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Abstract. This paper describes a methodology wherein genetic algo-
rithms were used evolve neural network controllers for application in
road-following. The simulated controllers were capable of dynamically
varying the mixture of colour components in the input image to ensure
the ability to perform across the entire range of possible environments.
During the evolution phase, the agents were evaluated in a set of environ-
ments, carefully designed to encourage the development of flexible and
general-purpose solutions. Successfully evolved controllers were capable
of navigating simulated roads across challenging test environments, each
with different geometric and colour distribution properties. These con-
trollers proved to be more robust and adaptable compared to the previous
work done using this evolutionary approach due to their improved dy-
namic colour perception capabilities where they extracted features across
all three primary colour channels.
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1 Introduction

Autonomous navigation in its entirety is a vast and diverse field of study and
research tends to be focussed on a number of sub-areas, such as steering control,
obstacle avoidance, road-following, power management and road-sign detection.
Amongst these, road-following is an essential foundation of any system with de-
sired autonomous navigation capabilities. While it may seem a trivial problem
from a human perspective, accurately extracting the desired features in the en-
vironment and using them navigate the road successfully is indeed a significant
problem in terms of an Al system. This is particularly due to the amount of
variance and non-uniformity present in terms of the geometry and colour com-
position of the road non-road surfaces. Weather conditions such as rain, shadows,
changing sunlight etc. all of which have an effect on the systems visual perception
of the environment, further compound this problem.

1.1 Related Work

The design philosophy behind most engineered road-following solutions is based
on maintaining an internal model of the road non-road environment which is con-
tinuously updated based on the features extracted from the world. A commonly
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used technique is to use sensor fusion, combining sensory data from multiple
cameras and laser range-finders, to produce a more detailed and accurate repre-
sentation of the world. This approach to the road following problem, especially
when adaptive techniques for maintaining the model of the environment are used
has indeed been successful in real-world trials. However at the core of all such
hand-crafted controllers is the issue of designer bias and the assumptions that are
made of the road with regards to its geometry, contrast and colour composition.
Thus successful performance may be guaranteed in environments accounted for
in the design process, but not across the entire range of scenarios possible such as
in the case of [3] and [8] where geometric assumptions and limited detail meant
that the model was less suitable for more complex road-shapes. Even in the case
of systems where the road model is adaptive and has high levels of detail and
accuracy, the cost and hardware requirements often make their implementation
prohibitive in most platforms. There have been a few attempts to use traditional
machine learning strategies to train neural networks to provide full navigation
control or at-least lateral steering control for autonomous vehicles, the foremost
among them being the ALVINN project [2]. The neural network employed was
a three layer feed-forward architecture with a single feedback unit. The input
layer was fed in readings from camera pixels and a laser range-finder. This ini-
tial road-following controller paved the way for the ALVINN-VC [10] which was
a more complete road-navigation system capable of dealing with junctions and
intersections.

One of the key challenges of the project was to provide data for the back-
propagation algorithm to train the network. Since in the case of road-following
training on the basis of real-world conditions to account for all the variations in
the road non-road environment would be logistically impossible, great effort was
taken to create a simulated road-generator which would supply images based
on the variations of as many as 200 parameters. Later trials involved training
the network on sensor and motor inputs of on an actual human driver at the
helm. The main issue with the back-propagation approach to learning in general
is over-fitting to the training data and thus rendering the system less effective
in new un-encountered environments. Moreover there was still a level of human
bias manifesting in the choice and generation of the training environment as well
as the dictating of what the desired or perfect driving output of the controller
should be. Such a control system, trained on human-driving data would never
be able outperform a human driving system and its best case scenario is that of
matching the human driving. It would also not account for unexpected scenarios
such as the ability to recover from steering errors and deviations.

Evolutionary machine learning of neural networks attempts at providing a
fresh perspective on the road-following problem, by further reducing this depen-
dency of human-foresight and allowing the AI control system to be in-charge of
learning its own feature extraction and control strategies. The authors of [1] who
first implemented this approach, made use of a neural network with architecture
similar to the one used in [2], but instead of supervised learning the authors
used evolutionary computation. Apart from having outputs for controlling mo-
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tor actions, the network had a further three outputs which were fed back to the
input layer and were capable of influencing the perception of the input image.
Instead of having separate modules for action and perception, the paper pro-
posed a unified motor-sensory unit. This model bears similarity to the learning
methodologies of biological organisms where functional behaviour is developed
through interactions with the environment and a clear link is present between
actions and their effect on the perception of the scene.

Thus the aim was to not only evolve a controller capable of road following
behaviour, but also the ability to dynamically change its perception of the road
as needed in order to be a truly general purpose solution capable of performing
across a variety of environments. In addition the computational and hardware
requirements of implementing this system are minimal, requiring only a fixed
camera and a low power embedded controller. Because of the prohibitive logis-
tics of carrying out the learning on real-world platform, the evolution needed
to take place in a simulated environment with the option of later transferring
a successfully evolved controller to a real-world platform. As an initial proof
of concept the experiment was successful in showing that such controllers can
indeed be evolved to successfully carry out road following across a number of
simulated environments. However there were limitations with regards to their
dynamic colour perception abilities and as a result their performance in certain
types of scenes which they had not experienced during evolution. This paper
details further progress of solving the road-following problem in simulated en-
vironments using this active vision evolutionary robotics approach and aims at
addressing the limitations of the previous methodology, techniques to ensure
increased robustness and adaptability of the evolved neural networks, as well
as further analysing and evaluating their behaviour. It is hypothesized that the
strategies outlined in this paper would enable the evolution of controllers which
would be capable of ultimately performing in real-world poorly delineated and
unstructured roads.

2 Neural Network Controller

A Continuous Time Recurrent Neural Network (CTRNN) is used to control the
robot as shown in figure 1. Equations 1, 2, and 3 define the activation values for
the 25 input, 6 hidden and 7 output neurons. In these equations, y; represents
the cell-potential, 7; the decay constant, g the gain factor, I; the activation of the
i*" sensor neuron, wj; the weight of synaptic connection from neuron j to neuron
i, f; the bias term and o(y; + 5;) the firing rate. All input neurons share the
same bias (87); the same being true for output neurons (3°). o, = (1 + e~ %)~}
is the sigmoid function. The decay constants, bias terms, weights and gain-factor
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Fig. 1. (a) Architecture of the neural network controller. (b) The Pioneer robot.

are all genetically specified network parameters.
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Due to the computational overheads associated with updating neural net-
works with large input layers, the number of input neurons was limited at 25.
The image from the camera is divided into 25 equal-sized blocks. For each block,
we compute the averaged red (R), green (G) and blue (B) (i.e., average pixel
value ). Each block is associated with an input neuron and the final value I; fed
into an input neuron is computed in the following: I; = aR + G + vB. The
parameters «, 8, and «y are generated by the network at each updating cycle,
and normalised in a way that o + 8 4+ v = 1. These parameters give the sys-
tem its dynamic dimensionality reduction properties. Each output neuron can
increase or decrease the magnitude of these parameters to enhance or diminish
the colour channel it is associated with, while at the same time having the op-
posite effect on the other two channels. For example, in an environment where
red is the channel which shows contrast between road and non-road, having o
at a maximum and the other channels at a minimum would enable the network
to be presented with the best possible contrast from the scene.

The motion control is based on the 2D two-wheeled differential drive kine-
matics model for mobile robots detailed in [12]. This model takes into account
the robots structural parameters i.e. radius, wheel distance and speed-limits to
give an output in terms of the robots updated position and orientation. The out-
put of neuron 32 to 35 (Figure 1) are used to set the the left and the right wheel
speeds. Complex dynamical properties such as friction are not accounted for in
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this model. The author in [5] highlights examples of the successful portability of
this model from simulated to real-world platforms.

3 Genetic Algorithm

A population size of 52 individual chromosomes is used, with a generational limit
of 3000. Trials involved the network controllers trying to perform road-following
in either six or twelve simulated environments (Section ?7?). The best individual
of each generation is guaranteed a place in the next generation, whereas the
one which performed the worst is truncated and made unavailable for breeding.
The rest 51 individuals of the new generation are generated by breeding with
the parent chromosomes selected using the roulette-wheel method. Crossover
and mutation probabilities are set at 50% and 5% respectively. These operators
remain static and non-adaptive throughout the evolution. Carrying out this pro-
cess of artificial evolution over 3000 generations in a sequential process would
mean an unreasonably high training time. Thus the genetic algorithm is paral-
lelized using MPI and implemented on the HPC Wales computing cluster. Each
individual run its evaluations as a separate process and the respective fitness val-
ues are communicated to a root process which in turn carries out the evolution,
generating the new generation of controllers.

4 Simulation Scenes

The evaluation scenes are the virtual environment where each solution (i.e.,
chromosome) is evaluated. These scenes form the basis for the networks learning
process, and the importance of this aspect needs to be stressed. These scenes have
been designed to facilitate the evolution of dynamic colour perception strategies
(i.e., the adaptive variation of «, 8, and 7). The evolution scene graphics are
rendered using OpenGL and are designed to simulate a camera pointing down
at the ground such that the road and surroundings on either side are visible till
a vanishing point further away.

The road is rendered using a modified version of the road generation algo-
rithm employed in [1]. A total of 11 tiles are used each 160 c¢cm long and 100
cm wide. The length of the road the robot need to travel is 17.6 metres. The
virtual robot model has a diameter of approximately 54 cm. The road starts off
with a smooth bend; each tile rotated 30° left or right. The direction of this turn
alternates for consecutive trials. This is followed by a similar smooth bend, with
greater probability (6/7) of it being in the opposite direction as the first one.
This provision allows an agent to demonstrate the ability to make both kinds
of turns and ensures the robot needs to be constantly maintaining its course to
stay on the road. Subsequent turns are random, but checks are made to ensure
no unrealistic or intersected road shapes are generated. The scene in each trial
varies in terms of the colour of the road and non-road surfaces as shown in Table
1. These scenes are created such that no contrast can be perceived between the
road and non-road surfaces unless the robot is able to vary the value of «, 3,
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Table 1. Colour combinations of the twelve evaluation scenes.

Scene| Road Non Road Random (Noise)
1 |Bright Blue Dark Blue Red and Green
2 |Bright Green Dark Green Blue and Red
3 |Bright Red Dark Red Blue and Green
4 |Bright Red, Dark Green |Dark Red, Bright Green |Blue
5 |Bright Blue, Dark Red |Dark Blue, Bright Red |Green
6 |Bright Green, Dark Blue|Dark Green, Bright Blue|Red
7 |Dark Blue Bright Blue Red and Green
8 |Dark Green Bright Green Blue and Red
9 |Dark Red Bright Red Blue and Green
10 |Dark Red, Bright Green |Bright Red, Dark Green |Blue
11 |Dark Blue, Bright Red |Bright Blue, Dark Red |Green
12 |Dark Green, Bright Blue|Bright Green, Dark Blue|Red

and v in an adaptive way. The 12 scenes can appear in three different format,
which differs in terms of the intensity difference between the dark and the brigth
colours (see Table 2).

To simulate the effect of poorly delineated roads, the edges of the textures
were blended together such that there would not be a clear demarcating line
between the road and non-road areas. An additional road-tile with higher levels
of delineation and uneven geometry was created to be used in the testing period
to assess the robustness of the evolved controllers.

5 Road Bounds Checking and Fitness Function

Each trial was allowed a maximum of 250 iterations with a check being carried
out after the end of each iteration (update) to see if the robot was still on
the road. If the robot was detected to have moved off the road, the trial was
terminated. At the end of each trial the value of the distance travelled was
calculated by the number of road-tiles traversed thus far and the position in
the current tile. In case of the trial being terminated due to the agent going off
the road, the current score value was divided by 5, to make the contribution of
progress in the current tile negligible. This distance value d(#) for each evaluation
was further normalized to the range of 0.5-1.0 to present the final product,
which would be in the powers of twelve or six, in an acceptable range. The

Table 2. Contrast and colour distribution characteristics for the three sets of scenes.

Set|Contrast between mean intensities of|Range of distribution of intensities (0 -
road and non-road (0 - 255) 255)

A |120 for all scenes 120 for all scenes

B |150 for mono-colour, 120 for dual-colour|10 for mono-colour, 30 for dual-colour
C |80 for all scenes 80 for all scenes
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final fitness function (Equation 4) comprised of two components multiplied with
each other, the product of distance values of each evaluation and the other a
colour term A. In initial experiments, it was observed that best individuals
in early stages of evolution were able to solve only a subset of the set of 12
scenes. However, these individuals dominated the population over generations,
resulting in a local maxima wherein the ability to solve the other scenes did not
evolve. This happened in the case when the fitness was determined simply by the
average distance value across all the trials. Thus having the fitness comprised
of the individual distance values multiplied with each other ensured that such
skewed solutions could not dominate the population disproportionately and only
individuals which perform consistently well in all the scenes would be rewarded.
Furthermore the A term was introduced to further aid or guide the final solution
in the correct direction by rewarding the correct activation of the colour outputs
in each of the evaluation scenes. Populations initialized with the same random
seed were tested in evolutionary runs with and without this colour term A to
study its effect, and successful evolution was observed only in those runs where
it was included.

= d(e)
F= Afinal X Eel;[l (05 + (i))’ (4)
d(e) = NT +CS (5)
CS=TL - (6)
| =E
Afinal = 4 > Cle); (7)
=1
s=S
Ci23789 = Z |OR; — OW]| +|OR, — OW?| (8)
s=50
s=S
Cu56,10,11,12 = Z 2 x OW, (9)
s=50

with £ = 12 being the total n umber of trial; NT equal to the number of tiles
crossed; C'S equal to the score on the current tile; T'L equal to the tile length; p
equal to the error vector from mid-point of the tile the the robot current position;
C. corresponding to the quality of the dynamic color perception strategy in trial
e; OR; being the value of the colour parameters (i.e., o, 8, or ) that has to
be used to discrimimnate between road and non-road; OW} and OW? being
the values of the colour parameters (i.e., a combination of «, 8, and ) that do
not discriminate between road and non-road in mono-colour scenes. OWy being
the value of the colour parameters (i.e., «, 3, or ) that does not discriminate
between road and non-road in dual-colour scenes.

A final effect of Ay;ne was that since it was calculated only after the 50th
iteration to allow the agent time to settle on a steady sequence of colour output
values for the trial, any agents leaving the road before the 50" iteration would
get a 0 for the colour score of that trial. Thus agents which left the road before
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the 50" iteration for all the trials would receive a 0 as the final fitness irrespective
of any distance values gained.

6 Results and Observations

The first round of evolutionary runs was done with six scenes, three basic mono-
colour (1, 2, 3) and three dual-colour (4, 5, 6) scenes. The scenes were chosen
from Set A, thus having an average contrast of 120 (on the scale of 0-255) and
the colour distributions having an approximate deviation of 60 on either side of
the mean. Based on the results of this stage, the experiment was extended to all
12 scenes with colour distributions from Sets A, B and C'. Scenes from Set B
had the most inherent contrast while those in Set C' were the most challenging in
this aspect. A set of 10 seeds was used to run a total of 40 experiments; 10 with
6 scenes using Set A and 30 with 12 scenes using scenes from Set A, B and C.
Due to the nature of genetic algorithms and the complexity of the problem, not
all seeds were able to evolve successfully, i.e. output fitness values were not high
enough to indicate their ability to solve atleast half of the evaluation scenes they
were evolved in. Only those runs which had values higher than this threshold
were selected for subsequent rounds of testing and evaluation.

6.1 Testing Round 1

In this first testing round the best individuals from the last 500 generations of
eleven successful runs were subject to a uniform set of eight road shapes in each
of the twelve scenes with the colour distributions being the same as what they
were evolved in. The road shapes consisted of two basic types, an “S” shaped
course where the robot needed to make turns in both directions to reach the end
and the other where there was a constant turn in one direction followed by a
straightening of the path. Each of these was generated twice with initial left and
right turns across two different angles (20° and 30°) dictating the curvature of
the turns, thus giving the total of 8 possible road shapes. During evolution the
angle of curvature was always 30° and the road generation algorithm ensured
that the overwhelming majority (6 out of 7) of shapes generated would be of the
first “S” shaped type. The rationale behind generating this fixed set of roads was
to ascertain the best performing individuals in the population, as it was possible
that some controllers which obtained high fitness values could have simply been
lucky and not really possess the ability to navigate multiple road shapes across
all the environments. Moreover, it would provide a break-up of the controllers’
performance in each of the scenes and match this against their dynamic colour
perception strategies. The agents were rewarded on the basis of a normalized
distance score, which assesses their progress along a 15 tile course (24 metres)
with agents reaching the end of the last tile getting the highest score of 10.
From the test results (Figure ??) of the agents evolved in six scenes, three
seeds were successful at evolving agents which could solve not only the six basic
mono-colour scenes (road always brighter than non-road), but also six of the
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dual-colour scenes including scenes 10, 11 and 12 which they had not experienced
during evolution. This is testament to the generality and adaptability of the
solutions evolved. Not surprisingly they failed in the three reversed mono-colour
scenes as the entire basis of their learning was dependent on the road being
brighter than the non-road. However agent S3 actually managed to partially
solve the scene where blue on the road was darker than the non-road, with an
average normalized score of 4.22. This was because it was correct in identifying
the feature-differentiating channel (blue), but could not process the negative
contrast for too long. On investigating the dynamic colour perception strategies
of these agents it was observed that the colour outputs for the three mono-colour
scenes (as expected from their A values being in the range of 1.4-1.8) were more
or less steady and above 0.85 throughout the trials. Only in periods where sharp
turns or course-corrections needed to be made was there a period of oscillation
between the outputs, where each of them would alternate between approximately
0-0.9 every 2 time steps.

The inclusion of the mono colour scenes and the colour term A ensured that
an adaptive strategy where all three colour outputs are utilized was developed,
and it was this strategy that enabled the network to solve all combinations of
textures in the dual-colour scenes. It could be argued that including A in the
fitness function was in a sense dictating a solution to the controllers, rather
than truly allowing them to evolve their own strategy. However as seen from
the results and during evolution, it was indeed a necessary inclusion and the
network did not completely adopt this enforced strategy as the presence of the
periods of oscillation between the colour three outputs suggests. It is interesting
to note that the motion in terms of dynamics was smoother and quicker when
the correct colour output was constantly at a high value (= 0.9) while during
the oscillating phases constant course-corrections were being made, taking more
time to complete the same distance.

The results of the twelve-scene experiments (Figure ??) were not as uniform,
with solutions showing greater variability in terms of seed and the colour dis-
tribution set they were evolved in. The majority of solutions (like S5 and S6)
only evolved the ability to dynamically vary two of their three colour outputs,
and simply did not use the third. Which one of the three this unused output
was, varied from seed to seed, meaning two out of the six mono-colour scenes
(basic and reversed) could not be solved. However these agents did manage to
solve all six dual-colour scenes because as mentioned earlier having the ability
to dynamically vary only two colour outputs would be sufficient in these cases.
In fact a few of these agents were tested in more challenging road shapes (cur-
vature of 35°) and across scenes where the average contrast was 90, less than
what they had been exposed to during evolution. They were indeed successful
in solving all the scenes except the two mono-colour ones whose corresponding
output they had not evolved to vary. In terms of colour-outputs, of the two that
were being varied, only one (depending on the seed) displayed perfect behaviour
of having a constantly high activation value. In other scenes, the agents relied
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on the oscillating behaviour to solve them, except the oscillation now took place
between only the two outputs that were being used.

Only two solutions successfully evolved to show capability of solving all twelve
scenes. Of these S4 evolved in scenes with colour distribution of Set B and S7
with distribution values of Set A. It is interesting to note the effect of these
distribution values on the evolved solutions, as the seed for S4 when evolved
with distributions of Set A could develop only a sub-par solution where the
agents could not navigate the green mono-colour scenes. The seed for S7 when
evolved in Set B, which could be said to be a less challenging environment,
could only solve two scenes. Also unsurprisingly none of these seeds when tried
with Set C' could produce any successful solutions, as the contrast values were
much lower and the distributions themselves were more spread out across the
spectrum.

Agents of S7, developed a strategy wherein their ability to differentiate on
basis of the green channel was much more enhanced than the other two channels.
The 8 output was constant and near maximum for all scenes where bright green
could be made the differentiating channel. For all other scenes the oscillatory
behaviour described earlier was observed, although for scene 12 (blue and green),
the oscillation took place only between the two relevant channels despite the
possessed ability to vary the a term. While the agents did demonstrate the ability
to traverse scenes 1 and 2, the navigation was slower and often error-prone at
the beginning contributing to the lower average scores. S4 evolved agents where
the o, 8 and = terms were near maximum for the majority of the time for scenes
3, 8 and 9 respectively, while being a mixture of stable and oscillatory for the
rest.

6.2 Testing Round 2

Four agents, two each from the two best six-scene and two best twelve-scene
runs, were then chosen to be subject to a further round of testing where the aim
was to investigate the robustness and generality of their road-following strategies
by observing their behaviour in environments they had not encountered during
the evolution phase. The twelve scenes were recreated with a colour distribution
having average contrast of 90 and deviations from mean of around 40 (on a scale
of 0-255). In each of these scenes, the range of distribution of the random noise
channels was set at 0-0.80 for one case and 0-0.25 in another. In the evolutionary
runs, the distribution of the random noise channels always varied from 0-1 with
uniform probability. However it was observed that narrowing this range to less
than 0.5 during the testing phase caused a few randomly selected agents to fail
(even though they had successfully solved similar scenes during evolution) and
thus it was decided to also evaluate the agents against this parameter. In theory
agents with the correct feature extraction strategy would be able to completely
discard the random channels, as despite the range of the distribution it had no
contribution towards highlighting the desired features. The road was set to be
of the “S” shaped type with an angle of curvature of 25° in both left and right
initial starting directions, and each of these shapes was generated twice, giving a
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total of 4 trials for each random noise distribution value for each of the 24 scenes.
Thus each agent in this second round of testing was evaluated over 96 trials. In
order to further enhance the effect of presenting an unfamiliar environment to the
controllers, the road tile used in this testing phase represented a more delineated
and unstructured course, having a maximum width of 110 cm at places but with
only 85-90 cm consistently visible throughout.

The results of this second round of testing (Figure ?7?) showed that agents

of S4 (twelve scenes) and S7 (twelve scenes) had developed the most robust
and general-purpose solution. Despite receiving lower scores (below 7) for a few
scenes, only these solutions had the capability of solving all twelve scenes across
all the evaluation parameters, i.e all road shapes with reduced contrast and
varying random noise values. The performance of S1 (six scenes) in identifying
features in the blue or v channel was affected by the reduced contrast in the
colour distribution. This in turn not only meant failure in the corresponding
mono-colour scenes but also in the two dual-colour scenes where the blue chan-
nel was brighter on the road. The agent could still use the other two channels
successfully across both ranges of the random noise variation. The agent was
later tested in a scene with average contrast for the blue channel at 109 (still
a new environment), and in this case it was able to navigate the corresponding
scenes successfully. While agent S2 was able to solve all nine scenes (excluding
reversed mono-coloured) when the random noise was in the range of 0-0.80, it
failed to differentiate on the basis of both blue and green channels when this
range was reduced to 0-0.25 thus resulting in lower average scores for scenes
1, 2, 6 and 12. The agents inability to perform in these scenes was due to it
constantly relying on the red channel for contrast, activating only the « term
throughout the trials. It incorrectly associated the low distribution range of red
values with the availability of features, causing it to fail in scenes where these
numbers were random.
For the two successful agents in this round, it can be seen that in both cases per-
formance in all but one mono-colour scene deteriorated compared to the earlier
round of testing. They were still capable reaching the end of the road in these
scenes, but with less consistency compared to the earlier tests contributing to
the lower overall score. While scores in dual-colour scenes still remained close to
9, the one exception to this was S7 in scene 5 where the agent suffered a num-
ber of early failures, attributed to the absence of relevant features in the green
channel which it was most sensitive to. Interestingly despite being subject to
higher contrasts than S7 during evolution, S4 was still able to match or exceed
its performance in eleven out of twelve scenes. Moreover it was observed that
the agents changed their colour perception strategies compared to the previous
higher-contrast environment, increasingly relying on oscillating the activations
of the colour output neurons. However when the one channel they were most sen-
sitive to was available, they used it exclusively by activating only the associated
output neuron for the majority of the trial.
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7 Conclusions

The methodology described in this paper was successful in evolving neural net-
works capable of demonstrating road-following by dynamic dimensionality re-
duction in a variety of challenging simulated environments. This new set of
controllers have shown improvement in the dynamic colour perceptions abilities
compared to those evolved earlier in [1], with the capability to now recognize
features based on negative and positive contrast in all three primary colour
channels used. This work is a significant step towards the hardware implemen-
tation of these controllers, as real-world environments would in majority consist
of colour combinations similar to those present in the simulated scenes. How-
ever it is acknowledged that the contrasts between road and non-road surfaces
would be lower than what the networks were tested on. This is proposed to be
mitigated by introducing a simple contrast stretching step before the processing
of the inputs. Future work would also focus on representing the environment in
terms of alternate colour models such as HSV, instead of the traditional RGB
model used thus far. Besides this, there is a need to increase the robustness of
these controllers by minimizing the disparity in the feature extraction capabili-
ties across the three channels. On the whole however, the findings of this paper
strengthen the potential of using these controllers as a viable alternative road-
following solution and further efforts would focus on transferring these evolved
controllers to a mobile robotic platform.
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