 Wheel Assembly 
 

Wheel assembly started with each Wheel Segment where the Segment Board was 

installed and secured in place with a small locator clamp (Figure 6.34). The FFC cables 

were plugged in and fed through their respective slots for the Sensor Boards to plug 

into. The Sensor Boards with preinstalled Sensor Units were plugged in and attached to 

the wheel surface using another special adhesive supplied by 3M. Each segment was 

then slotted together, located using the tongue and grove slots as seen in the right image 

of Figure 6.35. The Wheel Segments were then bolted to the Wheel Disc together. 
 

 
Figure 6.34 – Assembled Wheel Segment. Each Wheel Segment was assembled with a Segment Board 

which plugged into 8 Sensor Boards / Sensor Units, attached to the surface using adhesive. 
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Figure 6.35 – Wheel Segments slotting together. The 6 assembled Wheel Segments were slotted together, 

located using the tongue and grove slots seen close-up in the image on the right. 

 

The next component to be installed was the Junction Board, however before this could 

be placed into the wheel a small hexagonal block needed to be inserted into the centre of 

the wheel structure as seen in the left image of Figure 6.36. This block created a level 

base for the Junction Board in addition to locating the wheel onto the wheel shaft. Once 

the block and Junction Board were installed, the six FFC cables were plugged into each 

Segment Board. The preassembled Core was plugged into the Junction Board via a 

single FFC and 2-way cable to supply power and then slotted into the centre of the 

wheel structure, holding the Junction Board in place (Figure 6.37). 

 

 
Figure 6.36 – Hexagonal block and Junction Board. The hexagonal block needed to be installed as a level 

base for the Junction Board which was slotted in and plugged into all 6 Segment Boards via FFC cables. 
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Figure 6.37 – Inserting the Core into the wheel structure. The Core was slotted into the middle of the 

wheel after plugging into the Junction Board via a single FFC cable and a 2-way cable to supply power.  

 

Finally the Lock Rim was located in the circular groove on the front face and rotated to 

lock in the Core and the outer rim of the six Wheel Segments. The clear lid, with the 

on/off button, was plugged into the Power Board and located and bolted into place. The 

Force Sensing Wheel was now fully assembled as seen in Figure 6.38 below. 

 

 
Figure 6.38 – Fully assembled Force Sensing Wheel. Once the Lock Rim was installed the Lid 

could be plugged in and bolted in place, completing the assembly of the FSW.  



Measuring the Wheel-Terrain Interface 
 

  87 
 

6.3 Sensor Calibration 
 

The limitations of available facilities and variables involved during sensor manufacture 

led to minor differences in sensitivity across the custom-made sensors; therefore the 

sensors needed to be calibrated to have confidence in the accuracy of measurements. 

The calibration tests involved applying a range of (normal) forces onto individual 

sensors and measuring the relative voltage, so that each sensor’s (exponential) 

relationship between voltage and force could be calculated and used to accurately 

convert raw sensor data to actual force values. 

 

Specialist test equipment was required to apply exact amounts of force onto individual 

sensors; therefore an industrial force gauge test stand was sourced, which is capable of 

applying and measuring forces of up to 25N with a resolution of 0.01N. To complete the 

calibration test-rig a custom clamp was built to attach to the stand and hold the FSW in 

position. A number of settings on the clamp allowed the wheel to be fixed in various 

positions radially and across the wheel width, so that every one of 768 sensors could be 

accurately aligned normal to the force gauge probe (Figure 6.39). 

 

 
Figure 6.39 – Calibration test-rig. The calibration test-rig incorporated an industrial 25N force gauge test 

stand and custom made clamp to hold the FSW so that every sensor could be aligned to the gauge probe. 
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The test procedure involved fixing the FSW into the clamp to align a particular sensor 

to the force gauge probe which was then lowered to apply specific forces to the sensor 

as seen in Figure 6.40. Initial tests saw the sensors exhibit a larger range (higher 

sensitivity) for forces <1N and a smaller range (lower sensitivity) for forces >1N. This 

is believed to be because forces up to 1N will generate initial contact between the 

carbon pill and the PCB traces, causing a greater change in resistance. To account for 

this, the forces applied onto the sensors during the calibration tests ranged from 0.2-10N 

in two different phases: every 0.2N between 0-1N and then every 1N between 1-10N. 

This range was sufficient for the tests as the total distributed force expected across the 

entire wheel-terrain contact interface was approximately 20N. 

 

 
Figure 6.40 – Force gauge probing a sensor. The calibration test involved the force gauge being lowered 

onto a specific sensor by exact forces, while sensor data was streamed to LabVIEW where it was logged. 

 

A simple program was created in LabVIEW to log the real-time data streamed from the 

FSW. This raw data was converted to voltage figures and arranged in a table alongside 

corresponding force values to generate a graph. A selection of results from the 

calibration tests can be seen in Appendix E with Figure 6.41 showing an example of one 

of these graphs where exponential curves are accurately fitted to logged sensor values. 
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Figure 6.41 – Graph showing a set of calibration test results. The logged data was arranged in tables 

alongside corresponding force values to create graphs where exponential curves were fitted. 

 

The results of the calibration tests as seen in the example above (Figure 6.41) gave two 

exponential relationships: one for force values <1N and one for values >1N, due to the 

reasons discussed earlier. This gave a more accurate fit as demonstrated by the 

extremely high coefficient of determination (denoted R²), giving confidence in the 

accuracy of future measurements. 

 

The values relating to the exponential relationships of the fitted curves can be seen in 

the formulas at the bottom of Figure 6.41. These formula values relate to each sensor’s 

sensitivity and are needed to accurately calculate force values from raw sensor data; 

therefore the unique values for all 768 sensors were calculated and stored, ready to be 

used during the data processing procedure (discussed later).  
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6.4 Platform Developments  
 

The platform used for the main experiment was based on the same vehicle chassis from 

the earlier experiment; however modifications needed to be made to mount the Force 

Sensing Wheel and a new suite of electronic components. To start with all the 

unnecessary components were removed, leaving only the essential mechanical parts of 

the chassis and the encoder mounted on the gearbox as seen in Figure 6.42 below.  

 

 
Figure 6.42 – Stripped down vehicle chassis. The original vehicle chassis from the earlier experiment 

was stripped down to the essential mechanical parts ready to house the new platform components. 

 

6.4.1 Chassis Modifications 
 

The first modification to the original chassis was the installation of off-the-shelf 

differential locks. This was to stop unequal torque distribution caused by individual 

wheel slip which would lead to false wheel angular velocity values with the encoder 

being mounted on the gearbox. The next task was to lock the suspension to stop it 

affecting the (normal) force exerted on the wheel-terrain interface. Custom designed 

parts were cut from 5mm aluminium sheet using water-jet cutting technology and 

installed using the original suspension mounts (Figure 6.43). 
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Figure 6.43 – Custom suspension locks. These aluminium parts were designed using CAD software and 

manufactured using water-jet cutting technology before being installed on the original mounts.  

 

Also cut from the 5mm aluminium sheet were the parts for the Wheel Discs mentioned 

earlier. This component consists of two parts, the round outer disc which the FSW 

mounts to using six bolts and the inner star shaped part which attaches and aligns the 

entire wheel assembly to the existing hub (Figure 6.44). The final aluminium part was a 

large plate attached on top of the main chassis mounts as seen in Figure 6.45. This plate 

was installed to strengthen the chassis and mount the Main System Controller.  

 

 
Figure 6.44 – Assembled Wheel Disc components. The two wheel disc parts were also manufactured 

from aluminium and are used to attach the FSW to the original wheel hub on the chassis.  
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Figure 6.45 – Aluminium mounting plate. A large aluminium plate was designed and installed to add 

strength to the original chassis and accommodate the mounts for the Main System Controller. 

 

 
Figure 6.46 – Upper electronics layer. A lightweight layer was installed on top of the large aluminium 

plate to provide a platform to mount various other electronics components onto. 

 
The final modification to the chassis was the addition of a lightweight upper layer seen 

in Figure 6.46 above, which attached to the aluminium plate and was used to mount the 

other electronic components that manage the system. 
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6.4.2 Platform Electronics  
 

The platform contains a new suite of electronics for vehicle control and data 

management. The Main System Controller labelled (1) in Figure 6.47 is in the form of 

National Instruments Compact RIO (cRIO), a real-time embedded controller which 

boasts a powerful 400MHz processor, 128MB RAM and 2GB on-board storage. This 

highly capable system includes a reconfigurable chassis and hot swappable I/O modules 

and works with LabVIEW software for advanced graphical programming.  

 

 
1 Main System Controller (cRIO) 8 Digital I/O Module (NI 9403) 
2 Power Supply (14.8V LiPo) 9 Power/Data Board 
3 Emergency Button (on/off) 10 Camera Control Circuit 
4 Low Voltage Sensor 11 Voltage Regulators (3.3V/5V) 
5 Motor Control Module (NI 9505) 12 Safety Fuses (6A) 
6 Encoder Management (NI 9505) 13 Bluetooth Module (RN42) 
7 Relay Module (NI 9481) 14 Serial Data Converter 

  
Figure 6.47 – Outline of platform electronics. This image displays the main electronic components 

installed on the platform for vehicle control and data management. 

 

Power is supplied to the system by an 8Ah, 14.8V LiPo (2) via the emergency button 

(3) and monitored using a low voltage sensor (4). The cRIO controls vehicle motion 

using a motor controller module with built-in current sensor (5) and encoder 

management (6). A relay module (7) is used to manage power distribution and a digital 

I/O module (8) is used to control other electronic components. 
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A bespoke PCB (9) was designed to control the on-board cameras (10) and manage 

power distribution using voltage regulators (11) with fuses for safety (12). The main 

function of this board was to pass real-time sensor data from the FSW to the cRIO via a 

Bluetooth module (13) and serial data converter (14).  

 

6.4.3 On-board Cameras  
 

Two 720p HD cameras were installed on the platform using custom mounts to record 

the experiment from different perspectives. One was mounted alongside the FSW 

looking at the terrain ahead (left image Figure 6.48) and the second was mounted under 

the chassis facing towards the bottom of the FSW where wheel-terrain interaction 

occurs (right image Figure 6.48). These cameras, controlled by the cRIO, also included 

bespoke ring lights to illuminate the view. 

 

 
Figure 6.48 – On-board cameras. Two cameras with bespoke light rings were installed to record the 

experiment from different perspectives: looking ahead and at the point of wheel-terrain interaction.  

 

6.4.4 Dummy Wheels 
 

The platform needed three other wheels to complete the platform. These ‘dummy’ 

wheels needed to have similar properties to the FSW and were therefore designed using 

CAD tools and realised using the 3D printer (left image Figure 6.49). The tread needed 

to mimic that of the Sensor Units on the FSW, therefore a simple mould was created to 

cast a rubber tyre which was attached onto the dummy wheels (right image Figure 6.49).  
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Figure 6.49 – Dummy wheels installed on the platform. Three dummy wheels were designed and 

manufactured using the 3D printer and included tread with similar properties to the FSW Sensor Units. 

 

6.4.5 Final Assembled Platform 
 

 
Figure 6.50 – Completed vehicle platform. With all the chassis modifications, installation of the 

electronics and dummy wheels; the FSW was attached to complete the build of the system’s hardware. 



Measuring the Wheel-Terrain Interface 
 

  96 
 

6.5 Discussions 
 

The outcome of the review into terramechanics led to the discovery of the key 

parameters involved during wheel-terrain interaction, presented graphically in the 

diagram shown in Figure 6.2. This highlighted a unique opportunity to classify terrain 

conditions in real-time using pressure distribution measurements across the wheel-

terrain interface. To validate this concept a novel embedded system in the form of the 

Force Sensing Wheel was developed.  

 

As outlined in this chapter the innovative FSW design includes a modular structure, 

containing bespoke embedded electronics and an array of custom sensors integrated 

across the entire wheel surface. The intelligent self-contained system is capable of 

actively measuring force distribution across the wheel-terrain interface and wirelessly 

sending real-time data to the Main System Controller, where it is stored and/or 

analysed. This novel method of exteroceptive sensing is unlike other passive methods 

(discussed in Chapter 2) as it actively measures terrain conditions taking wheel 

interaction into account, which offers a more accurate representation of the terrain’s 

properties.  

 

The FSW was fully calibrated so that accurate calculations can be made from 

measurements. The highly capable cRIO system was integrated into the platform to 

control vehicle motion and manage real-time data sent from the FSW. The completed 

platform was now ready for the main experiment to gather wheel-terrain interaction 

measurements in order to create a unique terrain classification technique. 
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CHAPTER 7 
TERRAIN SENSING AND CLASSIFICATION 
 
 
 

7.1 Experimental Design 
 
The objective of the main experiment was to measure the normal (radial) force 

distribution3 across the 3D contact area at the wheel-terrain interface during different 

terrain conditions, to determine potential relationships that could be exploited to create a 

unique classification technique.  

 

7.1.1 Independent/Dependent Variables 
 

This experiment aimed to use the effect that terrain has on the wheel-terrain interface to 

create a unique classification technique, making terrain the independent variable. 

Granular terrain was used for the tests with variations within this terrain class used as 

the independent variables. The dependent variables of the experiment were those of the 

interaction affected by terrain properties, which were contact angle ߠ, radial pressure 

distribution and the location of maximum pressure ߠ௠ at the wheel-terrain interface.  

 
7.1.2 Control Variables 
 

Certain variables were controlled in order to ensure that the dependent variables were 

not affected by other conditions. An indoor terrain test-bed was devised to decrease the 

amount of uncontrollable, intervening variables (such as weather), allowing terrain 

variables such as slope/gradient and moisture content to be controlled. Vehicle 

parameters controlled included vertical load W, wheel radius r, wheel width b and wheel 

angular speed ߱. Finally the vehicle’s differentials and suspension were locked to stop 

them affecting wheel angular velocity and force exerted on the contact patch. 

                                                 
 
3 With the emphasis being on normal stress, shear stresses were not considered within this study. 
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7.1.3 Sampling (Site Selection) 
 

For the main experiment non-random/non-probability sampling was selected where 

variations of one terrain type represented a change in terrain conditions. The main tests 

were carried out across three variations of gravel from the (granular) terrain class 

‘Coarse Soil’ as per ISO 14688-1 seen earlier in Table 2.1. Gravel was chosen due to its 

availability and because the variation in particle (grain) size would yield better results. 

The tests carried out included one of each gravel sub-fraction defined by particle size: 

fine (2-5mm), medium (10-20mm) and coarse (20-40mm); seen in Figure 7.1 below. 

 

 
Figure 7.1 – Three grades of Gravel used for the experiment. Fine, medium and coarse gravel types were 

chosen as per ISO 14688-1 with the variation in grain size representing different terrain conditions. 

 
7.1.4 Sample Size 
 

As discussed, an indoor test-bed was devised to allow control of external conditions 

which increased adjustability and consistency in terrain conditions. This also gave more 

flexibility to sample size and easily allowed five runs per test without any vast changes 

in the test-bed environment. This sample size was selected as it provided sufficient data 

to give confidence in the results without overwhelming data processing. 
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The size of the test-bed was 2.5 x 1.5m and filled to a depth of 0.2m (Figure 7.2). This 

size was dictated by the space available however it was sufficient enough to provide 

data from at least two full wheel rotations, avoiding false values from test-bed borders. 

 

 
Figure 7.2 – Final terrain test-bed. The test-bed was 2.5 x 1.5m with a depth of 0.2m giving sufficient 

results from at least two wheel rotations without false values from the borders and base.  
 
7.1.5 Controlled Test 
 

As discussed earlier the match-control method was utilised for this study. This involved 

carrying out an initial (control) test which was done across a flat surface with reasonable 

frictional because it would have the least effect on vehicle performance. The results 

gathered from this test were used as a (datum) reference of optimum interaction 

conditions to compare other test results to. As this controlled test was carried out on a 

surface of known properties then it was also used to validate the test-rig.  

 
7.1.6 Main Experiment Procedure 
 

The main experiment involved five test runs across the three gravel types. The test-bed 

was filled with one gravel type and levelled before placing the vehicle at the start ready 

to begin testing. Once five runs were completed the test-bed was fully emptied and 

filled with the next gravel type. This was repeated until all tests were completed.  
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Controlling the experiment was achieved using a LabVIEW control panel running on a 

host PC connected to the cRIO (Figure 7.3); this was used to start/stop the vehicle and 

the on-board cameras while regulating the vehicle’s speed. The vehicle’s linear velocity 

was fixed to 0.3m/s using FPGA based motor control to regulate the motor to 540rpm, 

which translated to a wheel angular velocity of 30rpm with the 18:1 gearbox. This was 

achieved by performing Proportional Integrated Derivative (PID) control and driving 

the motor using Pulse Width Modulation (PWM) accordingly. 

 

 
Figure 7.3 – LabVIEW experiment control panel. A control panel running on a host PC connected to the 

Main System Controller (cRIO) was used to control the vehicle during the experiment.  
 

During the experiment certain values displayed on the control panel, such as current 

draw and encoder position, needed to be recorded for analysis. Consequently these 

values were set as global variables within the LabVIEW project in order to share them 

with the main data-logging program yet to be discussed. The Drive start/stop button 

(seen top right on the control panel) was also linked to the main program to inform the 

system when to start/stop recording data. 

 

At the end of every group of tests across the same gravel type, video files were 

downloaded from the on-board cameras (Figure 7.4) in addition to a fixed camera used 

to record the experiments from an external view. Finally the gathered data was checked 

to make sure it was successfully logged and once confident with the results, the gravel 

was emptied and the next test was prepared. 
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Figure 7.4 – View from an on-board camera during the various tests. The tests were recorded from 

various perspectives to capture the experiment and help (offline) visual analysis. 
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7.1.7 Gathering/Storing Data  
 

The Force Sensing Wheel reads all 768 sensors in real-time and organises the raw data 

values into a 2D x/y coordinate chart, where x represents a sensor’s radial position and y 

represents the sensor’s location across the wheel width. The coordinate chart also takes 

into account the array pattern including the blank spaces between sensors, making the 

size of the chart: x = 96 and y=16. Once the FSW has placed a set of sensor values into 

the chart then it is instantly sent as a complete ‘data packet’ via serial (Bluetooth) 

communications to the cRIO at 14.4KB/s (115200 baud). As the size of each data 

packet doesn’t exceeding 4KB, then all 768 sensor values are obtained by the cRIO 

approximately every 300ms. In order to eliminate errors during the sending/receiving of 

packets and preventing data loss ‘Handshaking’ flow control methods are utilised. This 

involves the transmitter (FSW) only sending data when the receiver (cRIO) 

communicates that it is ready to receive data, once the buffer is clear from the previous 

data transmission. As each data packet is received by the cRIO it is ‘unpacked’ and 

logged by the main data-logging program. 

 

The front panel of the main data-logging program included a 3D surface map displaying 

a live view of the contact interface during the tests (Figure 7.5). As previously 

mentioned data logging was automatically started and stopped with vehicle motion via 

the experiment control panel, indicated by a status light. Additionally drop down menus 

gave options to correctly label the logged data which was stored directly on the host PC.  

 

 
Figure 7.5 – Data-logging front panel. The main data-logging program included options to input test 

information and offered a live view of the experiment via a 3D surface map showing contact data. 
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7.1.8 Data Processing 
 

The received data required processing therefore after it was unpacked, individual values 

were constructed back into the x/y coordinate format by placing them into a 2D array as 

seen in Figure 7.6 below. The x/y coordinate layout was designed to take into account 

the physical spaces between sensors in order to correctly align data values in the array 

pattern; however this caused intermittent data points when results were displayed. To 

produce smoother data curves, values form laterally adjacent sensors were averaged and 

inserted into blank cells. 

 

 
Figure 7.6 – Sensor data arranged in a 2D array. Once data packets were received from the FSW they 

were unpacked and arranged back into the x/y chart format using 2D arrays in LabVIEW.  
 
The final process was to convert raw sensor data into meaningful force measurements 

for which the unique calibration numbers discussed in Chapter 6 were required. These 

unique values that were obtained during the calibration tests including both exponential 

relationships (<1N and >1N) alongside the threshold number known as the decider 

value. To convert raw data into actual force values, the exponential function seen in 

Equation (12) was utilised; where C and B are unique values of the exponential 

relationship, v is the voltage converted from raw data, e is Euler’s irrational number 

(2.71828) and F is the calculated force: 

 

ܨ  = ൫݁(஻௩)൯ (12)ܥ
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7.2 Terrain Sensing Results 
 

Once the gathered data was processed the results of the experiment were arranged 

graphically for analysis. These graphs display the contact angles and (normal) force 

distribution during wheel-terrain interaction across the different terrain types. A larger 

range of results for all tests can be seen in Appendices F-I with a selection shown here. 

 

The first set of graphs for each test approach wheel-terrain interaction from a 2D 

perspective as per terramechanic theories. However the novel FSW facilitated direct 

force measurements across the entire wheel-terrain contact interface which led to a 

unique set of results, presented using 3D surface maps. 

 

7.2.1 Controlled Test (Datum) 
 

 
Figure 7.7 – Contact angle results from the controlled test. The results show the location of peak force 

during the controlled datum tests (blue) compared to bottom dead centre under the wheel (grey). 
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Figure 7.8 – Wheel width results from the controlled test. The blue curve seen in this graph displays the 

distribution of force across the wheel width during the controlled datum test. 

 

 
 
Figure 7.9 – Controlled test results displayed on a 3D surface map. This image displays direct force 

measurements across the entire wheel-terrain contact interface during the controlled test.  
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The first graph in Figure 7.7 displays the results from the controlled datum test, 

presented as a 2D longitudinal view of the wheel-terrain interaction. The grey curve 

displays the distribution of force while the vehicle was static, confirming the location of 

‘bottom dead centre’ under the wheel. This result was used alongside encoder 

measurements to locate the wheel’s vertical axis in order to determine the location of 

peak force during the test. The full set of data gathered from the controlled tests were 

averaged and presented as the blue curve in Figure 7.7 displaying the contact angles, 

percentage of force distribution and location of peak force. The second graph in Figure 

7.8 shows the 2D lateral view of force distribution across the wheel width. Finally the 

average of force measurements across the entire contact interface during the test is 

shown as a 3D surface map in Figure 7.9. These controlled test results confirm the 

uniform force distribution expected from a flat surface. More results from the controlled 

(datum) test can be seen in Appendix F. 

 

7.2.2 2-5mm Gravel Test 
 

 
Figure 7.10 – Contact angle results from 2-5mm gravel test. The results show the location of peak force 

during the 2-5mm gravel tests (red) compared to bottom dead centre under the wheel (grey). 
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Figure 7.11 – Wheel width results from the 2-5mm gravel test. The red curve seen in this graph displays 

the distribution of force across the wheel width during the 2-5mm gravel test. 

 

 
Figure 7.12 – 2-5mm gravel test results displayed on a 3D surface map. This image displays direct force 

measurements across the entire wheel-terrain contact interface during the 2-5mm gravel test.  
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The first set of terrain tests were carried out across the 2-5mm gravel, the results of 

which are presented in Figures 7.10 - 7.12. The first graph (Figure 7.10) presents the 2D 

longitudinal view where the bottom dead centre result is again shown as the grey curve 

and the averaged result from the main test as the red curve. The contact angles, force 

distribution and location of peak force are again presented which immediately display 

considerable differences to those of the datum test. The second graph displays the same 

results across the wheel width (Figure 7.11) which shows that the distribution of force 

across the wheel’s width was uneven, demonstrating that pressure is not equally 

distributed laterally during interaction with uneven terrain. This can be seen clearer in 

the 3D surface map in Figure 7.12 where force is widely distributed across a larger 

contact interface, which was due to sinkage characteristics of granular terrain during 

wheel-terrain interaction. More results from the 2-5mm test can be seen in Appendix G. 

 

7.2.3 10-20mm Gravel Test 
 

 
Figure 7.13 – Contact angle results from the 10-20mm gravel test. The results show the location of peak 

force during 10-20mm gravel tests (green) and bottom dead centre under the wheel (grey). 
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Figure 7.14 – Wheel width results from the 10-20mm gravel test. The green curve seen in this graph 

displays the distribution of force across the wheel width during the 10-20mm gravel test. 
 

 
 
Figure 7.15 – 10-20mm gravel test results displayed on a 3D surface map. This image displays direct 

force measurements across the entire wheel-terrain contact interface during the 10-20mm gravel test. 
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The second tests were carried out across the medium grade 10-20mm gravel with the 

results graphically presented in Figures 7.13 - 7.15. The first graph seen in Figure 7.13 

displays the 2D perspective of wheel-terrain interaction with the grey curve again 

determining the location of the wheel’s vertical axis using the bottom dead centre result. 

The green curve shows the averaged result from the main tests which again show the 

distribution of force and contact angles. These results immediately show differences to 

previous tests, however they yield a uniform curve similar to the datum tests which 

could be mistaken as a uniform surface if taken as a single result. The second graph in 

Figure 7.14 differentiates the results from the datum test as it shows larger variance in 

distributed force across the wheel width as expected from an uneven surface. The 3D 

surface map (Figure7.15) better highlights this variance with more peak values than the 

2-5mm gravel due to the larger size of the gravel particles. More results from the 10-

20mm gravel test can be seen in Appendix H. 

 

7.2.4 20-40mm Gravel Test 
 

 
Figure 7.16 – Contact angle results from 20-40mm gravel test. The results show the location of peak 

force during 20-40mm gravel tests (purple) and bottom dead centre under the wheel (grey). 

10.37

0

10

20

30

40

50

-20 -15 -10 -5 0 5 10 15 20 25 30

Fo
rc

e 
Di

st
rib

ut
io

n 
(%

)

Contact Angle (deg)

Average Contact Angle

Bottom Dead Centre

Contact Angle vs Force Distribution: 20-40mm Gravel

θଵ = 18.75°θଶ = 11.25°θ  = 30.00°θ୫= 10.37°

θଶ θଵ



Terrain Sensing and Classification 
 

  111 
 

 
Figure 7.17 – Wheel width results from the 20-40mm gravel test. The purple curve seen in this graph 

displays the distribution of force across the wheel width during the 20-40mm gravel test. 

 

 
Figure 7.18 – 20-40mm gravel test results displayed on a 3D surface map. This image displays direct 

force measurements across the entire wheel-terrain contact interface during the 20-40mm gravel test. 
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The final tests were performed across the 20-40mm coarse gravel with the results 

presented across three graphs as before. The first graph (Figure 7.16) displays the 

longitudinal 2D view with the grey curve again used to locate the wheel’s vertical axis 

alongside the averaged results displayed as a purple curve. These results show a higher 

peak force with narrow distribution as expected from the large gravel size. The results 

seen in Figure 7.17 coincide with this displaying the largest variance of force 

distribution across the wheel width. The 3D surface map displayed in Figure 7.18 better 

demonstrates this with an extensive number of peak force points as a consequence of 

interacting with a rough terrain type. More results from the 20-40mm gravel test can be 

seen in Appendix I. 

 

7.3 Data Analysis 
 

All tests results were thoroughly analysed in order to discover potential relationships 

that could be exploited to create a unique classification technique. The key parameters 

of the wheel-terrain contact interface are the contact angle ߠ and location of maximum 

pressure  ߠ௠ as previously presented in Figure 6.2. Additionally the FSW’s novel 

sensing capabilities facilitated the measurement of these parameters across the entire 

contact interface, offering a unique perspective of the wheel-terrain interaction. This 

method provided force distribution measurements across the entire contact patch 

presented as 3D surface maps, which were scrutinised to identify significant features. 

 

7.3.1 Contact Angle 
 

The contact angles of the wheel-terrain interface across all the tests were combined for 

analysis as seen in Figure 7.19. Firstly, region ߠଶ was expected to be negligible as noted 

by terramechanic studies assuming ߠଶ = 0 (Iagnemma, Dubowsky 2004, p25); however 

as seen across all results ߠଶ is significantly larger and has an effect on the total contact 

angle (ߠ) as seen in Table 7.1 and therefore cannot be completely discounted . The total 

contact angle results of the gravel tests were all larger than the datum test due to 

deformation characteristics expected with granular terrain. The contact angle generally 

increases with smaller grained terrain types as seen with the 2-5mm gravel having the 

largest contact angle compared to larger gravel sizes.  
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Table 7.1 – Table displaying key values from the experiment. The most significant values obtained from 

the experiment are displayed here, showing relationships between certain parameters and gravel size. 
 

Terrain ߠଵ 
(degrees) 

 ଶߠ
(degrees) 

  ߠ
(degrees) 

  ௠ߠ
(degrees) 

  ௣ܨ
(N) 

 Maximum 
Force 

Distribution 
(%) 

Datum 
Test 15.00 11.25 26.25 4.13 1.65 34.75 

2-5mm 
Gravel  15.00 22.50 37.50 3.24 0.74 26.95 

10-20mm 
Gravel  18.75 11.25 30.00 6.78 0.77 31.75 

20-40mm 
Gravel  18.75 11.25 30.00 10.37 1.06 36.70 

 

 
Figure 7.19 – Comparing contact angle results across all tests. The results show the difference in contact 

angle which changes with gravel size due to deformation characteristics of granular terrain.  
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7.3.2 Contact Surface Area 
 

The contact surface area (A) at the wheel-terrain interface could be accurately calculated 

as a result of the entire contact patch being measured throughout the experiment. 2D 

contour maps were created from the test results in order to visualise the contact patch 

during each test, seen in Figure 7.20. These contour maps show clear variations in 

contact surface area and the distribution of force on the contact patch across the 

different surfaces. The datum result exhibits a regular shaped contact patch with an 

equal distribution of force; in comparison the gravel test results vary in shape and force 

distribution due to the deformation characteristics of granular terrain. As the gravel size 

increases the shape of the contact patch becomes less regular and the overall contact 

surface decreases, leading to more irregular peaks.  

 
7.3.3 Location of Maximum Pressure 

 

The location of maximum pressure (ߠ௠) is a significant parameter within the wheel-

terrain interaction model as per terramechanic studies, which suggest that ߠ௠ exists 

within ߠଵ. This is supported by the results of this experiment, as seen in Figure 7.21, 

which graphically presents the peak force (ܨ௣) measured during all tests. These studies 

also state that ߠ௠ is related to properties of the terrain, which is again supported by the 

test results where  ߠ௠ varies across different terrain types. The results show that  ߠ௠ 

shifts forward as the gravel size increases, however the distribution of force may not be 

equal across the width of the contact interface as previously highlighted.  

 

7.3.4 Lateral Pressure Variation 
 

The 3D surface map from the datum results displayed in Figure 7.22 shows an equal 

distribution of pressure across the width expected from a flat, even surface; however 

Figure 7.23 shows that force becomes more unevenly distributed with increasing gravel 

size, resulting in lateral pressure variations (denoted ܮ௩). These variations cause a 

number of peaks across the contact patch signifying that ߠ௠ also varies laterally during 

interaction with rougher terrain. This highlights that 2D model parameters do not 

accurately represent interaction properties across the wheel width, whereas novel 3D 

measurements present unique quantitative properties which identify terrain features. 
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Figure 7.20 – 2D contour maps comparing contact surface area. The 2D contour maps exhibit distinct 

differences across terrain types due to deformation and surface roughness, affecting pressure distribution. 
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Figure 7.21 – Comparing peak force measurements across all tests. The results show the shift of peak 

force, highlighting a relationship between gravel size and location of maximum pressure. 

 

 
Figure 7.22 – 3D surface map showing pressure distribution during the datum test. 

This image displays the uniform distribution of pressure across the wheel’s width. 

1.65

0.74
0.77

1.06

0.0

0.5

1.0

1.5

2.0

-20 -15 -10 -5 0 5 10 15 20 25 30

Fo
rc

e 
(N

)

Contact Angle (deg)

Datum
2-5mm Gravel
10-20mm Gravel
20-40mm Gravel
Peak Force

Results Analysis: Peak Force Measurements

θଶ θଵ



Terrain Sensing and Classification 
 

  117 
 

 
Figure 7.23 – 3D surface maps showing pressure distribution during gravel tests. These images 

display the lateral pressure variation patterns during interaction with the various terrain types. 
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7.4 Classification 
 

As previously discussed ߠ and ߠ௠ were considered the most significant parameters 

relating to wheel-terrain interaction. The experiment results indicated that these 

parameters do relate to terrain properties; however they approach wheel-terrain 

interaction from a 2D perspective, which lacks accuracy when (solely) used to classify 

terrain. The outcome of the experiment presented a novel 3D view of the wheel-terrain 

interface leading to the discovery of distinctive relationships between the contact 

surface area, lateral pressure variation and terrain properties; consequently these 

parameters were used to create a unique terrain classification system. 

 
7.4.1 Fuzzy Logic 
 

With the imprecise nature of terrain parameters, fuzzy logic was utilised to create the 

classification system. As contact surface area (A) and lateral pressure variation (ܮ௩) 

were observed as the key interaction parameters relating to features of the terrain, they 

were used to classify terrain using the ‘truth table’ seen in Figure 7.24 below: 
 

 
Figure 7.24 – Terrain classification truth table. The variables within this diagram 

were used to create the rule sets used by the fuzzy controller to classify terrain. 
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The two main parameters A and ܮ௩ are used as the main linguistic input variables for the 

fuzzy logic system with the linguistic terms being small/medium/large for A and 

low/medium/high for ܮ௩ (seen in Figure 7.24). These variables determine the terrain 

type which is classified by gravel size from fine through to coarse. Contact surface area 

is calculated using Equation (13) where the area of each sensor (0.27cm²) is multiplied 

by the number of cells where force values F are greater than zero: 

 

ܣ  = ܨ)0.27 > 0) (13)

 

Lateral pressure variation is the total standard deviation of lateral force measurements, 

calculated using Equation (14) where x is the (radial) sensor row, y is each lateral sensor 

value and ݕത is the mean of lateral sensor values: 

 

௩ܮ  = ෍ ݔ ቌඨ∑(ݕ − ത)ଶ16ݕ ቍ (14)

 

The range of A and ܮ௩ values for each terrain type were obtained from the experiment 

results (seen in Appendices F-I) and used to create membership function plots. These 

membership functions (seen in Figures 7.25 and 7.26) are used by the fuzzy logic 

system to determine the degree of membership for given contact interface 

measurements. Terrain is then classified using the rule set listed below, derived from the 

truth table presented in Figure 7.24: 

 

If A is LARGE and ܮ௩ is LOW then terrain = Datum 

If A is LARGE and ܮ௩is HIGH then terrain = 2-5mm Gravel 

If A is MEDIUM and ܮ௩ is LOW then terrain = 2-5mm Gravel 

If A is LARGE and ܮ௩ is MEDIUM then terrain = 2-5mm Gravel 

If A is MEDIUM and ܮ௩ is HIGH then terrain = 10-20mm Gravel 

If A is SMALL and ܮ௩ is LOW then terrain = 10-20mm Gravel 

If A is MEDIUM and ܮ௩ is MEDIUM then terrain = 10-20mm Gravel 

If A is SMALL and ܮ௩ is HIGH then terrain = 20-40mm Gravel 

If A is SMALL and ܮ௩ is MEDIUM then terrain = 20-40mm Gravel 
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Figure 7.25 – Contact area membership functions; used to determine the degree of membership. 

 

 
Figure 7.26 – Lateral variation membership functions; used to determine the degree of membership. 
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LabVIEW tools were used to develop the fuzzy logic system for implementation. The 

variables, rule set and membership functions were entered into the controller and its 

precision was tested using data extracted from other test results. The controller initially 

had a moderate success rate of around 70%, however this was found to be because of 

irregularities within individual data sets rather than controller imprecisions. To yield 

better results three data sets were averaged before A and ܮ௩ values were calculated and 

entered into the fuzzy controller, which increased success rate to >90%. Once fully 

developed, the robust fuzzy logic controller was combined with data gathering and 

processing elements of the main program to classify terrain in real-time. 

 
7.4.2 Real-time Classification 
 

The various novel developments from the study were combined to create a complete 

real-time terrain classification system, an outline of which can be seen in Figure 7.27 

below. The contact interface is measured by the FSW and sends raw data to the main 

controller where it is processed and analysed on-board; the unique parameters are then 

calculated and entered into the fuzzy controller which classifies the terrain.  

 

Figure 7.27 – Outline of the real-time terrain classification system. The various processes developed for 

this study were combined to create a complete real-time terrain classification system. 
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Gathering data, communicating it wirelessly and unpacking raw data were already 

operating in real-time; therefore the other stages seen in Figure 7.27 required further 

development to incorporate them into the real-time system. The first process was to 

convert raw data into meaningful values on-line using the unique calibration values 

previously obtained. A series of ‘read measurement file’ functions in LabVIEW (Figure 

7.28) were introduced into the initialisation phase of the main program to retrieve all the 

calibration values to store them in local variables ready to be used by the calibration 

algorithm (Figure 7.29). 

 

 
Figure 7.28 – Read measurement file LabVIEW functions. These functions were used during the 

initialisation of the main program to place the unique relationship values into local variables. 

 

The state diagram presented in Figure 7.29 displays the basic function of the calibration 

algorithm. Actual force values were calculated from raw data using the unique B and C 

values, with each sensor’s decider value being used to determine which set of unique 

relationship values were used in the formula. This calibration process was completed as 

data was gathered and unpacked to calculate actual force values in real-time.  

 

Following raw data conversion, the blank cells within the x/y map required data input as 

before. The method of filling the blank cells with averaged values from laterally 

adjacent cells was incorporated into the real-time system. Figure 7.30 displays the 

segment within the LabVIEW program that completed this process, where two program 

structures were used to account for the alternating sensor array pattern.  
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Figure 7.29 – State diagram of the calibration algorithm. The calibration algorithm used each sensor’s 

decider value to determine which unique values to use to calculate actual force values in real-time. 
 

 

 
Figure 7.30 – Averaging program structures in LabVIEW. Values from (laterally) adjacent 

sensors were averaged and inserted into blank spaces in the x/y chart to produce better results. 
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The gathered data was now fully processed and needed to be analysed on-board. Firstly 

A and ܮ௩ values were calculated using Equations (13 &14) which were then entered into 

the fuzzy logic controller. The fuzzy controller developed using LabVIEW tools as seen 

in Figure 7.31, took these calculated values and classified the terrain using the 

previously entered membership functions and rule set. This completed the real-time 

classification algorithm which is diagrammatically displayed in Figure 7.32. 

 

 
Figure 7.31 – Fuzzy logic controller developed in LabVIEW. The fuzzy controller classified terrain in 

real-time from calculated values, using the membership functions and rule set previously entered. 

 

7.4.3 System Validation 
 

The completed algorithm, developed in LabVIEW, was now capable of on-board data 

processing, analysis and classification and communicated the results to a front panel 

based on the host PC (Figure 7.33). This panel not only displayed the classification 

results but also presented a live view of the contact interface using a 3D surface map to 

display the pressure distribution across the contact patch, a 2D heat map showing the 

calculated contact surface area and a 2D chart presenting the lateral pressure variation.  

 

Finally, the classification system was tested to verify its ability to classify terrain 

conditions (within this study) in real-time. Table 7.2 displays the results from these 

tests, which all returned 100% success rate; validating the real-time terrain classification 

system. The full set of results from these tests are presented in Appendix J. 
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Figure 7.32 – Diagram of the complete real-time classification algorithm. This state diagram presents all 

the processes that took place to classify terrain in real-time from raw data gathered by the FSW. 



Terrain Sensing and Classification 
 

  126 
 

 
Figure 7.33 – Real-time classification and visualisation panel. The host PC front panel presented a live 

view of the contact interface using 2D and 3D maps in addition to the real-time classification results. 

 
Table 7.2 – Table displaying results of classification validation tests. The complete real-time system was 

tested to verify its capabilities, the results of which are displayed in this table (full set in Appendix J). 
 

Test 
No. Terrain ܣ  

(cm2) 
  ௩ܮ
(N) 

 Membership 
 Classification (ߤ)

01 Datum  17.97 1.72 0.66 Datum 

02 2-5mm Gravel  21.52 2.94 0.75 2-5mm Gravel  

03 10-20mm Gravel  13.13 3.02 0.67 10-20mm Gravel  

04 20-40mm Gravel  8.85 5.13 0.79 20-40mm Gravel  

 

7.5 Discussions 
 

The experiment was designed to use the Force Sensing Wheel (FSW) to measure 

(normal) force distribution at the contact interface while traversing across various 

terrain conditions, represented by different gravel sizes. The novel FSW measurements 

gathered during the experiment were analysed offline to discover potential relationships 

that could be exploited to create a unique terrain classification technique. 
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The results from the experiment were initially presented using the key parameters 

derived from terramechanic studies: contact angle ߠ and location of maximum 

pressure  ߠ௠ ; however this approach presents wheel-terrain interaction from a 2D 

perspective. As the FSW obtained force measurements across the entire wheel-terrain 

interface then results could be presented using 3D surface maps. These novel results 

highlighted that ߠ and  ߠ௠  are not accurate enough to classify terrain conditions as they 

vary across the wheel width. Contact surface area A and lateral pressure variation  ܮ௩  
(the 3D parameters relative to ߠ and  ߠ௠ ) were therefore chosen to identify unique 

features of the wheel-terrain contact interface.  

 

Additionally A and  ܮ௩  are more suited for this study as they are far more measureable 

for a real-time system compared to ߠ and  ߠ௠  which require constant knowledge of 

wheel angular position. The results of the controlled test displayed ideal interaction 

conditions with regular contact patch patterns and uniform lateral pressure distribution, 

offering a datum to compare the granular terrain to. The main terrain tests exhibited 

varied results that related to gravel size; highlighting relationships between features of 

the contact interface and gravel size, which presented an opportunity to create a unique 

terrain classification system. 

 

The outcome of the results analysis led to the development of a classification system 

using A and  ܮ௩  measurements as unique input variables within a fuzzy logic system. A 

fuzzy system was selected for this study as input and output values can be less precise, 

which is ideal when classifying such a variable element as natural terrain. The final 

system was developed to operate in real-time by using the FSW to gather data and 

process, analyse and calculate values on-board. The calculated parameters were then 

entered into the fuzzy controller where a rule set and membership functions were used 

to classify the terrain.  

 

The system’s ability to classify terrain in real-time was validated through final tests. The 

successful outcome of these tests confirmed that this novel method is able to offer 

accurate, real-time information about the terrain while the vehicle is traversing it. 
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CHAPTER 8 
CONCLUSIONS AND FUTHER WORK 
 
 

 

8.1 Conclusions 
 

This study aimed to increase the terrain perception of autonomous UGVs. The study 

was motivated by circumstances where terrain has caused a vehicle to become stuck due 

to a lack of information regarding (direct) terrain conditions. One such example can be 

seen with the space rover Spirit when it became stuck in unforgiving Martian terrain, 

ending its mission. 

 

This thesis establishes a novel tool for measuring direct terrain features at the contact 

interface and a unique classification technique to identify terrain in real-time. The study 

was driven by the research questions, which through answering led to the unique 

contributions. 

 

8.1.1 Answering the Research Questions 
 

- What sensory modes have been utilised to identify terrain? 

 

Through an initial literature review it was discovered that current autonomous vehicles 

use look-ahead vision systems and passive laser scanners to map their local 

environments (Chapter 2).  This has been proved effective for safely navigating across 

structured paths; however this method lacks detail when considering unstructured 

terrain, as these systems make predictions using estimations of terrain’s appearance 

alone. From the review into terrain it was established that the various internal elements 

of natural terrain will cause it to behave differently when interacted with, which could 

change its ability to support a load. This information is crucial for autonomous vehicles 

that operate in unstructured environments because if they unknowingly venture into 

unforgiving terrain they will become stuck, ending their mission. 
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A potential solution was proposed through the hypothesis suggesting that data gathered 

from performance measurements of the vehicle’s reaction to the terrain (the interaction) 

can be used as a unique method of classifying terrain in real-time. To verify this, an 

early experiment was completed to identify terrain properties using internal 

measurements of vehicle parameters (proprioceptive sensing) in reaction to terrain 

conditions (Chapter 3). Even though this method had some degree of success by 

measuring environmental properties through vehicle-terrain interaction, it lacked 

accuracy and reliability when regarding direct elements of the terrain. 

 

 

- What are the significant parameters during wheel-terrain interaction? 

 

To search for a more direct method, an additional review was carried out looking at the 

fundamentals of terrain mechanics and complex quantitative parameters of the 

interaction between the wheel and terrain, better known as terramechanics (Chapter 5). 

This review led to the discovery of interaction parameters which are significant to the 

study as they consist of elements that are far more measurable.  

 

Analytical models (Figure 5.6 and 5.8) and balance Equations (5-7) are used to calculate 

interaction parameters to predict vehicle performance; however previous knowledge of 

terrain parameters are required and therefore these could not exclusively be utilised to 

classify terrain. These models did however highlight the significant parameters of the 

interaction to be contact angle (ߠ) and the location of maximum pressure (ߠ௠) at the 

wheel-terrain interface, outlined in Figure 6.2. These were subsequently highlighted as 

the key parameters that could potentially be exploited to classify terrain.  

 

 

- How could new sensor technologies/methods be used to better identify terrain? 

 

A novel sensing method was required to determine the contact angle ߠ and location of 

maximum pressure  ߠ௠ during wheel-terrain interaction. The Force Sensing Wheel 

(FSW) was therefore developed, which contains embedded electronics and a large array 

of force sensors across its entire surface, giving it the ability to continuously measure 

the distribution of pressure across the contact interface (Chapter 6). 



Conclusions and Further Work 
 

  130 
 

The wheel, built using modern rapid prototyping/manufacturing tools, includes an 

innovative modular wheel design which fully incorporates all the embedded electronics 

required to simultaneously manage 768 force sensors and send raw data in real-time to 

the Main system Controller. An extensive sensor calibration process meant that accurate 

force calculations could be made from raw measurements. 

 

The completed FSW was mounted onto the vehicle platform which included the Main 

System Controller. The complete system was then used for the main empirical study 

where the vehicle was driven across different granular (gravel) terrain types while force 

data from the contact interface was collected. 

 

 

- What parameters can be utilised to classify terrain in real-time? 

 

The raw data collected from the experiment was processed and the final results were 

presented graphically. These results were thoroughly analysed to identify ߠ and  ߠ௠ for 

each test (Chapter 7), which supported terramechanic models that suggest these 

parameters are related to certain terrain properties. These parameters however, approach 

wheel-terrain interaction from a 2D perspective, assuming that pressure is evenly 

distributed across the wheel’s width. The novel data collection instrument (FSW) 

offered a unique perspective of the contact interface which was presented using 3D 

surface maps. The 3D results showed that pressure distribution was laterally uniform 

only when traversing the flat (datum) surface and became more varied with increasing 

gravel size. Additionally the size and shape of the contact patch changed both laterally 

and longitudinally during the tests. This highlighted that ߠ and  ߠ௠ do not accurately 

represent interaction conditions and therefore cannot solely be used to classify terrain.  

 

Further analysis showed that distinct relationships exist between the contact surface area 

A (relative to ߠ), lateral pressure variation ܮ௩ (relative to ߠ௠) and terrain properties. 

These 3D parameters were deemed to more accurately represent terrain conditions and 

can be calculated in real-time without requiring knowledge of other parameters. 

Consequently these parameters were used as unique input variables within a fuzzy logic 

system to classify terrain in real-time. 
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8.1.2 Real-time Classification System 
 

Finally, a unique real-time terrain classification algorithm was developed from the 

results of the empirical study (Figure 7.32). This system successfully collected contact 

interface measurements and carried out on-board data processing and analysis before 

entering A and ܮ௩ calculations into the fuzzy controller to classify terrain in real-time. 

 

The unique classification system presented in this study could complement current 

passive sensors which are used to look ahead to determine what is going to happen in 

order to make early navigation decisions; whereas the novel terrain measurement and 

classification system could provide information on what is happening now at the wheel-

terrain interface. When used alongside current sensing methods, the unique 

classification system could help to validate terrain estimations and traversability 

predictions made from vision and look-ahead sensor measurements, enabling more 

accurate future predictions. Additionally the system could continuously monitor the 

contact interface during operation, giving an immediate alert if the situation changes 

and warning of any potential pitfalls before it’s too late.  

 

 

8.2 Contributions to Knowledge  
 

This study proposes a new method of sensing and classifying terrain in real-time. The 

principle contributions to knowledge are: 

 

- A novel sensing method capable of directly measuring pressure distribution across 

the contact interface during wheel-terrain interaction. 

 

The innovative Force Sensing Wheel is capable of continuously measuring pressure 

distribution using 768 force sensors embedded across its entire surface. This self-

contained unit measures the wheel-terrain contact interface in real-time and wirelessly 

sends data via Bluetooth to the Main system Controller to be analysed. This novel 

sensing method also offers a unique 3D perspective of the contact interface. 
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- An on-line terrain classification algorithm that uses unique parameters of the 

wheel-terrain contact interface to accurately identify terrain features in real-time. 

 

This study presents the two unique parameters of the wheel-terrain contact interface to 

be: Contact Surface Area denoted A and Lateral Pressure Variation denoted  ܮ௩. These 

parameters are used to classify terrain from FSW measurements by using them as the 

main linguistic input variables within a fuzzy logic system. The final algorithm offers a 

complete system capable of collecting data and processing it to classify terrain in real-

time. 

 

- A number of contributions made towards international research papers (listed in 

the Publications Section). 

 

8.3 Further Work 
  

There are a number of directions that could be addressed for further work. The three 

grades of gravel terrain selected for the study offered a limited sample of terrain 

properties; therefore the first direction would be to test the system across a wider range 

of terrain types to increase its capabilities. 

 

In order to measure a larger range of terrain types, the force sensors embedded on the 

FSW would need further developments. Their resolution and sensitivity would need to 

be increased to be able to measure unique features during interaction with finer terrain 

such as sand, which might be beyond the capabilities of the FSW in its current 

configuration. This was initially explored in Chapter 6 (Section 6.2.5) where various 

compounds that exhibited relationships between voltage and force were created; 

however a more consistently reliable solution would need to be developed. 

 

Another direction for the study would be to investigate how (negative and positive) 

wheel slip would affect the terrain classification technique. A final recommendation 

would be to integrate the novel terrain classification technique with existing look-ahead 

systems as discussed, in order to verify that the combination of these sensing methods 

would lead to better traversal decisions, creating a more Terrain Capable system. 
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Controlled (Datum) Test Results 
 

 
 
 

 

 

 



























 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

APPENDIX G 
 

2-5mm Gravel Results 
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10-20mm Gravel Results 
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20-40mm Gravel Results 
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Classification Validation Results 
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