
July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

To appear in Applied Artificial Intelligence
Vol. 00, No. 00, Month 20XX, 1–27

Context-aware Systems Architecture (CaSA)

Juan C. Augustoa∗ and Mario J. Quindeb and Chimezie L. Oguegoa and José Giménez Manuela

a Research Group on Development of Intelligent Environments, Department of Computer Science,

Middlesex University, London, UK; b Faculty of Engineering, University of Piura, Perú

(Received 00 Month 20XX; accepted 00 Month 20XX)

Context-aware systems are becoming increasingly mainstream as more and more technology allows real-
time collection of daily life data and it is more and more affordable to provide useful services to citizens
in various situations of need. However, developers in this field are not well supported. Naturally we
have inherited a number of methods and tools from past software engineering efforts to create previous
computing systems. However the most recent generation of systems dominated by sensing supported
context-awareness integrating a variety of data sources and with a higher expectation of personalized
services delivered at the right time, place and in the right form, are not well supported. Developers need
more guidance and support to pinpoint those valuable contexts and to work out ways of detecting them
and activating the right services associated with these contexts. Our community has reported on various
systems they created however not much is emerging in a way of a methodology, a standard, a transferable
body of advice and guidance which can help teams next time they need to develop a new system. In
this article we explain a couple of complementary methodologies which we have tried and tested through
development of different context-aware projects. We argue these are of practical usefulness and provide
an initial valid point of discussion for our community to create evolved versions of these which can be
tested more widely to identify good practice in the area.

Keywords: intelligent environments, system architecture, contexts, context-awareness, context testing,
context validation.

1. Introduction

Our society has recently witnessed a significant increase in technology supported tools in a diver-
sity of areas with direct impact in our daily lives. Various areas of business, industry, technology
and science have evolved enough to facilitate these developments. Amongst those areas we can
highlight a more IT aware population, optimization of technology production, the exploration of
sensing, and maturity of various computing related subfields. Many new areas appeared within
Computer Science around and after the turn of the century: Pervasive Computing and Commu-
nications (Percomm) and Ubiquitous Computing (Ubicomp) Weiser (1991), Internet of Things
(IoT) Atzori et al. (2010), Ambient Intelligence (AmI) Aarts and Roovers (2003), and Intelligent
Environments (IE) Augusto et al. (2013). All these have in common the use of new sensing technol-
ogy distributed in small devices which are used to design more context-sensitive services. Although
the most abundant of such systems are ‘apps’ in mobile phones, there is a wide range of larger
scale sensorized systems: smart homes, smart offices, smart farming, automated production plants,
modern cars, and modern passenger planes are just some examples of the diversity and different
scale of such systems.

These systems are made of a complex combination of infrastructure subsystems, typically, there
are sensors, a network which links them, data bases, interfaces, human users and, of course, software

∗Corresponding author. Email: j.augusto@mdx.ac.uk

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

at various levels performing low or high level functions. All of these hopefully reasonably combined
so that the expected services are delivered in good time and form. Because of the diversity of
applications, environments, infrastructure, and absence of standards, or at least accepted good
practice principles, these systems are made in a somehow ad-hoc manner. Part of our contribution
to the developing community is in the form of methodologies based on our experience of creating
systems of this nature. A key common concept in all these systems is they more or less explicitly
rely on the notion of contexts and context-awareness Augusto et al. (2017). This reliance on the
notion of context and on system context-aware driven reactions have constantly growing in rele-
vance since the turn of this century. Systems are progressively becoming more personal and more
personalized, expectations have changed, engineering techniques need to adapt to these changes so
that development teams have better support to engineer these new generations of systems. Most of
the ‘tried and tested’ engineering techniques can be reused to some extent. However we can build
chips with ‘hammer and chisel’, we need to make the methods and tools more efficient for these
new generation of products. But how? When we searched for help from our reference communities
to adopt and reuse even something as basic as a context-aware architecture we found a shortage
of guidance and help. Not only there is no widely accepted standard context-aware architecture,
it is even hard to find one which can be easily adapted to the various similar yet different systems
based on the notions of contexts and context-awareness. What we did, and report in this study,
is to compile and investigate a number of previous suggestions from our scientific community in
relation to context processing within our technical area and to select what we considered various
useful features complemented with our long experience of building systems in this area. The result
is an architecture which we feel should be relatable by teams working in the area and provides
both a guidance for those starting as a safe departing point as well as for more experienced teams
to be able to adapt it to different systems as it encapsulates a number of building blocks which are
application independent.

In the next section we provide a survey covering various relevant systems and we outline our
current Context-aware Systems Architecture (CaSA). We then relate how that conceptual tool
is integrated to more general and other more specific methods we use to support our work on
Context-aware Systems. One underlying principle is our emphasis on human-centric systems. The
other important principle is that contexts are essential building blocks which differentiate systems
in this area with those in other fields of Computer Science. So we show in Section 3 how the
new proposed architecture links effectively with well established stages of traditional development
processes such as requirements, testing and validation. We also want our methods and tools to
be effective, and that includes to be easily understood and applied. Hence we include in Section
four detailed descriptions of how the Architecture influenced Requirements, testing and validation
helped us develop some of our deployed projects.

2. Context-aware Systems

Context-awareness is an essential aspect of Intelligent Environments. These environments are sen-
sitive to specific circumstances occuring in in certain ways, in which case they are supposed to
deliver certain services in certain manner. Contexts are the key to effective systems, their success
is directly proportional to their ’context-awareness’:

Context: “the information which is directly relevant to characterise a situation of interest to the
stakeholders of a system”.
Context-awareness: “the ability of a system to use contextual information in order to tailor its services
so that they are more useful to the stakeholders because they directly relate to their preferences and
needs”.

Consistently with our user-centred approach we differentiate our approach from other more system-

2

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

oriented and data-oriented approaches Abowd et al. (1999) by emphasizing the humans which are
supposed to benefit with the system.

Given the key role of contexts, one natural follow up question is: How to organize context
processing within a system? Scientists have tried a number of approaches. Most of them ad-hoc to
address the implementation of specific applications using the notion of context as their development
strategy. However, the diversity of these proposals and the lack of generality in their approach
meant we often found them unsatisfactory as a guide to develop other systems which depart from
that specific example they provided. With the spirit of obtaining a more useful guide for ourselves
and also to share a more useful recipe with our community we created a new approach as a
symbiosis of several of these previous context-processing architectures. We do not claim perfection,
however, we believe it provides a reasonable start to support more discussions on how context-aware
architectures can work more effectively.

We reviewed all publications we could found by searching in journals and conference proceedings
with the keywords, ”context” AND ”architecture” as well as ”context-awareness” AND ”architec-
ture”. This included several entire proceedings of several conferences in the area (CONTEXT, IE,
AmI, PerComm, Ubicomp, ICCASA, etc.). We have been working in this area for more than a
decade and we are familiar with the main publication venues. Context and context-awareness have
attracted significant attention however we found very little in the way of system architectures for
context-aware systems. Most of what we found, as we explain further up, were reports of system
implementations and little in the way of architectures, the architectures reported were ad-hoc and
hard to generalize and/or reuse. Below we summarize what we found. Coverage is not exhaustive,
however this is a very representative selection of the 18 publications which we found more relevant,
most of them were published in conferences.

Time wise we noticed there were more discussions about this a decade ago, however there was
no standard or reference emerging from that process, and then fewer proposals more recently.
Part of that more intensive discussion about context-awareness architectures was purely focused
specifically on middleware for context-awareness Li et al. (2015), however here we are addressing
the wider picture of context acquisition, detection and use.

Ayed et al. Ayed et al. (2007) provide a higher level view of the processing of contexts within a
system. From here we liked the identification of characteristics which identified contexts of interest.
Park et al. Park et al. (2007) presents a security focus, however, one generic feature we found useful
is “context aggregation”. Chaker et al. Chaker et al. (2011) highlighted the value of structuring rules
into higher level concepts in the system representation they called ‘situations’. Other approaches
considered specific well-known conceptual tools pre-existing in Computer Science which they then
extended with concept elements. For example, Zacarias et al. Zacarias et al. (2007) offered an
architecture which is ‘software-agent’-centric and placed context related elements within that.
There has been also a modelling of the contextual processes through Petri Nets, see Neumann et al.
(2011). A number of application dependent architectures have been also published whilst describing
specific system implementations Allegre et al. (2013); Furno and Zimeo (2013); Papadopoulou et al.
(2013); Peko et al. (2014); Souabni et al. (2014). There has been also some interesting work on so-
called ‘contextual graphs’, Tahir and Brézillon (2013), and on hierarchy of ontologies, Kolbe et al.
(2017), to structure context knowledge and its processing. These later work being more focused on
knowledge organization rather than our focus on how the overall system infrastructure can be used
to support and guide the consideration of contexts. Different specific architectures were proposed
for specific applications and at a much lower level of task management, Hassani et al. (2017) and
Hassani et al. (2017), more akin to middleware architectures.

A recently relevant publication by Perera et al. (2014) mentioned context categories, although
the categorization is only binary and the context dimensions are four fixed ones and we believe
this is an oversimplification. A circular process of context acquisition, modelling, reasoning and
dissemination/distribution offers an overall context lifecycle, although, again may be an idealized
way which does not take into account for example existing, mutated and newly acquired contexts,

3

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

requiring different associated processes. These are then combined in a sort of declarative table of
how contexts and associated processes are classified. A more procedural account could be a good
complement. This was more the intention in the architecture presented at Kramer et al. (2014)
which was generic and used to develop services in a specific area of Ambient Intelligence. This was
then explained at a lower level in Kramer and Augusto (2017).

Out of the analysis of all those interesting developments we noticed not standard or architecture
general enough to be easily adapted and reused came out so far, hence we set up to develop an
architecture which generalize what we considered to be their best features and also complements
previous efforts by highlighting certain dimensions we consider important in the context-awareness
systems development. Taking into account all those previous useful exercises and our own contin-
uous experience we arrived at an architecture which is consistent with our user-centred approach
and is adaptable to systems of varying complexity.

One important departing point for our proposal is that each Intelligent Environment is realized
in a system and the resources of that system are used to make the services related to specific
contexts to be delivered. Basically, in IE we are mostly limited to the contexts we can detect. In
our case we based our approach in our Smart Environments Architecture SEArch, see Augusto
et al. (2020) for a complete description, outlined in Figure 5 which makes explicit the algorithms
and other resources our system can use. In summary, the overall SEArch architecture highlights
the input of the system on the left and middle top and the output on the righth hand side. At
its core there are various resources which cooperate and can be used depending on the problem
at hand. There is a Machine Learning cluster in the centre (LFPUBS and transfer learning). An
Automated Reasoning cluster in the lower centre (includes real time monotonic languages such as
C and M as well as an inconsistency handling Argumentation System). These resource clusters
is also complemented by hybrid approaches such as Case-based Reasoning (CBR). The system is
personalized and aligned with the users’ priorities through user profiles, which is represented in the
upper left side of the diagram. Most importantly for this article, acting as a first important nexus
between the input (especially sensor data streams) and the learning and reasoning clusters is the
context-awareness module which we describe below in more detail and allows a first identification
understanding of the world and a decision on which learning and reasoning resources are required
to act appropriately.

The elements of SEArch help focus the attention of our developers on how the context will be
realized in practice: (a) which system components and resources are available to be used, (b) which
of those are more relevant on making the envisioned context work. Of course other teams with
different resources will have a different SEArch archtecture diagram and a different list of sensors
and they can adapt this figure to their infrastructure as well as the other steps we explain further
down. However, at least now we are converging into a process which teams can adopt as a general
recipe and easily adapt to their specific infrastructure. Our Context-aware System Architecture
(CaSA) is shown in Figure 6. The higher levels are focused on “context identification”: at the top the
relevant contexts are determined based on user feedback. Then developers need to create a strategy
for context detection in real-time. Based on that the “collectors” are decided, i.e., which part of the
infrastructure, will be required. In our area Sensing equipment will make a substantial part of the
collectors. Initially a decision will be made about the collector type, then about how many, where
to place them, etc. Once the collectors retrieve information they are used to detect contexts in real-
time. This process sometimes requires some “intra-context” inferences, and sometimes contexts can
also be aggregated to form higher level contexts and do “inter-contexts” reasoning. For example,
intra-context activities may require to recognize some of the possible combinations of smaller micro
activities which allow to have certainty that a person is geting up from bed, not only getting the
body physically detached from the bed but the act of getting up in the morning to go to work. This
activity put together with other typical actions such as going to the bathroom and going to the
kitchen can form a higher level context of breakfast-time, this one with other signs of leaving the
building, at a certain time of a certain day of the week, can match another associated context of

4

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

“leaving for work’. Finally once meaningful contexts have been detected they are related to the rest
of the knowledge management part of the system (more general reasoning and learning) to produce
changes in the environment which are fed back to the users. For example, matching the breakfast
routine could trigger the automated turning of the kettle on and bringing a report on city air
quality for a user affected by asthma. The CaSA architecture description below is minimalistic as
it is designed to capture the essential aspects of context handling at a level which is generic enough
for other projects to adopt and refine ad ‘libitum’ according to their needs. It is also amenable of
extensions with concepts deemed to be generic enough, now we have a tool that other projects can
relate to, previous architectures would not have resisted specialization without significant alteration
to the point of no recognition. Contexts are an important part of our system development as we
know they really decide how responsive is the system to what the main beneficiaries care about and
expect from the system, the behaviours which make users have the feeling the system is intelligently
looking after their interests and improving their life experience. So we use contexts in a practical
sense to guide our system testing and validation through our COATI methodology (Augusto et al.,
2019).

To explain succinctly the theoretical framework we operate on we start by assuming a set of
contexts C = {C1...Cn, c©} which have been gathered from interaction with stakeholders. Here |C|
is finite and practically “manageable” given there are only a number of specific situations we want
to secure specific system behaviours for. We assume a default context c©which encapsulates all
other system situations which are outside the perceived more useful contexts {C1...Cn}, that is,
c©is ‘everything else’ from a theoretical stance. Notice each of these contexts are actually clusters of

system situations. For example if we consider light automation in a room by detecting movement of
a person, then all movements which come into the reaching zone of the sensor and are higher of the
threshold of sensitivity of that sensor will be referred to by that context. The person can move in
various different ways, at different speeds, in different places, for different reasons. Different contexts
can be more specific, however usually contexts Ci are labels for a combination of conditions which
can be satisfied in more than one way. If we consider examples such as the one mentioned above
for light automation, and if we consider all combination of body positions within a granularity of
say 1 cm in any ordinary room we are already considering an amazing number of small system
variations. Also a Context Ci of interest to the final user can be in turn sub-organized in a sequence
of, or formed by, Context Features CF1, ...CFz. Each of these in turn can form a context on its own
for the developer or the system point of view, forming a hierarchy of contexts at different levels of
abstraction. Each context will require a number of resources from the infrastructure to be present
for the context to happen, we call these elements Enablers.

3. Engineering Context-Aware Systems

Our vision of context-aware systems engineering from an ICT/CS perspective is user-centred, in
the wider sense, as in system stakeholders. In the specific technical areas we are considering,
contexts are considered the ‘building bricks’ of systems, and our emphasis and interest are in
that these systems are developed by humans for humans. Even if the system is deployed in the
middle of the wilderness, it is in the vast majority of cases to ultimately benefit humankind. Taking
that as a fundamental point, we aligned our work to explicitly recognize this and to use it as an
important guide and inspiration. After many years of work in this area a picture started to emerge
in the process which not only took into consideration this user-centred aspect, also other distinctive
features we put in our area such as the emphasis on the sensing enabling technology, its acceptability
issues, and the real world physical environment validations. This led to the User-centred Intelligent
Environments Development Process, Figure 7. It is a flexible iterative strategy which is centred
on stakeholders involvement (starting with the stronger arrow in the upper right corner) and have
smaller specialized loops which can be used with different level of intensity at different stages of the

5

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

project. These smaller loops centre more on design (right hand side of figure), development (lower
centre), and validation (left hand side). For more detailed explanation and extensive explanation
of its use in projects see Augusto (2014) and Augusto et al. (2018).

There is a useful complementarity in between the three system views we have presented so far.
Whilst Figure 5 shows the hybrid software-hardware infrastructure, and Figure 6 ‘zooms in’ the
context module of that infrastructure, Figure 7 shows a higher level strategy of how we use the
resources available in the infrastructure through a series of iterations until a product is obtained.
Now we illustrate with a number of projects which have been recently developed in our lab how some
aspects of the context-aware features are tracked through the system. These examples, shows at the
same time what is common process for all projects and at the same time how the methodology is
both specific enough to provide practical usefulness and generic enough to accommodate a diversity
of applications.

3.1. Requirements

We assume there is a number of requirements Ri1...Rir associated with each context Ci. As we ex-
plained before, each context defines actually a number of practical combinations. We leave to the
developing team to decide the level of granularity of those contexts and associated sub-contexts. Ac-
cording to established traditions these will be described through a number of requirements. Again,
for this process we have our own recipes which we use to secure alignment between requirements
and user expectations Evans et al. (2014).

3.2. Testing

The knowledge of the real contexts leads to the understanding of the basic components of the
system and the range of conditions they have to satisfy to enable detection of a context Ci. We
choose to highlight these conditions in a table, given it summarizes in a concise way the key factors
in the process of context identification. This process is dependent on the infrastructure being used,
in our case we base our development in the SEArch system architecture hence our testing guiding
tables are influenced by it as well as the hardware used in the application. There is a generic table
offered as guidance to teams (Augusto et al., 2019) and we offer three examples of its use in the
next section.

Different tables can emphasize on different aspects of the system architecture. For example Secu-
rity can require its own ad-hoc table. The table can be used to highlight a minimum configuration
required for a context to work. One element failing should lead to the context not giving the
expected outcome(s). This can be used to both explore combinations which exemplifies different
ways to satisfy or to fail to satisfy a context detection, or the explore optimizations of a context
detection by removing components or changing conditions associated with them. Noted benefits
from using the template table are:

• The linking of the higher level context and the lower level infrastructure elements involved
in the context realization.
• The column ‘Assumption Initial Values’ helps to think about how the system should behave

in case these conditions are not met. For instance, if the mobile application is installed but the
personalization has not been done by the user yet, then it is convenient to push a notification
asking the user to personalize it.
• It highlights issues related to the real infrastructure not obvious in a development laboratory

environment. Hence, it eases the creation of testing cases that expose the solution to less
controlled environments.

6

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

3.3. Validation

The interplay between testing and validation is one that has not been exploited well yet in our
area. Although there is a relation between both in IEs, given the physical presence of systems
in the real world (imagine a smart home, a smart office, or an autonomous car), both emphasize
different aspects of the interplay between software and hardware and give priorities to different
stakeholders. For example, a failing validation experiment can point to the failure of a “Context
Feature” CFi, which focuses attention on a column of the table for that context. Depending on
the inability of the system observed, it may also focus the attention to those columns where the
associated “Enablers” Ej did not perform as expected. This is typically noticed as a mismatch in
the real environment between expected (Bi) and observed (Oi) system behaviors:

If in context Ci: Oi <> Bi

Then trace back implementation of failing CFi to ill-performing Ej

EndIf

So far we have presented the need for a generic context-awareness system architecture and we
created one inspired in the best elements of previous project specific attempts plus other concepts
based on our experience and on human centric priorities we suscribe too. Also we have explained
associated important concepts (UC-IEDP and SEArch) which help the reader to understand the
architecture we created and used was not an isolated tool. In addition to having a deeper under-
standing on how these type of systems work, we also mentioned we were interested in practical
benefits of having clarified these concepts and having built strategies based on them. One of these
benefits we had during development is that it helped guiding the connection between requirements,
testing and validation. We illustrate this in the next section with three projects which were devel-
oped concurrently and allowed us to test and correct initial approaches of the concepts described
above.

4. Illustration Through Case Studies

The previous section explained the conceptual tools and strategies we follow to put special attention
on how we address contexts and context-awareness. Whilst SEArch tells us what infrastructure to
use, CaSA tell us how these resources cooperate and COATI tables highlight the critical conditions
which are required for context detection. All this as part of a bigger project development life cycle
which is user-centred and the segment of that process we are focusing on here is the connection
between design and testing (also with an impact on guiding validation). To illustrate how this
works at a practical level we present some of the projects our research team has developed and
validated with support of the Smart Spaces Lab at Hendon Campus1. For each of them we provide
a description of the system being developed, some of the contexts which were considered and how
the concepts and methods described above where applied. Figure 8 below shows the technology
installed in the Smart Home environment which was used as support for the development of the
scenarios described further down.

4.1. ADL coaching

Ambient Assisted Living offers many solutions addressed to People living with Dementia (PwD).
Many approaches are based on enhancing their autonomy by detecting and supporting the Activities
Daily Living (ADL) such as (Lazarou, et al., 2016) or (Stucki, et al., 2014) show. These works use
different sort of sensors for activity recognition (AR). These solutions within dementia provide a

1http://ie.cs.mdx.ac.uk/smart-spaces-lab/

7

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

track of user’s activities, which is valuable to understand and diagnose the impairment based on
abnormal users patterns. That also helps health professionals to adjust the user’s treatments or
interventions for the user. Although these solutions claim enhancing the users’ autonomy, they still
omit PwD as the main beneficiary and show a strong dependence on secondary users.

The AnAbEL system approach focuses on primary users. It is integrated within the SEArch
architecture (Augusto et al, 2019). The system detects user’s actions in the house through non-
intrusive sensors and infers the activities using MReasoner. Once it detects an activity, AnAbEL
assesses it as usual/unusual or healthy/unhealthy regarding the context defined by user parameters
in the interface. If the activity is unusual the system warns users about their behaviour trying to
entice the behaviour. In case the user goes on with the behaviour since the system still is checking
the activities the system alert caregivers allowing them to take a proper action.

Among the ADLs, AnAbEL focuses on sleeping, eating, wandering and elopement (leaving the
house by no reason). The elopement is a common problem in PwD. The person feels confusion or
anxiety and tries to go out of the house. The next testing case focuses on this behaviour.

Requirements that led to the context description table: Determining activities or behaviours
using non-intrusive sensors in a complicate task to test, since these techniques do not use cameras
that allow checking what is happening certainly. The activities recognition using non-intrusive
devices implies an IoT deployment around the house such as motion, reed, pressure or energy
sensors.

The functional requirements met for all activities and behaviours related to the context are:

• Sending a warning to the user’s mobile when the activity is assessed as unusual after the
threshold time set in the interface to warn the user has elapsed.
• Sending an alert to caregivers to inform about the situation after the threshold time set in

the interface to alert the caregiver has elapsed.
• It highlights issues related to the real infrastructure not obvious in a development laboratory

environment. Hence, it eases the creation of testing cases that expose the solution to less
controlled environments.

Since this context explanation includes abbreviation of some parameters from user’s interface, next
they are explained:

• Ta,Tb: Represents the time of an schedule. (Ta,Tb) describes the period between an initial
time Ta and final Tb request from the interface. For example, Ta = 12 : 00 and Tb = 19 : 00
represent the period between 12 PM and 7 PM when usually the user leaves the house. Out
of this time, the activity could be considered unusual and therefore risky.
• Tau: This time represents the elapse of time the system waits once detect the behaviour until

it takes action and alerts the user.
• Tac: Time the system wait to alert a caregiver once the behaviour is detected. If the user does

not amend the behaviour.

The main door reed sensor and corridor motion sensor close to the main door trigger the “goOut”
state. We also define the action “goIn” to determine when the user is coming back into the house.
Since both actions use the same sensors, the order when one is detected regards the other is
important. We define “goOut”: “first the movement is detected inside the house and later the door
is opened”. On the contrary, we define “goIn” as: “first the door is opened and later movement
is detected inside the house”. Initially, we estimated 2 seconds was enough between actions. Now,
the system detects the activity and assesses with the timetables (Ta,Tb). As the user is leaving the
house at improper time, the user’s mobile receives the warning about that after the time set in the
interface has elapsed (Tau).

On the contrary, we define “goIn” as: “first the door is opened and later movement is detected
inside the house”. Initially, we estimated 2 seconds was enough between actions. Now, the system

8

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

Table 1.: Context Samples for ADLs Scenario

Context Requirements Context Context feature
Label description being tested
EloCF1 System notifies

the user when he
leaves the house
at unusual time.

The user leaves
the house during
a time out of
the timetables
configured in the
interface. Pos-
sible elopement
detected.

Whether the action occurs during
the time considered unusual the
users mobile app receive an alert
asking about the situation along the
list of response to select. The sys-
tem saves the action “goOut” in the
server.

EloCF2 System notifies
the caregivers
whether the user
does not come
back.

The user does not
get back home
after receive the
alert and after
the time set in
interface to alert
caregiver passes.

According to the time to alert the
caregivers after elopement is de-
tected whether the user is not com-
ing back to home, the caregiver re-
ceive an alert in the APP.

EloCF3 The user amends
the behaviour and
comes back into
the house. No ac-
tion occurs.

The user goes
back home after
receive the alert
and before the
selected time to
alert caregiver
passes.

The system detects the user is go-
ing in the house. It does not sent
any messages. The system save the
action “goin” in the server.

detects the activity and assesses with the timetables. As the user is leaving the house at improper
time, the user’s mobile receive the warning about that after the time Tau set in the interface has
elapsed.

Testing elopement context feature 1 (EloCF1): “If the user leaves the house at a time (Td) during
a period [Ta-Tb] configured in the user’s interface, then notifying the user at Tau (seconds to alert
the user once this behaviour is detected) after the ‘goOut’ action is detected”. In case the user
stays out, the system does not detect “goIn” action and then sends a message to user’s mobile
application asking about the situation.

Testing elopement context feature 2 (EloCF2): “Whether user has leaved the house at a time
(Td) during a period [Ta-Tb] and is not coming back then notify caregiver Tac seconds after the
‘goOut’ action is detected”. On the other hand, whether the user is persuaded by the message and
goes back, the caregiver is not alerted. However the action “goIn” is save in the server.

Testing elopement context feature 3 (EloCF3): “The user has gone back into the house ‘goIn’
before Tac seconds elapse after the ‘goOut’ action is detected”. These contexts are listed in Table 1
associated with the requirements and context features to be tested in each context.

Test 1 : Trying the initial configuration for elopement EloCF1, as Table 4 shows in column Test1,
gives an undesirable outcome compared to the expected one. Checking the enablers that also are
not having the expected outcomes, we conclude that the problem is the action “goOut” that is not
detected since the value of sensor was not triggering as we expected. That fact helps to discover
that the movement is detected earlier than we though. Whether motion sensor reset to 0 (by default
5 seconds later) when the user opens the doors and the motion sensor has changed the state at
least one second ago, there is not action detected. From here, we concluded that the definition of
rule “goOut” was not precise, so we modified “goOut” rule by defining as “if during at least the

9

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

last 3 seconds the motion sensor has been activated” as the code previously explained to detect
elopement behaviour. Also, the time operators used in the rule were changed to adapt the rule to
the new suggestion, although here this is not explained, the above explanation summarise well the
process.

Test 2 : showing the expected outcome in several attempts as the table shows, so that the new
configuration was adopted.

4.2. Incorporating User Preferences

Ambient Assisted Living (AAL) according to Ref. McNaull et al. (2014) provides subjects with
required assistance, which includes monitoring their activities using AAL systems that will allow
detection of undesired circumstances they might suffer. Such system can be created with current
technology based on wireless sensors Mart́ınez Madrid et al. (2013). For instance, movement within
a room can be perceived by the system using Passive Infrared Sensors (PIR).

Some PIR sensor system, for example, can respond to human movement Mart́ınez Madrid et al.
(2013), as they are typically used at offices which will turn lights ‘off’ when there is no movement
after some time. However, this is unhelpful when one stays still absorbed in reading and suddenly
the lights go off, breaking the concentration and forcing the wave of arm(s) to turn lights back on
again. Conversely, as soon as movement is detected the system brings the lights back on. This is
fine for an office though not for a bedroom, as moving during the night will cause the lights to go
‘on’ and ‘off’ intermittently several times.

There are two problems with the above type of systems which the present work has aimed to
address Oguego et al. (2018). One is that those office systems are set in such a way that (whilst not
impossible to change), modifying the waiting time is usually beyond most typical users’ capabilities.
The other problem is that the system’s notion of context is very limited. The only context they
recognize is time without movement.

The research into these systems aims at providing ways for users to easily personalize the be-
haviour of the system through parameters which represent their preferences. The parameters which
can facilitate this personalization depend on the technology available in a given environment. The
aim was to keep the system functionality, the technology and the type of personalization simple,
and demonstrate that the system is intelligent and capable enough to detect whether the person
is sleeping or not and whether lights should be turned ‘on’ or ‘off’ in a sensible and flexible way.
Providing such system involved series of testing along the way, and some of the test carried out
are discussed here.

Requirements that led to the context description table: some requirements were crucial in testing
the personalised system, so as to ensure it has the ability to interact among user, system and the
real world.

• The User’s preference interface: This the user uses to prioritise their preference ranking. The
preference ranking order goes from 1-10, with 1 being the lowest and 10 being the highest.
• Informal Scenarios: Various informal scenarios were generated to test with the system and

see how the home will react when the user performs certain activities. For instance is asleep
during night and the system keeps the lights on or turn them off depending on the user
preference priority.
• Reasoning System: A reasoning system capable of detecting conflicting situations (Hybrid

System) and a smart hub (Vera) that accepts the request to query to either check or modify
the state of the sensors connected to it.

The requirements in the previous section have been used to describe the contexts in Table 2 below.
These contexts features were tested as part of the process, and the table shows the details of each
context, illustrating problem description mentioned earlier.

10

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

Table 2.: Context Samples for User Preferences Management

Context Requirements Context Context feature
Label description being tested
C1 The system no-

tifies the user on
the content of a
product, and ad-
vice accordingly
based on prefer-
ence priority set
by the user.

The reasoning
system uses pref-
erences managed
by the user to in-
form them if they
should consume
their favourite
cake or not.

When the system is not sure if it
should advise a user to buy his/her
favourite chocolate cake and the
user is also known to be diabetic,
but base on the priority assigned by
the user to their preferences (Health
over. Pleasure), the system advises
the user accordingly not buy the
product.

C2 Automating the
lighting aspect
of the house or
the user based on
preferences set by
the user.

Activity of the
user going to bed
and wants the
house to keep the
bedroom light
‘on’ when they
are asleep.

The bedroom light can be “on” or
“off” when user is sleeping during
the night. However, in the case, the
user prefers the light to be ‘off’ when
he is asleep during the night. Then
he assigns higher priority to “Com-
fort” over “Light”, which allows the
system to turn the light “off” after
detecting that the user has gone to
bed.

C3 The system turns
off the lights on
behalf of the user
after sometime of
not detecting any
movement in the
house.

When user is not
at home, and
there is not ac-
tivity around, the
house assumes
there is no one in
the house.

When no movement is detected
around the house for certain period
of time, and there is not pressure on
the bed pad, the Hybrid System be-
lieves no one is the house, and if the
lights were “on”, the system turns
all the lights “off”.

Explanation of Contexts detection shown in Table 2:

(1) The context label C1 was detected based on the user configuration in prioritizing their pref-
erences. For instance if a user wants the system to alert them about the sugar content of
their favourite chocolate cake and wants the system to advise them to purchase the cake or
not, they will have to rank their preferences between “Health” and “Pleasure”. If the user
is diabetic and wants to avoid sugar intake, he/she has to assign a higher priority to their
“health” preference over “pleasure”. The reasoning system will use this preference ranking
to advise the user not to purchase a cake if it contains sugar.

(2) Context label C2 is also based on the user’s preference ranking, but within a smart home, as
the user needs to prioritize their preferences between ”Light” and “Comfort”. In this case,
the user wants the comfort of keeping the lights ‘off’ when he/she is asleep during the night,
they have now rank their preference of “Comfort”, higher than “Light”. When the user is on
bed and there is no movement detected in bedroom, the system automatically switches ‘off’
the bedroom light after sometime. This context has been further emphasised in Table 5.

(3) The same way no movement has been detected in the bedroom over a period of time in C2,
context label C3 has that similar attribute as the system does the same detection check to
know if there is movement in the entire house. But in this situation, there are no conflicting
preferences, as the users has configured their preferences to inform the system to switch ‘off’
all the lights in the house, when no movement is detected around the house.

11

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

Table 5 depicts the testing of one of the context in relation to C2, which indicate how the house
should react when user performs certain activities of going to bed. An interface was also developed
to collect and manage user’s preferences (‘Light’ or ‘Comfort’ for instance) to measure how the
system should react in the smart home especially when there are complexities of what the house
should do for the user.

There are three contexts in Table 2, however, the test table emphasized on one of the contexts
(C2), Here, the user is known to be in bed and possibly be asleep from 10 PM to 5:30 AM. It is
also known that the user lives alone, can decide to prefer the lights ‘off’ when he is asleep during
these times to provide more comfort compare to having the lights ‘on’ when he is asleep. So the
user prioritize his preference of Comfort over Light, if for any reason he wants the bedroom light
‘on” while he is asleep, he will have to set the preference of “Light” to be higher than “Comfort”.

Test 1 : First test was not successful. This failed because there were too many request to Vera,
and this caused some delays, which made the bedroom light not to react instantly. An investigation
on the increasing load and delay led to uncovering a problem with the way that Vera was contacted
by the main Java thread running the MReasoner. The main Java thread running the MReasoner
was updated, Vera system restarted and then the system was working effectively.

Test 2 : It was successful as the smart hub (Vera) was fresh in accepting to query and modifying
the state of the sensors/actuators connected to it via its own Wi-Fi network.

4.3. Assisting users with respiratory health conditions

A recent literature survey on context-aware solutions for asthma management by Quinde et al.
(2018) shows, among other outcomes, a lack of context-aware solutions supporting the personal-
isation of asthma management. This is important given the fact that personalisation is the key
to address the heterogeneity of asthma, which makes people suffering from this condition to have
different triggers provoking their attacks, and to experience different respiratory symptoms when
these attack occur.

A system allowing users to personalise their asthma management process has been under de-
velopment, see Quinde et al. (2018),Quinde et al. (2019), and Quinde et al. (2019), and provides
assistance as a context-aware mobile application. The system allows users to personalise the fea-
tures of the prototype considering the specific characteristics of their asthma management process
and these are then closely linked to contexts in the system. Some of these are:

(1) Sending alerts to people with asthma when the system finds a hazardous situations based on
the configuration made by the user. For instance, if the user knows that they are affected by
low temperature they can set up the system for it to alert them when the outdoor temperature
is below 15◦ C.

(2) Sending alerts to the people chosen by the user when the user confirms that is having an
emergency. For instance, if the user chooses to contact their partner in case of emergency,
then the system will notify this person when the user activates the emergency notification
protocol, which is activated by the user there is an emergency.

(3) Detecting potential hazards that may affect a person with asthma that does not know their
triggers properly. In this case, the person cannot not set the monitoring control limits of the
system because they does not know what to monitor. Thus, the system can provide support
by using previous health deterioration experiences of the person with asthma in order to
predict situations that may affect them.

It is important to highlight that the system not only supports people with asthma that know
what to monitor, but also those who do not know what affect them yet. This uncertainty stage
is common in, for example, recently-diagnosed people with asthma. More information about these
and more requirements of the system, and how the U-CIEDP Augusto et al. (2018) was used to

12

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

Table 3.: Context Samples for Asthma Management

Context Requirements Context Context feature
Label description being tested
C1 Sending alerts to

the PwA when
the system finds a
hazard based on
the configuration
made by the user.

Potential environ-
mental hazards
affecting a person
with asthma
that knows their
triggers.

Notifying the PwA when the condi-
tions may provoke an asthma attack
on them.

C2 Sending alerts to
the people cho-
sen by the user
when they con-
firm that are hav-
ing an emergency.

The people to
contact by a
person with
asthma in case of
emergency.

Notifying people chosen to be con-
tacted by the person with asthma
in case of emergency (stakeholders).

C3 Detecting po-
tential hazards
that may affect
a PwA that does
not know their
triggers properly.

Potential hazards
affecting a person
with asthma that
does not know
their triggers.

Notifying a PwA not knowing their
triggers that there is a potential haz-
ard considering previous hazardous
experiences.

define these requirements can be found in: see Quinde et al. (2018), Quinde et al. (2018), Quinde
et al. (2019), and Quinde et al. (2019),.

Requirements that led to the context description table: The requirements shown above were used
as the foundation to describe the contexts and context features that needed to be tested as part
of the development process. Table 3 shows the contexts and context features that were chosen to
illustrate this case study.

The contexts described in Table 3 were obtained from the requirements of the system. Because of
this, it is important to explain how these contexts are detected in order to understand the features
of the system better and how they should be tested.

The detection of context C1 is based on the configuration made by a user that knows what their
triggers and the monitoring indicators (e.g. temperature, humidity, PM10, etc.) that are linked to
their triggers. The user sets up the system to alert them when the indicators are below or above
their control limits at some specific places of interest that may be indoors or outdoors (e.g. home,
nearby work). The system uses this configuration in order to monitor the environment and detect
hazards.

Context C2 is also defined by a previous configuration done by the user who chooses the people
that they wish to contact in case of emergency. The system allows the user to enter the details
of the people to contact and they preferred way of contacting each of them (SMS, notification on
their phones or email). Thus, when the user activates the emergency notification protocol, which
is activated manually and not automatically in order to avoid false positives, the system notify the
chosen people considering the configuration done by the user.

The least conventional way of detecting the contexts shown in Table 3 is the one for C3. In
this case, the system uses case-based reasoning in order to collect information about previous
experiences of the user that refer to normal or deteriorated health status. As the user, in this case,
does not know what to monitor, the system creates cases representing the environment the user
has been exposed to and the asthma health status (normal or deteriorated) associated with each
case. Thus, the system uses previous experiences (previous cases) to assess whether the current

13

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

environmental exposure of the user (new case) may be considered a hazard or not.
Table 6 is an application example of how the test table was used in this project to test the context

feature related to Context C1 that is needed to deliver one of the required services in this project.
Following CaSA to describe this application example, the context that matters is defined by the
personalisation made by the user. The system then automatically defines the collectors needed to
achieve the monitoring process requested by the user. These can be information gathered directly
from devices or through APIs providing the required information. The automation in selecting the
collectors and defining the intra/inter-context processing that is needed to achieve the monitoring
process required by the user, can be considered as the biggest context-aware reasoning challenge
of this project.

Table 6 illustrates three tests that were run until the expected outcome was achieved. The details
of the test that were not successful when the Context Feature referred to the Context C1 was tested
are shown below:

Test 1 : Unsuccessful. The system crashed when the user did not choose the indicators to be
monitored nor the control limits for the monitoring process. This failed test is reflected in the HCI
row of Table 6. This was fixed by showing a message to the user indicating the monitoring process
has to be configured before it could run. This message is shown when they open the personalisation
feature of the app. Changes were made in the Preferences row of Table 6.

Test 2 : Unsuccessful. The system assessed an old value for Outdoor Temperature as the Logical
sensor (API) used to gather this value malfunctioned. This failed test is reflected in the HCI
row of Table 6. This was fixed by making the system flexible enough to show details to the user
explaining that it is not capable of gathering and up-to-date value for any indicator related to a
sensor (physical or logical) that is malfunctioning. Changes were made in the HCI row of Table 6.

Test 3 : Successful. The expected outcomes of this test are considered satisfactory.

5. Discussion

The context-aware system architecture has of course all the core benefits of all system architectures
as a mental guide for how a system is composed and connected. It helps bring to a more conscious
level the understanding of a specific type of system. Our state of the art analysis, brought to our
attention all the previous work which seems to bear some resemblance to a context-aware oriented
architecture were actually quite partial, in terms of being ad hoc for a specific application, or
focusing on specific aspects such as security. Therefore one gain of CaSA is that now we have a
more generic and up to date conceptual tool to guide our understanding of systems in this area. We
do not claim perfection and we imagine it can be specialized and extended in different directions
to suit specific needs in different projects. The other important question arising from this work is
how CaSA helps at a practical level developers of context-aware applications? Here there are some
lessons learnt from our use.

One way the system helped was unforeseen. It helped with personalization. All systems can enjoy
with some attention to personalization, but for some this is really key for its success. Consider for
example the system which helped users with asthma. There is a high range of factors (usually
identified with places where these manifest more strongly) which can trigger symptoms. The level
of CaSA which highlights the system as a convergence of collectors and aggregators led naturally
to the consideration of sources of information which can be given different weights in the prediction
and diagnosis tasks based on the significance for different individuals.

In a similar way the CaSA architecture bring to the forefront of developers the holistic picture
of context processing the COATI tables highlight the infrastructure available and their enabling
capabilities in relation to the lower levels of the contexts the developers are trying to implement.
Some of these contexts require a trial and error process with a few iterations until context detection
is achieved. The combination of these two views at a higher and lower level of context process-

14

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

ing complement each other to provide a more realistic thinking about how to develop contexts.
The CaSA architecture is more about the software processing steps, the COATI table links the
infrastructure on one side with the goals through logical conditions.

The user-centred focus we put consistently in all our methods was also naturally beneficial, as
CaSA is focused on stakeholders it helped to connect naturally and from the very beginning the
needs and preferences of the stakeholders with the elements of the system feeding the decision
making, for example in the asthma project connecting the numerical answer for each of the five
questions of the Asthma Control Questionnaire (ACQ) with the classification process which guided
advice and warnings.

The intra-context reasoning section preceding the inter-context reasoning was also found to be
a useful guide in the organization of decision making processes from lower levels of data and into
higher reasoning levels of the system.

6. Conclusions

This article considered the concept of context and context-awareness from two complementary
perspectives. On one side we looked at high level system architectures for context-aware systems
and on another side we looked at the lower level process of finding logical connections between the
infrastructure available in a Smart Environment and the context trigger conditions.

We described how the CaSA architecture provides a unifying view to the current state of the
art systems and how the COATI methodology provides a link between testing and validation to
connect different processes often disconnected. These two methodologies can be used in isolation, we
also described they are complementary to an ecosystem of methodologies and tools we developed
to assist developers of smart environments, such as the SEArch architecture and the U-CIEDP
process.

One challenge when trying new concepts at a systems abstract level is how to test the adequacy of
the idea. Sometimes it takes years to have a sequence of projects where to try and test whether the
concepts work in real systems. We were fortunate to have a number of ongoing projects developing
concurrently in the last few years which allow refinement and maturity of the concepts. Although
we do not claim three projects is a safety threshold to confirm adequacy of a system architecture it
certainly provides a reasonable number of contexts and diversity of situations with three different
set of overlapping but different infrastructures.

So far one of the hindering aspects for these combination of methodologies to be more practical
and widely used is the lack of automated support. Part of our team is working now on automating
translations from one step to the next one and to facilitate traceability of contexts. We believe it is
now relevant that this initial approach is communicated and offered to our community for a more
extensive assessment.

We use tables as an easy and effective way to summarize the essential features which support
context detection, however this relationship may be better served with a more sophisticated graph-
ical interface which is more expressive, more visually appealing and perhaps identify aspects of the
process we cannot capture with the simple tables. This we think could be an interesting issue for
our community to explore.

Acknowledgement

Research reported in this article benefited enormously by the continuous feedback from var-
ious stakeholders in various projects. These include Asthma UK, the London Housing Net-
work, the Dementia Services of the London Boroughs of Enfield and Croydon, and the
EU/UK/CHISTERA funded project “Secure Accessibility for the Internet of Things (SUCCESS)”.

15

J
u

ly
3
0
,

2
0
2
0

A
p

p
lied

A
rtifi

cia
l

In
tellig

en
ce

”
C

a
S

A
-F

in
a
l

V
ersio

n
-2

0
”

Table 4.: Table Sample Tests for ADLs Scenario in Context EloCF1

Enablers
Assumptions
Initial values

Test 1 Test 2

Context
Description

The user leaves the house during a time out of the timetables configured in the interface. Possible elopement detected.

Expected
Outcome (s)

The user receives an alert in the mobile app asking about the activity/behaviour.

Real
Outcome (s)

The user does not receive an alert
The user receive an alert with
the proper message related to
the activity detected.

Main Door Motion sensor (MDM) No movement. MDM=0 MDM=1 MDM=1
Sensors

Main Door Reed sensor (MDR) Door is closed. MDR=0
MDR=1 two seconds after
MDM changed to one.

MDM=1 when in the last 3 seconds
MDM=1 has been one.

Network Z-wave (Vera hub)
Vera has connection with
the sensors involved.

There is a connection with MDM
and MDR, and updating their values.

There is an appropriate connection.

Preferences database
Timetable wherein the user
is usual leaves the house.

Preferences has been stored correctly. The times have been stored correctly.

Database
Monitoring database

Stores the context being
monitored.

Preferences has been loaded correctly. The times has been loaded correctly.

Connection with Sensors
and Server.

The tool connects with
Vera and MReasoner.

Reasoners
Context-Aware Reasoner

The tool is running with all
states loaded. The action
goOut, goIn,
elopementSchedule and
elopementAlertUser are false
detected and goIn is not
detected before
time alert user span (Tau)

The action goOut is false
(it is not detected).
The action goIn is false
(it is not detected).
elopementAlertUser is false.
elopementSchedule is false.

The action goOut is detected.
The action goIn is false
(it is not detected).
elopementAlertUser is true.
elopementSchedule is false.

HCI User mobile app GUI
The APP is running
without errors.

User has not received an alert
in app GUI.

User has received an alert
in app GUI.

Preferences User web settings GUI
The schedule was setting from
initial time Ta to final time Tb.

Users
Person with Dementia (PwD)/
Caregiver

The user leaves the house at a time
between Ta and Tb
and remains outside.

The user leaves the house at a
time between Ta and Tb
and remains outside.

16

J
u

ly
3
0
,

2
0
2
0

A
p

p
lied

A
rtifi

cia
l

In
tellig

en
ce

”
C

a
S

A
-F

in
a
l

V
ersio

n
-2

0
”

Table 5.: Sample Tests for User Preferences Scenario in Context C2

Enablers
Assumptions
Initial values

Test 1 Test 2 Test 3 Test 4 Test 5

Context
Description

Activity of the user going to bed and wants the house to keep the bedroom light ‘on’ when they are asleep.

Expected
Outcome (s)

Movement sensor is
expected to be active,
when movement is
detected around the
bedroom.

Movement sensors
become inactive when no
movement is detected
in the bedroom.

Pressure pad should
not be idle when
user is on the bed.

The light should go ‘off’
after detecting that the
user is on bed after
30 s of being and no
movement detected.

The light should go ‘off’
after Vera is restarted
and remain off even
if movement is detected
unless user gets out of
bed

Real
Outcome (s)

The movement
sensor is active.

The movement sensor
becomes inactive.

Pressure pad
becomes active.

The light remains ‘on’
after 30 s, due to delay.

Light goes ‘off’ after
30 s of no movement
detected in the room.

Light Actuator Light is ‘on’ Light Actuator=1 Light Actuator=1 Light Actuator=1 Light Actuator=1 Light Actuator=0

PIR Sensor PIR, movement detected PIR Sensor=1 PIRSensor=0 PIRSensor=0 PIRSensor=0
PIRSensor=0 or
PIRSensor=1Sensors

Pressure pad Pressure pad idle Pressure pad idle=1 Pressure pad idle=1 Pressure pad idle=1 Pressure pad idle=0 Pressure pad idle=0

Network Z-wave (Vera hub)
Vera is connected to
sensors and actuators.

The connection is active,
as long as the Vera box
is ‘on’.

Vera accepts request
to query or modify
sensor/actuators state.

Vera keeps updating
change of values
for the sensors/actuators.

Vera gets restarted to
be refreshed due to
too many requests.

Vera keeps updated the
values for the light
actuators instantly.

Database Database records
Comfort =8
Light=4

Preferences are saved
in the database for use.

Reasoners
Connected to sensors
and database servers

ssr(([-][30s.] #PadIdle ˆ
#Movement ˆ
prefComfort) ->#Light);

The MReasoner continue
to check if movement is
triggered which continues
to keep the light ‘on’.

Once movement
(#Movement) is no longer
detected the MReasoner
indicates that movement
is no longer active.

The MReasoner also
indicates of the state of
the pressure pad has
changed to pad not idle
(#PadIdle) once the
user is on bed.

MReasoner advice
turns light off (#Light)
when no movement
(#Movement) is detected
and the user is on bed.

The MReasoner checks
the preference database.
If the case he ranks
comfort more
(prefComfort), then the
light goes ‘off’ (#Light).

Learners N/A N/A N/A N/A N/A N/A N/A

HCI
Desktop
interface

Comfort higher than
Light.

Preferences
Preferences
ranking

‘Comfort’ over ‘Light’

Users Home user=Bob
Sets priority to prefer
‘Comfort’ over ‘Light’

Bob moving around
the bedroom.

Bob is on bed. Bob is on bed. Bob is falling asleep. Bob sleeps in comfort.

17

J
u

ly
3
0
,

2
0
2
0

A
p

p
lied

A
rtifi

cia
l

In
tellig

en
ce

”
C

a
S

A
-F

in
a
l

V
ersio

n
-2

0
”

Table 6.: Sample Tests for Asthma Management in Context C1

Enablers
Assumptions
Initial values

Test 1 Test 2 Test 3

Context
Description

Potential environmental hazards affecting a person with asthma that knows their triggers.

Expected
Outcome (s)

Delivering a notification to the PwA when any of the indicators are out of the control limits.

Real
Outcome (s)

The movement
sensor is active.

The movement sensor
becomes inactive.

Pressure pad
becomes active.

Indoor
temperature

19C is the lower
control limit.

T <19C T <19C Light Actuator=1

Indoor humidity
60% is the upper
control limit.

H >60% H >60% H >60%

Outdoor
temperature

12C is the lower
control limit.

T <12C T <12C T <12C
Sensors

Outdoor humidity
80% is the upper
control limit.

H >80% H >80% H >80%

Internet Permanent connection
Network

Zwave (Vera) Permanent connection

Preferences DB
User set up
the control limits.

Provides the monitoring
control limits.

Provides the monitoring
control limits.

Provides the monitoring
control limits.

Monitoring DB Stores contextual data. Stores contextual data. Stores contextual data.Database
Cases DB N/A N/A N/A N/A

Reasoners
Context-aware
Reasoner

Monitors the indicators
based on users
preferences.

Monitors the indicators
based on users
preferences.

Monitors the indicators
based on users
preferences.

Learners N/A N/A N/A N/A N/A

HCI
Mobile
application GUI

HCI component does not
show the notification.

Shows a notification alerting about a
hazard but does not inform that it is
based on an old value of
Temperature.

Notification alerts about the hazard
and shows the latest reading times
of the indicators.

Preferences
Mobile
application

Allows user to
personalise the control
limits for the indicators.

- Shows a message indicating that
they have to configure the
monitoring process before it can run.
- Allows user to personalise the
control limits for the indicators.

- Shows a message indicating that
they have to configure the
monitoring process before it can run.
- Allows user to personalise the
control limits for the indicators.

Person with
asthma

Confirms health status. Confirms health status. Confirms health status.
Users

Stakeholders N/A N/A N/A N/A

18

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

References

Aarts, E. and R. Roovers (2003). Ic design challenges for ambient intelligence. In Proceedings of the
Conference on Design, Automation and Test in Europe - Volume 1, DATE 03, USA, pp. 10002. IEEE
Computer Society.

Abowd, G. D., A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles (1999). Towards a better
understanding of context and context-awareness. In H.-W. Gellersen (Ed.), Handheld and Ubiquitous
Computing, Berlin, Heidelberg, pp. 304–307. Springer Berlin Heidelberg.

Allegre, W., T. Burger, J.-Y. Antoine, P. Berruet, and J.-P. Departe (2013). A non-intrusive context-aware
system for ambient assisted living in smart home. Health and Technology 3, 129–138.

Atzori, L., A. Iera, and G. Morabito (2010). The internet of things: A survey. Computer Networks 54 (15),
2787 – 2805.

Augusto, J., A. Aztiria, D. Kramer, and U. Alegre (2017). A survey on the evolution of the notion of
context-awareness. Applied Artificial Intelligence 31 (7-8), 613–642.

Augusto, J., J. Gimnez-Manuel, M. Quinde, C. Oguego, M. Ali, and C. James-Reynolds (2020). A smart
environments architecture (search). Applied Artificial Intelligence 34 (2), 155–186.

Augusto, J., D. Kramer, U. Alegre, A. Covaci, and A. Santokhee (2018). The user-centred intelligent
environments development process as a guide to co-create smart technology for people with special needs.
Universal Access in the Information Society 17 (1), 115–130.

Augusto, J. C. (2014, June). User-centric software development process. In 2014 International Conference
on Intelligent Environments, pp. 252–255.

Augusto, J. C., V. Callaghan, D. Cook, A. Kameas, and I. Satoh (2013). Intelligent environments: a
manifesto. Human-centric Computing and Information Sciences 3 (1), 12.

Ayed, D., D. Delanote, and Y. Berbers (2007). Mdd approach for the development of context-aware appli-
cations. In B. Kokinov, D. C. Richardson, T. R. Roth-Berghofer, and L. Vieu (Eds.), Modeling and Using
Context, Berlin, Heidelberg, pp. 15–28. Springer Berlin Heidelberg.

Chaker, H., M. Chevalier, C. Soulé-Dupuy, and A. Tricot (2011). Business context information manager: An
approach to improve information systems. In M. Beigl, H. Christiansen, T. R. Roth-Berghofer, A. Kofod-
Petersen, K. R. Coventry, and H. R. Schmidtke (Eds.), Modeling and Using Context, Berlin, Heidelberg,
pp. 67–70. Springer Berlin Heidelberg.

Evans, C., L. Brodie, and J. C. Augusto (2014, June). Requirements engineering for intelligent environments.
In 2014 International Conference on Intelligent Environments, pp. 154–161.

Furno, A. and E. Zimeo (2013). Context-aware design of semantic web services to improve the precision of
compositions. In P. C. Vinh, N. M. Hung, N. T. Tung, and J. Suzuki (Eds.), Context-Aware Systems and
Applications, Berlin, Heidelberg, pp. 97–107. Springer Berlin Heidelberg.

Hassani, A., P. D. Haghighi, F. Burstein, and S. Davey (2017). Context aware data synchronisation during
emergencies. In P. Brézillon, R. Turner, and C. Penco (Eds.), Modeling and Using Context, Cham, pp.
406–417. Springer International Publishing.

Hassani, A., P. D. Haghighi, P. P. Jayaraman, and A. Zaslavsky (2017). A context aware framework for
mobile crowd-sensing. In P. Brézillon, R. Turner, and C. Penco (Eds.), Modeling and Using Context,
Cham, pp. 557–568. Springer International Publishing.

Kolbe, N., A. Zaslavsky, S. Kubler, J. Robert, and Y. Le Traon (2017). Enriching a situation awareness
framework for iot with knowledge base and reasoning components. In P. Brézillon, R. Turner, and C. Penco
(Eds.), Modeling and Using Context, Cham, pp. 41–54. Springer International Publishing.

Kramer, D. and J. C. Augusto (2017). Supporting context-aware engineering based on stream reasoning. In
P. Brézillon, R. Turner, and C. Penco (Eds.), Modeling and Using Context, Cham, pp. 440–453. Springer
International Publishing.

Kramer, D., J. C. Augusto, and T. Clark (2014). Context-awareness to increase inclusion of people with
ds in society. In AAI-14 Workshop Artificial Intelligence Applied to Assistive Technologies and Smart
Environments, Quebec, Canada.

Li, X., M. Eckert, J.-F. Martinez, and G. Rubio (2015, Aug). Context aware middleware architectures:
Survey and challenges. Sensors 15 (8), 2057020607.

Mart́ınez Madrid, N., J. M. Fernández, R. Seepold, and J. C. Augusto (2013). Sensors for Ambient Assisted
Living and Smart Homes, pp. 39–71. Berlin, Heidelberg: Springer Berlin Heidelberg.

McNaull, J., J. C. Augusto, M. Mulvenna, and P. McCullagh (2014). Flexible context aware interface for

19

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

ambient assisted living. Human-centric Computing and Information Sciences 4 (1).
Neumann, M. A., T. Riedel, P. Taylor, H. R. Schmidtke, and M. Beigl (2011). Monitoring for digital

preservation of processes. In M. Beigl, H. Christiansen, T. R. Roth-Berghofer, A. Kofod-Petersen, K. R.
Coventry, and H. R. Schmidtke (Eds.), Modeling and Using Context, Berlin, Heidelberg, pp. 214–220.
Springer Berlin Heidelberg.

Oguego, C., J. Augusto, A. Muoz, and M. Springett (2018). Using argumentation to manage users prefer-
ences. Future Generation Computer Systems 81, 235 – 243.

Papadopoulou, E., S. Gallacher, N. K. Taylor, M. Howard Williams, and F. Blackmun (2013). Context-
aware user preferences in systems for pervasive computing and social networking. In P. C. Vinh, N. M.
Hung, N. T. Tung, and J. Suzuki (Eds.), Context-Aware Systems and Applications, Berlin, Heidelberg,
pp. 10–17. Springer Berlin Heidelberg.

Park, S.-H., Y.-J. Han, and T.-M. Chung (2007). Context-aware security management system for pervasive
computing environment. In B. Kokinov, D. C. Richardson, T. R. Roth-Berghofer, and L. Vieu (Eds.),
Modeling and Using Context, Berlin, Heidelberg, pp. 384–396. Springer Berlin Heidelberg.

Peko, G., C.-S. Dong, and D. Sundaram (2014). Adaptive sustainable enterprises: A framework, architecture
and implementation. In P. C. Vinh, V. Alagar, E. Vassev, and A. Khare (Eds.), Context-Aware Systems
and Applications, Cham, pp. 293–303. Springer International Publishing.

Perera, C., A. Zaslavsky, P. Christen, and D. Georgakopoulos (2014). Context aware computing for the
internet of things: A survey. IEEE Communications Surveys Tutorials 16 (1), 414–454.

Quinde, M., N. Khan, and J. C. Augusto (2018). Personalisation of context-aware solutions supporting
asthma management. In K. Miesenberger and G. Kouroupetroglou (Eds.), Computers Helping People
with Special Needs, pp. 510–519. Springer.

Quinde, M., N. Khan, and J. C. Augusto (2019). Case-based reasoning for context-aware solutions sup-
porting personalised asthma management. In L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz,
R. Tadeusiewicz, and J. M. Zurada (Eds.), Artificial Intelligence and Soft Computing, Cham, pp. 260–270.
Springer International Publishing.

Quinde, M., N. Khan, J. C. Augusto, and A. van Wyk (2019). A human-in-the-loop context-aware system
allowing the application of case-based reasoning for asthma management. In V. G. Duffy (Ed.), Digi-
tal Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Healthcare
Applications, Cham, pp. 125–140. Springer.

Quinde, M., N. Khan, J. C. Augusto, A. van Wyk, and J. Stewart (2018). Context-aware solutions for
asthma condition management: a survey. Universal Access in the Information Society .

Souabni, R., I. Bayoudh Saadi, Kinshuk, and H. Ben Ghezala (2014). A comprehensive view of ubiquitous
learning context usage in context-aware learning system. In P. C. Vinh, V. Alagar, E. Vassev, and A. Khare
(Eds.), Context-Aware Systems and Applications, Cham, pp. 316–326. Springer International Publishing.

Tahir, H. and P. Brézillon (2013). Contextual graphs platform as a basis for designing a context-based
intelligent assistant system. In P. Brézillon, P. Blackburn, and R. Dapoigny (Eds.), Modeling and Using
Context, Berlin, Heidelberg, pp. 259–273. Springer Berlin Heidelberg.

Weiser, M. (1991). The computer for the 21st century. Scientific American 265, 94104.
Zacarias, M., H. S. Pinto, and J. Tribolet (2007). Integrating engineering, cognitive and social approaches for

a comprehensive modeling of organizational agents and their contexts. In B. Kokinov, D. C. Richardson,
T. R. Roth-Berghofer, and L. Vieu (Eds.), Modeling and Using Context, Berlin, Heidelberg, pp. 517–530.
Springer Berlin Heidelberg.

20

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

List of Figures

1 Smart Environment Architecture (SEArch) . 21
2 Context-aware System Architecture (CaSA) . 21
3 User-centred Intelligent Environments Development Process (U-CIEDP) 22
4 Distribution of technology in the Smart Home environment. 22
5 Smart Environment Architecture (SEArch) . 23
6 Context-aware System Architecture (CaSA) . 24
7 User-centred Intelligent Environments Development Process (U-CIEDP) 25
8 Distribution of technology in the Smart Home environment. 26

21

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

Figure 1.: Smart Environment Architecture (SEArch)

22

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

Figure 2.: Context-aware System Architecture (CaSA)

23

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

Figure 3.: User-centred Intelligent Environments Development Process (U-CIEDP)

24

July 30, 2020 Applied Artificial Intelligence ”CaSA-Final Version-20”

Figure 4.: Distribution of technology in the Smart Home environment.

25

