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ABSTRACT 

A Hilton combustor was substantially modified to a suitable symmetrical 

configuration for research purposes. Provisions for swirl, preheat and 

injection of LCV gases were incorporated with appropriate burner 

management systems for safe operation. Instrumentation for 

temperature, velocity and concentration measurements was developed and 

fully automated by interfacing to a microprocessor for rapid data 

acquisition. 

Flame stability limits were determined over a wide range of operating 

conditions by varying swirl, secondary air temperature and excess air 

levels while maintaining the burner momentum constant. Addition of 

swirl up to a limit of O~ 69 generally improved stability. Preheating 

secondary air alone was beneficial only if the temperature was raised to 

at least 250oC. A combination of intermediate swirl and moderate 

preheat of the secondary air resulted in satisfactory flame stability 

over a wide range of calorific values of the fuel. Thus, existing 

concentric pipe burner systems may be easily modified at low cost to 

burn LCV gases of variable compositions. 

With LCV gas flames the excess air factor (EAF) had a major influence on 

values of temperature, species concentration and velocity. Unburnt 

hydrocarbon (UHC) and CO not surprisingly increased in concentration 

close to the blow-off limits under the majority of operating conditions. 

This indicated incomplete combustion probably resultin~ from the lowered 

flame temperatures and partial flame lift-off. On the other hand, 

burnout efficiencies at the exhaust were reasonably high for most 

operating conditions involving LCV gases. 

The combustion data were analysed to extract the characteristic mixing 

and chemical reaction times the ratio of which gave the parameter e, 
originally proposed for unconfined flames. Close to the blow-off limit 

e took the value 4.9 compared with 6~2 for fully stable flames. This 

finding showed that the criterion was also valid for confined flames, 

supporting the extinction mechanism proposed by Peters and Williams, and 

providing an important basis for predicting stability limits and burner 

design parameters. 
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NOMENCLATURE 

A area, surface area 

b(x) axial burnout rate 

C volume concentration 

ci mass concentration of species i 

Cp specific heat under constant pressure 

CRZ central recirculating zone 

CV calorific value of fuel 

d, do diameter, exit diameter of jet 

D internal diameter of combustor 

Dq diameter of quarl 

EAF excess air factor 

EEA equivalent excess air 

!st stoichiometric fuel/air ratio 

g gravitational acceleration 

Gx axial momentum flux 

G~ angular momentum flux 

h convection heat transfer coefficient 

H enthalpy 

k kinetic energy of turbulence, thermal conductivity 

Lq length of quarl 

LCV low calorific value 

m mass 

m mass flow rate 

M molecular weight 

Nu Nusselt number 

p pressure 

Pr Prandtl number 

(viii) 



PVC precessing vortex core 

q volume flow rate 

Q heat transfer rate 

r radius of burner nozzle 

R radius, radial distance measured from combustor axis 

Re Reynolds number 

Rj Flame jet radius based on actual data 

S flame speed 

Sw swirl number = G¢/Gxr 

t time 

T temperature 

u axial velocity component 

V velocity 

X axial distance from furnace quarl exit 

Greek Symbols 

€ blow-off parameter 

~ viscosity 

~ measured angle of adjustment of swirl block generator 

p density 

a Stefan-Boltzman constant 

V kinematic viscosity 

o equivalence ratio = (A/F) stoic./(A/F) actual 
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CHAPTER 1 

INTRODUCTION 

1.1 Preliminary ~emarks 

In the past few years there has been an increasing interest in 

combustible fuel gases having calorific values lower than that which 

would have been economically acceptable in more plentiful times. Such 

fuels may be natural gas deposits containing substantial quantities of 

nitrogen or by-products of steel plants such as blast-furnace, coke-oven 

and oxygen-blown-converter gases. 

A good proportion of natural gas wells explored in the North Sea are 

found to contain a higher amount of nitrogen than is curre~tly 

acceptable. There is also natural gas diluted with nitrogen present in 

oil wells which is just flared off thus wasting energy. The recovery 

is roughly costs per unit 

constant which 

mass of naturally occurring fuel 

obviously dis favours those of low 

gases 

energy content. 

Industrial waste gases are often produced in large quantities over short 

periods necessitating costly storage equipment if they are to be 

s.::lvaged. Such cost disincentives are diminishing with time due to the 

limited amount of naturally occurring fuel gases available. Therefore 

acceptable ways of burning these low calorific value gases must be 

further explored in order to extend the lifespan of our indigenous 

supply of energy. 
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The main problem known is possible burner flame instability associated 

with combusting these gases. Variation in air and fuel input 

velocities, difference in calorific values and changes in operating 

conditions can all create severe burner problems. Such difficulties 

can be potentially dangerous as low calorific value gases ard more prone 

to blow off if operating conditions are not favourable, a fact which 

highlights the flame stability problems on burner systems. There are 

various ways of conducting stability experiments owing to the numerous 

experimental parameters which can be altered; e.g. mass flow rates of 

fuel and air, temperature of secondary air, diameter of burner pipes, 

exit velocity of fuel and air, swirl number, excess air levels etc. 

The aims of the present study are: (i) to establish and develop a gas 

combustion facility which is relevant to industrial practices, (ii) to 

investigate the stability limits of low calorific value gases and (iii) 

to obtain cum0udtion data on low calorific value gases under very 

carefully controlled conditions which can be used to understand burner 
-

instability problems and also to validate computer prediction codes. 

Two types of flame can be identified: premixed where the fuel and 

oxidant are mixed before ignition or diffusion where the fuel and 
-

oxidant are injected separately. In premixed flames combustion is 

propagated by the interdiffusion of hot product molecules with those of 

unburnt reactants. While in diffusion flames combustion can only 

proceed after the fuel and oxidant have interdiffused at a m0lecular 

level and in the presence of hot product molecules. TUl'oulent 

diffusion flames are predominantly used in most industrial practices 

such as large furnaces, internal combustion engines, gas turbines, steam 

boilers, rotary cement kilns etc. For this reason it was decided to 

investigate turbulent diffusion flames. 
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1.2 Brief review of previous gaseous fuel and LCV gas flames 

experiments 

This section gives a summary of the amount and type of work carried out 

on low calorific value (LCV) and other gas flames and provides the basic 

understanding behind the present study. The findings and conclusions 

reached by some of the investigators are presented in the next chapter. 

This section is divided into two parts; in subsection 1.2.1 work done on 

flame stability measurements is considered and inflame combustion 

measurements are dealt with in subsection 1.2.2. 

1.2.1 Flame stability measurements 

Bel tagui and Maccallum (1986) carried out an experimental study of the 

stabilization of flames in premixed swirling jets US~1'1g hubless vane-

type swirlers. 

confined jets. 

They considered both free, uncon..:'i;.::: and enclosed, 

Town gas and natural gas were both used as fuel and a 

range of fuel-air mixtures was covered including values close to the 

stability limit. A (pt 5% Rh) - (pt 20% Rh) thermocouple with a 0.25 

mm bead diameter was used to measure temperatures and gas samples were 

removed via a water-cooled probe and analysed for carbon dioxide and 

unburnt combustibles. 

Broadwell, Dahm and Mungal (1984) investigated the blowout of turbulent 

diffusion flames. They formulated a simple analysis to explain the 

mechanisms governing the stability of these flames. They used both 

pure and diluted gases to prove their analysis. 

Chedaille, Leuckel and Chesters (1966) studied flame aerodynamics on 

behalf of the IFRF using pressure jet oil flames. The first part of 
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their work dealt with the flow patterns and mixing in double-concentric 

jets confined in long coaxial chambers. A boiler-type burner was 

qualitatively compared with a cement kiln burner resulting in the 

identification of four distinct flow zones. The main aerodynamic 

properties of jets with int~rnal reverse flow together with their 

influence on turbulent diffuston flames were investigated separately in 

the second part of the work Two al ternati ve means of producing 

internal reverse flow, swirl or the use of a bluff body, were also 

discussed with reference in particular to the size and stability of the 

zones of reverse flow and the length and combustion intensity of the 

resulting flames. 

Eickhoff, Lenze and Leuckel (1984) carried out an experimental 

investigation on the stabilization mechanism of jet diffusion flames. 

Two different natural gas diffusion flames at exit velocities between 

flame detachment and blow-off were investigated. 

Godoy et al. (1985) investigated the stability limits of pulverised coal 

burners. They defined a stable or "lit back" flame as one which is 

retained very near to the face, normally within a siwrl and/or quarl 

induced zone of recirculation. Ishizuka and Law (1982) carried out an 

experimental study on extinction and stability of stretched premixed 
-

flames. A counterflow burner and a stagnation flow burner with a 

water-cooled wall were used. They systematically investigated the 

effect of downstream heat loss on the extinction of a stretched premixed 

flame for 1f:.lan and rich propane/air and methane/air mixtures. A 

variety of non-steady, non-planar flame configurations were observed and 

their response to concentration and flow field variations mapped. The 

possible controlling mechanisms were also discussed. 
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Jarosinski et ale (1982) experimentally studied the mechanisms of lean 

limit extinguishment of an upward and downward propagating flame. 

Their experiments were conducted in a vertical 51 mm square standard 

flamability tube, about 

studied; schlieren and 

measurements were used 

1.8 m long. 

direct light 

to investigate 

Lean methane-air systems were 

photography and temperature 

the flames under transi~nt 

loading. Kotani and Takeno (1982) conducted an experimental study 0n 

stability and combustion characteristics of an excess enthalpy flame 

burning mixtures of low heat content. A bundle of ceramic tubes was 

used as a combustion tube and four perforated ceramic plates were placed 

ups tream and downstream of the tube to reduce the radia ti ve heat loss 

from the heated tube. They used (Pt-Ptl 13%Rh) thermocouples (0.3 mm 

wire dia.) to measure temperature profiles in their combustion tube. 

Kalghatgi (1981) i~"estigated the blow-out stability of gaseous jet 

diffusion flames in still air. A wide range of fuels were used. He 

found a universal non-dimensional formula that describes the blow-out 

stability limits experimentally. Its validity was established over a 

wide range of parameters that affected the blow-out limits. Negishi 

(1982) experimentally investigated lean premixture combustion on a 

coaxial burner in partj~ular the interaction between internal and 

external coaxial flames. He worked on methane-air mixtures and 

measured the minimum equivalence ratio for complete combustion as a 

function of the flow rate by using a small pilot flame whose equivalence 

ratio was equal to unity or less. 

Rawe and Kremer (1981) made an experimental study of flame stabilization 

in unconfined turbulent swirling natural gas flames using various 
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degrees of swirl. An IFRF moving block swirl burner was used and 

Slochteren (Dutch) natural gas was supplied through a central gas pipe. 

A multi-hole nozzle with radial gas injection was used as the burner 

which was surrounded by a small cylindrical quarl. A variety of these 

('I~'lindrical quarls and gas nozzles both with different diameters were 

investigated. A 5-hole probe was used to measure velocity and static 

~ res sure ; they also measured temperature and concentration of methane 

and oxygen in the flame. Syred et al. (1977) reviewed a number of 

recent developments in the field of burning low calorific value waste 

gases. Most of their work was done on cyclone combustors which 

successfully burnt gases of calorific value as low as 1.34 MJ/m3 • They 

also did some work on a small waste gas multi-fuel swirl burner for 

drying and other applications. Their cyclone combustors have low 

pressure drop, good turndown ratios of up to 5 or 6 but 

constructions were somewhat complicated. 

The influence of burner rim aerodynamics on the behaviour of polyhedral 

flames of butane/air mixtures for different geome~ries was investigaced 

by Sohrab and Law (1985): They identified regimes corresponding to 

stationary, rotating and unstable polyhedral flames with various number 

of sides by systematically varying the mixture concentration and 

velocity. Stabilization of laminar Bunsen flames was also studied and 

the critical flow velocity and concentration corresponding to flame 

flashback and blow-off for different burner rims were determined. 

Experimental studies of the structure and extinction of near-limit 

premixed flames in stagnation flow were performed by Tsuji and Yamaoka 

(1982). Near-limit rich and lean methane/air and propane/air flames 

were used in the experiment. The structure of the twin flames, the 
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flame temperature, the distance between the two flame zones, and the 

concentration of reactants on the stagnation surface were measured and 

the extinction mechanism was discussed. 

Vanquikenborne and Van Tiggelen (1965) worked on the stabilization 

mechanism of lifted diffusion flames. ~hey used a free jet of methane 

burning into an unconfined atmosphere to measure gas composition, gas 
-

flow velocity and Eulerian scale of turbulence. They also made a few 

inflame measurements with jets of methane diluted with nitrogen. Flame 

height, flame width and the limit of flame stability defined by the gas 

flow at which the flame was not maintained for longer than five seconds, 

were also measured. Yuasa (1986) made an experimental study of the 

effects of swirl on the stability of jet diffusion flames using a 

double-swirl burner. He used hydrogen and methane as fuel and measured 

the air stream velocity, the fuel injection velocity, the swirl 

intensity of the fuel jet and the swirl intensity of the air stream. 

The flames were studied through instantaneous ( 1 joJ.s) schlieren 

photography and direct photography with a long exposure time of 10 s. 

He measured uncorrected radial temperature distributions in the swirling 

flames with a silica-coated Pt-Pt/13%Rh thermocouple of O~ 33 mm wire 
-

diameter. 

Schreier (1980-1983) ca~ried out a number of trials at the IFRF. In 

the first study (1980) he investigated thp combustion of variable 

quality lean gases found particularly in the iron and steel industry by 

using a new burner. He also studied the effects of other burner 

parameters like air distribution, flow velocities and burner load on 
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flame stab iIi ty and shape for various lean gases. In a second trial 

(1981) he used five different types of burners burning a range of low 

calorific value gases to generate combustion data which could be used to 

improve the design of lean gas firing installations. The 

characteristics of these burners such as the maximum turndown ratio, the 

range of gases which could be fired and the change of heat transfer 

using different gases were also found. 

and was done on the IFRF No.2 furnace. 

The trial was very extensive 

Fricker and Leuckel (1976) also did a series of tests at the IFRF. In 

part 3 of their work they investigated the effect of swirl and burner 

mouth geometry on industrial-scale natural gas flames. The experiments 

were performed on a 2 x 2 m square horizontal refractory-lined tunnel 

fUrnace. Slochteren natural ~as which contains a high nitrogen 

concentration was burnt and art:::.:,:!..,..; ~l natural gases were also used to 

check the effect of gas composition on burner performance. 

Measurements were also made using different types of gas injectors. 

1.2.2 Inflame combustion measurements 

Ahmad, Andrews, Kowkabi and Shar~l (1984) investigated centrifugal 

mixing forces in enclosed swirl flames. They used a flat bladed 

swirler and the downstream combustion was confined in a 76 rom diameter 

uncooled duct. A maximum swirl number of 0.7 was used wh.ich was 

sufficient to generate a central recirculation zone. 

Beyler and Gouldin (1981) reported results of measurements of time­

averaged chemiluminescent emissions from OH, CH and C02 and of Na tracer 

emissions in a cylindrical premixed, swirl-stabilized combustor. 
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Comparati ve study of Na emissions and chemiluminescent emissions was 

also made. The experiments were performed under two operating 

conditions, one with swirl in the two jets in the same direction (co-

swirl) and one with swirl in opposite direction (counter-swirl). 

Bel tagui ?~~ Maccallum (1976) investigated the aerodynamics of vane-

swirled flames in, furnaces. Measurements in isothermal and burning 
-

swirling f'.ows were carried and in two furnaces. Both annular and 

hubless-vane swirlers were tested with furnace diameter/burner diameter 

ratios of 2.5 and 5.0. . Flow with combustion gas was compared with 

isothermal flow fuel/air ratios particularly when swirl was near the 

critical value for the creation of a recirculation zone were also 

investigated. 

Claypole and Syred (1981) investigated the effect of swirl burner 

aerodynamics on NOx formation. They measured mean temperature, local 

velocity and NO-NOx concentrations for swirl numbers from 0.63 to 3.04. 

Natural gas at an approximate loading of 100 kW was injected axially to 

their combustor with the air supplied tangentially and 1C~ above the 

stoichiometric requirements. The instantaneous velocities were 

measured by dual beam laser anemometry. The flame was sampled with an 

aerodynamically quenching quartz probe and NO, NOx concentrations were 

determined using a thermo-electron type chemiluminescent analyser. The 

local mean temperatures were obtained by time averaging the signals from 

a bare wire pJatinum/platinum rhodium thermocouple. Chigier and Dvorak 

(1975) made la~'3r anemometer measurements in turbulent swirling jets 
-

under flame and no flame conditions. Time mean axial, radial and 

circumferential components of velocity and rms velocity fluctuations 

were measured. 
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GUnther and Wittmer (1981) carried out a detailed study of the time mean 

and fluctuating properties in a concentric methane-air diffusion flame 

with 15 and 50 mls exit velocities and slight oxygen stabilization. 

Data for time mean values and fluctuations of axial and radial velocity, 

of nozzle fluid concentration, ionization and tempe~aGure were obtained. 

Hassan et al: (1980) reported measurements of ~ean and fluctuating 

temperature, using the fine-wire thermocouple teC'·.mique, and of mean 

concentrations of CO, C02 and 02 in vertical turbulent free jet methane 

flames. They collected data for several Reynolds numbers and for 

varying amounts of nitrogen added to the fuel stream. 

Hassan (1983) also collected temperature and concentration data in a 0.6 

m diameter cylindrical gas fired furnace. Resul ts were obtained for 

two eA~ess air-levels and two swirl numbers. For species concentration 

of vU, C02 and 02, comparative measurements were made using a quartz 

microprobe, a water-cooled probe and a direct water-quenched probe. 

Incident radiation fluxes to the walls were also measured with an 
. 

ellipsoidal radiometer. The effects of preheating combustion air on 

flame properties in a furnace burning coke-oven gas were investigated by 

Hubbard (1957). Measuremen ts for gas composition, radiation, flame 

temper~~ure, velocity and carbon concentration were reported. 

Lenze (1982) studied the influence of recirculation and excess air on 

enclosed turbulent diffusion flames. He made measuremants in both cold 

systems and combusting conditions for different types cf ~lames. 

A diffusi~n flame of hydrogen in air was used by Kent and Bilger (1973) 

to obtain gas species concentration and temperature measurements. 

Further investigation by Bilger and Beck (1975) was carried out to 
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investigate the formation of nitric oxide in that same flame. The 

effects of probe size and construction on the concentration measurements 

were also considered. Lockwood et al. (1974) investigated turbulent 

mixing in a cylindrical furnace using town gas. Measurements of 

mixture fraction were obtained for four fuel/air ratios, two burner 

geometries, two Reynolds numbers and four different swirl levels 

imparted to the combustion air. Lockwood and Odidi (1975) reported 

measurements of mean, rms, probability density and spacial density of 

temperature and of positive ion concentration in unpremixed and premixed 

turbulent, round free-jet flames. 

In a multi-part study Leuckel and Fricker (1976) and Wu and Fricker 

(1976) investigated the characteristics of swirl stablized natural gas 

-
flames. Part one dealt with different flame ~ypes and their relation 

-
to flow and mixing patterns. The main aim W~d to investigate flames 

produced when natural gas was injected directly into an internal reverse 

flow zone induced by strong rotation of the combustion air. In the 

second part, the behaviour of swirling jet flames in a narrow 

cylindrical furnace was investigated. They studied the influence of 

furnace shape and dimensions on swirling natural gas flames by comparing 

flow patterns in a narrow 0.9 m diameter cylihdrical furnace with that 

of a large 2 x 2 m square sectioned one. Part three of the work was 

concerned with the effect of swirl and burner mouth geometry on the 

stability of industrial-scale natural gas flames. Data on blow-off 

characteristics, effects of swirl and quarl length, gas and air velocity 

at blow-off for different types of flames were reported. 

Moneib (1980) reported data of the fluctuating temperature obtained in 

an inert heated round turbulent free jet and in round free jet diffusion 
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flames. Fine wire thermocouples compensated for the effects of thermal 

inertia were used for the measurements. Three types of turbulent 

diffusion flames were studied (i) stabilized natural gas diffusion 

flames, (ii) lifted natural gas diffusion flames and (iii) stabilized 

natural gas/nitrogen diluted flames. 

Rimai et al. (1982) .Jerformed an optical study of 2-D, stable, lean, 

laminar methane-air premixed flames and reported on the relation between 

temperature and flow-velocity fields. They used the Coherent Anti-

Stokes Raman Spectroscopy (CARS) of N2 to obtain temperature 

measurements and direct recording laser interferometric anemometry to 

-
obtain the 2-D vector velocity field. Rawe and Kremer (1981) measured 

temperature, concentration, velocity and flow direction under flame and 

no flame conditions near the stability limits in unconfined turbulent 

swirling natural gas flames using various degrees of swirl. 

Starner and Bilger (1981) made simultaneous measurements of scattered 

light intensity and axial velocity in a turbulent hydrogen diffusion 

flame. They reported results on density, the mean and r.m.s. 

fluctuation of streamwise velocity component and its correlation with 

the mixture fraction and the density as well as other correlations and 

Favre or density weighted averages. Sadakata et a1. (1981 ) 

investigated the effects of air preheating on the emissions of NO, HCN 

and NH3 from single-stage and two-stage combustion. Their aim was to 

find a combustion method wh~ch could both save energy and reduce NOx ' 

Steward et al. (1971) worked on the heat-transfer measurements in an 

oil-cooled, gas-fired cylindrical test furnace. They measured flow 
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patterns, gas-concentration profiles, temperature distributions and 

radiative and total heat flux distributions. 
~ 

Taylor and Whitelaw 

(1980) made comparative studies of measurements of velocity, temperature 

and noise characteristics between a premixed natural gas/air flame 

stabilized on a disc baffle and a corresponding isothPr~al flow. 

Yanagi and Mimura (1981) studied the velocity-temperature correlation in 

a turbulent premixed flame. Velocity and temperature data were 

obtained simultaneously with a laser Doppler anemometer and a 

compensated thermocouple; the cross-correlation was calculated on a 

micro computer. 

Yoshida (1981) carried out an experimental study of wrinkled laminar 

flames. Detailed measurements of temperature and velocity were carried 

out using a f,:"e-wire thermocouple and a laser Doppler velocimeter. 

Yoshida and 7~~~i (1982) used an open turbulent flame burner to 

investigate the characteristic scale of wrinkles in turbulent premixed 

flames. ' upstream turbulence was measured by a laser Doppler 

velocimeter and a hot wire anemometer. Temperature measurements using 

a fine-wire thermocouple were also used to determine the time scales of 

unburnt and burnt gas pockets in a lean propane-air turbulent flame. 

As can be seen from the previous two subsections, with the exception of 

Schreier (1980-1983) and Syred et al. (1977), low calorific value gases 

have received very little attention. The work that has been dcne does 

not provide sufficient information for the better understanding cf the 

stability limits and blow-off mechanism of these flames. Certainly 

there is a very little data published on the concentration of major 

species and nowhere has data on stability limits, temperature, 

concentration and velocity been c.ollected under strictly controlled 
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conditions in confined low calorific value gas flames with various swirl 

intensities and excess air levels and with secondary air preheat. 

1.3 Objectives and Scope of the Present Work 

The main objectives of the present work were: 1) to collect data for the 

stability limits of natural gas flames under different furnace operating 

conditions and 2) to make inflame combustion measurements under these 

well-defined operating conditions prior to blow-off. 

A Hilton combustion unit was modified into a symmetrical arrangement and 

a new burner system with a concentric pipe configuration and a movable 

block swirl generator added. The facility for providing preheated 

combustion air was also incorporated. A new fuel supply system with a 

mixing chamber was fitted to provide the facility for combusting low 

calorific value gases, obtained by premixing natural gas with various 

amounts of oxygen-free nitrogen. Instrumentation systems for measuring 

temperature, velocity and concentration were also set up. 

Stability limits data were then obtained for various operating 

conditions. A combination of three excess air levels, four different 

secondary air preheat values and three swirl numbers were used to give a 

very wide range of operating conditions. To obtain a better under-

standing of the blow-off mechanism, inflame temperature, velocity and 

concentration measurements were carried out using pure natural gas as a 

reference, at some of the above operating conditions. The same 

measurements were then repeated under the same conditions but this time 

using low calorific value gases burning close to the blow-off limits. 
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1.4 Outline of the Thesis 

The remainder of this thesis is contained in five additional chapters. 

Chapter 2 gives a more detailed account of previous work related to low 

calorific value gases. The effects and findings of investigations on 

excess air, swirl, secondary a~r preheat and nitrogen addition to flame 

aerodynamics are discussed. 'There is also a review of various flame 

types that are obtained under c.J,fferent operating conditions. 

A detailed description of the furnace and its ancillary equipments is 

provided in chapter 3. The instrumentation systems used for 

temperature, velocity and concentration data collection are also 

outlined. 

In chapter 4 the experimental conditions under which the stability 

limits data were obtained are described. Results of these measurements 

are presented and discussed in relation to how they are affected by the 

effects of secondary air temperature, swirl number and. excess air 

levels. 

Chapter 5 begins with the experimental conditions and procedures under 

which inflame combustion measurements were carried out. The measuring 

techniques used for temperature, velocity and concentration are 

outlined. The experimental results are then presented and discussed in 

the last secti~n of the chapter. 

A summary and the main conclusions of the present work are provided in 

chapter 6 together with recommendations for future work. 
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In addition to the six chapters, the thesis also contains two 

appendices. Appendix (A) outlines some of the basic theories behind 

the five hole pilot measurements of velocity. It also includes a 

calibration chart for the swirl generator. Appendix (B) gives some 

details of calculations used to obtain the burnout rate and blow-off 

criterion. 

in it. 

There are also some additional concentration data presente~ 
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CHAPTER 2 

PREVIOUS WORK RELATED TO LCV AND NATURAL GAS FLAMES 

2.1 Introduction 

This chapter reports some of the findings on previous work related to 

low calorific value (LeV) and natural gas flames: Very little data is 

available on the study of stability limits and combustion measurements 

for confined turbulent flames burning low calorific value gases in an 

industrial type furnace. 

Weinberg et al: (1975) have shown that by using massive heat 

recirculation, any sUbstance that is capable of exothermic reaction can 

be used as a fuel. This was illustrated by theil" "Swiss roll" burner 

in which two metal alloy strips were wound together into a spiral. The 

majority of work on the subject of low calorific value gases was carried 

out by Syred et al: (1977) on cyclone combustors. These combustors 

have multiple air and gas inlets on the circumference and are 

complicated in construction. It was not until late 1970's that Michel 

and Payne (1979) initiated some work at the IFRF burning blast furnaca 

gases Cl13 a fuel. This work was continued by Scheier in 1980 and he 

carried some major experimental investigations burning lean gases mostly 
-

found in the iron and steel industry. 
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Section (2~2) gives a brief review on flame aerodynamics while different 

types of flame is dealt with in Section (2: 3) : Section (2.4) deals 

with some of the findings and conclusion reached by other investigators 

working on LeV and natural gas flames. It is divided into two 

subsections, subsection (2~ 4: 1) dealing I'!c;.;tly with stability studies 

and subsection (2: 4.2) concentrated on cvmbustion measurements: The 

last section points the main effects of s'irl, excess air, preheat and 

nitrogen dilution on combustion. 

2.2 Flame Aerodynamics 

In turbulent diffusion flames such as those used in industrial furnace, 

the significant characteristics such as combustion length, angle of 

spread, stability, radiation from flames etc., depend largely upon the 

way in which fuel, oxidant and hot combustion products are mixed. This 

is because most of the chemical reactions in flames are very fast at 

elevated temperatures so that the time taken to complete the reaction 

after the reactants are mixed is negligible, Be~r (1912): Therefore 

the rate at which combustion proceeds can very often be taken as the 

rate of mixing. 

Swirl is known to improve flame stability by forming torroidal 

recirculation zones and to reduce combustion length resulting in high 

rate of entrainment and fast mixing particularly near the recirculating 

zones, see Fig. (2~2.). The axial pressure graQients in weak swirl are 

insufficiently large to cause internal recirculation. It mainly 

increases the rate of entrainment and the rate of velocity decay. When 

increasing the degree of swirl in a flow, the adverse pressure gradient 

along the jet axis cannot be further overcome by the kinetic energy of 
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the fluid particles flowing in the axial direction after a certain 

point. This results in the creation of a recirculating flow in the 

central portion of the jet. This internal recirculating zone plays an 

important role in flame stabilization due to the formation of a well 

mixed zone of combustion products, acting as a heat storage, and 

chemically active species located in the centre of the jet near the 

burner exit. The angle of spread of a jet is also increased with 

swirl. The transformation from weak to strong swirl occurs at a swirl 

number of approximately 0.6. 

Considering a turbulent diffusion flame, below a critical exit velocity 
-

the flame remains attached to the burcar lip. As this exit velocity is 

increased, the flame is lifted ana ,",.j,~bustion ini tia tes a significant 

distance downstream of the burner exit. Further increase in the exit 

veloci ty will cause the flame to extinguish thus reaching a second 

critical velocity ter~ed as the "blow-out" velocity. Two main theories 

exist on the concept of liftoff; Chakravarty et al. (1984) and Eickhoff 

et al: (1984) suggest that a lifted flame is stabilized in a zone where 

combustion is controlled by premixing. But Broadwell et al. (1984) and 

Peters and Williams (1982) believe that a collection of unsteady laminar 

diffusion flamelets is responsible for the stabilization of a lifted 

flame. 

To get an idea of the complexity of the different types of flow present 

in a flame, Claypole and Syred (1981) havs indicated these various zones 

and flow regions within a swirl combustor, see Fig. (2.1.). 
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Fig. (2.1) Flow regions within a Swirl Combustor 

2.3 Flame Types 

The two main categories of flame namely premixed and diffusion were 

outlined in chapter 1. This section will give a brief description of 

the three types of flame that are possible with turbulent diffusion 

jets. These flame types were designated mainly by investigators from 

the IFRF, in particular Fricker and Leucke1 (1976) and Bortz (1983). 

Fig. (2.2a) shows a very common type of industrial flame used and it is 

mainly a combination of type II and III flames. It is obtained by 

imparting a moderate amount of swirl to the combustion air and by 

injecting the fuel axially. This causes the fuel jet to penetrate the 

internal recirculation zone created. It also has an external 

recirculation zone as shown. 
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Type II flame is short and intense as shown in Fig. (2.2b). This type 

of flame is obtained by using a high degree of swirl together with 

radial or divergent fuel injection. The flame is stabilized very near 

to or inside the quad with closed internal recirculation zone. Many 

industrial processes using wall fired boilers make use of this type of 

flame. 

The absence of an internal recirculating zone characterizes type III 

flame, see Fig. (2.2c). It is long and more luminous and mostly used 

in cement kilns and corner fired boilers. This type of flame is 

produced by using axial fuel injection with zero swirl to the combustion 

air. 
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2.4 Findings and Conclusions on Related Studies Using LCV and 

Natural Gas Flames 

2:4~1 Stability Studies 

Bel tagui and Maccallur., (1976) observed four different flow zones in 

their aerodynamic measu~ements of isothermal and burning swirling flames 

in two furnaces. They concluded that significant changes in the flow 

and combustion patterns can result from imparting swirl to the 

combustion air. A CRZ was created if the swirl was sufficiently strong 

and the critical swirl number for establishing this CRZ on their system 

was 0.11. They also found that the maximum diameter of a well 

established CRZ was a function of the furnace diameter and was only 

slightly changed by either further increase in swirl intensity or by the 

furnance to burner diameter ratio. From another experimental 

investigation based on free swirling premixed flames, Beltagui and 

Maccallum (1986) observation on weak extinction limits showed that there 

is a general relationship between the absolute velocity leaving the 

swirler and the effective fuel/air ratio at the anchoring region. 

Beyer and Gouldin (1981) concluded from their work on premixed, swirl 

stabilized flames that the reaction zone is confined to a well defined 

flame region and is stabilized in front of the time-mean recirculation 

zone from where it propagates through the forward portions of the 

recirculation zone boundary layer and then into the inter-jet shear 

layer. They also noticed no fundamental differences in the flame 

structure under co-swirl and counter-swirl conditions at the point of 

flame stabilization or in the boundary layer of the recirculation zone; 

differences were noted in the flame thickness in the inter-jet shear 

layer. 
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Chedaille, Leuckel and Chesters (1966) found four flow zones along a 

furnace chamber after qualitatively comparing the aerodynamics 

downstream from a boiler-type burner with that of a cement kiln burner. 

They concluded that flow and turbu!ent mixing in the first two zones of 

a double-concentric confined jet are not noticeably influenoe~ by the 

chamber walls. They also noticed that the difference betweed free and 

confined jets is limited to the fact that a free jet entrainp stagnant 

air at its boundary, while a confined jet entrains recirculated gas from 

inside the enclosure and consisting, for an actual flame, of completely 

mixed and almost totally burnt products. The presence of internal 

reverse flow in turbulent diffusion flames tends to produce early 

igni tion, faster mixing and increases the mean residence time of the 

fuel in the furnace, thus contributing to a shorter distance for 

complete combustion. 

Claypole and Syred (1981) concluded that the flames produced by swirl 

stabilized combustion could be grouped into four types depending on the 

jnfluence of the reoirculation zone on flame stabilization. The types 

of flame were also dependent on the flow structure and were shown by 

their effects on the PVC. They found the most satisfactory type of 

flame as being ':tlle which produced well stirred combustion in the 

recirculation zone. This type of flame was obtained with a swirl 

number of 0.63, a quarl outlet with short parallel section and radial 

fuel inj ec tion • 

Leuckel and Fricker (1976) found that when injecting natural gas on the 

axis of a swirled combustion air flow, the effects of burner parameters 

such as quarl shape and gas injection conditions were best considered by 

referring to two flow pal terns and flame types resulting 
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from the situation. The best use of the quarl was assured by injecting 

the gas at the throat section for both types of flame. They found that 

the main effect of increasing swirl was to improve mixing of the fuel 

and air rather than to increase the reverse flow of hot burnt gases into 

the burner quarl. They also concluded that when the optimum fuel air 

ratio for a burner approached the stoichiometric value, there was no 

further improvement by increasing the swirl intensity. This value of 

the swirl number was found to be under 1.0 for the cases they have 

investigated. 

Measurements made by Godoy et al. (1985) showed that a small increase in 

the excess air level gave better flame stability due to the availability 

of more air for combustion in an otherwise rich recirculation zone. 

They also concluded that by lowering the inlet velocity thus giving a 

longer residence time and by improvement in mixing, f:~=~ stability is 

enhanced. Based on results of the concentration limits and flame 

separation distance at extinction, Ishizuka and Law (1982) have 

demonstrated that extinction by stretch aJone was possible ooly when the 

deficient reactant was the one with less momentum. When it was the one 

with the higher momentum, downstream heat loss or incomplete reaction 

was also required to achieve extinction, the latte~ caused by 

insufficient residence time. They also concluded that flammability 

limits determined by counter-flow burner system agreed well with those 

determined by other techniques; thus raising the possibility that the 

controlling mechanisms of the flammability limits may be quite similar 

for apparently different flow situations. 

Work done by Jarosinski et al. (1982) using a flammability tube 

concluded that the extinction mechanism for an upward propagating flame 
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is very different from that of a downward propagating one. The upward 

propagating flame is extinguished by a stretch mechanism in which the 

holding region is stretched to extinction and the extinction wave then 

washes down the skirt while the leading edge of the hot product gases 

still retains its constant upw&.r'd speed. Heat transfer to the wall 

played no important part during Ghis extinction process. Extinction of 

a downward propagating flame is triggered by heat loss to the wall and 

the flame is finally driven to ~Atinction by differential buoyancy which 

forces cooler product gases ahead of the flame. 

Working on an excess enthalpy flame, Kotani and Takeno (1982) found that 

the flame stabilized ahead of, in or behind the combustion tube, 

depending on flow rate and equivalence ratio. They also showed with 

the aid of temperature distributions that the heat recirculation through 

the perforated plates as well as the combustion tube played an important 

role on flame stabilization. Negishi (1982) concluded that a small 

amount of mixing played an important role in stabilizing the flame in a 

high speed flow of lean premixture. The minimum equivalence ratio for 

forming a conical flame in the test premixture is dependent upon the 

flow rate of the test premixture as well as the equivalence ratio of the 

coaxial pilot flame premixture. 

From the evaluation of their data, Rawe and Kremer (1981) showed that 

the stability limits of swirling flames can be successfully correlated 

by means of diI".cnsionless Peclet numbers. They concluded that flame 

stability depenas on the location of the reaction zone within the flow 

field near to the burner exit. They found two main reasons for flame 

extinction which are firstly, a radial shift of the flame front in the 

regions of excessive local fluid velocities and secondly, lifting of the 
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flames by exceeding the maximum possible fuel concentration within the 

stabilization region. 

During the first of a series of trials at the IFRF, Schreier (1980) 

confirmed that hydrogen was the most important species as far as flame 

stability was concerned. By testing a range of burners he found that 

using a fuel containing more than 4% hydrogen, all of them gave good 

flame stability results. Under the so-called worst conditions of cold 

combustion air, zero swirl and cold walls, only the Hoogovens G1 and 

twinair burners could stabilize a flame. A good turn-down ratio was 

also possible with the twinair burner. He concluded that CO-enrichment 

did not influence the flame stability but gave a higher flame 

temperature and caused a change in the amount of radiative and 

convective heat transfer. In a second trial using the twinair burner, 

he found that there were 1:~:"" different limitations for having a stable 

flame. One was that the flame speed could be too low to allow flame 

stabilization at the bluff body, which resulted in a blow-off. The 

second was that a minimum "ignition energy" must be available around the 

recirculation zone to guarantee ignition of the surrounding flow. He 

also found that combustion air preheat was beneficial only if it 

resulted in a higher air exH velocity. It had only minor effects if 

the cross-sectional areas were changed to keep the exit velocities 

constant. 

Syred et al. (1977) concluded from their work on LeV gas flames that a 

combination of aerodynamics and re-radiation of heat to Rn annular flame 

front seemed to produce the most stable flame. Rough refractory walls 

increased the heat re-radiated thus increasing the flame stability. 
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They also noticed that the calorific value of a fuel seemed to be one of 

the most important factors in determining combustion limits and low NOx 

formation was due to low flame front temperatures. 

In a study of the influence of burner rim aerodynamics on flame 

stabilization, Sohrab and Law (1985) found that by reducing the fuel 

concentration, the polyhedral flame began a chaotic back and forth 

mn~ion and the geometry of the flame became irregular. This chaotic 

mode of agitation was considered to be an unstable mode of a cellularly 

unstable flame. The transition from the stable to the unstable 

polyhedral flame was believed to be caused by the fact that as the fuel 

concentration was decreased from the rich side, the resulting increase 

in the flame propagation velocity reduced the flame stand off distance, 

which in turn increased the heat loss to the burner rim and theY'eby 

enhanced the tendency for flame front instability. When the flci:!!~ M~S 

surrounded by a blanket of nitrogen they observed that the flame 

characteristics changed drastically in that the occurrance of polyhedral 

flame.:! was greatly facilitated. They argued th~t the influence of 

nitrogen was due to heat loss and dilution. First, outer nitrogen 

enhanced downstream heat loss by partly removing the diffusion flame 

mantle. Secondly, in the presence of nitrogen, oxygen concentration ~n 

the atmospheric air was reduced, thereby allowing for more efficient 

mixture stratification by the preferential-diffusion mechanism. Thus, 

even though outside gases were entrained, the composition of the mixture 

was minimally modified insofar as only nitrogen rather than air was 

being entrained. They concluded that burner rim aerodynamics were 

found to influence flame stabilization substantially. 
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Tsuji and Yamaoka (1982) identified two distinct modes of extinction in 

their investigation on near-limit premixed flames. One was flame 

extinction which occured close to the stagnation surface due to 

incomplete combustion and the other was flame extinction which occured 

at a finite distance from the stagnation surface due to flame stretch. 

They also concluded that the extinction of a flame, in which the 

diffusion coefficient of the excess reactant was much larger than that 

of the deficient one, was not only dependent on the Lewis number of the 

deficient reactant but was also affected by dilution of the reaction 

zone by an excess of the reactant with the higher diffusion coefficient. 

In an investigation on the stabilization mechanism of lifted diffusion 

flames carried out by Vanquikenborne and Van Tiggelen (1965), they found 

that the base of a lifted diffusion flame appeared to anchor in a region 

nhere a stoichiometric composition was attained. They also explained 

that the blow-off and flash-back of the flame were by interaction 

between aerodynamic flow patterns and burning velocity. Yuasa (1986) 

found that the stability of diffusion flames using a double-swirl burner 

depended on the co-swirl intensity of both the fuel jet and the air 

stream. This was explained in terms of the increase in turbulent 

~urning velocity at the base of the lifted flame owing to the increase 

in turbulent intensities in the swirling jet. 

2~4~2 Combustion Measurement Studies 

Chigier and Dvorak (1975) detected substantial changes in flow patterns 

when comparing the flow fields in turbulent swirling jets under flame 

-
and no-flame conditions. The kinetic energy of turbulence per unit 

mass under flame conditions was higher than in the corresponding cold 
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conditions in almost all regions of the flame. They concluded that the 

big increases found in kinetic energy of turbulence and velocity 

fluctuations were direct consequences of combustion. 

From their investigations, Claypole and Syred (1981) found good 

agreement between their NOx concentration contours and those obtained by 

other investigators. They suggested that in a highly turbulent 

combustion system, NOx was predominantly formed in the flame front. 

The highest concentration of NOx resulted from a turbulent diffusion 

flame which stabilized in the wake of the recirculation zone. 

Gunther and Wittmer (1981) concluded from their study on premixed 

turbulent cool flames that the influence of the flame on the temperature 

spectra was exerted by two competing effects. On the one hand, the 

mean temperature increase accelerb.!:~~ t:he dissipation of the smaller 

eddies and increased the microscales. On the other hand, the specific 

effects due to chemical reaction shifted the dissipative region of the 

temperature spectrum towards smaller eddies and the microscalar fraction 

of temperature spectrum became more energetic and the dissipative 

microscales decreased. The relative intensities of these two effects 

finally determined the action of the fl?!:..e on turbulence. 

Hassan et al. (1980) observed that the location of maximum fluctuation 

intensity laid outside· the region of most intense combustion. The 

location of maximum mean temperature corresponded roughly to that of 

maximum combined CO plus C02 concentrations. They also noti<1ed a 

peculiar finite oxygen concentration upstream of the main flame region 

(X/d < 80). They suggested partial extinction due to very rapid mixing 

in the strongly sheared flow in the burner region, finite intermittency 
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on the jet axis, turbulent diffusion of oxygen "packets" into the axis, 

oxygen penetration between ring vortices shed from the burner and 

extinction due to an excess of a limiting equivalence ratio as being 

some of the possible reasons. 

From the wor~;: carried out by Hassan (1983), the following conclusions 

were reached on his results obtained from a cylindrical furnace. 

Comparative ~~ncentration measurements indicated that the discrepancy in 

resul ts obtained from three different types of probe (quartz, water-

cooled and water~quenched) was.not excessive. Considering the results 

of concentration measurements, obtained using a water-cooled probe,and 

temperature profiles, two regions were identified in the early stages of 

the flame. One was a central core containing the reaction zone and the 

other was an outer wall recirculation zone. He also concluded that by 

imparting swirl to the secondary air, the radiation fluxes in the burner 

zone increased and the reaction zone became more compact. Changing the 

excess air level from 5 to 10% only had slight effects on the incident 

radiation fluxes. 

Lockwood and Odidi (1975) found their data on unpremixed turbulent, 

free-jet flames agreeing well with data of other workers. Their 

measurements of temperature and of positive ion current in unpremixed 

flames suggested the combination of a Gaussian type distribution and a· 

Dirac delta function, the latter showing the effects of jet 

intermittency. 

From measurements made in stabilized nitrogen-diluted flames, Moneib 

(1980) found that a small increase in the percentage of nitrogen 

dilution (with the same Reynolds number input) shortened the flame and 
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caused a progressive reduction in both the maximum level of the rms 

- 2 1/2 value of temperature fluctuations (T' ) and the relative turbulence 

-'2 1/2 -intensity, {(T ) IT}, but the maximum mean temperature attained by the 

flame remained nearly constant. He pointed out the two main zones 

forming the basic structure of lifted flames. One wa~ dn upstream zone 

which exhibited an initial steep rise in temperature Que to the burning 

of premixed mixture and the other was a diffusion Z ,ne in which the 

flame behaviour was similar to that of the stabilized flame case. 

Working on a turbulent diffusion flame, Starner and Bilger (1981) 

concluded that the streamwise velocity was found to have a substantial 

correlation with both density and mixture fraction. They also 

suggested that Favre-averaging or other means of accounting for the 

density-v~locity correlation should be used to conserve axial momentum 

flux. 0" comparing measurements obtained in single and two-stage 

combus tion , Sadaka ta et al. (1981) found tha t by preheating air up to 

3000 C, the emission of NO from ordinary single-stage combustion was 

increased by a factor of three but there was no significant increase in 

the case of two-stage combustion for both thermal and fuel NO. They 

also concluded that air preheating of up to 3000 C caused a 50% decrease 

in hydrocdrbon concentration at the primary stage of two-stage 

-
combustion. 

Gas concentration profiles obtained by Stewart et al. (1971) showed the 

unburnt fuel concentration having a maximum at the centre 0f the jet, 

the oxygen concentration decreasing rapidly from its ambient value near 

the edge of the jet. The carbon dioxide concentration showed a maximum 

at the edge of the jet and a significant amount of carbon monoxide was 

found within the jet boundary. These measurements were obtained from a 

test furnace burning commercial grade propane with 20% excess air. 
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Taylor and Whitelaw (1980) concluded from their work on an axisymmetric 

combustor with a premixed natural gas/air flame that combustion-induced 

oscillations became increasingly important as the equivalence ratio 

approached unity. There was only a small range of equivalence ratio 

for which stable combustion could be achieved. The velocity variance 

was twice as much in the recirculating region compared with what it was 

in other parts of the combusting flow. Uniform mean temperature 

distribution was obtained which was consistent with a well-stirred 

reactor assumption. They also found that significant changes in the 

length of the recirculation region and to local flow properties resulted 

from small changes in the equivalence ratio. 

Wu and Fricker (1976) found that firing a swirl ing jet flame into a 

narrow cylindrical furnace influenced the jet, f~:·w pattern and flame 

shape. The flow pattern differed from that in a large furnace with a 

swirled flame of good ignition and stabilization characteristics. They 

encountered severe oscillations and vibrations with the risk of loss of 

ignition stability when operating at low swirl numbers, in the range of 

0.2-0.5, on that particular furnace. They also showed that a wide 

range of heat flux distribution was possible in a ~11indrica1 furnace by 

using a combination of different swirl intensity and burner quar1 

configuration. Their twin-air burner sys tem, with swirl imparted to 

the inner section, gave a more uniform heat distribution and good 

ignition stability. 

In a study of cross-correlation between velocity and temperature in a 

turbulent premixed flame, Yanagi and Mimura (1981) found that the 

temperature fluctuations were induced by the velocity fluctuations. 
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They also pointed out that the bimodal nature of the PDF at the flame 

front suggested that the flame front structure was approximated by the 

wrinkled flame model; so the fluctuation of heat generation at the 

measuring point could not be neglected in modelling of the combustion 

process. 

Yoshida (1981) found the ~haracteristics of the temperature fluctuation 

in the turbulent premixeu flame zone to be very close to those predicted 

by the wrinkled laminar flame model. The mean radial velocity appeared 

at the position where the mean temperature began to rise and increased 

with the mean temperature attaining a maximum outside the flame zone. 

There was also no visible sign of the flame generated turbulence or the 

Reynolds shear stress in the wrinkled laminar flame structure. By 

comparing his results with previous measurements he concluded that there 

must be a structure other than the wrinkled laminar flame. 

Yoshida and Tsuji (1982) found the length scale of wrinkles in an open 

turbulent, premixed flame to be around 5 mm and almost independent of 

the upstream turbulence or the unburnt gas velocity. They also 

measured the periodicity of temperature signals which indicated that the 

wrinkles which appeared upstream were transported downstream along the 

flame front. The wavelength derived from the length scale grew longer 

along the flame front with a similar growth rate as that of the laminar 
-

burning velocity. 

2.5 Main Effects of Operating Conditions on Combustion 

2.5.1 Effects of Swirl on Combustion 

The advantages of using a swirling jet as a mean of controlling flames 

in combustion was realized a long time ago by many investigators. It 
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was only recently that a concerted effort was made to understand how and 

why rotating flow has such an important influence on the stability and 

combustion intensity of flames. The majority of large scale 

investigations on swirling combustion has been carried out at the IFRF. 

Bel tagui and Maccallum (1976) reported that the maximum diamete.' of the 

CRZ was uninfluenced by further increases in swirl once the CRZ "as well 

established. They found the peak temperatures at a plane to lie just 

inside the CRZ which differed from observations in corresponding open 

flames where the peak temperatures were just outside the CRZ. They 

explained this difference by pointing out that the open flames entrained 

ambient air which lowered the temperatures, whereas confined flames 

entrained combustion gases from the peripheral recirculation zone which 

are comparatively hot. 

Chedaille et ale (1966) put forward three main effects of swirl on 

turbulent diffusion flames. First, ignition could be stabilized very 

close to the burner exit due to back-flux of hot combustion products. 

They pointed out that the role of the internal recirculation zone was 

more effective than the external one because the gases recirculated from 

the internal zone w~:"'e much hotter since they came from the hottest part 

of the flame, so the heating effect on the fuel was almost immediate. 

Secondly the internal reverse flow caused an acceleration of the mixing 

of fuel and air in the first part of the jet l)ecause the annular 1 ayer 

of combustion air in which this mixing took place was thin and al.'3o 

because of the intense turbulent exchange across this layer as well as 

between it and the vortex region due to the high shear velocity gradient 

present. The third main effect of an internal reverse flow was the 

increase in residence time of combustion matter for a given furnace 
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length. This third effect is more important in pulverized coal flames 

where more time in the hot reverse flow zone yield a greater amount of 

volatiles from the coal particles. They showed all three of the above 

effects from measurements made in their furnace and noticed that a much 

shorter distance was required for complete combustion when compared to 

flames without swirl. 

Leuckel and Fricker (1976) also noticed similar effects of swirl on 

flames as Be 1 tagui and Maccall um ( 1976 ) : Once sufficien~ swirl was 

imparted to the combustion air so that an internal recirculation zone 

was formed which caused the ignition to stabilize inside the burner 

quarl, further increase in the swirl intensity had very little effect on 

either the flow pattern, flame length or flame temperatures. This was 

backed by large amounts of measurements made on IFRF furnat.:2!3 burning 

natural gas. They also pointed out that two different types of stable 

flame can be achieved by using swirl stabilization; one giving a 

relatively long flame and the other a short intense flame. In the 

third part of the study they also conclud:.d that the main effect of 

swirl was that of promoting the mixing of fuel and air rather than the 

increase of reverse flow of hot burnt gases back into the burner quarl. 

The same effects were observed by Hassan (1983); additionalLY he also 

found an increase in radiation fluxes near the burner zone as a 

consequence of swirl being imparted to the combustion air. 

2.5.2 Effects of Excess Air on Combustion 

Bel tagui and Maccallum (1976) found that an increase in excess air 

levels for their confined swirled flame caused a central recirculation 

zone (CRZ) to be formed: The maximum reverse mass flow in the CRZ was 
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less than 10% of the burner mass flow. Although the CRZ disappeared 

with a reduction in excess air, troughs remained in the axial velocity 

around the axis near the burner. 

Fricker and Leucke1 (1976) have Sh0WD that at high excess air there was 

a deterioration in the burner pel formance helped by the use of swirl 

which has a tendency to shift the fuel-lean combustion limit towards 

higher equivalence ratios. The~' have also pointed out that with a 

flame with a CRZ (type II), there was no influence of gas injection 

velocity on ignition stability both with low and high excess air levels 

and at all swirl intensities. They argued that there was an advantage 

in reducing swirl to the mimimum required for obtaining an internal 

reverse flow, thus avoiding over-dilution of the fuel with excess 

combustion air upstream of the ignition zone, when working with burners 

operating with an excess air level of 100% or more. 

Hassan (1983) observed that an increase in excess air from 5% to 10% had 

only a slight effect on the incident radiation flux. He also reported 

very little change in the radial temperature and concentration profiles. 

This is to be expected because the excess air level was not that high so 

as to cause major changes in the flame structure. Syred et a1. (1977) 

found that by adding 10 to 20% excess air to their combustion process, 

the carbon monoxide formed in the flue gas, when burning waste gas near 

the stoichiometric mixture ratios, disappeared. 

Schreier (1981) reported an improvement in flame stability by using 50% 

excess air on a baseline burner using low calorific value gases. It 

was also possible to increase the burner loading but further increase in 

the excess air level to 100% caused a reduction in the maximum load 

possible. 
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2.5.3 Effects of Preheating on the Combustion Air 

Very little work has been done on the effects of preheating the 

combustion air supplied to flames. In general, it is recognized that 

by raising the temperature of the combustion air, faster mixing takes 

place due to the increased kinetic energy of the air molecules which 

results in a higher diffusion rate between the fuel and air molecules. 

Using a twinair burner, Schreier showed that by preheating the 

combustion air to about 2500 C a stable flame could be achieved in cases 

where without preheating it was impossible to sustain any type of flame. 

He also indicated that preheating shortened the length of the flame 

significantly. Sadakata et al. (1981) investigated the effects of air 

preheating on the emissions ~~ NO, HCN and NH3 from single and two-stage 

combustion. They found tna~ ~y preheating the combustion air to 3000 C, 

a three fold increase of NO resulted from the single stage combustion 

whereas no significant increase in emissions of both thermal and fuel NO 

was noticed from two stage combustion. There was also a 50% decrease 

of hydrocarbon and HCN at the primary stage by preheating the combustion 

air to 3000 C for two stage combustion. 

2.5.4 Effects, of Nitrogen Dilution on ,Combustion 

The main effect of adding nitrogen to a gaseous fuel is to bring its 

calorific value down. So for a required furnace output, a larger 

amount of fuel is necessary which can give rise to stability problems at 

the burner exit. 
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Hassan et al. (1980) showed a shortening of the flame length on work 

carried out using a free jet diffusion flame. They also found the 

maximum mean temperature attained by the flame remaining nearly constant 

over the range of nitrogen dilution investigated. From concentration 

meas\,.;;:-emen ts made on the same flame, under the same conditions, Hassan 

(1983) showed that the increase in the percentage of nitrogen caused a 

reduction in the level of unburnt hydrocarbon and the maximum levels of 

both ~arbon dioxide and carbon monoxide. 

2.6 Closure 

Despite the vast amount of work outlined above, it can be seen that 

there are many conflicting ideas about the structure of the flame under 

different prescribed conditions. There is still a great shortage (If 

work on turbulent diffusion flames as used in industrial furnaces an~ 4~ 

particular using low calorific value gases. 

The pre~ent work will provide a better understanding of flame stability 

based on confined, turbulent diffusion flames burning low calorific 

value gases. The effects of swirl, combustion air preheat, excess air 

levels and nitrogen dilution on the stability limits and combustion wilJ 

also be considered. 
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CHAPTER 3 

FURNACE & INSTRUMENTATION 

3.1 Introduction 

Stability tests and combustion measurements were carried out in a 

substantially modified Hilton Combustion Demonatration Unit. In their 

original form many of these units are used by undergraduate and 

postgraduate students to carry out combustion experiments. The main 

research limitations of the unmodified furnace concerned the burner 

system, which was not respresentati ve of the majority of industrial 

burners, and the asymmetry of the furnace, a consequence of the exhaust 

nuct being offset with respect to the burner axis. A symmetrical 

f'nrnace allows the combustion measurements to be halved because full 

traverse across the furnace is then unnecessary. 

Modifications to the burner system and the exhaust end of the furnace in 

order to correct the above-mentioned defects were therefore carried out. 

A concentric pipes system with radial injection of natural gas or 

n~~ural g~s/nitrogen mixture was utilized as the burner, Fig:(3:4), and 

a new back plate constructed with the exhaust duct placed in the centre, 

Fig. (3:2): A movable block swirl generator similar to the design of 

Beer and Chigier (1972), Fig: (3:5), was incorporated to impart swirl to 

the secondary air. Calibrated rotameters were employed to measure the 

mass flow rates of secondary air, natural gas and cooling water entering 

the furnace. 
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Inflame temperature measurements were made using a fine wire 

thermocouple system comprising of 40;um platinum/platinum 13% rhodium 

wires. Velocity measurements were carried out with a 5-hole pitot tube 

connected to a micromanometer via a 10-way selection box. A water-

cooled sampling probe was made to collect combustion gases in the 

furnace for concentration measurements through a multi-system combustion 

gas analyser. The temperature, velocity and concentration data were 

processed via an Apple IIe microprocessor system. A traversing 

mechanism was made to carry and move the various probes inside the 

combustion chamber and a motorized unit controlled by the Apple IIe was 

incorporated in the system to permit automatic data collection. 

3.2 Furnace Arrangement 

The furnace, Fig.(3.1), consisted of a. ::o~~izontally orientated water-

cooled combustion chamber with a front plate carrying a quarl and the 

burner with its swirl generator, see Panel (3: 1 ). The back plate of 

the combustion chamber W''l.S refractory lined and contained the exhaust 

duct, an explosion vent, an observation port and a water-cooled mounting 

to connect the ultra-violet flame scanner, see Fig: (3.2). 

Combustion air was supplied to the furnace by a rotary air compressor 

(BVC Eng. Ltd Model Y3) and was measured by a calibrated rotameter 

( KDG Flowmeter Model 47XE)~ A small preheater (Secomak Ltd Modal 

25 BNY) was used to preheat the air to 500 C in order to satisfy the 
-

calibration requirements of the rotameter. The temperature of the air 

entering the rotameter was monitored by a Cr/AI thermocouple. The air 

was then fed to the main heater (Secomak Ltd Model 441/2) where its 

temperature was raised to the preheated value required before being 
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delivered to the swirl generator through a lagged manifold. Each 

heater had its own potentiometer (Variac) to control the heating power 

required. Cr/Al thermocouples were used to measure the temperature of 

the air leaving the main heater and that of the flue gases in the 

exhaust duct. 

3.2. 1 CQ!J1bU;t;i,2U, ~narnbe,r 

The combustion chamber was cylindrical and horizontally orientated with 

a length of 900 mm. Its internal diameter was 457 rnm and it was of 

double skin construction permitting the entire section to be water-

cooled; see Fig. (3.3). Three pairs of observation windows were 

located along the length of the combustion chamber; they also served as 

sampling ports. The windows were placed at distances of 203, 457 and 

711 mm from the exit plane of the quarl. A factory fitted Cr/Al 

thermocouple was employed to monitor the cooling water temperature 

leaving the combustion chamber. The thermocouple signal was also 

connected to the safety management system of the furnace which s~ats the 

gas supply off in the event of the cooling water temperature rising 

above a set value. To resist corrosive attacks, stainless steel was 

used for the combustion chamber body. 

3.2.2 Burnet. ~Y'it.!W. 

Fig. (3.4) shows a schematic of the burner system used. Its design is 

similar to many existing types of industrial burner utilized in gas 

furnaces. A concentric pipe system was employed, with radial injection 

of the fuel. Many investigators have shown the benefits of improved 

stability by injecting the fuel radially, (Leuckel and Fricker (1976), 
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Hassan (1983) and Rawe & Kremer (1981). The air pipe had an internal 

diameter of 42 rom and an outer diameter of 45 rom. The inner and outer 

diameters of the gas pipe were 15 rom and 20 rom respectively. Eight 

holes of 3.0 rom diameter each were drilled on the circumference of the 

nozzle for the fuel to exit. 

Swirl was imparted to the secondary air by means of a movable block 

swirl generator similar to the design of Beer and ChilSier (1972); see 

Fig. (3.5). The swirl generator was calibrated by means of a swirl 

meter (Hassan 1983) and the results are shown in Appendix (A). A 

refractory quarl with a half angle of 9.70 was used to stabilize the 

flame; the burner exit was located at the throat of the quarl. 

3.2.3 Igniter and Flame Failure System 

A small igniter torch (Industrial Automated Systems Ltd : Model (CA 

115)) with its own gas and air supplies was employed to ignite the main 

burner. After successful ignition of the furnace, the gas and air 

supplies to the igniter torch were cut-off by means of s0lenoid valves 

controlled by signals from the flame scanner. 

In order to prevent an explosion, a good flame failure detector system 

was necessary. A protec tor relay (Honeywell : Model RA 890 G) in 

conjunction with a minipeeper ultraviolet flame detector (Honeywell : 

Model C 7027 A) were used. In the event of the main flame going out, 

no signal would reach the flame detect0r and the system would close the 

main solenoid valve (Alcon : Model G1oe) thus prohibitting the flow of 

fuel to the furnace. The protector relay also responded to abnormal 

exit temperatures of the cooling water and the absence of secondary air 

in the main prehea ter. After a blow-off, the system could not be 

restarted unless the furnace was purged for at least 2 minutes. 
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3.2.4 Gas Mixing System 

Fig (3.6) shows a schematic of the gas mixing system. Natural gas from 

the main supply was monitored through a calibrated rotameter (KDG 

Flowmeters : Model 18 XE) and supplied to a cylindrical mixing chamber 

Fig. (3.7) via a pipe manifold system. Oxygen-free Nitrogen (BOC) was 

used to dilute the natural gas. After being measured by means of a 

calibrated rotameter (KDG Flowmeters : Model 14 XE), the nitrogen was 

fed to the mixing chamber via a nitrogen distributor. Eight pipes 

alternately feeding natural gas and nitrogen to the mixing chamber were 

chosen to improve mixing of the two gases. An emergency fuel shut-off 

valve (manual) and a Class I fuel solenoid valve were installed, as 

part of the safety features, on the fuel line connected to the burner. 

The temperature of the mixture in the mixing chamber was monitored by 

means of a Cr/Al thermocouple. 

3.3 Instrumentation 

The instrumentation system emploved to obtain inflame temperature, 

velocity and concentration data is outlined in Fig. (3.8). A central 

data processing unit consisting of an Apple IIe microprocessor coupled 

with a 16-Channel, 12 bit analogue to digital (A to D) converter 

(Interactive Structures Inc.: Model AI13) was used in the system. 

After each of the above-mentioned data were converted into an 

appropriate voltage signal by their dedicated system, the A to D 

converter changed the signal into a form (digital) that was acceptable 

by the microprocessor. The signal was then processed and the output 

was displayed on the monitor as temperature, velocity or concentration, 

depending on what was being measured. At the end of a traverse, a 
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hard-copy of all the data collected was printed on a line printer (Epson 

: Model MX-100 Type III). Figure (3.9) shows a flow chart depicting 

the stages of the programs used for temperature, velocity and 

concentration measurements as well as controlling the traversing 

mechanism used for automat~c data logging. 

3.3.1 TemB~ature Measyring System 

The time averaged inflame temperature was measured by a system similar 

to that used by many investigators (Hassan (1983), Hirji (1986), Monieb 

(1980)). The schematic of Fig. (3.10b) outlines the system employed. 

Details about the heat transfer characteristics and radiation and 

conduction corrections are well documented elsewhere; (Hassan (1983), 

Monieb (1980)). However a brief description of the probe and the 

system is given below. 

A 40 p.m platinum/platinum 13% rhodium thermocouple was used to measure 

the temperature. The appropriate wires were welded on a capacitor 

discharge welding unit (Spembly Ltd Model WPL4). Several 

thermocouples were made and only those having a bead size diameter 

between 70 and 80 pm were selected. The thermocouple was then attached 

to the appropriate supporting wires which were 0.5 mm in diameter. A 

twin-bore alumina tube which was encased in a stainless steel sheath to 

give prctection and strength was used to carry the length of supporting 

wires, see Fig. (3. 1 Oa) • The end s of the supporting wires were 

connected to suitable socket terminals (Labfacility Ltd). Screened 

compensating leads (Labfacility Ltd) were used to carry the signal to a 

differential amplifier (RS : OP-27) where it was amplified by a factor 

of 100. It was then simultaneously fed to an oscilloscope (Solartron 
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Model ex 144) and the data acquisition system (Interactive Structures 

Inc : Model AI13) where it was digitized before being manipulated by the 

microprocessor. The purpose of the oscilloscope was to assess the 

quali ty of the signal and the presence of an open circuit caUSAe by 

breakage of the thermocouple. 

A temperature measurement program then converted the signals into 

temperatures which were stored in the computer's memory for future use. 

A subroutine in the main program took care of the radiation corrections 

of the thermocouple. After two traverses across the furnace, a list of 

temperatures measured at intervals of 10 rom (up to the centre line) was 

printed together with the operating conditions of the furnace. At the 

end of four more rune~ under two different conditions, a list printing 

the average temperQ~~~~~ for each of the three conditions was produced. 

A graph of mean tempeature (TOe) against radial distance traversed (R 

rom) was then plotted on the attached cylindrical plotter (Strobe 100). 

At ea0.h measuring point the average of 1000 readings was taken spanning 

over a period of 40 seconds, see Table (A1) of Appendix (A) for samples. 

3.3.2 Velocity Measuring System 

A five-hole water cooled pitot probe was employed to measure the 

velocity inside the combustor. Prior to its US;} on the furnace, the 

probe was calibrated on a small wind tunnel and the results of the 

calibration test are given in Appendix (A). Figure (3:11) shows 

details of the probe. 
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The pressure tappings on the probe head was connected to a digital 

micromanometer (Furness Controls Ltd : Model FCO 12/2) via a 10-pair 

selection box (Furness Controls Ltd: Model FCO 19). The layout of the 

velocity measuring system is given in Fig. (3.12). In order to select 

the different pressure tappings automatically, a special circuit was 

designed and made as shown in Fig. (3.13). This enabled the computer 

to select a particular pressure tapping as and when required by the 

program. 

An output socket at the back of the micromanometer provided a voltage 

representing the reading on the display; see Table (A4) in Appenix (A). 

This voltage was then fed to the microprocessor via the data acquisition 

system where it was digitized. A special program was writ ten to 

process these pressure measurements and convert them int~ velocity 

measurements. To account for the swirling flows, special ~~broutines 

were included to give the conical and dihedral angles. 

Again an average of 1500 readings were samnled but this time spanning 

over a period of 5 minutes. Two traverses were performed at each 

operating condition and the results printed as shown in Table (A2) of 

Appendix (A). The velocity represents the magnitude of the ~ean value 

in the direction given by the conical and dihedral angles. 

the method employed is outlined in Appendix (A). 

3.3.3 Concentration Measuring System 

Details of 

Inflame species concentration were measured for UHC, NOx , 02, CO and C02 

wi th the help of a water-cooled sampling probe, Fig (3.14). Sample 

gases were sucked continuously and delivered to an analysis system for 
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combustion monitoring via a 5 m length of heated sample line. The 

analysis system was made of a sampling unit and five analysers measuring 

unburnt total hydrocarbon (UHC), nitric oxide + nitrogen dioxide (NOx )' 

Oxygen (°2), carbon monoxide (CO) and carbon dioxide (C02); see Panel 

(3.2). Specific concentration of span gases were available for 

calibration of the instruments. All the analysers had analogue voltage 

outputs which could be used to dirv - chart recorders or data logging 

systems; see Fig. (3~15)~ Table (A3) of Appendix (A) shows some sample 
-

results. 

Sampling Unit 

Fig. (3.16) shows a line diagram of the sampling unit. Gas samples 

were pumped into the unit by means of a twin head vacuum pump (ADI 

Model 193231) • A filter assembly containing a microfibre filter 

element (Balston Ltd Model 050-11-BQ) disposed of any particulate 

matter present in the sample prior to entering the pump. The sample 

was then distributed in two separate lines; one line was fed into a 

permeation dryer which in turn supplied dry sample gases to the oxygen, 

-
carbon monoxide and carbon dioxide analysers. The other line was 

further subdivided into two, one feeding the total hydrocarbon analyser 

and the other the NOx unit. The flow and pressures of these two units 
-

were controlled by preset needle valves. 

A mini vacuum pump (ADI Model 19312N) was employed to supply purge gas 

-
for the permeation dryer. The sample pump, preset needle valves, part 

of the permeation dryer and the filter assembly were located in an 

insulated heated enclosure which was maintained at a temperature of 

11OoC~ Thermocouples (Cr/Al) and temperature controllers were employed 

to keep the temperatures of the heated enclosure, external heated 
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sampling line and the internal heated total hydrocarbon unit connecting 

line at their designated values. All the flow bypasses and gases that 

have been analysed by the units were piped into one common vent which 

was connected to the laboratory exhaust system for safe disposal. 

Unburnt TotaL HydrQcarbon AnalYser 

The unburnt total hydrocarbon analyser (AAL : Model 523) was an advanced 

design high temperature instrument utilising the flame ionisation 

detector (FID) technique. A small, continuous flow of sample gas was 

burnt in a polarised hydrogen flame. During the combustion process 

compounds containing carbon-hydrogen bonds formed ions; a potential was 

applied between the flame and a collector electrode causing migration of 

the ions to the electrode. The resulting ion current was related to 

the concentration of hydrocar0.:-n in the sample. This signal was 

amplified and displayed by the electronics modules of the analyser. 

ijQ;e.,Ana!,x:ser 

The NOx analye~r (AAL : Model 443) used the principle of chemilumin­

escence to measure the nitric oxide (NO) present within a system. It 

was also capable of measuring the total level of nitrogen dioxide (N02) 

and nitric oxide (NO) present. This measurement is termed 'NOx '. The 

unit contained its own heated sample module. 

The instrument detected and measured nitric oxide using its 

chemiluminescent reaction with ozone (°3). The ozone was generated 

within the instrument and after the reaction any residual ozone was 

catalytically destroyed. 
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The sample gas and ozone are mixed within the reaction chamber in front 

of the photomultiplier tube. Nitric oxide reacts with ozone to produce 

ni trogen dioxide; some molecules of which are in the ground state and 

some in an excited state. The reaction processes are shown below. A 

molecule of electronically excited nitrogen dioxide decays to the ground 

state Alther by loss of a photon of energy or by energy transfer to 

other sT'ecies (M) by collison: M can either be the walls of the 

chambeI, or other molecules of gas in the sample flow. 

NO 

NO 

+ 03 - N02 + 02 

+ 03 - N02* + 02 

Production of nitrogen dioxide 

Production of electronically excited 

nitrogen dioxide 

N02* + ~ ---- N02 + hV Chemiluminescence 

N02* + M --.- N02 Collisional Deactivation 

where 

Ii' = hole 

h = Planck's constant 

hV = Energy of light (photon energy): 

It is found to a good approximation that the intensity of the emitted 

light (I) is given by the equation 

I = Io{NO} {03} 

{M} 

where Io = a constant, NO = concentration of nitric oxide, M = 

concentration of deactivating species and 03 = concentration of ozone. 
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If the concentration of ozone is sufficiently high to ensure its 

concentration does not change before and after the reaction, then the 

intensity of emitted light is linear with respect to the nitric oxide 

concentration. This intensity was monitored by the photomultiplier 

tube within the detector assembly. 

The chemiluminescence process is specific to l"'-'.tric oxide. Using a 

catalyst contained within the analyser N02 can be converted to NO prior 

to entering the detector chamber, thus allowing the determination of 

NOx ' Readings thus obtained from the analyser were the sum of the 

concen tra tions of nitrogen dioxide and nitric oxide. The instrument 

could be operated as an NOx or NO analyser by switching the converter in 
. 

or out of stream. 

CC,'~()2 Analysers 

Both of these instruments were housed in one unit and worked on the 

principles of non-dispersive infrared (NDIR) gas analysis. The 

measurements were accomplished by measuring the infrared absorbtion of 
-

the selected component in the gas mixture. 

Inf~ared absorbtion in gas mixtures is a characteristic of the type and 

arrangement of the constituent atoms of the gas molecules. The 

infrared radiant energy interacts with the molecules of the gas mixture. 

The degree of interaction is a function of the spectral regions or 

spectral bands for the different gas components. Th~se spectral bands 

are different for different gases and therefore lend themselves to NDIR 

analysis. 
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Basically each analyser consisted of an optical unit, signal processor 

and meters. The optical unit assembly was the heart of the analyser 

system. It was conceived on the dual beam spectrometer principle to 

attain the superior stability characteristics associated with this 

configuration. The optical unit contained the infrared energy source, 

an optical chopper, sample and reference tubes, optical filters and 

detectors. 

Oxygen Analyser 

This analyser utilizes a Micro-fuel cell to measure the concentration of 

oxygen in a gas stream. The analysis is specific for oxygen; i.e. the 

measuring cell will not generate an output current unless oxygen is 

present in the sample gas. Oxygen is consumed by the cell from the gas 

around it, and a proportionate micro-c~np.re current is generated. The 

low level signal is then amplified by a solid state, integrated circuit 

amplifier, and the resulting D.C signal is suitable for driving a high 

impedence recording device, a temperature compensation circuit for the 

cell and an integral 0-100 microampere meter. 

3.3.4 Data Logging System 

To facilitate and speed up the data collection process an automatic data 

logging system was designed and produced. The system was controlled by 

the Apple lIe microprocessor. A traversing mechanism to carry the 

probes in and out of the furnace was also made, see Fig. (3. 17) and 

Panel (3. 3) • A special lead screw with a 2 mm pitch was utilized to 

transport a saddle on which the probe was mounted at a prescribed 

distance. Two polished steel struts running through brass bushings 

were employed to stabilise the saddle movement. 
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The lead screw was driven by a digital stepping motors (SIGMA, Model 20-

2235 D 200 F 3.7B) in an open loop configuration. Two hundred steps 

were required for one complete revolution of the motor and by using it 

with the 2 mm pitch lead screw, a resolution of 10 pm could be achieved. 

To operate the s~epping motor a bipolar stepper drive (DIGIPLAN, Model 

SD2) was employ6~; power was obtained by a 36V 2A transformer (DIGIPLAN, 

Model TO 119). The pulses required to control the system were provided 

by the Apple I:9 microprocessor boosted by a 12V power supply (R.S. 

Model 591 310) and a transistor circuit. A special assembly language 

subroutine was written to deliver the pulses at the desired rate. A 

block diagram of the system is shown in Fig. (3.18). 
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CHAPTER 9 

STABILITY LIMITS RESULTS 

4.1 IntCoQ':1c,tion 

This chapt~r deals with the stability limit measurements carried out on 

the exper .!.mental rig using both natural and low calorific value gases. 

Data were collected under quite a wide range of experimental conditions. 

Due to the limitations of the combustion air compressor, blow-off limits 

based on increases in the velocity of the secondary air at the mouth of 

the burner was not possible. Instead it was decided to keep the 

momentum at the burner exit, for each level of excess air, nearly 

constant throughout the experiment and to reduce the calorific value of 

the fuel by nitrogen dilution until the flame blew off. 

In order to estimate the location of the flame inside the quarl, four 

Cr/ Al thermocouples were buried on the internal surface 0:' the quarl. 

They were located at distances of 50, 100, 150 and 200 mm from the 

burner outlet and were cemented at about 2 mm beneath the surface. 

These four thermocouples were monitored throughout the whole series of 

tests and in addition the temperature of the exhaust gas and cooling­

water outlet were also recorded. 

The rest of this chapter is divided into three sections. Section (4.2) 

gives an outline of the experimental conditions under which the 

stability limits data were collected. Section (4.3) deals with the 

presentation and discussion of the results in particular the effects of 

secondary ai~ temperature, swirl number and excess air levels on them. 

Section (4.4) provides the closure to this chapter. 
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4.2 ~xpecimental Conditions and ProgedMces 

Stability limits data based on the blow-off of the main flame as a 

result of increasing the nitrogen content of the fuel were collected for 

a wide range of operating conditions. Five combustion air preheat 

temperatures, (38, 100, 200, 250 and 3000 C), fou'" swirl numbers (0, 

0.418, 0.689 and 0.964) and three levels of exc".iSS air (10%, 20% and 

30%) were investigated. 

The furnace was started burning 3 kg/h of natural gas at the chosen 

swirl number, excess air level and secondary air preheat temperature. 

The cooling-water flow rate was adjusted to 364 kg/h and the two variacs 

trimmed to give the desired combustion air temperatures. About one 

hour was allowed to elapse for conditions inside the furnace to 

stabUize. The quarl, exhaust gas and cooling-water outlet 

t~~~~ratures were then noted. 

The calorific value of the gas was then reduced by gradual dilution with 

oxygen-free nitrogen coupled with a reduction of natural gas flow rate, 

thus keeping the total mass flow rate of the fuel mixture constant at 3 

kg/h. Again about 30 minutes were allowed to elapse for conditions in 

the fl~~'nace to stabilize. The quarl, exhaust gas and cooling-water 

outlet temperatures were taken again. A further reduction in the 

calorific value of the fuel was made and the same processes as described 

above were repeated. This was continued until the calorific value of 

the fuel supplied to the burner was too weak to sustain a flame thus 

resulting in a blow-off. 

The furnace was restarted and the procedures described above repeated 

with a different excess air level. After the three excess air levels 
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were investigated, the secondary air temperature was changed and the 

stability limits data from their resulting flames taken. The 

combination of three excess air levels and five secondary air 

temperatures resulted in fifteen sets of blow-off data at one swirl 

number. By varying the swirl number a further fifteen sets of blow-off 

data were collected using the same excess air levels and secondary air 

preheat temperatures as before. In total, sixty sets of blow-off data 

together with their corresponding exhaust gas, cooling-water outlet and 

quarl temperatures were collected. The last was monitored at four 

different points (50, 100, 150 and 200 mm) along the inside surface from 

the burner exit. 

4.3 Presentation am! DiscHssion Qf stabilit:,:: ~im1ts Rata 

Blow-off data for all the conditions mentiuul:ld in section (4.2) are 

presented in Fig. (4. 1) to (4.4). In all the stability curves shown, 

the absicca represents the percentage of nitrogen in the fuel mixture on 

a gravimetric basis. It sh~uld be noted here that the stability limit 

of a flame is represented by the maximum amount of nitrogen in the 

mixture that the burner could sustain prior to blow-off. Table (4.1) 

gives the various calorific values investigated with the corresponding 

mass of natural gas and oxygen-free nitrogen for each making a total 

mass flow rate of the fuel mixture 3 kg/h. For the above-mentioned 

figures, the secondary air temperature entering the furnace is 

represented on the ordinate. 

The shaded dots on the curves represent conditions under which the 

flames maintained good stability and the open ones indicate blow-off. 
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The cross-shaded regions on the curves represent a form of safety band 

where combustion is undesirable except for investigative purposes. 

This area also indicates the onset of instability of the flame which is 

also accompanied by an increase in noise level at the burner mouth and 

sometimes a slight v:lbration of the whole furnace. The wid th of the 

cross-shade represercs an estimate of the level of instability prior to 

blow-off: noise and "ibration increased with level of instability. 

Figures (4.1) (a), (b) and (c) represent the stability curves for 10, 20 

and 30 percent excess air respectively. These data were obtained 

without any swirl being imparted to the secondary air; in other words 

with a swirl number of zero. Subsequent figures up to (4.4) show data 

collected at swirl numbers of 0.418, 0.689 and 0.964; again with (a), 

(b) and (c) indicating an excess air level of 10, 20 and 30 percent 

respectively. Although all the data collected during the tests on 

stability limits are accounted for in Figs. (4.1) to (4.4), a clearer 

presentation and comparison is obtained when the ordinate variables are 

changed as described in the next paragraph. 

Figures (4.5) to (4.9) represent plots of swirl number against the 

percentage of nitrogen in the fuel mixture. Again (a), (b) and (c) 

denote 10, 20 and 30 percent excess air level. Each figure represents 

the stability data at a constant secondary air temperature, ranging from 

380 c for the case of Fi~. (4.5) to 3000 C for Fig. (4.9). 

The effects of excess air at fixed swirl numbers on the stability limit 

of the flames are shown on Fig. (4.10) to (4.13). Here (a), (b) and 

(c) denote secondary air temperatures of 38oC, 2000 C and 3000 C 

respectively. Similarly Fig. (4.14) to (4.18) show the effects of 
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excess air on the stability limit of the flames but this time at fixed 

secondary air temperature. In this case (a), (b) and (c) denote swirl 

number of 0, 0.689 and 0.964 respectively. 

The values presented in Tables (4.2) and (4.3) give an ind::'cation of 

what is happening to the flame front, or more precisely the location of 

maximum temperature of the flame, inside the quarl. Thr calorific 

values of the fuel mixture quoted are that prior to blow-off. Table 

(4.2) represents data for swirl numbers of zero and 0.418 at excess air 

levels of 10, 20 and 30 percent over a range of secondary air 

temperatures from 380 c to 300oC. Similar informations are given in 

Table (4.3) but at swirl numbers of 0.689 and 0.964. The last two 

columns of the tables show the location of maximum temperature inside 

the quarl for "!~ses when pure natural gas fuel was used under similar 

operating COl!.:!:!.t::'ons. 

The effects of secondary air preheat, without any 

stability limit of the flames are shown in Fig. (4.1). 

swirl, on the 

For the 10% 

excess air case very little improvement was obtained by preheating the 

air up to 250oC. At a secondary air preheat temperature of 3000 C a 

stable flame w~~ possible with a leaner fuel containing an extra 5 

percent oxygen-free nitrogen in the mixture. The range over which the 

flame became unstable, as indicated by the width of the cross-shaded 

area, was wider at the lower preheat values. When operating ~ith 20% 

excess air an increase in the stability limit was noticed after 

preheating the air to 200oC. Increasing the preheat value from 2000 C 

to 3000 C allowed combustion to proceed with an extra 10% nitrogen in the 

mixture. With 30% excess air the improvement in stability started with 

a preheat value of 1000 C to the secondary air supply. 
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Comparing Figs. (4.1) (a), (b) and (c) indicate that without preheat 

(i.e. 380 c) the stability of the flames decreases with increase in 

excess air levels. Similar comparisons with a preheat value of 3000 C 

to the combustion air show an increase in the stability of the flames 

with an increase in excess air level. At 10% excess air the flame blew 

off when the mixture contained 58% of nitrogen but with 30% excess air 

the flame could tolerate a mixture with 66% of nitrogen. The effects 

of preheating combustion air supplied to furnaces burning low calorific 

value gases have been demonstrated by Schreier (1981) and the results 

shown above are in good agreement with his findings. An improvement in 

the stability of the flames by increasing the excess air was also 

noticed by Schreier (1981) and Beltagui and Maccallum (1976). 

Imparting a small amount of swirl to the secondary air ~oes improve the 

stability limits over the whole range of preheatinls ::':".·.'~stigated, as 

shown in Fig. (4.2). This improvement is noticed over all three excess 

air levels. This stabilizing effect is more apparent when none or very 

little preheat (1 OOOC) is used on the secondary air. For the 10% 

excess air case with no preheat, there is an increase of about 8 points 

in ni trog en con ten t when compared with the zero swirl case. Moving 

across to 20% and 30% excess air cases do not show much i~~rovement over 

the 10% case. But when they are compared with their corresponding 

conditions without swirl, improvements of 15 and nearly 20 points in the 

nitrogen content of the mixture were noticed respectively for the 

situation without any preheat. In fact comparing Figs. (4.2) (a), (b) 

and (c) show a slight decrease in the stability of the flames with an 

increase in the excess air level in particular at the higher preheat 

temperatures. This is perhaps due to the cooling effects of excess air 

on the flames as noticed by many other investigators. 
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Further increase in the swirl number up to 0.689 as shown in Fig. (4.3) 

does not produce a noticable improvement on the stability limit of the 

flames. There is a very slight improvement in the 10% excess air case 

without any preheat. A small reduction of about 3 points for the case 

with maximum pr.eheat of 3000 C and 30% excess air is noticed. Working 

at the maximum swirl number of 0.964 over the whole range of excess air 

does not show any benefits at all. There is very little to choose 

between the data obtained at ~ swirl number of 0.689 and that at 0.964. 

So it is evident that there is a limiting value both for swirl and 

secondary air preheat. This limiting effect on the swirl number has 

also been noticed by Bel tagui and Maccallum (1976) and Leuckel and 

Fricker (1976). They pointed out that once a CRZ was well established 

in the flow, further increase in the swirl intensity did not produce any 

improvement in the flame. 

Considering Figs. (4. 1) to (4.4) it is very clear that an increase in 

the secondary air temperature on its own will improve the stability 

limit of the flames. This improvement is more pronounced for preheat 

temperatures of 2000 C or above. The main effect of adding swirl to the 

combustion air is to improve the flame stability limits for conditions 

Jlhen only a small amount (1000 C) or no preheating is available. This 

effect is further increased when higher excess air levels are supplied 

to the burner. 

The effects 0f swirl on the stability limit of flames are best 

represented by Fig. (4.5) to (4.9). Comparison of Figs. (4.5) (a), (b) 

and (c) indicate clearly that the maximum benefit of swirl is obtained 

by increasing its value from zero to 0.418. Further increase in the 

swirl intensity made very little improvement on the stability limit of 
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the flames. It is also clearly demonstrated that the stability limit 

of the flames deteriorated quite rapidly with an increase in excess air 

level when no swirl was imparted to the combustion air. Once a small 

amount of swirl was used, there was a definite improvement in the 

stability. The above results are for cases when no secondary air 

preheat was used. 

The effects of swirl and excess air at fixed secondary air temperatures 

are shown in Figs: (4 ~ 5) to (4: 9) : Considering the case with 1000 C 

preheat, Fig. (4:6), using 10%, 20% and 30% excess air gave very similar 

stability patterns when compared to the same conditions without any 

preheating. With 30% excess air, Fig: (4.6) (c), a deterioration of 

the stability limit was evident when the swirl number was increased 

above 0.689~ This deterioration was noticed earlier at 20% excess air 

when the preheating val~'" WAR increased to 2000 C, Fig: (4:7) (b). A 

slight increase in the stability limit was also noticed at zero swirl 

for the 30% excess air case. Fig. (4:8) represents stability limits 

with 250 0 C combustion air preheat. For the 10 and 30 percent excess 

air cases, deterioration in the stability limit of the flames was 

evident above a swirl intensity of 0:418: The 20% excess air case Fig. 

(4~8) (b) showed no change ~I the stability limit with an increase in 

swirl. With 3000 C preheat, Fig. (4:9), all three excess air levels 

showed a decrease in the stability limits after the swirl number was 

increased above 0~418: It should again also be noted here that for the 

zero swirl situation there was an increase in the s\;abili ty of the 

flames, as indicated by the amount of nitrogen in the fuel mixture, with 

an increase in excess air level. 
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Figures (4.10) to (4.13) show the effects of preheating at constant 

swirl; (a), (b) and (c) denote secondary air preheat temperatures of 

380 C, 2000 C and 3000 C respectively. Fig. (4.10) (a) shows the very 

worst case under which the furnace could operate, no preheat and no 

swirl. The stability limit of the flames were sharply reduced with an 

L,crease in the excess air level. Operating at 10% excess air allowed 

combustion of a fuel mixture containing almost 55% of nitrogen by mass. 

T~.is figures was reduced to about 44% and the onset of instability had 

started quite early for the 30% excess air case. With 2000 C preheat, 

the stability limit of the flames decreased when the excess air was 

increased from 10 to 20%; further increase in the excess air level to 

30% produced a recovery on the stability limits. This is a very 

peculiar situation and the only explanation must be based on the 

intermixing between the fuel and air jets. A clearer understandin~ of 

the situation will result after considering the inflame com~uu~~0n 

measurements data. Using 3000 C preheat, Fig. (4.10) (c), the flame 

stability is enhanced with an increase in excess air level; the onset of 

instability was also retarded at the same time. 

With a swirl intensity of 0.418, Fig. (4.11), all three cases of preheat 

showed a decrease in the stability limits as the percentage excess dir 

was increased, but all the mixtures could tolerate an extra 

nitrogen when compared with the no swirl situation of Fig. 

Similar results are shown on Figs. (4.12) and (4.13) with 

10% of 

(4.10). 

swirl 

intensi ties of 0.689 and 0.964. The only differences noticed are in 

the 10% excess air cases showing a slight improvement on the stability 

due to the secondary air preheat. Compar ing Fig. ( 4. 11) (c) with 

(4.13) (c) show a slight deterioration on the stability limit of the 
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flames with an increase in swirl intensity over the three values of 

excess air investigated. Figures (4.14) to (4.18) show the effects of 

excess air on the stability of the flames at fixed secondary air 

temperatures. In these cases (a), (b) and (c) relate to a swirl 

intensity of 0, 0.689 and 0.964 respectiv€!ly. Although some of these 

data are repeated, the format in which they are presented show more 

clearly how the stability limits are af'fected with increasing swirl 

intensity and constant secondary air temperature. 

From the data presented so far, it is clear that a combination of both 

swirl and preheat contributed to the enhancement of the stability limit 

of the flames. This improvement was also dependent on the excess air 

level at which the furnace was operated. The three subsections that 

follow summarize the main effects of secondary air preheat, swirl 

intensity and excess air levels on the stability limit of the flames. 

Subsection (4.3.4) deals with the effects of the location of the maximum 

temperature inside the quarl on the stability limit of the flames. 

4.3.1 Effeots Ott .§econdary Air ;remperature 

Preheating the secondary air with the absence of swirl is only 

beneficial if its temperature is above 250oC. However the full 

advantages of preheating are exploited if a small amount of swirl is 

imparted to the secondary air. It should also be noted that the only 

situation when the stability limits kept increasing over the range of 

excess air investigated was when the furnace was operated with zero 

swirl and a secondary air preheat temperature of 3000 C. 

situation does not allow the weakest mixture to be used. 
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4.3.2 Effects of Swirl 

Figures (4.14) to (4.18) show a definite improvement on the stability 

limit of the flames no matter what value of secondary air temperature 

was used. These improvements were very dependent on the percentage of 

excess air supplied to the furnace. Whenever a swirl intensity above 

0.418 was used to stabilize a flame, its stability limit was reduced 

when the excess air level increased. This tended to back up the 

observations and suggestions of Fricker and Leuckel (1976). They 

pointed out that the main effect of swirl was to promote mixing of the 

fuel and air rather than to increase the reverse flow of hot burnt gases 

back into the burner quarl region. They also indicated that there was 

very little improvement on the flame stability once a minimum amount of 

swirl, sufficient to create an internal recirculation zone in the flow, 

was imparted to the combustion air. For the cases studied here it 

seems as if a swirl number of 0.689 was the limiting value for the 

system used. This value of 0.689 appears to be a bit low but the ratio 

of Lq/Dq for the quarl used in the furnace was about 2 and stUdies made 

by Leuckel and Fricker (1976) showed that the higher the ratio of Lq/Dq, 

the better the stability of the flame. Perhaps this was why only a 

small amount of swirl was required to improve the stability limits in 

this study. 

4.3.3 Effects of excess air 

Referring to Figs. (4.10) to (4.18) it is clearly shown that incleasing 

the percentage excess air supplied to the furnace caused a reduction in 

the stability limit of the flames in all but two cases. So the 

dilution effects of excess air are fairly evident based on the data 

presented. These two cases which actually show an increase in the 

stability limit of the flames occurred when preheated combustion air 
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temperatures of 2500 C and 3000 C were used in the absence of swirl. But 

as pointed out earlier, these two conditions did not give the most 

favourable stability limits; they were merely an improvement from the 

so-called worst case of no preheat and no swirl. Similar effects have 

been noticed by Schreier (1981) but his fuel mixture contained hydrogen 

which does improve the stability of flames. The improvement in 

stability Jimits may be due to the better mixing conditions obtained in 

the reaction zone when the burner momentum was increased under these 

operating c0nditions. 

4.3.4 Ettegt%1 ot: maxi. temperatur:e: location ipsiAA.,the: guarl 

For swirl numbers of 0 and 0.418, Table (4.2), it is clearly evident 

that the flame front shifted further downstream along the quarl when the 

calorific value of the fuel was reduced. This was noticed over the 

whole range of excess air used despite the fact that an extra 

4.5 kg/h of air flowed through the burner wi th every 10% increase in 

excess air level. Similar effects were noticed when the furnace was 

operated with a swirl number of 0.689. The above results show that the 

burner operation was fairly independent of momentum over the range of 

variables mentioned above. A simple explanation of this lift off may 

be the lack of heat release from the low calorific value gases required 

to keep the ignition front as close as possible to the burner mouth. 

It is unfortunate that there are no known measurements inside the quarl 

of a similar system elsewhere for comparative purposes. 

Considering the maximum swirl number (0.964) case, Table (4.3), there 

seems to be very little difference between the natural and low calorific 

value gas cases. Perhaps more noticeable are the cases with 2000 C 

secondary air preheat which tended to behave in a similar fashion to the 
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low swirl number situations. For the remaining preheat conditions it 

seems that the swirl was strong enough to keep the ignition front from 

moving further downstream with a change in calorific value of the gas. 

These results also prove that the flame was stabilized inside the quarl 

and this was not surprising as the quarl length tc diameter ratio was 

greater than two and the ratio between the length of the furnace to that 

of the quarl was only three. 

4.4.4 Closure 

It has been shown that in the absence of swirl, secondary air preheating 

was only beneficial to the stability of the flames if the air was heated 

to a temperature of 2500 C or above. By imparting a small amount of 

swirl to the secondary air there was a sUbstantial improvement on the 

flame stanility. Using a swirl intensity above 0.418 caused a slight 

deterioration to the stability of the flames when the excess air level 

was increased. In general there was a definite improvement on the 

stability with swirl addition which was independent of ~he secondary air 

temperature. From the data presented, the dilution effects of excess 

air were fairly evident as will be shown later in the temperature and 

concent:'ai:.ion profiles. The surface temperatures inside the quarl 

indicated a downstream shift in the location of the flame front when LCV 

gases were used in most of the cases investigated. 

The data presented in this chapter are interesting in themselves. 

However, the main purpose of o~~aining them was to indicate the 

conditions that were near blow-off so that inflame combustion 

measurements could be made at these points for further investigations of 

the stability mechanism. These investigations were based on inflame 

temperature, velocity and concentration measurements and are dealt with 

in the next chapter. 
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Qonsidering 3 kg ~f Natural ,gas & Nitrogen tjixture 

~ • V c MJLM Mess of N.g. kg. Mass of N2 kg % N2 

53.13 3.000 0.000 0.0 

45.00 2.541 0.459 15.3 

40.00 2.259 0.741 24.7 

38.00 2.145 0.855 28.5 

35.00 1.976 ~. (\?1.1 34.1 

33.00 1.863 1. 137 37.9 

30.00 1.694 1.306 43.5 

29.00 1.637 1. 363 45.4 

28.00 1.581 1.419 47.3 

27.00 1.524 1.476 49.2 

26.00 1.468 1.5:?~ 51.1 

25.00 1. 412 1.588 52.9 

24.00 1.355 1.645 54.8 

23.00 1.299 1.701 56.7 

22.00 1.242 1.758 58.6 

T.el?le (4.c 1) ;, tjass tCaQitions ot Lev gases 
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Max.Temp. Max.Temp. 
Location Location 

CV of Fuel Swirl No. Excess Air Preheat Inside Quarl Inside Quarl 
MJ/kg % (OC) (mm) LCV Gas (mm) Natural 

Flames Gas Flames 
(100) (150 ) (100) (150) 

1'. ".tSI i I rO' ttl l.tt •• r. tt, •• Itt." It •••• ,t" Pt.tI ft., ·.',t'brt,. ' , ,." ,t •• , •. 't .. " ••••••• . .... 
25.0 0 10 38 x x 

27.5 0 20 38 x x 

31.0 0 30 38 x x 

27 .5 0 10 100 x x 

28.0 0 20 100 x x 

29.0 0 30 100 x x 

25.0 0 10 200 x x 

26.0 0 20 200 x x 

23.0 0 30 200 x x 

25.0 0 10 250 x x 

23.0 0 20 250 x x 

21.0 0 30 250 x x 

22.5 0 10 300 x x 

21.0 0 20 300 x x 

19.0 0 30 300 x x 

20.0 0.418 10 38 x x 

20.0 0.418 20 38 x x 

21.0 0.418 30 38 x x 

19.0 0.418 10 100 x x 

19.0 0.418 20 100 x x 

20.0 0.418 30 100 x x 

18.0 0.418 10 200 x x 

19.0 0.418 20 200 x x 

19.0 0.418 30 200 x x 

16.0 0.418 10 250 x x 

17.0 0.418 20 250 x x 

17.0 0.418 30 250 x x 

15.0 0.418 10 300 x x 

16.0 0.418 20 300 x x 

1'( .0 0.418 30 300 x x 

Tagle ~*e2l'li Cuarl T~mBe£ature Measurements 
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Max.Temp. Max.Temp. 
Location Location 

CV of Fuel Swirl No. Excess Air Preheat Inside Quarl Inside Quarl 
MJ/kg % (OC) (rom) LCV Gas (rom) Natural 

Flames Gas Flames 
( 150) (200) (100) ( 150) 

t .. r" t 1 r FY,P'.'" IF" ". tvt 'tit t,ettllt aT. ,ttt,"tt,t t1, 'P',. pt. tt .... , •• , •• ,.. ¢ 'PI ti t tt 

19.0 0.689 10 38 x X 

20.0 0.689 20 38 X X 

20.0 0.689 30 38 X X 

18.0 0.689 10 100 X X 

19.0 0.689 20 100 X X 

19.0 0.689 30 100 X X 

11.0 0.689 10 200 X X 

17.0 0.689 20 200 X X 

18.0 0.689 30 200 X X 

16.0 0.689 10 250 X X 

17.0 0.689 20 250 X X 

18.0 0.689 30 250 X X 

16.5 0.689 10 300 X X 

16.0 0.6119 20 300 X X 

11.0 0.689 30 300 X X 

19.0 0.964 10 38 X X 

20.0 0.964 20 38 X X 

20.0 0.964 30 38 X X 

18.0 0.964 10 100 X X 

20.0 0.964 20 100 X X 

20.0 0.964 30 100 X X 

17.0 0.96'; 10 200 X X 

18.0 0.964 20 200 X X 

19.0 0.964 30 200 X X 

11.0 0.964 10 250 X X 

11.0 0.964 20 250 X X 

19.0 0.964 30 250 X X 

16.0 0.964 10 300 X X 

17.0 0.964 20 300 X X 

19.0 0.964 30 300 X X 

Table (!t. 3) ; Quacia temgerg.turs Mees,Hcements 
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£HAPTER 5 

INfLAME COMBUSTION MEASQREMgHT RESULTS 

5.1 Introduction 

This chapter deals with the combustion measurements carried out in order 

to investigate flame conditions near the blow-off limits. Inflame 

temperature, velocity and concentration measurements were obtained to 

acquire a better understanding of the blow-off mechanism of confined 

turbulent diffusion flames. Due to the long measurement periods 

required to collect data for one operating condition, it was not 

possible to investigate all the blow-off situations reported in the 

previous chapter. To prevent blow-off while collecting inflame 

combustion data, the calorific value of ~.he fuel used was set at 3 MJ/kg 

above its blow-off value for each opera~1ng condition investigated. 

All the data were collected at the first port (X/D = 0.445) which was 

closest to the burner. Temperature measurements for near blow-off 

flames were made for three swirl numbers, three excess air levels and 

three secondary air preheat temperatures. Velocity and concentration 

measurements were also collected for tW0 swirl numbers, three excess air 

levels and two secondary air preheat temperatures. For all the above 

operating conditions, corresponding data were collected with the furnace 

being fired on pure natural gas at a maSA flow rate of 3 kg/h so that 

they could be used as reference. In addition, temperature, and 

concentration measurements were also made at the exhaust duct for all 

the different conditions investigated. These measurements were used to 

calculate the burnout rate in order to get an idea of the combustion 

efficiency of the system. 
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The rest of this chapter is divided in foul" sections. Section (5.2) 

outlines the experimental conditions and procedures under which the 

inflame combustion measurements were carried out. The different 

measuring techniques used are given in section (5.3) which is divided 

into three sub6ections, each one dealing with temperature, velocity and 

concentration in turn. The experimental results are presented in 

section (5.4) which is also divided in three subsections as above. 

Section (5.5) deals with the discussion of the experimental results, 

with seven subsections dealing with the effects of excess air, swirl and 

preheat. The burnout rate measurements are also given with the 

proposal of a stabilizing mechanism. The relationship between 

stability limits and combustion measurements is also discussed. 

5.2 Experimental Conditions and Procedures 

Inflame combustion measurements at various operating conditions were 

collected in the near-burner region (X/D = 0.445) and at the exhaust of 

the furnace. The calorific value of the fuel used was basecl on the 

stability limit measurements from the previous chapter. Temperature 

measurements were made for three excess ail" levels (10%, 20% and 30%), 

three swirl numbers (0, 0.689 and 0.964) and three secondary ail" preheat 

temperatures (380 C, 2000 C and 3000 C). Velocity and concentration 

measurements were collected for three excess ail" levels (10%, 20% and 

30%), two swirl numbers (0 and 0.964) and two secondary ail" preheat 

temperatures 080 c and 3000 C). Corresponding measurements were also 

carried out at the same operating conditions as described above but 

firing on pure natural gas instead. Additional concentration data for 

the low calorific value gases were collected over the three levels of 
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excess air investigated. In these cases, the preheat was set at 2000 C 

and the swirl numbers were 0, 0.689 and 0.964. 

The furnace was started with a firing rate of 3 kg/h burning natural 

gas. The excess air level, cooling-water flow rate l3ud secondary air 

temperatures were set to the desired values. The apr:'opriate measuring 

probe which was mounted on the traversing gear meC".1anism, was then 

connected to the measuring port of the furnace. The connecting leads 

and pipes were then taken to the dedicated measuring instruments and 

then finally to the microprocessor. A full hour was allowed to elapse 

for the furnace to reach a stable condition and this was done whenever 

the furnace was started from cold conditions. The mass flow rate of 

the nitrogen was then gradually increased while that of natural gas 

simul taneously decreased, until the predefined calorific value of the 

mixtui'''' W;:l~ reached. The total mass of the fuel mixture was always 

kept at 3 kg/h for all the tests carried out. The furnace was allowed 

to run for a further 30 minutes for conditions to stabilize after which 

the furnace settings were given a final check to ensure that they were 

at the required values. 

The micror~·ocessor was then prompted to initiate the data collection 

procedure. Throughout the measurement period, the settings of the 

excess air levels, the secondary air temperature, the mass flow rates of 

natural gas and nitrogen, as appropriate, were monitored and adjusted to 

their correct values in case of deviation. At the end of data 

collection, the operating conditions were left unchanged for a repeated 

run or were changed to new settings for a different stability situation, 

depending upon what measurements were being carried out. For new 
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settings, the furnace was allowed to stabilize over a further 30 minutes 

period before data collection was commenced. 

The procedures described above were repeated until all the excess air 

levels and secondary air temperatures had been investigated. The 

measurements were then repeated with a pure natural gas firing situation 

under the same operating conditions as their low calorific value 

counterpart. The swirl number was then changed to the value required 

and the whole data collection procedures were repeated as described 

above. 

5.3 Measuring Techniques 

As different probes were employed for the i~flame measurement of 

temperature, velocity and concentration, a difterIJu:- measuring technique 

was required for each. This section which is divided into three parts 

deals with the particular measuring techniques required for the 

operation of each specific probe. 

5.3.1 Temperature 

Inflame temperature measurements were carried out using a 40 ;um fine 

wire thermocouple probe. The probe was mounted on a saddle which was 

attached to the traversing mechanism for insertion into the furnace. 

At the beginning of data collection, a subroutine in the temperature 

measurement program allowed the probe to traverse quickly up to the 

centre line and back to the starting position. This was done in order 
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to check if the fine thermocouple wire was able to stand the high 

velocity and temperature levels present inside the furnace close to the 

burner outlet for the particular operating condition investigated. It 

also set the probe at the correct starting point. Temperature data 

were then collected ovel'" a period of 50 seconds at each of the 23 

locations between the c~ntre line and furnace wall at regular intervals 

of 10 mm. In that ~O seconds period, 1000 different temperature 

readings were taken and the average value was stored in the 

microprocessor's memory. A further 20 seconds were given for 

conditions to settle down after each probe movement. Two runs were 

made for each operating condition and the average was used to plot the 

temperature profiles, see Table (A1) of Appendix (A). 

5.3.2 Velocity 

A five-hole pitot probe was used to measure the inflame velocity profile 

across the furnace. The probe was carefully aligned on the traversing 

mechanism such that the measuring head was located on the centre line 

and parallel to the axis of the furnace when the unit was bolted to the 

measuring port. The cooling water supply to the probe was adjusted and 

the five flexible tubes connecting the probe to the micromanometer 

secured. The same locations as traversed during the temperature 

measurements were used and the measuring period at each point took about 

5 minutes. During this time the pressure readings were taken a total 

of 1500 times for each of the five pressure tappings on the probe head. 

These pressure readings were then computed into the average velocity, 

the conical and dihedral angles of the gas stream. The probe was then 

moved to the next measuring point by a subroutine in the velocity 
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program and a delay of 20 seconds was allowed before the resumption of 

data collection for conditions to stabilize after the probe movement. 

After the last measuring location, the probe was motored back to the 

starting point and the measurements were repeated for the same furnace 

operating conditions. A table listing the furnace operating co~d1tions 

and the values of mean velocity, conical angle and dihedral angle at 

each of the measuring point for each run was then printed, see TF.Jle 

(A2) of Appendix (A). 

5.3.3 Concentration 

Inflame concentration measurements were made with the help of a water­

cooled stainless steel sampling probe. Again the same sort of aligning 

precautions, as mel. ~ ioned for the five-hole probe, were taken. The 

temperature of the uvvling-water 'coming out of the probe was always kept 

very close to the boiling point by adjusting its flow rate throughout 

the measuring period. This was vital as cold spots at any point inside 

th~ probe could have caused the sample gas to condense. No attempt was 

made to sample the combustion gases isokinetically as Tine (1961) and 

Bilger (1977) pointed out the uncertainties associated with swirling 

turbulent flows wich substantial recirculation. The measuring 

locations were the same as those used for the temperature and velocity 

cases. Each location was sampled for a duration of about 15 minutes 

with a 20 seconds interval inbetween measuring location to allow the 

flow to settle after the probe movement. A total of 2000 readings werd 

taken for each species measured at each measuring location and the 

average were stored. The combustion gases were sampled for five 

differen t species, UHC, NOx , 02, CO and C02. Due to the long period 

involved in collecting a set of concentration data, only one run was 
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done for each operating cond i tion. All the instruments used were 

calibrated and checked both before and after sampling was completed to 

ensure proper operation of the gas analyser. At the end of the run, 

the computer automatically printed out all the concentration 

measurements together with the furnace operating conditions, see Table 

(A3), Appendix (A). 

5.4 Presentation of Experimental Results 

This section deals with the presentation of the experimental results 

obtained for the inflame combustion measurements. Data for both L.C.V. 

and natural gas flames were collected for a number of different 

operating conditions and those of the L.C.V. gas cases were dependent on 

the stability limit measurements obtained in the previolls chapter. 

Three sUbsections are used to present the results, each o~~ ~Q~ling with 

temperature, velocity and concentration in turn. 

5.4.1 Temperature Measurements 

Figures (5.1) to (5.5) show the temperature profiles obtained for a 

range of operating conditions of the furnace. Figure (5.1(~») shows 

the case when pure natural gas was fired with no swirl or preheat to the 

secondary air. The percentage excess air values are indicated by the 

symbols used as shown on the graph. Considering Fig. (5.1( i)), the 

values printed after the symbols represent the excess air level and the 

excess air factor respectively. The excess air factor is the inverse 

of the equivalence ratio. Figure (5.1( 11)) shows the temperature 

profiles under the same operating conditions as in Fig. (5.1(i)) but for 
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a low calorific value gas flame. The values after the symbol in this 

case represent the calorific value of the gas used, the equivalent 

excess air supplied and the excess air factor in turn. This is 

applicable to all the L.C.V. gas cases which, apart from Fig.(5.1), are 

presented on the (b) figures. The equivalent excess air (EEA) was 

based by considering the total ml'lss of fuel used as natural gas j in 

other words it was the same mass now rate of air used as in the pure 

natural gas situation for that. particular level of excess air 

investigated. This was done to keep the momentum at the burner mouth 

constant for each excess air level considered. The real value of 

excess air supplied was represented by the excess air factor (EAF) in 

which only the amount of natural gas used in the fuel mixture was 

considered. 

In Figs.(5.2) to (5.5), both the natural and L.C.V. gas flames data are 

represented on one graph. They were of course obtained for the same 

operating conditions which are given at the top of each graph. For 

example, Fig.(5.2(i)(a)) represents natural gas flames data without any 

swirl and with secondary air preheat of 2000 Cj the corresponding L.C.V. 

gas flames data are presented in Fig. (5.2(i)(b)). 

5.4.2 Velocity Measurements 

In addition to the mean velocity, the data collected also gave the 

conical and dihedl'al angles of the flow and a good description of the 

method is given in Appendix (A). The values of these angles are 

plotted above their corresponding mean velocity data such that not only 

the magnitude but also the direction of the flow inside the combustor 

can be obtained. 
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The mean velocity, conical and dihedral angles are plotted against the 

radial distance, with R=O representing the centre line. All these 

measurements were taken at one axial location (X/D = 0.445) which was 

the closest port to the burner. 

Figures (5.6) to (5.13) represent the velocity data collected and in all 

these cases (a), (b) and (c) denote 10%, 20% and 30% excess air supplied 

to the combustor based on a mass flow rate of 3 kg/h of natural gas 

being fired through the burner. Figure (5.6) represents data for pure 

natural gas flames without swirl and preheat to the secondary air while 

Fig.(5.7) shows L.C.V. gas flames data under similar operating 

conditions. The effects of preheating the secondary air to 300oC, 

again without any swirl, on the velocity data are shown in Fig. (5.8) 

with the corresponding L.C.V. data represented on Fig. (5.9). Figures 

(5.10) and (5.11) show tr..~ effects of swirl without any preheat on 

natural and L.C.V. gas flames respectively. Finally the effect of both 

swirl and secondary air preheat are represented in Figs.(5.12) and 

(5.13). 

The data plotted show the values obtained for both runs, connected by an 

error bar. This gives an indication on the accuracy of the 

measurements and it also shows the difficulty of obtaining velocity data 

using a five-hole pitot probe. It is clear that the data obtained in 

the central reaction core are within the repeatability limits of the 

experiment. Those of the outer zone are somewhat suspect and it may be 

due to reverse flow which is difficult to detect using such a probe. 
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5.4.3 ConcentratiopMeasurements 

Concentration data of five species UHC, NOx , 02, CO and C02 are 

presented in Figs. (5.14) to (5.25) for two swirl numbers (0 and 0.964), 

two secondary air preheat temperatures (380C and 3000C) and the usual 

three p.xcess air levels. In all these figures, (a) represent data for 

natu"'al gas firing situation while (b) show the data collected for 

L.C.V. gas flames. The species concentration are plotted against the 

radidl location inside the furnace with R=O representing the centre 

line. Additional concentration data are presented in Appendix (B) for 

various operating conditions. 

Figure (5.14) shows the case when the furnace was operated without any 

swirl or preheat on 10% excess air while the following two figures 

(5. 15) and (5. 16) are for the same conditions but with 20% and 30) 

excess air respectively. Similarly, Figs. (5.11) to (5.19) represent 

data for zero swirl and secondary air preheat temperature of 300oC. 

Figures (5.20) to (5.22) show concentration measurements for maximum 

swirl (0.964) situation without any preheat while Figs. (5.23) to (5.25) 

represent conditions with maximum swirl and maximum preheat to the 

secondary air (3000C). It should again be noted that for all the 

L. C. V • gas flames, the true excess air level is represented by the 

excess air factor (EAF). This excess air is based on the actual amount 

of natural gas present in the total mass of the fuel mixture the flow 

rate of which was kept at 3 kg/h for all the experiments. 

5.5 Discuesion ot §xperimentah Results 

The following three subsections concentrate on the effects of excess 

air, swirl and secondary air preheat on the temperature, velocity and 

concentration measurements taken for both natural and L.C.V. gas flames. 
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5.5.1 Effects of Excess Air 

From the data collected it is clear that an increase in excess air level 

caused a decrease in the temperature level attained inside the combustor 

and this applied for all the natural gas firing situation regardless of 

whether swirl or preheat was used or not, (Figs~ 5.1(i)) and all the (a) 

figures presented in Fig~ (5~2) - (5~5)(i) and (ii)~ The cause was the 

resul ting dilution effect, (Fricker and Leuck ,1 (1976)). A similar 

comment cannot be made for the L.C.V. gas cases as the temperature level 

attained within the combustor depended strongly on the C.V. of the fuel 

used and also in particular on the EAF. There was very little 

difference in the velocity profiles for the zero swirl cases with or 

without preheat, Figs. (5.6) and (5.8). The sizes of the reaction core 

also remain the same with increase in excess air level and there was 

Vb~V little change in the flow direction. For the L. C. V. gas flames 

~{lCl G is a decrease in both the reaction volume and the maximum flow 

velocities with increasing excess air. This situation prevailed 

regardless of the secondary air preheat temperature or the C.V. of the 

fuel used, (Figs. (5.7) and (5.9)). For swirling flows there was very 

little change in both the maximum velocity and the reaction volume, 

formed by the central recriculating core, when the excess air was 

in",reased. This applied to both natural and L.C.V. gas flames and was 

independent of the temperature of the secondary air supplied, (Figs. 

(5.10) to (5.13))~ 

Considering the concentration measurements, it is 0lear that for the 

natural gas firing situations without any swirl or preheat, an increase 

in excess air caused an increase in the oxygen level inside the furnace 
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as well as a reduction in C02 and NOx , (Figs. (5.14)(a) to (5.16)(a)). 

The levels of CO and UHC were very low and the effect of increasing 

excess air on them was not significant. For the L.C.V. gas flames, the 

concentration of all the species were very dependent on the C.V. of the 

fuel used; but for cases where the same EAF were used, e.g. Fig.(5.15(b) 

and (5.16)(b), it is evident that an increase in excess air caused 

little change in the concentration of all the other species with the 

exceptions of UHC and CO which showed a decrease in value. A similar 

effect was noticed by Syred et ale (1977) on their waste gas combustor. 

With preheat, there was very little change in the level of NOx 

concentration with increasing excess air for pure natural gas. Again 

there was an insignificant amount of UHC at all locations but the CO 

measurements were substantial in the core region of the flames and 

decreased in value as the excess air wae increased, (Figs. (5.17)(a) to 

(5.19)(a)). There was also an incrb'::'::::: "in oxygen concentration and a 

decrease in the carbon dioxide value. For the L.C.V. gas cases, (Figs. 

(5.17)(b) to (5.19)(b)), there was a very small amount of NOx formed at 

all excess air levels but the UHC and CO concentrations were 

significant. Substantial amount of 02 and very little C02 were also 

present. This indicates inefficient combustion. Their concentration 

levels were dependent on the CV of the :.. uel used and in these cases 

close comparisons cannot be made as both the CV and the EAF were 

different for each excess air level. 

For natural gas flames with swirling flows and without secondary air 

preheat, (Figs. (5.20)(a) to (5.22)(a)), an increase in excess gil' 

caused a decrease in NOx and C02 concentrations, an increase in the 02 

level and insignificant changes in the very low concentrations of CO and 

UHC. For the corresponding L.C.V. gas flames, Fig. (5.20)(b) to 
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(5.22)(b), the CO and UHC levels were very high across the whole furnace 

and they showed an increase in concentration, for fuels having virtually 

the same CV, as the excess air level was increased. The concentrations 

of the other species were dependent on the EAF used but the trend seems 
-

to be the same as described for the natural gas flames situations. 

The effects of excess air for both maximum swirl (0:964) and maximum 

preheat (3000 C) conditions on the concentration measurements are shown 

in Fig. (5~23) to (5~25)~ For the natural gas flames, (Figs~ (5.23(a) 

to (5~25)(a), there was a decrease in the NOx and CO values and very 

little UHC in all three cases; as expected there was an increase in the 

02 concentration coupled with a decrease in the C02 level. In the 

L~C.V~ gas flames, (Figs: (5:23)(b) to (5:25)(b)), the concentrations of 

NOx , CO and UHC were low for the three excess air levels investigated 

when compared with similar flames under the other operating conditions 
-

as mentioned previously. Again the concentrations of C02 and 02 were 

dependent on the fuel's CV and the EAF used. 

5.5.2 Effects of Swirl 

Beginning with the zero preheat situation, the effects of imparting 

swirl to the secondary air on the temperature profiles are shown in 

Figs ~ (5: 1) (i) and (ii) and (5: 5)( i) : The most obvious effect was a 

reduction in the centre line maximum temperature, but the temperature 

levels in the outer recirculation zone, (R >140 mm), were increased from 

about 500 0 C to about 700 0 C for the natural gas flames and these were 

independent of the excess air level. Similar effects were noted for 

the L.C.V. gas flames but the temperature levels were dependent on the 
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EAF and the CV of the fuel used. When the secondary air was preheated, 

(Figs. (5.2)(ii) and (5.3)(ii)), the same effects as described above 

were demonstrated on the temperature profiles. 

Comparing the velocity profiles for the zero preheat situations using 

natural gas, Figs. (5.6) and (5.10) show a large reduction of the mean 

velocity in the central core area. There were also substantial 

fluctuations as indicated by the long error bars on both the conical and 

dihedral angles. This was an indication of central core recirculation 

created by the swirl as demonstrated by other workers, e.g. Beltagui and 

Maccallum (1976), Chedaille et ale (1966) and Fricker and Leuckel 

(1976). Similar effects were noted on the velocity profiles of the 

L. C. V. gas flames, (Figs. (5.7) and (5. 11) ) and they were all 

independent of the excess air levels used. The same si tua tion was 

observed whet.. the secondary air was preheated to 3000 C for both the 

natural gas flames, (Figs. (5.8) and (5.13)), and the L.C.V. gas flames, 

(Figs. (5.9) and (5.14)). 

Figures (5. 14) and (5.20) show the results of imparting swirl on the 

concentration measurements for flames without any preheat and for the 

same excess air level employed. For the natural gas flames, 

(Fig.(5.14)(a) and (5.20)(a)), the concentrations of all the species, 

with the exception of CO, were in the same range when compared for the 

two flows. With swirl, there was a decrease in the steepness of the 

C02' NOx , CO and 02 curves in the cantral core region indicating an 

increase in the flame thickness. The dp~rease in CO level coupled with 

a slight increase in the C02 values caused by the addition of swirl 

indicated more efficient initial mixing in the core region of the flame, 

(Lilley (1977)). The existence of this well-stirred recirculation zone 
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has been demonstrated by Fricker and Leucke1 (1976) and Mathur and 

Maccallum (1967) for example, and they also showed a reduction in the 

reaction volumes as indicated by the corresponding velocity profiles, 

(Figs. (5.6)(a) and (5.10)(a)). For the L.C.V. gas flames under 

similar furnace set tings , (Figs. (5. 14) (b) and (5.20) (b) ) , the 

concentration of all the species showed flat profiles in the outer 

recirculation zone up to the furnace wall, (100 mm < R < 220 mm). This 

indicates the presence of only hot reaction products in these regions. 

Similar effects were noted for both the 20% and 30% excess air 

situations when swirl was imparted to the secondary air, (Figs. (5.15) 

and (5.21) and Figs.(5.16) and (5.22)). 

Using preheated air, flatter concentration profiles were recorded for 

both natural and L.C.V. gas flames with the additi"'n of swirl, (Figs. 

(5.17) and (5.23)). This effect was more prOn01.l1:'U':':! in the L. C. V. gas 

flames particularly in the outer zone regions, (R > 100 mm). Again the 

individual species concentration were dependent on the EAF and the CV of 

the fuel used. In cases when the EAF and CV were similar, it was still 

difficult to discern differences in concentration values in L.C.V. gas 

flames due to swirl. The UHC measurement was the most difficult as a 

small fluctuation in the natural gas supply resulted in a massive jump 

in its concentration level. Similar effects as described above were 

noticed for the 20% and 30% excess air cases with preheat, (Figs. (5.18) 

and (5.24) and Figs. (5.19) and (5.25)). 

5.5.3 Effects of Preheating the Secondary Air 

Preheating the secondary air supplied to the combustor caused a radial 
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shift in the location of maximum temperature for the natural gas firing 

situation without any swirl, (Figs. (5.1)(i), (5.2)(i)(a) and 

(5.3)(i)(a)). For the zero preheat case, (Fig.(5.1)(i)), the maximum 

temperature was located on the centre line; this was shifted to about 

R = 40 rom for 2000 C preheat, (Fig.(5.2)(i)(a)) and to about R = 60 rom 

for a preheat of 3000 C, (Fig.(5.3)(i)(a)). The value of this maximum 

temperature was approximately the same for all the three cases, i.e. 

about 16500 C for the 10% excess air. This indicated an elongation of 

the flame further sUbstantiated by the corresponding velocity profiles 

as shown in Figs (5.6) and (5.8); this applied to all the three excess 

air level investigated. So there appeared to be an increase in flow 

velocities with increase in the temperature of the secondary air for the 

above mentioned conditions. 

For the L.C.V. gas flames with zero swirl, the maximum temperature level 

was always located at R ~ 50 rom regardless of the temperature of the 

secondary air supplied or the CV of the fuel used, (Figs. (5. 1)( ii) , 

( 5 • 2) ( i) (b) and ( 5 • 3) ( i)( b ) ) • There was an increase in flow velocity 

with the introduction of preheat to the secondary air and this also 

applied for the 20% and 30% excess air situations, (Figs. (5.7) and 

(5.9)). With swirling flows, there was very little change on the 

temperature profiles resulting from preheating the secondary air for the 

natural gas flames, (Figs. (5.4)(i)(a) and (5.4)(ii)(a)). For the 

L.C.V. gas flames with the same CV input, e.g. Figs. (5.4)(i)(b) and 

(5.4)(ii)(b) for the 10% excess air case, there was a definite increase 

in the t:::mperature level with the introduction of preheat. There did 

not appear to be much difference in the magnitude of the velocity inside 

the combustor with swirling flows, regardless of whether the air was 
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preheated or not and this applied for all three excess air levels 

investigated for both natural and L.C.V. gas flames, (Figs. (5.10) to 

(5.13)). 

Comparing the concentration measurements for say the 20% exess air trial 

wi thout swirl for the natural gas flames, (Figs. (5. 15) (a) and 

(5.18)(a)), revealed a definite increase in the NOx values with the 

addition of preheat. There was very little change in the CO, C02, 02 

and UHC levels. There was also an increase in the diameter of the 

central core as indicated by the shifting of the peaks and by the 

velocity profiles, (Figs. (5.6)(b) and (5.8)(b)), with the use of 

preheat. The L. C. V. gas flames measurements also showed the same 

tendency but cannot really be compared with each other as they had 

different CV and EAF, (Figs. (5.15)(b) and (5.18)(b)). With swirling 

flames, e.g. Figs. (5.22)(a) and (5.25)(a), at 30% excess air, there was 

again an increase in the NOx concentration with all the other species 

remaining nearly unchanged when the secondary air supply was preheated. 

For the L.C.V. gas flFl.mes, (Figs. (5.22)(b) and (5.25)(b)), there was a 

large reduction in the UHC concentration with the addition of preheat. 

There was also a small decrease in the CO values but the other species 

remained nearly consta~t" Too much emphasis cannot be put on this last 

finding as the CV and EAF were not the same for the two cases, but a 

slight improvement in the combustion quality can be discerned. For the 

10% and 20% excess air situations, very similar results were obtained. 

5.5.4 Degrees of B:urneut Measurem~nts 

In order to quantify the combustion efficiency of the system using both 

natural and L.C.V. gas flames, burnout rate values were calculated at 
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both the sampling point (X/D = 0.445) and the exhaust. The following 

expression proposed by Eickhoff and Leuckel (1984) was used to determine 

the rate of burnout. 

roo • b(x) = 1 - [2IT P u L cihi ydy/MohoJ 
o 

where 

hi and ho are the lower calorific values of the partially burnt or 

unburnt fuel components in the gas sample and that of the fuel mixture 

supplied. 

ci is the measured unburnt and partially burnt mass fraction 

Mo is the mass flow rate of the fuel supplied 

p and u are the local density and velocity respectively 

and y is the radial distance from the ~~ntre of the furnace. 

In this case, the unburnt component was CH4 and the partially burnt one 

was CO which were both obtained from the inflame conc~ntration 

measurements. Concentration and temperature measurements were also 

obtained, for the various operating conditions used, for both natural 

and L.C.V. gas flames at the exhaust to calculate the degree of burnout 

at the exit. The degree of burnout was calculated from the above 

equation by a microprocessor using the combustion data collected. The 

appropriate calculations are shown in Appendix (B). Table (5.1) show 

the burnout rate values obtained at X/D = 0.445 and the values at the 

exhaust are shown in Table (5.2). 
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From the results, it is clear that the overall burnout rates (exhaust) 

for the natural gas flames were higher than the L.C.V. gas ones. 

Perhaps the surprising results were for the conditions when L.C.V. gas 

was fired with maximum swirl but without preheat which gave burnout 

rates of 91.17%, 84.66% and 84.99% f~r 10%, 20% and 30% excess air in 

turn. It should also be noted t:!at for no swirl and 3000 C preheat 

si tua tion , the L. C. V. gas results ?', the sampling port (X/D = 0.445) 

showed very poor burnout rate of 91.8~, 64.8% and 17.9% for 10%, 20% and 

30% excess air. The low value of burnout at 30% excess air may be 

caused by flame lift-off. These values improved quite substantially to 

99.44%, 97.77% and 92.75% by the time the flow reached the exhaust 

section. This proved that considerable reaction was still taking place 

along the length of the combustion chamber beyond the sampling port. 

For the natural gas firing situations, the rates at which the combustion 

reactions proceeded were quite fast supporting the concept of premixed 

combustion, (Eickhoff et al. (1984)) while those for L.C.V. gases under 

certain operating conditions were fairly slow as shown when the burnout 

rates at X/D=0.445 are compared with those at the exhaust. One 

possible reason may be the amount of heat store in the quarl of the 

burner. As can be seen from Table (5.3), for natural gas firing cases 

the quarl temperature is very high all along its length for most of the 

operating conditions used. These same readings are fairly low for all 

the L. C. V. gas flames. So the initial release of energy wi thin the 

quarl section is very important for good combustion efficiency to be 

achieved. 
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5.5.5 Stabilizing Mechanism 

In order to understand what sort of mechanism was responsible for the 

flame blow-off, the combustion data were used on the extinction 

criterion described below. The blow-out criterion proposed here is 

similar to the one put forward by Broadwell, Dahm and Mungal (1984 ) ~ 

It is all based on the extinction mechanism formulated by Peters and 

Williams (1982) and although strictly applicable only to turbulent free 

diffusion flames, it was nevertheless applied to the present confined 

turbulent flame data to determine if there was any agreement. It 

should therefore be noted that only the main reaction core portion is 

being treated here and the availability of velocity and temperature data 

for the different operating conditions are essential. 

The proposal put forward by ~Y'oadwell, Dahm and Mungal suggests that 

blow-out will occur when the ratio of the local mixing time, td' to a 

characteristic chemical reaction time, t c , is less than some critical 

value denoted by E. From work carried out by Dimotakis et al~ (1983) 

and Dahm et al. (1984) it was suggested that 

td ~ (diu) 

where d and u are the local jet Jiameter and velocity respectively. 

This time scale is based on the large scale motions which control the 
-

mixing inside the furnace. The flame theories of Mallard and Le 

Chatelier and of Zeldovich, Frank-Kamenetskii and Semenov (from Glassman 

(1977» showed that the flame speed is related to the diffusivity and a 

characteristic chemical time by the following expression 
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S ~ (K/tc)1/2 

where K = kl pCp 

k = thermal conductivity 

Cp= specific heat at constant pressure 

p = the local density 

So, K/S2 represents the characteristic chemical time tc. 

From the above expressions, the flame should blow-off when E, as given 

by the equation below, reaches a critical value 

E = td/tc. 

The laminar flame speed S, for the fuel mixtures used was calculated 

from the following expression given by Chakravarty (1984) which was 

based on previous work done by Spalding (1956), Yumlu (1967, 1968) and 

Scholte and Vaags (1959) 

S2mix = {l - Cti } S2 

where 

Cti = mass of (additive + air) at a given mixture equivalence ratio 
mass of total mixture 

and S is the laminar burning valocity of methane. 

The above analysis was applied to the data collected in the furnace and 

the results are given in Table (5.4). Details of the calculations can 

be found .i.n Appendix (B). It is clearly evident from these results 

that there i~ an excellent correlation between the data and the blow-off 

mechanism proposed. For most of the natural gas flames which were far 

from blow-off conditions, the £ values averaged 6.15. For the L.C.V. 
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gas flames which were very near to blow-off, the average value of E was 

4.9. This compares very favourably with the value of 4.8 obtained by 

Broadwell, Dahm and Mungal (1984) on their turbulent diffusion flames. 

The value obtained using our data is a bit higher because the furnace 

was operated using fuel with a CV which was 3 M.T/kg above the values at 

which extinction occurred. Therefore it ~an be argued that the 

mechanism put forward by Peters and Williams can be considered as a 

feasible explanation for flame blow-off in co~fined turbulent flames 

provided only the central main reaction zone is considered using local 

measurements of temperature and velocity. 

5.5.6 Relationship between Stability Limits and Combustion 

Measurements 

St,art.l.ng with the zero preheat and zero swirl trial, which gave the 

worst stability as shown in chapter 4, the temperature gradients in the 

region of 60 mm < R < 120 mm are quite steep, (Fig. (5. 1 ) (ii) ) . This 

indicates the existence of a thin flame and high shear flow region which 

can result in the diffusional rate between the fine turbulence scales 

exceeding the reaction rate thus causing extinction. The corresponding 

ve10city profiles, (Fig.(5.7)), also show quite high values of mean 

veloci ty in the core region, but the temperatures are also higher as 

shown in Fig. (5.1)(i), so the reaction rates were much faster than for 

the L.C.V. gas flames, thus preventing the diffusional rate from 

swamping the reaction rate which can cause extinction. The 

concentration measurements ~~o~n in Fig. (5.14)(b) to (5.16)(b) 

represent the conditions inside the furnace burning L.C. V. gas at the 

above mentioned conditions. There was an increase in the UHC and CO 

levels as the CV of the fuel was reduced and as conditions were very 
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close to the blow-off limits for all the three excess air levels, this 

can only mean that partial extinction is taking place. There is still 

plenty of oxygen present so the lack of oxidant cannot be the cause of 

-
this. The poor stability limits are reflected by the low EAF that were 

possible under these conditions. The values of E given in Table (5.4) 

for these operating conditions provide good support for the above 

explanations. 

Increasing the secondary air temperature allowed weaker fuel mixtures to 

be combusted, and these are reflected by the higher EAF used, 

(Fig~(5:2)(i)(b) and (5~3)(i)(b))~ It is clear from these temperature 

profiles that there was a decrease in the steepness of the gradients 

with an increase in the secondary air preheat and this occurred for all 

the three excess air levels investigated. This indicates an increase 

in the flame thickness with preheat anu ~::::~parison of the velocity 

profiles given in Figs: (5: 8) and (5: 9) show a decrease in the mean 

velocity but an increase in the central reaction core diameter when the 

CV of the fuel is reduced. Similar effects, as mentioned above are 

noted on the concentration measurements as the blow-off limits are 

--
approached. Therefore the same type of extinction mechanism was 

responsible for flames burning with preheated secondary air and this is 

substantiated by the values of E shown in Table (5:4): So preheating 

the secondary air causes the flame thickness to increase thus permitting 

tolerance of a weaker fuel mixture than would be possible without any 

-
preheat. 

The effects of using swirl without preheat on the stability of the 

flames are shown in Fig. (4:5) and it is evident that there was a 

-
definite improvement. Comparison of the temperature profiles, 
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(Fig.(5.5)(i)(b», shows very similar effects, caused by the addition of 

preheat but the peak temperatures were lower. There was a large 

decrease in the core velocity, (Fig. (5. 11) ), when compared to the zero 

swirl situations. The increase in the concentration of UHC and CO was 

again noted with the decrease in CV of the fuel but there seems to have 

been a redistribution of the hot combustion products in the outer 

recirculation zone of the furnace .and these are indicated by the flat 

profiles obtained. 

the above findings. 

Increasing the excess air had very little effect on 

Using swirl together with preheat also resulted in good stability, 

(Fig.(4.9), especially at low swirl numbers. The temperature 

measurements showed very flat profiles for both natural and L.C.V. gas 

flames, (Figs. (5.2(ii) and (5.3)(ii». The mean velocities were not 

very high especially in the core area and this applies for all the three 

excess air levels. The surprising fact is a sharp decrease in the UHC 

and CO concentrations under these conditions. This is translated into 

the good combustion efficiency values shown in Table (5.1). The rf>:lson 

is most probably the high temperature levels existing across the furnace 

under these operating conditions indicating good recirculation of the 

product of combustion thus maintaining good stability for the weaker 

fuel mixture used. 

5.5.7 Closure 

The combustion measurements were critically analysed for conditions 

which were close to blow-off. Burnout rates at the sampling port were 

generally high ( > 95%) for natural gas but in some cases, for L.C. V. 

mixtures, were extremely low «20%) suggesting flame lift off; however 
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at the exhaust burnout was high in all cases showing that combustion was 

proceeding beyond the sampling port. A blow-off criterion based on the 

ratio of the mixing time to a chemical reaction one, denoted by E, 

showed that for near-limit flames E was consistantly close to 4.9; 

therefore flames with E > 4.9 were stable. This e~tablishes an 

important criterion for determination of stability in confined 

situations. The combustion measurements for the L.C. V. 'Jixtures also 

showed the existence of thin flames for conditions without preheat and 

zero swirl. The thickness of the flame increases wi th swirl and 

preheat thus improving the stability limits. In most of the L.C.V. gas 

cases, high levels of CO and UHC were detected indicating that partial 

extinction was taking place prior to blow-off. 
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MJ/kg SW Preheat XS Air b(x) 
CV °c % 

53.13 0 38 10 96.2 

" " " 20 96.6 

" " " 30 97.4 

33 " " 10 91.3 

35 " " 20 81.7 

38 " " 30 81.6 

53.13 " 300 10 92.1 

" " " 20 96.4 

" " " 30 97.1 

26 " " 10 91.8 

24 " " 20 64.8 

23 " " 30 17.9 

53.13 0.964 38 10 98.6 

" " " 20 99.1 

" " " 30 99.2 

27 " " 10 53.0 

28 " " 20 27.7 

30 " " 30 24.5 

53.13 " 300 10 99.2 

" " " 20 99.0 

" " " 30 99.1 

24 " " 10 96.0 

27 " II 20 95.8 
2.8.. _____ ~ ____ ~~~~_ It 30 95.1. 

Table (5.1) Burnout Rate at X/D = 0.445 

J:'he L.C.V. (Le. CV < 53.13 MJ/kg) used above are 3 MJ/kg above 

the blow-off values. 
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MJ/kg SW Preheat XS Air b(x) 
CV °c % 

53.13 0 38 10 99.82 

" " " 20 99.76 

" " " 30 99.76 

33 " " 10 99.45 

35 " " 20 98.91 

38 " " 30 98.74 

53.13 " 300 10 99.81 

" " " 20 99.83 

" " " 30 99.69 

26 " " 10 99.44 

24 " " 20 97.77 

23 " " 30 92.75 

53.13 0.964 38 10 99.85 

" " " 20 99.83 

" " " 30 99.83 

27 " " 10 91. 17 

28 " " 20 84.66 

30 " " 30 84.99 

53.13 " 300 10 99.86 

" " " 20 99.84 

" " " 30 99.83 

24 " " 10 99.25 

27 " " 20 99.56 

Table (5.2) Burnout Rate at Exhaust 
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MJ/kg SW Preheat Xs Air Temp 0c Temp °c 
CV °c at 50 mm* at 150 mm* 

53.13 0 38 10 432 616 

" " " 20 392 547 

" " " 30 356 532 

33 " " 10 200 480 

35 " " 20 197 474 

38 " " 30 223 509 

53.13 " 300 10 570 655 

" " " 20 577 694 

" " " 30 557 692 

26 " " 10 374 611 

24 " " 20 342 540 

23 " " 30 326 502 

53.13 0.964 38 10 331 526 

" " " 20 277 765 

" " " 30 185 1220 

27 " " 10 170 385 

28 " " '"'''' .:. ... 151 376 

30 " " 30 140 410 

53.13 " 300 10 563 611 

" " " 20 485 582 

" " " 30 473 618 

24 " " 10 332 511 

27 " " 20 335 519 

2.8.. " " ~_ 3Q 328 ---~~.5.Q.3. 

• Distance from burner outlet along inside quarl surfaces 

Table (5.3) Internal Quarl Surface Temperature 
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MJ/kg SW Preheat XS Air E 
CV °c 

53.13 0 38 10 5.95 

" " " 20 5.91 

" " " 30 5.89 

33 " " 10 4.89 

35 " " 20 4.91 

38 " " 30 4.81 

C::3.13 " 300 10 6.06 

" " " 20 6.03 

" " " 30 6.25 

26 " " 10 4.87 

24 " " 20 4.96 

23 " " 30 4.95 

53.13 0.964 38 10 6.10 

" " " 20 6.20 

" " " 30 6.23 

27 " " 10 4.95 

28 " " 20 4.81 

30 " " 30 4.94 

53.13 " 300 10 6.29 

" " " 20 6.32 

" " " 30 6.52 

24 " " 10 4.91 

27 " " 20 4.83 

28 __ . __ .. ~ ___ ._~_____ " .30 .4.8~ 

Table (5.4) Blow-off Criterion 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1. Summary 

The principal objective of this project was to investigate the stability 

limits of low calorific value gases under various furnace operating 

conditions. A Hilton Combustion unit was modified into a research test 

facility on which to carry out the experiments. A double-concentric 

pipe burner system, as commonly used in industrial practices, was 

utilized and facilities for providing swirl, preheat to the secondary 

air and the use of LCV fuels were incorporated in the system. Natural 

gas and nitrogen were metered separately and fed to a mixing chamber in 

order to obtain a homogeneous fuel mixture with the required calorific 

value. An ultraviolet flame scanner unit with its ancillary 

electronics were used to detect flame failure. A manual shut-off 

valve, a class 1 solenoid valve in the fuel line and an explosion vent 

were adder to the modified furnace in order to reduce accident risks in 

the event of an explosion. An automatic data logging system using a 

motorized traversing gear controlled by a central microprocessor was 

developed and employed for the collection of combustion data. The 

temperature, velocity and concentrat~on programs worked successfully and 

expedited data collection. 

Stability limits measurements were obtained for three excess air levels, 

four swirl numbers and five secondary air preheat temperatures. 

measurements were based on complete blow-off of the flame. The 
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stability limits measurements were presented and discussed in relation 

to the effects of the various operating conditions used. In order to 

obtain an understanding of the blow-off mechanism involved, combustion 

measurements were made in the near-burner region (X/D = 0.445). Due to 

time restrictions, conditions for only two swirl numbers, two secondary 

air preheat temperatures and three excess air levels were investigated. 

Inflame temperature, velocity and concentration data were collected for 

conditions which were close to the blow-off limits. Similar 

measurements were repeated for pure natural gas flames and the data were 

used as reference. A fine-wire (40}lm) thermocoup le was used for the 

temperature measurements while a 5-hole pitot probe was utilized to 

obtain velocity data. A water-cooled stainless steel sampling probe 

was used to sample the combustion gases which were analysed on an 

Analysis Automation Analyser System which determined concentrations of 

UHC, NOx , 02, CO and C02. 

The influences of swirl, secondary air preheat and excess air levels on 

the combustion measurements were presented and discussed. Combustion 

data were also collected at the exhaust section of the furnace. These 

data were used to calculate the degree of burnout in order to obtain the 

combustion efficiency of the system. The de,:;('ees of burnout under 

various operating conditions were also calculated for combustion data 

obtained at the sampling port, (X/D = 0.445). They were compared with 

the ones obtained at the exhaust section. In order to establish an 

extinction mechanism for the various operating conditions, the 

combustion data were used to calculate a blow-off criterion which was 

based on the theories proposed by Peters and Williams. Extinction was 

detected by the ultraviolet flame scanner which operated a warning light 

when the flame blew-off. The blow-off criterion was obtained from the 
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parameter E which is the ratio of a characteristic mixing time (td) to 

a characteristic chemical reaction time (tc ) • Finally the 

relationships between the stability limits measurements and the 

combustion data were discussed. 

The remainder of this chapter is presented in two sections. Section 

(6.2) provides the main conclusions of this work and section (6.3) 

outlines the recommend~Gions for future work. 

6.2 Conclusions 

Modifications to the experimental rig successfully allowed the use of 

swirl and preheat on the secondary air supply firing both natural and 

LCV gas. The safety systems incorporated in the furnace proved 

adequate and worked satisfactorily. 

Data for the stability limits measurements have been presented in 

various formats which highlight. the effects of swirl, secondary air 

preheat and excess air level independently. 

Temperatures were measured on the internal surface of the quarl. The 

location of maximum temperature along the quarl was found to be 

independent of the level of excess air and secondary preheat when the 

swirl number was at or below 0.689. This applied to both natural and 

LCV g::ses. For the maximum swirl condition, (0.964), the maximum 

temperature locations fluctuated substantially when LCV gas mixtures 

were fired. With natural gas flames, the maximum temperature was 

located 50 mm upstream in the quarl when compared to LCV gas flames. 

This was almost independent of the excess air levels or secondary 

preheat temperatures used. 
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With regard to the flame stability preheating alone was beneficial only 

if the temperature of the air was above 250oC. Imparting swirl to the 

secondary air gave a definite improvement on the stability limits of the 

flames regardless to the secondary air temperature supplied. For 

conditions when the swirl number was above 0.418, a slight decrease in 

the flame stability was noted with increasing excess air levels. There 

was also very little improvement on the stability limits of tile flames 

when swirl numbers above 0.689 were used. This value of 0.689 appears 

to be a limiting swirl number which provides adequate recirculation to 

promote maximum flame stability under various excess air levels and 

secondary air preheat temperatures. 

The stability limits of the flames were severely reduced with increasing 

excess air levQls and the absence of swirl when the temperature of the 

secondary air was below 250oC. However, with the introduction of a 

small amount of swirl and moderate preheat temperatures ( ~ 200 0 C), 

considerable improvements on the stability of the flames were noted at 

all three excess air levels. The measurements also revealed that using 

the maximum swirl and preheat did not provide the best stability 

results. This indicates that furnaces using a low cost burner system 

to give moderate swirl (~O. 5) and the exhaust gases to preheat the 

secondary air ( ~ 200 0 C) can achieve very satisfactory flame stability 

performances for a wide range of LCV gases. A possible explanation of 

this phenomenon is flame stretch resulting fr0~ the excessive torsional 

force caused by increasing the swirl number plus an increase in velocity 

at the burner mouth caused by preheating the combustion air to a higher 

temperature. 
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The combustion measurements showed that an increase in excess air level, 

for natural gas flames, caused a reduction in the temperature inside the 

furnace as would be expected from the dilution effect and this was found 

to be independent of swirl and preheat. For LCV gas flames the 

temperature levels were dependent on the calorific values of ' the fuel 

mixtures used. 

The effects of increasing excess air for natural gas flames surprisingly 

showed very little change in the velocity profiles regardless of the 

swirl intensity or preheat temperatures. However, there was a 

noticable decrease in the core velocities with increasing excess air 

levels for the LCV flames with zero swirl. This was independent of the 

preheat temperatures of the secondary air. For swirling flows no 

substantial changes were noticed in the velocity profile& for all the 

various operating conditions investigated. It should 6~ ~ointed out 

here that some of the above findings are contradictory and it may be 

tha t the velocity measurements at high temperatures using a five-hole 

pi tot tube were subject to sUbstantial err~rs. 

Increasing the excess air levels caused a reduction in the concentration 

of UHC and CO for LCV flames using the same EAF, swirl d.nd preheat. 

Very small amounts of NOx were formed for all the LCV gas flames 

investigated due to the low flame temperatures associated with these 

cases. 

Imparting swirl to the secondary air for the natural gas flames caused a 

decrease in the reaction core temperature, but the temperature levels in 

the outer recirculation zone increased; this applied for the various 
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operating conditions used. Similar effects were noted for the LCV gas 

flames but the value of the temperature levels were dependent on the EAF 

and the calorific value of the fuel used. 

For natural gas flames with zero swirl, preheating caused a radial shift 

in the location of maximum tpmperature possibly indicating flame 

elongation. In contrast, maximllm temperature levels of the LCV gas 

flames were located at a single iadial position and were independent of 

the excess air levels or preheat. 

The concentration measurements in the LCV gas flames showed a large 

increase in the UHC and CO levels for most of the operating conditions 

investigated when compared to their natural gas counterpart. This 

indicated that partial extinction was taking place prior to blow-off. 

The degrees of burnout calculated at the sampling port were high for the 

natural gas flames under all operating conditions. For LCV gas flames, 

these values were quite low under certain operating conditions, possibly 

indicating partial flames lift-off or flame elongation beyond the 

sampling plane, but the overall combustion efficiency for these cases 

was reasonably high as shown by the burnout measurements obtained at the 

exhaust. 

The blow-off criterion was based on the parameter E obtained from the 

ratio of the cbaracteristic mixing time (td) to the characteristic 

chemical reaction time (tc ). For flames close to the blow-off limits, 

the value of E was consistently close to 4.9 compared with 6.2 for 

stable pure natural gas flames. The parameter E was also found to be 
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independent of swirl number, preheat and excess air. From the results 

obtained, an important criterion for determination of stability in 

confined flames has been established thus supporting the extinction 

mechanism proposed by Peters and Williams. 

6.3 Recommendations for future work 

1 • A better technique (LDA Anemometry) is 

measurements under similar operating 

investigated to provide more accurate data. 

desirable for velocity 

conditions to those 

2. The combustion measurements performed should be extended to the 

remaining two sampling ports for complete mapping of the furnace. 

Axial measurements are also recommended. 

3. Sampling ports should be added closer to the quarl exit: this would 

enable data to be collected within and flow visualisation 

techniques to be applied to the main reaction zone. 

4. Various quarls with a ran~d of half angles should be investigated 

and their influences on the stability limits assessed. 

5. The influences of burner lip thickness and various ratios of burner 

pipe diameters should also be investigated with th~ objective of 

obtaining further improvements in flame stability. 

6. Combustion measurements at intermediate operating conditions away 

from blow-off should also be carried out and the data used to 

reinforce the extinction mechanism investigated. 
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7. A natural gas booster and a more powerful air compressor should be 

fitted to the system to allow higher furnace loadings. 

8. Combustion models should be developed for comparison with the data 

obtained in order to gain a more complete understanding of the 

processes occurring. This would then enable prediction under a 

wide range of operating conditions. 
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DATE 19-11-86 

CONDITION NUMBER 1 

SWIRL NUMBER : .964 

~ASS FLOW RATE OF AIR : 52.38 kg/h 

MASS FLOW RATE OF NATURAL GAS : 3 kg/h 

MASS FLOW RATE OF NITROGEN : o kg/h 

MASS FLOW RATE OF COOLING WATER : 364 kg/h 

INLET TEMPERATURE OF COMBUSTION AIR 38 Deg.Cen. 

EXHAUST TEMPERATURE OF FLUE GASES 537 Deg.Cen. 

INLET TEMPERATURE OF COOLING WATER 11 Deg.Cen. 

OUTLET TEMPERATURE OF COOLING WATER 73 Deg.Cen. 

RADIAL LOCATION OF THERMOCOUPLE = R (m.m). 

MEAN TEMPERATURE IN DEGREES CENTIGRADE. 

MEAN TEMPERATURE AT CONDITION 1 
R (m. m) RUN1 RUN2 AVEF:AGE 

':1 15(13 1512 15')8 
10 15':16 1503 1505 
2(1 1486 1454 147~) 

3(1 1441 1395 1418 
40 138(1 1347 1364 
50 1321 1319 132':1 
6(1 1261 1251 1256 
7(1 1192 ii'=?4 1193 
8') 1115 1 H17 1111 
9(1 1')53 1042 1(148 
1 (1(1 '-=162 970 966 
11 (1 892 894 893 
12(1 836 828 832 
13(1 782 772 777 
140 736 712 724· 
15(1 695 686 691 
16(1 669 664;1 665 
17e 648 651 65':) 
18(1 638 641 640 
19(1 632 630 631 
20(1 615 612 614 
2H1 595 585 59(1 
22'~' 539 546 543 

Table (AI) Sample of Temperature Readings 
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DATE 17-6-86 

STATION NU~lBER 

SWIRL NUMBER .964 

MASS FLOW RATE OF AIR 42.94 kg/h 

MASS FLOW RATE OF NATURAL GAS 0 kg/h 

MASS FLOW RATE OF COOLING WATER 1 kg/h 

INLET TEMPERATURE OF COMBUSTION AIR 1 Deg.Cen. 

EXHAUST TEMPERATURE OF FLUE GASES Deg.Cen. 

INLET TEMPERATURE OF COOLING WATER 1 Deg.Cen. 

OUTLET TEMPERATURE OF COOLING WATER 1 Deg.Cen. 

RADIAL LOCATION OF 5-HOLE PITOT PROBE R (m.m). 

MEAN y'ELOCITY IN m/s; ANGLES IN DEGREES. 

t1ean Vel oc i t Y ,Conical Angle And Dihedral Angle at Station 1 

k (m.m) RUN1 RUN2 AVERAGE 

I) 5.168 88.5(' 34.61 4.46(1 87.59 22.':.)5 4.814 88.04 28.33 
HI 5 .. ('34 85.95 44.1)1 4.624 84.21 42.88 4.829 85.('8 43.44 
20 4.399 74.72 76.22 4.320 82.27 83.93 4.359 78.49 80.(18 
3(' 4.266 79.86 243.2 4.839 82.22 87.57 4.552 81.10'4 165.4 
40 4.421 77.7101 265.4 4.':'29 76.17 81.78 4.225 76.94 173.6 
5(~ 3. 25t) 72.74 238.9 3.218 72.53 243.4 3.234 72.64 241.2 
60 3.035 70.95 245. ~, 3. (166 81.39 240.7 3. ~'51 76.17 242.8 
70 3.360 52.74 255.6 3.114 71.92 247.3 3.237 62.33 251.4 
8(' 2. 65() 59.14 89.16 ~.574 19.68 81.5(1 2.612 39.41 85.33 
90 2.449 62.18 88.95 2.246 74.78 253.3 2.348 68.48 171. 1 
1(1'-:' 2.833 8(1.07 255.9 2.345 47.33 249.6 2.589 63.7101 252.7 
110 2.873 46.59 81.48 2.562 64.57 248.3 2.718 55.58 164.9 
12(1 2.574 72.73 259.7 2.476 75.99 264.7 2.525 74.36 262.2 
130 2.319 54.79 245.4 2.103 34.67 240. 1 2.211 44.73 242.7 
140 2.514 44.18 253.8 3.77(1 81.71 228.8 3.142 62.94 241.3 
150 2.810 48.89 269.8 2.680 31.31 70. 12 2.745 40. 1(, 169.9 
160 2.632 57.79 75 .. (14 2.811 43.43 86.7(1 2.721 51).61 8121.87 
17(1 2.391 62.4(1 267.2 2 .. 955 41.98 85.63 2.673 52.19 176.4 
181;' 2.284 52.54 259. ":1 2.691 54.33 74.79 2.487 53.43 166. '9 

19(1 2.689 51.4(1 79.33 3.454 71. 61 251. t:;:' 3. \:172 61.5(1 165.1 
2(,(1 :2.733 50. (17 268.6 3.391;' 18.53 267.1 3.1)61 34.30 267.9 
21(1 ::: .. 5t:'~:' 68.87 266.8 2.791 69.01 ::68.2 :2 .. 6(HJ 68.94 267.5 
220 2.815 30.04 265.6 :'.583 39. 11 ::",1.3 2.699 34.58 263.5 

Table CA2) Sample of Velocity Readings. 
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DATE 18--2-87 

RUN NUMBER 2 

SWIRL NUMBER .964 

MASS FLOW RATE OF AIR 57.15 kg/h 

MASS FLOW F:ATE OF NATURAL GAS 1.525 kg/h 

MASS FLOW RATE OF NITF:OGEN 1.475 kg/h 

MASS FLOW RATE OF COOLING WATER 364 kg/h 

INLET TEMPERATURE OF COMBUSTION AIR 300 Deg.Cen. 

EXHAUST TEMPERATURE OF FLUE GASES 395 Deg.Cen. 

INLET TEMPERATURE OF COOLING WATER 4 Deg.Cen. 

OUTLET TEMPERATURE OF COOLING WATER 40 Deg.Cen. 

RADIAL LOCATION OF SAMPLING PROBE = R (m.m). 

CONCENTRATION OF UHC AND NOx IN p.p.m. REST IN -; 
I. • 

F: 

~) 

10 
20 
30 
4(1 
50 
6':1 
74:1 
8(1 
90 
104:1 
11(1 
120 
130 
140 
150 
16(1 
17(1 
18(1 
19(1 
24)(1 
210 
22':1 

UHC 

32.85 
34. 12 
7",,:!, l""j""'7 
._",._1 • .,:.:. I 

34.42 
33.87 
36.46 
37.41 
37.14 
35.78 
35.5<7' 
~C'" -.,.: 
.':;lw.lo 

35. ~:17 
35.64) 
37.43 
38.85 
39.21 
4(1. 17 
38.59 
39.90 
40.73 
44:1. ':19 
41. 11 
41.26 

NO>~ 

'=t. 8(H) 

8.919 
9 266 
9.459 
9.51::::: 
9.462 
9.664) 
'7'.564 
9.466 
9.376 
8.880 
7.894 
8.251 
7.915 
8.055 
7.869 
7.974 
7.963 
7.966 
8. 1 (H) 

8.338 
7.973 
7.973 

02 

13.48 
13.58 
13.44 
13.39 
13.36 
13.3(1 
13.35 
13.1-: 
13.1::; 
1:::;.08 
13.09 
1:::;. 15 
13.4)8 
13.09 
13. (13 
1:3.01 
13.02 
13. ':14:1 
12. '7'9 
13. ("~) 
12.79 
12.95 
13. f1':1 

CO 

· \:1440 
.0444 
.4:1443 
.0443 
• (1474 
.0474 
· (54)7 
· ':1448 
.0444 
.0442 
· (1461 
.0443 
· (1479 
· 4)47(1 
· ':1467 
· ')4Tl 
.0488 

• ':'489 
.0480 
· ')461 
• (1459 
.1:1473 
• ':1463 

Table (A3) Sample of Concentration Readings. 
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C02 

4.634 
4.677 
4.682 
4. 73(1 
4.693 
4.679 
4.696 
4.682 
4.70f1 
4.659 
4.650 
4.654 
4.612 
4.584) 
4.626 
4.593 
4.576 
4.571 
4.6(12 
4.6(19 
4.574) 
4.574 
4.584 
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Display Voltmeter mV Display Voltmeter mV 

mm H2O mm H2O 

100 % P ~ 

00.0 0.1 0.000 -1.000 

05.0 124.3 0.050 125 

10.0 249.0 0.100 250 

15.0 374.0 0.150 375 

20.0 500.1 0.200 500 

25.0 624.5 0.250 625 

30.0 749.0 0.300 750 

35.0 874.0 0.350 875 

40.0 999.5 0.400 1,000 

60.0 1500 0.600 1,500 

100.0 2500 1.000 2,500 

150.0 3715 1.500 3,750 

180.0 4490 1.800 4,500 

199.9 5000 1.999 4,998 

Table (A4) Micromanometer Calibration 
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5-HOLE PITOT PROBE 

PRINCIPLE OF OPERATION 

1. If a spherical body is suspended in a stream of gas of known 
velocity, it is possible to calculate the velocity at any point 
on the sphere's surface from ~tential flow theory. 

2. The tangentional velocit~; at an angle en to the incident flow 
is 

Vn = ~ Sin en.V • •• (1) 

(Theoretical Hydrodynamics - Milne, Thomson P489 Ch. 16-30) 

3. 

4. 

Where V is the incident stream velocity. 

The pressure Pn, at this point is given by 

Pn + V2n = Ps + V2 

P 2 p 2 

Where Ps is the free stream static pressure 
p is the'gas density 

Thus solving for Pn and substituting Vn from equation 

Pn = Ps + I-, PV2 (1 - 2. Sin2en) 
4 

= Ps + ~ PV2 Kn 

Kn is known as the pressure reco\-ery factor 

· .. (2 ) 

(1 ) 

· .. ( 3) 

S. If a sphere is constructed with 5 holes situated radially as 
shown in Fig. 1, the holes being the open ends of tube connections 
taken through the sphere mounting, and used to measure pressure, then 
this theory can be used to obtain a series of expressions relating gas 
velocity to the pressures and recovery factors of each hole. 

% = Ps + ~Y0 Pv2 etc 

Thus Po - PI = I-, PV2 (Ko - K1) etc • •• (4) 

where the subscripts, 0, 1, 2, 3 and 4 refer to the hole positions 
on the pitot (Fig. 1). 

6. Substituting for Ka, K, etc. 

Po - PI = : PV2 (Sin 2e1 - Sin 2e o) etc • •• (5) 
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8"270 I -. .- I 8=90 

Velocity 

Vector 

z 

-"" ..-....... 
....... 

---

y Probe 
Axis 

¥ Conical angle at each of the holes n,. n2. n3, n4. 
~ Conical angle formed by the velocity vector and the probe head axis 

S Dihedral angle between the flow p~ane and the meridian plan . 

.().n Angle between the velocity vector and the nth pressure hole. 

Fig.l Definition of pitot angles 

'e. e\ y r~V. I X 

s 

z 

Dihedral 
Angle S Conical Angle 0 

Fig. 2 Reference directions for angle determination 
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7. We now have a series of expressions relating pressures at the 
five holes to velocity and the angle e between the velocity vector and 
the five holes. 

8. From simple, but tedious, three dimensional geometry it is possible 
~o express each of the angles en in terms of the angles. 

~ conical angle between the velocity vector and the probe 
axis. 

6 dihedral angle between the flow plane and the meridian 
plane formed by holes, 1, 0 and 3. 

y the conical angle of each of the four holes, 1, 2, 3, 4. 

See Figs. 1 and 2. 

9. The results of this three dimensional analysis are 

cos 81 = cos ¢ cos y + sin 0 sin y cos 0 
cos 82 = cos 0 cos y + sin 0 sin y sin 0 
cos 83 = cos 0 cos y - sin ~ sin y cos 0 
cos 84 = cos 0 cos y - sin 0 sin y sin 6 ... (~ , 

The problem is to isolate each of the angles 0, y and 0 and de~eL~ne 
~ and 0 (since y is known from the pitot head geometry), and finally to 
calculate the velocity V and static pressure Ps from the pressures 
measured at the 5 holes. 

10. Measurement of 0 

By rearranging equations (6) we may write 

tan 0 = cos2ez - COS 2 e4 

cos2 e 1 - cos2 e 3 

and since cos 2e = 1 - sin2e 

tan I = sin2 9 4 - sin2 e? 

sin2e3 - sin2 e1 

and from equation 5 we find that 

tan 0 = P2 - P4 

PI - P3 
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11. To determine which quad~ant ~ is in when o<6<! tan 6>0 
2 

P2 - P4 >0 and from Fig. 3 61<63 and therefore PI - P3>0 

PI - P3 

since PI - P3 = ~ py2 (sin 283 - sin26 1) 

when n<o<n tan 0<0 
2 

and 61>63 

when n<o< 3n tan 0>0 
2 

and 6 1>6 3 

when 3n <0<2~ tano<o 
2 

and 61<C?3 

P2 - P,+ <0 

PI - P 3 

PI - P3 <0 

Pz - P,+ 

~l - P3 
>0 

PI - P3 <0 

P2 - P4 

PI - P3 <0 

PI - P3 >0 

12. The angle ~ and consequently Velocity Y and st~tic pressure Ps are 
more difficult to isolate. 

13. Work done at International Flame Research Foundation showed that 
by defining three new factors K~, KV and Kp a close approximation to 
the values ~, Y and Ps could readily be obtained from measurement of 
pressures at the five holes. 

14. The factors are defined in terms of the differential pressures as 
follows:-

K~ =~ - PT ) ~ 
2PR 

• •• (8) 

where PT = !:l (Po - Pn ) 

and P = [1;4 (Po - Pn)2]~ 
R 

n=l 

Ky = ~pV2 • •• (9) 

PR 
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K = 2 (Po - Pn ) Uo) p 
Pv2 

Each of these three factors are very weak functions of the angle 0 
and can be assumed to be independent of 0 with only a small error. 

15. By drawing up calibration curves of 

K¢ v ¢ Graph A 

} at the rear of KV v ¢ Graph B this manual and Kp v ¢ Graph C 

The angle ¢ can be readily found by calculating K¢ from equation 8 
and using the graph A. 

Velocity V is found by using the value of ¢ already calculated, 
obtaining ~ from graph B, and substituting in equation 9. 

Static Pressure Ps is found from Graph C using Kp for the same value 
of ¢ and substituting this in equation 10. 

3 

4 2 

1 
Fig. 3 Angle between the velocity vector 

and the pressure hole. 
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BURNOUT RATE CALCULATIONS. 

Consider a thin annulus of gas in the furnace at temperature 

T and thickness ay. Suppose the velocity of the aas is u m/s. 

Volume of gas goinq through annulus per unit time = 2rrya,yu 

Mass , , , , , , , , , , , , , , , , = 2TTycfYuP 

where pis the dens ity of combustion gases at temperature T. 

~ass of CO going through annulus I unit time = 2TIYdYUpC; 

where ci is the mass fraction of CO in the gas at temperature T. 

Heat content of unburnt CO I unit time = 2rrYoyuphc i 
where h is the calorific value of CO. 

R 
Total heat content of CO I unit time = f 2rryuphc i dy 

o 
Burnout rate = 1 - (residual heat content I initial heat content) 

R 
= 1 - ((2rrfouphCiYdy) I (Moho)) 

where Mo = mass fiow rate of fuel. 

ho = CV of fuel. 

Calculation of mass fraction Cc i ). 

Assume typical gas analysis as follows. 

Species Vol.%(wet) Vol.%(dry) Mo 1. \~t. 

CO Xl 
1 xl Ml 

CO2 
Xl 
2 x2 M2 

O2 
x~ 
3 x3 r13 

N2 x~ 
4 x4 M4 

CH4 
Xl 
5 x5 M5 

H2O Xl 
6 r16 
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Measured CO on a dry basis is given by:-

Xl / (x1+x2+x3+x4+xS) x 100% 

Actual CO = Measured CO x (xl+x2+x3+x4+xS) / (xl+x2+x3+x4+xS+x6) 

Assume x6 = 2x2 as 2H20 is formed for each CO2, 

Actual CO = Measured CO x (xl+x2+x3+x4+xS) / (x1+3x2+x3+x4+xS) 

CH4 + (0.79p N2 + O.21p O2 ) 

~ CO2 + 2H20 + 0.79p N2 + (0.21p - 2 ) 02 

On a dry basis we get 

----t> CO 2 + 0.79p N2 + (0.21p - 2 ) O2 
Vol. fraction of O2 = (0.21p - 2 ) / ( p = 1 ) = (x3 / 100 ) 

(dry basis) 
p = (200 - x3 ) / ( 21 - x3 ) 

Vol. fraction of N2 = (0.79p) / ( p - 1 
(dry basis) 

= 0.79 x ((200 - x3)!(21 - x3)) ! ((200 - x3)! 

(21 - x3) - 1) 

0.79 x ( 200 - x3 ) ! 179 = x4 ! 100 

x4 = 79 x ( 200 - x3 ) ! 179 

x3 + x4 = ((200 x 79) + 100 x3 ) ! 179 

Actual CO = Meas. CO x 
200 x 79 100 

(xl +x2+ 179 + 179 x3+xS) 

200 x 79 100 
(x1+3x2+ 179 + 179 x3+xS) 

Let [ ] = wetness factor. 

From tyoical gas analysis, total mass of comb. gases M is given by 

( Mlxi + M2x~ + M3x~ + M4x~ + MSx~ + M6x~ ) ! 100 

and mass fraction of species i = (Mix~)! ( Mlxi + M2x~ + •.... + M6x~ ) 

= (M . x! ) ! ( M x 1 00 ) 
1 1 
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.. M = ( Mlxl + U12 + 2M6)x2 + M3x3 + M4 ffg (200 - x3) + MSxS ) x [ ] 

100 

= r3 x (wetnes s factor) / 100 

Mass fract;0r. of species ; = M;x; x (wetness factor) / 

~ x (wetness factor) 

Now Ml = 28 

M2 = 44 

M3 = 32 

M4 = 28 

MS = 16 

M6 = 18 

= M.x. / ('3 , , 

For example, mass fraction of CO = 

28x
l 

/ ( 28xl + 80x2 + 32x3 + 12.36(200 - x3) + 16xS ) 

= 28xl / ( 28xl + 80x2 + 44.36x3 +16xS + 2472 

Mass fraction of component; (c;) = 
M;x; / ( 28x l + 80x2 + 44.36x3 + 16xS + 2472 
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The following is an example to find the values of E for 

conditions given below. 

Considering pure natural gas case without swirl and preheat 

using 10 % excess air. 

E = td / t . c 
2 td = d / u & tc = K / S 

K = k / (' Cp 

*From velocity data, taking average value at R./ 3 (see footnote p.211) 
J 

d = 240 mm = 0.24 m 

u = 13.5 m/s 

td = 0.24 / 13.5 = 0.0178 s 

Again taking average temrerature at R / 3 

o 
Taverage = 1375 C ~ 1650 K 

From gas encyclopedia + intc~polation 

k = 22.90 x 10-5 Cal.cm-1 s-l K-1 

= 0.0959 J/msK 

(' = 0.2079 kg/m3 

Cp = 0.2422 kCal.kg-1 K- 1 

= 1014 J/kqK 
? 

K = 0.0959 / 0.2079 x 1014 = 0.000455 m-/s 

From Kalghatgi, S = 0.39 m/s for methane 
2 tc = 0.000455 / (0.39} = 0.00299 s 

So = td / tc = 0.0178 / 0.00299 = 5.9457 

For LCV gas without swirl and preheat at 10% excess air 

From velocity data we get 

d = 180 mm = 0.18 m 

u = 10 m/s 

td = 0.18 / 10 = 0.0180 s 
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From temperature data 

T = 1125 °c ~ 1400 K average 
k = 20.97 x 10-5 Cal.cm-1 5-1 K- 1 

= 0.0878 J/msK 

p = 0.2487 kg/m3 

Cp = 1014 J/kgK 

K = 0.0878 / 0.2487 x 1014 = 0.000348 m2/s 

From Chakravarty (1984) 

S2 = ( 1 - a. )S2 m 1 

Ol; = 1.1366 / 3 = 0.3789 

S~ = ( 1 - 0.3789 ) ( 0.39 )2 

= 0.0945 

Sm = 0.0945 = 0.3074 m/s 

Sm ;5 the flame speed of the fuel mixture. 

tc = 0.000348 / (0.3074)2 = 0.0037 

~ E = 0.0124 / 0.0037 = 4.89 

* The actual velocity data used were the averaged values obtained by 
Simpson's Rule subroutine on the microprocessor. The average value 
at R./3 is sjust an estimated value based on simple jet theory. 

J 
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