Faithful Counterfactual Visual Explanations (FCVE)

Bismillah Khan?®, Syed Ali Tariq®, Tehseen Zia®, Muhammad AhsanP,
David Windridge®

?Department of Computer Science, COMSATS University Islamabad, Pakistan
®The City School, Ravi Campus, Pakistan
¢Middlesex University London, United Kingdom

Abstract

Deep learning models in computer vision have made remarkable progress,
but their lack of transparency and interpretability remains a challenge. The
development of explainable Al can enhance the understanding and perfor-
mance of these models. However, existing techniques often struggle to pro-
vide convincing explanations that non-experts easily understand, and they
cannot accurately identify models’ intrinsic decision-making processes. To
address these challenges, we propose to develop a counterfactual explanation
(CE) model that balances plausibility and faithfulness. This model gen-
erates easy-to-understand visual explanations by making minimum changes
necessary in images without altering the pixel data. Instead, the proposed
method identifies internal concepts and filters learned by models and lever-
ages them to produce plausible counterfactual explanations. The provided
explanations reflect the internal decision-making process of the model, thus
ensuring faithfulness to the model.
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1. Introduction

Deep convolution neural networks (DCNNs) are at the leading edge of
technology in many advanced areas of computer vision applications such as
healthcare [1], criminal justice [2], banking finance decisions [3], transporta-
tion [4], agriculture [5], fraud detection [6] and scene segmentation [7], etc.
The extensive use of deep convolutional neural networks over a conventional
neural network is due to the fact that they are computationally competitive,
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automatically learn a hierarchy of representations from the input data [8],
and are agile compared to neural networks [9].

However, DCNNs are opaque in nature as their innards are not properly
understood and visible, making them a black-box [10]. The DCNN models
need to be transparent for safety-critical applications such as healthcare and
criminal justice that involve dealing with human life [11, 12] and driverless
vehicles [13], etc., in which the effect of inaccurate or undesired decisions
have significant consequences [14, 15, 16]. Several studies show that DCNNs
often regard dataset bias [17] and rely on undesired or inappropriate features
to take decisions. The DCNNs also produce incorrect results when subtle
changes are made to the input [18]. Adversarial attacks cause risk to sev-
eral security-critical applications, for instance, in driver-less vehicles where
slight obstructions on traffic signs can result in undesired conclusions [19] or
in surveillance systems where malevolent individuals may cause harm [20].
Therefore, DCNNs are unreliable and need explainable AT (XAI) approaches
to determine their deficiencies and train trustworthy, robust, and transparent
models [16, 21, 22].

Different types of (XAI) methods exist in the literature and can be cate-
gorized into two dominant groups: ante-hoc [23] and post-hoc [24]. Although
the ante-hoc models have intrinsically explainable model structure, the ex-
plainability comes at the cost of lower performance. The post-hoc models
tend to explain other pre-build black-box models; hence they do not com-
promise performance at the expense of explainability. Among many post
hoc techniques, counterfactual and contrastive explanations have emerged as
powerful visual explanation types.

Contrastive explanations usually identify the actual features of the input
data that play an important role in model decision-making for the inferred
class [25]. Such explanations are meaningful as they imitate the process
of human thoughts and are easily understood. Counterfactual explanations
describe what features need to be modified and to what extent to flip the
decision of the model (i.e., to reverse an undesired outcome). Counterfac-
tual explanations offer recourse by trying to find the minimum change in
the input data to obtain a positive result [26, 27, 28, 29]. On the basis of
such explanations, we come across the reasons behind the model predictions;
hence we can either accept or reject the given prediction accordingly. Sev-
eral contrastive and counterfactual explanation methods have been proposed
recently [30, 31, 25, 32, 33], in which certain input data pixels are perturbed
to alter the model’s prediction.



However, a critical shortcoming of these existing approaches is that they
are not faithful (or aligned) to the model and do not make the model trans-
parent (i.e. glass-box, rather than black-box) in terms of its reasoning pro-
cess. Further, these methods aim to find the optimal combination of pixels
for perturbing or in-filling, and they are computationally expensive [28]. Ad-
dressing the issue, a recent study [34] deals with super-pixels rather than
pixels to find crucial decisive concepts that, when deleted from or added to
the query image, affect the model’s decision. Despite generating useful expla-
nations, this method is not faithful and glass-box transparent as it generates
explanations by operating on pixel data. Another line of research aims to
identify whether a particular concept has some significance to a given model
[35]. This approach, however, neither investigates the internal reasoning of
DCNN models nor provides counterfactual and contrastive explanations.

This research is based on a recent study [36], which deals with identi-
fying counterfactuals and contrastive filters of DCNN models rather than
pixels of an image. Despite generating counterfactual and contrastive filters,
the approach does not provide visual explanations of the generated counter-
factual and contrastive ones. Hence, this study aims to suggest a post-hoc
explainability method that visually explains the predictive identification of
counterfactuals and contrastive filters in a DCNN model.

In this regard, the proposed solution is a Faithful Counterfactual Visual
Explanation (FCVE) model.

2. Related Work

The authors in [30] propose a method for generating counterfactual vi-
sual explanations to provide insights into the decision-making process of deep
learning models. The authors employ GANSs to generate alternative images
that would have led to different model predictions. They use a conditional
GAN framework where the generator is conditioned on the input image and a
desired output class. While the generated counterfactuals are visually plau-
sible, the evaluation of faithfulness, i.e., the degree to which the generated
explanations accurately reflect the model’s internal reasoning, is not exten-
sively discussed. In the paper [37] authors introduce an intriguing approach
to generate counterfactual explanations using latent space transformations.
The authors propose a method that leverages the power of generative mod-
els, specifically CycleGAN, to produce counterfactual instances by mapping
an original instance to a counterfactual representation in the latent space



and then back to the input space. This cycle-consistency constraint ensures
that the generated counterfactuals retain important features of the original
instance while introducing meaningful modifications. The paper not only fo-
cuses on generating counterfactuals but also discusses their utility in enhanc-
ing interpretability and fairness in machine learning models. This broader
perspective strengthens the paper’s significance and relevance in addressing
the need for explainable Al systems. While the paper presents an innovative
and promising approach, it also has some limitations worth considering. One
limitation is the reliance on CycleGAN, which may not capture all the com-
plexities of the original input space. Exploring alternative generative models
or incorporating additional constraints could further improve the fidelity and
relevance of the generated counterfactual explanations.

The authors in [38] present a method that generates counterfactual ex-
planations for image classifiers. The approach utilizes GANs to generate al-
ternative images by perturbing the input image in a semantically meaningful
way. By incorporating contrastive loss and regularization terms, the authors
aim to ensure the plausibility and faithfulness of the generated counterfactu-
als. However, the evaluation of faithfulness is not explicitly addressed, and
more rigorous analysis is necessary to determine the extent to which the ex-
planations align with the internal reasoning of the classifier. In [39], the main
focus is on generating plausible counterfactual and semi-factual explanations
for deep learning models. The authors propose a method that combines an
encoder-decoder architecture with variational autoencoders (VAEs) to gen-
erate counterfactual explanations. The generated explanations are evaluated
based on their plausibility and faithfulness. The authors provide qualitative
analyses and comparisons to demonstrate the faithfulness of their approach,
but a more comprehensive quantitative evaluation would further strengthen
their claims. Cocox, a framework for generating conceptual and counter-
factual explanations, is introduced in [34]. The authors propose a two-step
process: first, they learn concept prototypes using GANs, and then generate
counterfactual explanations by manipulating latent variables within the GAN
framework. While the paper primarily focuses on conceptual explanations,
the faithfulness of the generated counterfactual explanations is not explicitly
discussed or evaluated. The article [40] addresses the challenge of generat-
ing semantically consistent visual counterfactual explanations. The authors
aim to generate plausible counterfactual images that maintain semantic co-
herence, ensuring that changes to the image do not introduce unrealistic
or incoherent elements. The study presents a novel framework that lever-
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ages GANs to generate semantically consistent visual counterfactuals. The
authors propose a two-step approach consisting of modification and regular-
ization phases. In the modification phase, they use a conditional GAN to
generate counterfactual images by introducing changes to the original image.
The GAN is trained to preserve the image semantics while incorporating
user-specified changes. The regularization phase involves a semantic consis-
tency loss term that encourages the generated images to maintain semantic
coherence throughout the modification process. The authors evaluate their
framework using qualitative and quantitative assessments. They compare
their method with existing approaches and demonstrate that it produces
visually realistic and semantically consistent counterfactual images. They
perform user studies to measure the generated counterfactuals’ perceived
plausibility and semantic coherence, obtaining favorable results. The paper
addresses an important aspect of counterfactual explanation generation, em-
phasizing the need for explanations that align with human perception and
understanding. The authors in [41] present an approach that revolutionizes
the field of interpretable machine learning. By combining Generative Adver-
sarial Networks (GANs) and StyleSpace analysis, they introduce a method
that generates visually captivating explanations for classifier decisions. The
authors demonstrate the efficacy of their framework by manipulating the la-
tent space of a GAN to create images that clarify the underlying rationale
behind a classifier’s output. The disentangled properties of StyleGAN enable
the generation of interpretable visual attributes, showcasing the ability of the
proposed method to capture essential features driving classifier decisions.
The novelty of this paper lies in its fusion of GANs and StyleSpace anal-
ysis to produce explanations that surpass conventional textual justifications.
By exploiting the unique characteristics of StyleGAN, the authors unlock
the potential to manipulate specific visual attributes within the generator’s
latent space. This approach allows for the creation of visually intuitive ex-
planations that go beyond traditional methods, ensuring that the generated
images are both interpretable and relevant. While the paper’s reliance on
labeled data and its focus on image-based explanations present limitations.
When the classifier exhibits biases or errors, the StylEx may inadvertently
captures and amplify these inaccuracies, due to its dependence on the quality
of the underlying classifier. Additionally, the performance of StylEx could be
impacted while dealing with complex datasets, where attributing changes in
classifier decisions to specific visual attributes may be challenging. Moreover,
the effectiveness of this method in handling multi-attribute counterfactual ex-



planations decreases.

StylEx’s limitations could be overcome through the consideration of multi-
ple enhancements. Firstly, The underlying classifier training process can be
made more robust and fair attribute extraction by incorporating techniques
for bias detection and mitigation. The classifier model could be less suscep-
tible to inaccuracies if it is regularly audited and updated, particularly when
there is biased data. Additionally, researchers could concentrate on improv-
ing StylEx to better handle counterfactual explanations that involve multiple
attributes. The authors in [42] introduce a compelling method for generating
counterfactual explanations. By leveraging generative models and enforcing
cycle-consistency, the authors provide a valuable contribution to the field
of interpretable machine learning. The paper’s comprehensive evaluation,
along with its focus on interpretability and fairness, highlights its poten-
tial impact in improving transparency and trust in Al systems. However,
there are some limitations to consider. When managing very complex gen-
erative model latent spaces may be a challenge for the method, to find clear
paths for attribute changes. Additionally, accurately training the shift pre-
dictor, an important part of the process, can be tricky. These limitations
could impact the overall effectiveness. To address limitations, enhance the
method’s attribute disentanglement by incorporating advanced techniques
such as disentangled representation learning. Validate and generalize the
proposed approach across diverse datasets and image classification tasks to
ensure broader applicability. Conduct thorough experiments to assess the
effectiveness of the pipeline in detecting and mitigating bias in image classi-
fication systems under various real-world scenarios. An innovative approach
is presented in [43] to generate visual counterfactual explanations using diffu-
sion models. The authors propose a method that leverages the power of diffu-
sion models to transform an input image into a counterfactual representation
by iteratively updating the pixel values. By incorporating a contrastive loss
function, the generated counterfactual explanations highlight the minimal
changes required to alter the classification decision of a deep neural network.
The paper provides a thorough evaluation of the proposed method, demon-
strating its effectiveness in generating interpretable visual explanations and
its potential impact on enhancing transparency and interpretability in deep
learning systems. Although DVCEs can provide promising insights into im-
age classifier decisions, there are certain limitations that must be taken into
consideration. Even with adaptive parameterization, it’s still a challenge
to produce semantically meaningful changes. DVCEs’ effectiveness can be
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demonstrated by choosing the right hyperparameters, and the optimal selec-
tion may vary across different datasets and classifiers. Furthermore, it might
require careful parameter tuning. Further investigation is necessary to de-
termine if DVCEs can be applied to a wider range of classifiers and datasets,
and the method’s sensitivity to variations of input and model architectures
should be thoroughly investigated. To reduce the computational cost of mul-
tiple iterations, enhancing computational efficiency can be achieved through
optimization and parallelization. Examining alternative denoising methods
for insecure models and enhancing approximation techniques to strengthen
the theoretical foundations of DVCEs. The authors in [44] present an ef-
fective baseline method for generating reverse counterfactual explanations.
The simplicity of the proposed method, combined with its competitive per-
formance, makes it a valuable addition to the field of interpretable machine
learning. Addressing potential biases and exploring the generalizability of
the approach would be valuable directions for future research. This paper
provides a solid foundation for generating reverse counterfactual explana-
tions and opens avenues for further advancements in this area. The method
discussed in the paper, called Latent-CF, can be utilized effectively for par-
ticular types of data, such as images and loan details. The method might
not work as smoothly if the datasets have many different features. In sim-
pler terms, it’s like a tool that works well for specific datasets, but we are
not entirely sure how it handles different tasks. Future research should uti-
lize diverse datasets to address limitations, consisting of diverse table and
high-dimensional datasets, and conduct a comprehensive investigation of al-
ternative optimization strategies within the latent space, such as genetic al-
gorithms or Bayesian-driven approaches, to enhance the generalizability and
robustness of the proposed Latent-CF method. The paper [45] presents a
comprehensive exploration of the application of diffusion models for gener-
ating counterfactual explanations. The authors propose an approach that
utilizes the power of diffusion models to generate plausible and interpretable
counterfactual instances by iteratively updating the input data. The pa-
per provides a thorough analysis of the benefits and limitations of diffusion
models in the context of counterfactual explanation generation, highlighting
their ability to capture complex data distributions and generate meaningful
modifications. The extensive evaluation on various datasets and comparison
with existing methods demonstrate the effectiveness and superiority of dif-
fusion models for generating high-quality counterfactual explanations. Even
though DiME has been successful, it is necessary to admit some limitations.
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The method uses diffusion models that may require substantial processing
resources makes the computation costly during inference time, is a significant
drawback. The model may be insufficient for applications that need instant
interpretation due to the challenges associated with real-time explanations.
These limitations need for further research to address computational effi-
ciency and applicability in time-sensitive scenarios. In order to minimize the
limitations of DiME, exploring techniques like model parallelism can help im-
prove computational efficiency or reducing significant inference time through
algorithmic optimizations. Simultaneously, by investigating transfer learn-
ing, it is possible to reduce the dependence on training data or cross-domain
adaptation approaches, enabling efficient generation without requiring ex-
tensive data access. The goal of these precision enhancements is to improve
DiME’s efficiency, scalability, and applicability in real-time situations and
environments that value privacy.

3. Proposed methodology

The proposed study aims to develop a post-hoc visual explainability
method that provides plausible and faithful counterfactual visual explana-
tions (FCVE) that are easy to understand and offer reasoning behind model
decisions, reflecting the internal working process of the model. To accomplish
this, we build upon a previously developed counterfactual explanation (CFE)
model in [36] that identifies counterfactual filters to explain model decisions.
It does this by predicting a set of minimum correct (MC) and minimum in-
correct (MI) filters. The MC filters are necessary to maintain the prediction
of the image to the original inferred class by the classifier. Mathematically,
the MC filters can be denoted as

Fue, € 0,177, (1)

where n is the number of filters in the top convolution layer of the classifier
model. Values of ‘1’ and ‘0’ indicate whether the corresponding filter is to
be active or disabled, respectively, to maintain the prediction to the inferred
class.

In contrast, the MI filters are needed to alter the classifier’s decision to a
chosen target class. Mathematically, the MI filters can be denoted as

FMIi € [R+]lxn. (2)



Non-zero indexes in Fjy, correspond to the MI filters, and the values at
these indexes indicate the magnitude by which the original filter activations
are altered to modify the classifier’s decision.

The CFE model operates on the last convolution layer of the classifier
because these filters have the most impact and represent more abstract, high-
level features, concepts, and even whole objects [46, 47, 48]. In paper [36], it is
demonstrated that by enabling, disabling, or modifying these high-level filters
in certain ways, it is possible to change the decisions of a pre-trained classifier
to either the original inferred class or a chosen alternative class. Importantly,
the CFE model probes the internal structure of a deep learning model without
altering the input, allowing users to provide faithful explanations aligned with
the model’s internal decision-making process. Thus, in the study, we rely on
these filters as changes to them may produce plausible visual explanations.
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Figure 1: Block diagram of the proposed visual counterfactual explanation model. The
proposed method consists of two steps: first is the identification of contrastive and counter-
factual filters to explain classifier’s decisions, followed by the visualization of these filters
by generating images with the modified activations. The decoder is initially trained with
all filters intact to recreate the input, so that when the encoder’s output is altered using
the identified filters, their effect is visualized in the recreated image.

3.1. Classtfier

To provide visual counterfactual explanations, we propose a joint CFE
and classifier-decoder model. In this model, the pre-trained classifier is the
model being analyzed, and the decoder model generates visualizations of the
classifier’s decisions by modifying the filter activations obtained from the
CFE model’s counterfactual and contrastive explanations. Fig. 1 presents



a block diagram illustrating the different phases involved in our proposed
model.

In the counterfactual and contrastive filter identification phase, we extract
the MI and MC filters to provide contrastive and counterfactual explanations
of the classifier’s decisions. These filters capture the necessary changes to al-
ter the classifier’s decision to a target class or maintain the original inferred
class. In the visual explanation phase, we use a decoder that takes as in-
put the encoded feature vector generated at the last convolution layer of
the classifier and it tries to recreate the input image that was given to the
classifier.

The idea behind the decoder model is that it is initially trained to trans-
late the encoded classification features into the respective input while all
filters are intact. Once the decoder is trained, we modify the filters using
the counterfactual and contrastive explanations produced by the CFE model.
This allows us to observe the filter-level changes on the regenerated images,
thus generating visual explanations that reflect the alterations made by the
counterfactual and contrastive filters.

In the case of Figure 1, to generate explanation for why a classifier clas-
sified an input to class A (i.e., 7 in this case) and not to class B, we can
select any target counterfactual class. In this case, we selected class 9 as the
counterfactual class due to similarity between them. The proposed method
identified counterfactual filters that if they were active in the classification
of the input 7, then the model would likely classify the input to the target
class. In the case of 7, the proposed method identified key filters responsible
for turning the decision from 7 to 9. And when the decoder was presented
with 7 as input with the modified filters responsible for classifying 7 as 9, the
decoder regenerated the 7 as a 9, demonstrating features that needed to be
present in the input image to be classified into class 9.

To train the proposed visual counterfactual explanation model, we follow
a two-phase approach. In the first phase, we train the decoder model with
mean absolute error (MAE) loss while the classifier weights are frozen to
reproduce the input image given to the classifier. The loss function is defined

as follows: .

min "~ D(Ceons (), (3)

D -
=1

where x; represents the i'" input image, Ceon,(2;) denotes the encoded feature
vector produced by the last convolutional layer of the classifier model C' for
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the " input image, and D(Ceony(2;)) represents the reconstructed image
generated by the decoder model D using the encoded feature vector Ceopnp ().
The mean absolute error loss is calculated as the average of the absolute
differences between the input image z; and its corresponding reconstructed
image D(Ceony(z;)) for all n input images. The training process aims to
minimize this MAE, thereby ensuring the decoder effectively reproduces the
input images.

In the second phase, we utilize pre-trained CFE model to generate MC
and MI filters for the given classifier. The CFE model can be represented as
a function that takes an input image x and produces a set of Fy;;, and Fic,
filters as output. This can be expressed as:

FMI,“ FM(J,- = CFE(% C, é)> (4)

where x denotes the input image, C' represents the pre-trained classifier, ¢ is
the target class, and CFE is the counterfactual explanation model. The CFE
model is responsible for generating the sets of MC and MI filters required to
maintain the original classification decision and change it to the target class,
respectively, using the following equations

Frye, = ReLUy(Sigmoid(d™(g:))), (5)

Fyr, = ReLU(d"(g4)), (6)

where ¢; denotes the feature maps obtained after the global average pooling
layer of classifier C, d" represents a dense layer with n units, Sigmoid denotes
the sigmoid activation function, and ReLLU, is a thresholded-ReLLU layer with
a threshold value of ¢ = 0.5. The ReLUt layer produces the approximately
binarized MC filter map F)ys¢, by setting all values below the threshold to
zero and leaving the other values unchanged, and ReLLU denotes the rectified
linear unit activation function.

These MC and MI filters are utilized to modify the filter activations of the
classifier to observe their impact on the reconstructed images. The process
can be described by the following equation:

C(‘I;FMC’NFMIZ-)‘ (7)

In this equation, the input image z, along with the MC and MI filters, are
provided as input to the pre-trained classifier C'. The classifier then generates
an altered feature vector by incorporating the effects of these filters.
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3.2. Decoder

We designed an asymmetric encoder-decoder architecture to synthesize
counterfactuals visually. The decoder is asynchronous as the encoder and
decoder have variable depths (the number of deconvolution and up-sampling
layers of the decoder are not equal to convolution and max pooling layers of
the encoder model). The decoder has lower depth than the encoder conse-
quently, the decoder can be trained efficiently. We train the decoder model
once the encoder model is trained for the prediction of MC and MI filters.
The decoder model reconstructs the latent representation provided by the
CFE model. The CFE model working as encoder uses pretrained VGG16
which down sizes the input image x to the last layer as a feature vector in
the latent space. The CFE model learns the extent of changes to filters in
this lower-dimensional space. The decoder model is designed to up-sample
these modified lower-dimensional features to higher-dimensional data equal
to the dimensions of original input image x. The decoder model takes the
modified feature vector as an input and produces an altered output image z’
which is the counterfactual of the original input image x.

v = D(O(:c, Fue,, FM,Z.)). (8)

The decoder generates the image which reflects the filter-level changes made
in the latent space vector as shown in Figure 1. The reconstructed image by
the decoder provides visual explanations of the features-modification made
by the counterfactual and contrastive filters.This reconstructed image rep-
resents a plausible visual explanation that aligns with the internal decision-
making process of the model. The procedure describing the overall approach
is presented in Algorithm 1.

The proposed approach allows us to gain insights into the influence of
specific filters on the model’s decision-making process and the generated
visual explanations provide a better understanding of how the model arrives
at its decisions.

4. Results

This section presents the results and discussion of the proposed FCVE
method. For the evaluation of the proposed FCVE method, we used MNIST
[49] and Fashion-MNIST (FMNIST) [50] datasets and compared with related
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Algorithm 1 Steps to generate counterfactual visual explanations.
Input: Image I, Classifier model ', Counterfactual explanation model
CFE, target class ¢, train dataset T’

Step 1. Train a decoder
procedure TRAINDECODER(C)
Train the decoder on train dataset T" using features from classifier C
minp % Z?:l |2; — D(Clon (i) 1
end procedure
Step 2. Generate contrastive and counterfactual explanation using CFE
model for input image [
procedure GENERATEEXPLANATION(/, CFE)
Fui,, Fue, = CFE(I,C, ¢)
end procedure
Step 3. Alter filters in classifier
procedure ALTERFILTERS(C, Fyrr,, Fuc,)
Generate feature vector g and predicted class ¢ using classifier C"

g,c=C(I)
¢=h(go Fuc,) > alter prediction with just MC filters enabled
¢=nh(g+ Fuyr) > alter prediction with just updated MI filters

where h represents the classification (fully-connected and softmax) lay-
ers of C
end procedure
Step 4. Use trained decoder to generate visual explanation by reconstruct-
ing input I with modified classifier
procedure VISUALEXPLANATION(D, C, Fyr,, Fac;)

=D (O(I, Fue., FML.))
end procedure

Output: [’ > Reconstructed input image with counterfactual and
contrastive features using the modified classifier
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counterfactual explanation methods including ExpGAN [51], CEM [25], CVE
[30], and C3LT [37]. In section 4.1 and 4.2, we present a visual comparison
of these methods on the two datasets, followed by quantitative analysis pre-
sented in Section 4.3.

To evaluate faithfulness of the explanations provided by the proposed
method, we refer the reader to [36] that used the class recall metric to demon-
strate that the identified counterfactual and contrastive filters are faithful to
their respective classes. In [36], it was shown that disabling around 31-44
most imported filters of a class (out of 512 total filters) resulted in a sig-
nificant decrease in the class recall, whereas the overall model accuracy was
reduced by just 2%-3%. On the contrary, it was shown that randomly dis-
abling the same number of filters had a negligible effect on class recall. This
shows that the counterfactual and contrastive filters predicted by the CFE
model represent features exclusive to a particular class and disabling them
slightly affects the overall model accuracy while significantly reducing the
particular class’s recall score, thus demonstrating the faithfulness of the de-
tected filters used in the decision-making process of the classifier. In the
proposed work, we mainly focus on the visual aspect of faithful explainable
approach.

4.1. Visual results comparison with related methods

Figure 2 represents a comparison of the counterfactual explanation re-
sults. The first column shows the query images from MNIST and FMNIST,
while the other five columns display the counterfactuals generated by Exp-
GAN [51], CEM [25], CVE [30], C3LT [37], and our proposed model (FCVE),
respectively. Our method generates counterfactuals by manipulating the in-
ternal activations of the model, resulting in counterfactuals that are more
meaningful and realistic compared to other methods. We ensured that the
source and target classes were selected to maintain the counterfactual prox-
imity property.

Among the baseline models, the results of C3LT are somewhat inter-
pretable but mainly unrealistic. The counterfactuals obtained from C3LT
are adversarial to the target classes (e.g., generating 8 and 9 from 3 and 4,
respectively, and a shirt from a coat). The counterfactuals obtained from
ExpGAN are not smooth (e.g., 9, 6, and pullover). The counterfactuals from
CEM and CVE are unrecognizable (e.g., 9 and 8) or mostly unchanged (e.g.,
6, short, boot, and pullover). In contrast, the counterfactuals generated by
our method are easily recognizable and more realistic.
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Query ExpGAN CEM CVE C3LT (ours)

coat

shirt

sneaker
boot
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TRTTAR

Figure 2: Visual comparison of counterfactual explanation methods. The first column
shows the query images from MNIST and FMNIST, while the other five columns display
the counterfactuals generated by ExpGAN [51], CEM [25], CVE [30], C3LT [37], and our
proposed model (FCVE), respectively. The proposed method generates counterfactuals by
manipulating the internal activations of the model, resulting in counterfactuals that are
more meaningful and realistic compared to other methods.

pullover

4.2. Qualitative analysis of proposed method

This section presents an additional qualitative analysis of the proposed

FCVE methods in terms of generating plausible visual counterfactuals for
MNIST and FMNIST datasets.

15



4.2.1. MNIST counterfactuals

Figure 3 displays the counterfactuals generated for the digit seven as the
source class and the digit nine as the target class. Despite the non-identical
writing styles of the input images for the same digit, our method successfully
generates plausible counterfactuals. This ability to generate counterfactuals
indicates that the model has learned the underlying data patterns and can
generalize well.

The first three input images (1st row) of the digit seven vary in writing
style compared to the last three images, which include an extra intersection
line. While humans can easily differentiate between these variations of the
digit seven, it can be a challenging task for an algorithm to identify such
subtle changes.

T prob: 100% ‘T* prob: 100% 7 prob: 100% T prob: 100% ‘7" prob: 100% 'T* prob: 1004%
Y prob: 97% 9 prob:; BT% 'Y prob: TE% 9 prob: 93% 9 prob; 9% 9 prob: 90%

4 Gl E E A

Figure 3: Plausible counterfactuals generated for digit seven as a source class and digit
nine as target class. The proposed method finds the minimal changes to neuron activations
such that the input of one class is transformed into another.

Figure 4 displays the counterfactuals generated for randomly selected
source and target classes of the MNIST dataset. The input images in the
first row (i.e., 9, 4, 4, 5, 1, and 6) are chosen randomly, while the images
in the second row (i.e., 8, 9, 9, 6, 0, and 0) represent the counterfactuals
generated by our model. Our model aims to generate counterfactuals by
adding or subtracting features from the original input image. For example,
the first counterfactual (8) is obtained by adding a line to the input image
(9). Similarly, the counterfactuals of 0, 9, and 6 are generated by the same
principle from the input images 1, 4, and 5, respectively. Additionally, a
counterfactual of 0 is obtained by removing a portion of 6.
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9 1 4 5 1 6
8 9 9 6 0 0

Figure 4: Counterfactuals generated for random source and target classes of MNIST
dataset. Similar to Fig. 3, the proposed method finds the minimal changes to neuron
activations such that the input of one class is transformed into another.

4.2.2. FMNIST counterfactuals

Figure 5 displays the results of the counterfactual visual explanations
obtained using the proposed method. In this analysis, the source class is
“Pullover,” represented by the images in the first row. The goal is to trans-
form these pullover images into counterfactual representations of the target
classes, which are “Dress” and “Coat” displayed in the second and third
rows, respectively. These counterfactuals are generated by the FCVE model,
utilizing the source class image as a starting point.

It can be seen that the proposed method successfully modifies the source
class images to generate plausible visual counterfactuals that accurately rep-
resent the target classes. The generated counterfactuals exhibit visual char-
acteristics and features associated with the respective target classes, show-
casing the effectiveness of the FCVE model in capturing and manipulating
the underlying data patterns.

Figures 6 and 7 showcase additional examples of counterfactual image
generation from visually identical and non-identical classes, respectively. In
Figure 6, the first row comprises actual images of t-shirts from the FMNIST
dataset, while the second row displays the counterfactuals generated by our
proposed model, for the target class of “Pullover”. The source class (t-
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Figure 5: Plausible counterfactuals generated for the FMNIST dataset. The first row
is the source class “Pullover”. Second and third rows are target classes of “Dress” and
“Coat” into which the source image is transformed into by altering the filter activations.

shirts) and target class (pullover) belong to visually similar categories, and
the proposed method effectively transforms the t-shirts into pullovers with
distinctive features, such as long sleeves. It is worth noting that the model
accurately captures the shape of the target class while sacrificing some finer
details, such as patterns on the t-shirts. This suggests that the shape is a
more crucial feature than the specific patterns when differentiating between
these classes.

Similarly, in figure 7, the counterfactuals generated by our proposed
model are presented, focusing on visually diverse source and target classes.
In this case, the source class is “Trouser”, while the target class is “Shirt”.
These classes exhibit noticeable visual differences in terms of shape, texture,
and overall appearance. Despite the visual disparity between the source
and target classes, our proposed model consistently produces realistic tar-
get class images by transforming the source images. This demonstrates the
effectiveness of our approach in generating accurate and visually coherent
counterfactual representations.

4.8. Quantitative comparison

This section provides a quantitative analysis of the proposed FCVE method
and compares it with existing methods in terms of the proximity measure
and Fréchet Inception Distance (FID).
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Figure 6: Counterfactual generation from visually identical classes of “T-shirt” (source
class, row 1) and “Pullover” (target class, row 2) in FMNIST. The proposed method
effectively transforms the t-shirts into pullovers with distinctive features, such as long
sleeves.

Figure 7: Counterfactual generation from visually non-identical classes of “Trouser”
(source class, row 1) and “Shirt” (target class, row 2) in FMNIST. Despite the differences
between the source and target classes, the proposed method produces realistic target class
images by transforming the source images.

4.3.1. Proximity

Proximity property explanations the counterfactuals, meaning Faithful to
the original instance. The generated counterfactual explanations are consid-
ered the best as they are closest to the original instance. Proximity is the
mathematical formula to quantify the closeness of two instances (query im-
age and counterfactual) using L1 distance. Satisfying, this minimal feature
change property to generate counterfactual examples, the proximity metric

19



can be defined mathematically in terms of distance function as,

N

1 dsict(x; — 2/
proximity = N ZZI W 9)

where z; and 2, represent the ith query image and counterfactual example
from the set being evaluated, and C', W and H are the channels count, width,
and height of the query image, respectively. The Lower levels of proximity
suggest methods that produce counterfactuals that are closer to the original
data points.

4.3.2. Plausibility

Plausibility property depicts the counterfactual explanations are realistic,
feature values are coherent to the domain set. The feature values of counter-
factuals should not be an outlier in consideration with domain set. Enhancing
trust in the explanation is facilitated by plausibility. The approach we are
using to check plausibility is FID score calculation. It is feature-wise subtrac-
tion of the query images and their respective counterfactuals. Plausibility
contributes to the robustness and stability of counterfactual explanations.
The formula for calculating the FID is as follows:

FID = |p—p/f* + Tr <x+x’—2\/fﬂ-w’)) (10)

Where p, i/, z, 2', Tr(+), |-|* denotes mean feature vectors of the real and gen-
erated image distributions, the covariance matrices of the real and generated
image distributions, the trace of a matrix and the squared Euclidean norm.
the FID metric measures the similarity between the generated images and
real images, focusing on the distribution of features. A lower FID score
indicates better-quality images and greater realism.

Table 1 presents a comparison of the counterfactual explanation methods
based on both the proximity and FID metrics. These metrics were obtained
from various baseline models, including ExpGAN [51], CEM [25], CVE [30],
and C3LT [37]. From the table, it is evident that the proposed FCVE method
achieves a significantly lower FID score compared to the compared methods.
This result indicates that the proposed method generates high-quality coun-
terfactuals that closely resemble the real data, demonstrating its effectiveness
in generating realistic and meaningful counterfactual explanations.
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Table 1: Comparison of counterfactual explanation methods on MNIST and FMNIST
datasets based on proximity and FID scores.

Method ExpGAN [51] CEM [25] CVE [30] C3LT [37] FCVE (our)
MNIST FMNIST MNIST FMNIST MNIST FMNIST MNIST FMNIST MNIST FMNIST

Proximity 0.074 0.135 0.016 0.013 0.055 0.054 0.072 0.116 0.098 0.198
FID 41.12 76.52 50.03 96.87 47.53 83.77 22.83 62.31 0.50 2.02

5. Conclusion

The development of explainable Al techniques plays a crucial role in
addressing the transparency and interpretability challenges associated with
deep learning models in computer vision. While significant progress has been
made, existing methods still face limitations in providing convincing expla-
nations that are easily understandable to non-experts and accurately capture
the intrinsic decision-making processes of the models.

To overcome these challenges, we have proposed a counterfactual expla-
nation (CE) model that aims to strike a balance between plausibility and
faithfulness. Our model generates visual explanations that are not only easy
to comprehend but also faithfully represent the model’s internal decision-
making process. Importantly, these explanations are generated by making
minimal changes to the original images, without altering the pixel data.

Instead of relying solely on pixel-level manipulations, our approach identi-
fies and leverages the internal concepts and filters learned by the model. By
understanding and manipulating these internal representations, our model
produces plausible counterfactual explanations that reflect the model’s un-
derlying decision-making process, making the provided explanation faithful
to the model.

Through qualitative and quantitative analysis, we have demonstrated the
effectiveness of our proposed FCVE method. The qualitative analysis high-
lights the close resemblance between the generated counterfactuals and the
original data instances, indicating the high quality of the explanations. Fur-
thermore, the quantitative analysis using Fréchet Inception Distance (FID)
scores confirms that our method outperforms the baseline models in gener-
ating realistic and diverse counterfactuals.

Future research directions could focus on extending the proposed method
to other domains and exploring additional evaluation metrics to further val-
idate the effectiveness of counterfactual explanations in different contexts.
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