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1 INTRODUCTION

The goal of this paper is to systematize and simplify the task of constructing and reasoning about
variable binding and variable substitution, namely the operations of binding variables into terms
and of replacing them with other variables or terms in a well-scoped fashion. These mechanisms
play a fundamental role in the metatheory of programming languages and logics.

There is a lot of literature on this topic, proposing a wide range of binding formats (e.g., Pot-
tier [2006], Sewell et al. [2010], Urban and Kaliszyk [2012], Weirich et al. [2011]) and reasoning
mechanisms (e.g., Kaiser et al. [2017], Chlipala [2008], Pitts [2006], Felty et al. [2015a], Urban et al.
[2007]). The POPLmark formalization challenge [Aydemir et al. 2005] has received quite a lot
of attention in the programming language and interactive theorem proving communities. And
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yet, formal reasoning about bindings remains a major hurdle, especially when complex binding
patterns are involved. Among the 15 solutions reported on the POPLmark website, only three
address Parts 1B and 2B of the challenge, which involve recursively defined patterns; in each case,
this is done through a low-level, ad hoc technical effort that is not entirely satisfactory.

To improve the situation, we believe that the missing ingredient is a semantics-based account
of the binding and substitution mechanisms, as opposed to ever more general syntactic formats.
Bindings can be abstractly understood in a world of shapes and of content that fills the shapes. A
binder puts together one or more variables in a suitable shape that is connected with the body
through common content. Variable renaming and replacement, which give rise to the notions of
alpha-equivalence (naming equivalence) and capture-free substitution, amount to replacing the
content while leaving the shape unchanged. To work with such a universe of shapes and content
without committing to a syntactic format, we rely on a class of functors on sets. We employ different
kinds of morphisms depending on the task: functions when substituting free variables, bijections
when renaming bound variables, and both bijections and relations when defining alpha-equivalence.

We develop a class of functors that can express the action of arbitrarily complex binders while
supporting the construction of the key operations involving syntax with bindings—such as free
variables, alpha-equivalence, and substitution—and the proof of their fundamental properties. This
class of functors subsumes a large number of results for a variety of syntactic formats. Another gain
is modularity: Complex binding patterns can be developed separately and placed in larger contexts
in a manner that guarantees correct scoping and produces correct definitions of alpha-equivalence
and substitution. Finally, the abstract perspective also clarifies the acquisition of fresh variables,
allowing us to go beyond finitary syntax. Our theory extends the scope of techniques for reasoning
about bindings to infinitely branching and non-well-founded terms.

Our work targets the Isabelle/HOL proof assistant, a popular implementation of higher-order
logic (HOL), and extends Isabelle’s framework of bounded natural functors, abbreviated BNFs
(Section 2). We analyze examples of binders and develop the axiomatization of binder types through
a process of refinement. We first focus on correctly formalizing binding variables using a suitable
subclass of BNFs (Section 3). Then we analyze how complex binder types can be constructed
in a uniform way (Section 4). Finally, we try to apply these ideas to define terms with bindings
(Section 5): Is our abstraction “concrete” enough to support all the constructions and properties
typically associated with syntax with bindings, including binding-aware datatypes? And can the
constructions be performed in a modular fashion, allowing previous constructions to be reused for
new ones? After undergoing a few more refinements, our binders pass the test of properly handling
not only bound variables, but also free variables. This suggests that we may have identified a “sweet
spot” between the assumptions and the guarantees involved in the construction of datatypes.

The binding-aware (co)datatypes would not be of much use without adequate reasoning and
definitional principles that match their structure. A challenge is to develop principles that follow
the spirit of Barendregt’s variable convention [1984, p. 26]:

If [the terms] My, ..., M,, occur in a certain mathematical context (e.g. definition, proof), then in
these terms all bound variables are chosen to be different from the free variables.

To this end, we generalize fresh induction in the style of nominal logic and propose new coinduction
principles (Section 6). Moreover, we introduce (co)recursion principles that adhere to Barendregt’s
variable convention while improving on the state of the art even in the case of simple binders, and
we validate the constructions by characterizing them up to isomorphism (Section 7).

A slightly restricted version of the definitions and theorems presented here have been mechani-
cally checked in Isabelle/HOL (Section 8). In this paper, we focus on presenting the main ideas, and
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refer to a technical report [Blanchette et al. 2019a] and the Isabelle formalization [Blanchette et al.
2019b] for more details, including formal proofs.

Our category-theoretic approach to bindings can be seen as a generalization of nominal logic
(Section 9). Succinctly, we propose a BNF-based approach to bindings that subsumes and extends
the syntactic formats in the literature, and that features capture-free substitutions as first-class
citizens. By allowing infinite support, our framework supports non-well-founded and infinitely
branching types that lie beyond nominal logic’s reach. Our type definitions are equipped with
(co)induction and (co)recursion principles implementing Barendregt’s variable convention; they
are expressed in a uniform way that insulates us from the complexity of bindings.

2 PRELIMINARIES

Our work has been developed in higher-order logic (HOL) and builds on bounded natural functors
(BNFs), a category-theoretic approach to defining and reasoning about types in a modular fashion.
HOL is a much weaker logic than classical Zermelo-Franekel set theory with the axiom of choice.
The reader who prefers to think in terms of sets can ignore the syntactic aspects of HOL, mentally
replacing “type” with “(nonempty) set,” “type constructor” with “operator on sets,” and “type variable”
with either “fixed set” or “arbitrary set” as they read. The reader does not need to understand
the precise HOL definition of various standard types, such as that of natural numbers and the
powertype, but can assume they behave as expected. Similarly, our BNFs can be conceptualized as

n-argument functors on the category of sets.

2.1 Higher-Order Logic

We consider classical higher-order logic with Hilbert choice, the axiom of infinity, and rank-1
polymorphism. HOL is based on simple type theory [Church 1940]. It is the logic of the original
HOL system [Gordon and Melham 1993] and of HOL4, HOL Light, and Isabelle/HOL. In what
follows, we give a brief description of HOL; the reader can consult the standard reference [Pitts
1993] or [Kuncar and Popescu 2018, Section 3] for a more compact description.

Primitive types are built from type variables «, f5, . . ., a type bool of Booleans, and an infinite type
ind using the function type constructor —, i.e., by the grammar T == « | ind | bool | T — T.
The primitive constants include equality = : @ — a — bool, the Hilbert choice operator, and
0 and Suc for ind. Terms are built from constants and variables using typed A-abstraction and
application. The only mechanism for defining new types is typedef, which roughly corresponds
to set comprehension in set theory: For any given type T and nonempty predicate P : T — bool,
we can carve out a new type {x : T | P x} consisting of all members of T satisfying P. To lighten
notation, we treat {x : T | P x} as a first-class type expression, omitting the reference to typedef.

The type a set of sets over « (the powertype of @) is defined using typedef as (a copy of) « — bool.
Other useful types, such as « fset for finite sets and @ mset for multisets (bags), are also defined
using typedef. The type nat of natural numbers, as well as many other (co)datatypes, are also
derived concepts in HOL. Most HOL-based provers can automatically derive any uniformly and
positively recursive ML-style datatype specified by their users, and Isabelle/HOL also supports
codatatypes (Section 2.3). For example, the datatype nat is defined from the primitive type ind via
typedef, by carving out the intersection of all sets that contain 0 and are closed under Suc.

A type T is called polymorphic ina = (ay,...,a,) if it contains these variables. To indicate
polymorphism in @, we sometimes write @ T instead of T. An instance of a type is obtained by
replacing some of its type variables with other types. For example, (@ — bool) — « is polymorphic
in a, and (ind — bool) — ind is one of its instances. A function is polymorphic in « if its type
is polymorphic in . For example, the function Cons : @« — «a list — a list is polymorphic in a.
Semantically, we think of polymorphic functions as families of functions, one for each type—for
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example, the « := bool instance of Cons has type bool — bool list — bool list. Formulas are closed
terms of type bool. Polymorphic formulas are thought of as universally quantified over their type
variables. For example, Vx : a. x = x really means Va. Vx : a. x = x. To keep the discussion closer
to informal mathematical practice, we sometimes use type variables as metavariables for types. For
example, we may write: “Given any type « and any function f : « — «, such and such holds.”

2.2 Bounded Natural Functors

Often it is useful to think not in terms of polymorphic types, but in terms of type constructors. For
example, [ist is a type constructor in one variable, whereas sum types (+) and product types (X) are
binary type constructors. Most type constructors are not only operators on types but have a richer
structure, that of bounded natural functors [Traytel et al. 2012]. Below, we write [n] for {1,...,n}.

DEFINITION 1. Let F = (F, mapp, (set});c[n], bdF), where

e [is an n-ary type constructor;

e mapr:(ay > a]) >+ > (ay > a)) >aF > o’ F;
e seth : @ F — a; set for i € [n];

e bdr is an infinite cardinal number.

F’s action on relations relr : (a; — a; — bool) — - - - — (a, — a;, — bool) >« F — a’ F — bool is

defined by

(DefRel) relr R x y «—
3z. (Vi € [n]. set; zC{(a,a’) | Riaa’}) A mapp [fst]" z = x A mapr [snd]* z =y

where fst and snd are the standard first and second projection functions on the product type x
and mapr [f]" denotes the application mapr f ... f of mapr to n occurrences of f. F is an n-ary
bounded natural functor if it satisfies the following properties:

(Fun) (F, mapp) is a functor (in all the n inputs)—i.e., mapy commutes with function composition
and preserves the identities.

(Nat) each setl, is a natural transformation between the functor (F, mapr) and the powerset
functor (set, image) (thinking of the latter as an n-input functor that operates on objects by
taking @ to a; set); in other words, each setf, is assumed to be natural in all the n inputs.

(Cong) mapy only depends on the value of its argument functions on the elements of setl—i.e.,
(Vi€ [n]. Ya € seth. x. f; a=g; a) — mapr fx =mappgx.

(Bound) The elements of setlic are bounded by bdp—i.e., Vi € [n]. Vx:a F. |setjT x‘ < bdp.

(Rel) (F,relp) is an n-ary relator—i.e., relr commutes with relation composition and preserves
the equality relations.

Requiring that (F, relp) is a relator is equivalent to requiring that (F, mapr) preserves weak
pullbacks [Rutten 1998]. It follows from the BNF axioms that the relator structure is an extension
of the map function, in that mapping with a function f has the same effect as taking its graph Gr f
and relating through Gr f.

We regard the elements x of @ F as containers filled with content, where the content is provided
by atoms in ;. The set} functions return the sets of @;-atoms (which are bounded by bd). Moreover,
it is useful to think of the map function and the relator in the following way:

e Applying mapr f to x keeps x’s container but updates its content as specified by f, substi-
tuting f; a for each a : ;.

e Forallx:aFandy: BF relr R x y if and only if x and y have the same containers and their
content atoms corresponding to the same position in the container are related by R;.
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Fig. 1. mapr f (left) and relr R (right)

Consider a unary BNF F. For a fixed o, we represent a typical element of x : « F as depicted in Fig. 1,
where the container is represented by a wedge and its content by a typical atom a : @. The left-hand
side shows how mapping f : @ — «’ amounts to replacing each a with f a. The right-hand side
shows how the relator applied to R : « — a’ — bool states that each a is R-related to an a’ located
at the same position in the container. Consider the list type construct. It constitutes a unary BNF,
where mapy;, is the standard map function, sety;; collects all the elements of a list, bdy; is Ny, and
reljss R xs ys states that xs and ys have the same length and are elementwise related by R.

We can also use the above intuition to explain the (DefRel) clause of Definition 1, which defines
the relator in terms of the map and set operators: Given x : « Fand y : @’ F, relr R holds for x and
y if there exists z : (a« X a’) F that projects to both x and y (by mapping fst and snd, respectively)
and has all its atoms (a, b) : @ X a’ related by R. This is a way of stating that x and y have the same
shape (and also the same with z, thanks to their mapping connection with z) and the atoms placed
at the same positions in this shape, a and a’, are related by R.

This container intuition has been developed in work prior to BNFs, for various classes of functors
[Abbott et al. 2005; Hoogendijk and de Moor 2000] (Section 9.2). The intuition will be crucial in
allowing us to find a correct abstract notion of alpha-equivalence.

2.3 (Co)datatypes from Bounded Natural Functors

A strong BNF is a BNF whose map preserves not only weak pullbacks but also (ordinary) pullbacks.
Strong BNFs include the basic type constructors of sum, product, and positive function space.
Examples of BNFs that are not strong are the permutative (nonfree) type constructors, such as
those of finite sets or bags. Both the BNFs and the strong BNFs are closed under composition and
(least and greatest, possibly nonuniform) fixpoint definitions [Blanchette et al. 2017; Traytel et al.
2012]. This enables us to combine and nest BNFs arbitrarily when defining (co)datatypes.
Datatypes a T, where « is a tuple of type variables of length m, written len @ = m, can be defined
recursively from (m+ 1)-ary BNFs (a, 7) F, by taking their least fixpoint (initial algebra): the minimal
solution up to isomorphism of the recursive equation @ T =~ (a, @ T) F. If we instead interpret the
equation maximally—which we will indicate with the superscript co—we obtain the codatatype
@ T. In either case, the construction yields an @-polymorphic bijection ctor : (&, a T)F — a T.
Datatypes and codatatypes differ in their reasoning and definitional principles. For datatypes we
have structural induction—which allows us to prove that a predicate holds on all its elements—and
recursion—which allows us to define a function from the datatype to another type. Dually, for
codatatypes we have structural coinduction—which allows us to prove that a binary relation is
included in equality—and corecursion—which allows us to define functions from another type to the
codatatype. Concretely, the difference can be understood in terms of well-foundedness: A datatype
contains only well-founded entities, whereas a codatatype contains possibly non-well-founded
ones. For example, if we take (o, 7) F to be unit + (a X ) (where unit is a fixed singleton type), the
datatype defined by & T =~ (a, @ T) F is « list, the type of (finite) lists. If instead we consider the
maximal interpretation, a T ~* (a, a T) F, we obtain the codatatype of finite or infinite (“lazy”)
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lists, « llist. A substantial benefit of BNFs is that fixpoints can be freely nested. Since « llist is
itself a BNF, it can be used in further fixpoint definitions: For (o, 7) F := a + 7 llist, the datatype
a T =~ (a, a T)F is the type of a-labeled well-founded infinitely branching rose trees.

3 TOWARDS AN ABSTRACT NOTION OF BINDER

The literature has so far focused on binding notions relying on syntactic formats. In contrast, here
we ask a semantic question: Can we provide an abstract, syntax-free axiomatization of binders? We
start by considering a few examples.

The paradigmatic example is the A-calculus, in which A-abstraction Aa. t binds a single variable a
in a single term ¢t. The term ¢ may contain several free variables. If a is one of them, adding the
A-abstraction binds it. Suppose t is the term b a (“b applied to a”), where a and b are distinct variables.
Applying the A constructor to a and ¢t yields Aa. b a, where a is now bound whereas b remains free.
Thus, in a A-binder we distinguish two main components: the binding variable and the body.

Other binders take into consideration a wider context than just the body. The “let” construct
let a = t; in t; binds the variable a in the term t, without affecting t;. In the expression let a =
ba in b a, the first occurrence of a is the binding occurrence, the second occurrence is free (i.e., not
in the binder’s scope), and the third occurrence is bound (i.e., in the binder’s scope). In general, we
must distinguish between the components that fall under a binder’s scope and those that do not.

To further complicate matters, a single binding variable can affect multiple terms. The “let
rec” construct let rec a = t; in t; binds the variable a simultaneously in the terms t; and t,.
In let rec a = ba in ba, both the second and the third occurrences of a are bound by the first
occurrence. Conversely, multiple variables can affect a single term. The expression A(a,b). ¢
simultaneously binds the variables a and b in the term t. The binding relationship can also be
many-to-many: let rec a = t; and b = t; in t simultaneously binds two variables in three terms.

Finally, the simultaneously binding variables can be organized in structures of arbitrary com-
plexity. The “pattern let” binder in part 2B of the POPLmark challenge, pattern-let p = t; in t3,
allows binding patterns p in terms t,, where the patterns are defined by the recursive grammar

p =a: T | {ll :pi}?zl

Thus, a pattern is either a typed variable a : T or, recursively, a record of labeled patterns.

Abstracting from the syntax of terms, we can think of binders as a mechanism for putting together
binding variables and other entities, typically terms, which could be either inside or outside the
scope of the binder. Following this view, a binder type corresponds to a type constructor (@, 7) F,
with m = len o and n = len 7, that takes as inputs

e m types a; of binding variables; and
e n types 1; of potential terms that represent the context

together with a relation 6 C [m] X [n], which we call binding dispatcher, indicating which types of
variables bind in which types of potential terms. A binder x : («, 7) F can then be conceived as an
arrangement of zero or more variables of each type @; and zero or more potential terms of each
type 7; in a suitable structure. The actual binding takes place according to the binding dispatcher 0:
If (i, j) € 0, all the variables of type a; occurring in x bind in all the terms of type 7; occurring in x.
In examples, if m = 1 or n = 1, we will omit the subscript and simply write « or .

We use the terminology “potential terms” instead of simply “terms” to describe the inputs 7;
because they do not contain actual terms—they are simply placeholders in (@, 7) F indicating how
terms would be treated by the binder F. The types of actual terms will be structures defined
recursively as fixpoints by filling in the 7; placeholders.

The examples above can be modeled as follows:
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e For Ada.t,wetakem=n=1,0 = {(1,1)},and (a,7) F = a X .

e Forleta=t int,wetakem=1,n=2,0={(1,2)},and (a,71,2) F = a X 11 X T5.

e Forletreca=t) int,,wetakem=n=1,0={(1,1)},and (@, 7) F= a X 7 X 1.

e For A(a,b).t,wetakem=n=1,0 ={(1,1)},and (a,7) F= a X a X T.

e Forletreca=t;andb =1ty int,wetakem=n=1,0 = {(1,1)},and (a, 7) F = aXaXTXTXT.

e For pattern-let p = t; in t,, wetake m = 1, n = 2,0 = {(1,2)}, and (@, 11, 72) F = a pat X 71 X
7y, where a pat is the datatype defined recursively as a pat ~ (a X type) + (label, a pat) record,
for type and label fixed types (as specified in the POPLmark challenge) and (S, ;) record the
type constructor of ;-labeled records with elements in ;.

For the “let” binder, the type constructor («, 71, 72) F must distinguish between the type of potential
terms in the binder’s scope, 73, and that of potential terms outside its scope, 7;. This is necessary to
describe the binder’s structure accurately, but the actual terms corresponding to 7; and 7, will be
allowed to be the same, as in (a, 7, r) F. Why should the binder care about potential terms that fall
outside the scope of its binding variables? The answer is that this is often necessary, as pointed out
by Pottier [2006]. In the “parallel let” construct let a; = ¢; and ... and a, = t, in t, the terms t;
are outside the scope of the variables a;, but they must be considered as inputs for “let” to ensure
that the number of terms t; matches the number of variables a;.

It could be argued that our proposal constitutes yet another restrictive format. However, leaving
F unspecified gives considerable flexibility compared with the syntactic approach. F can incorporate
arbitrarily complex binders, including the datatype a pat needed for the POPLmark “pattern let” It
can also accommodate unforeseen situations. Capturing the “parallel let” construct above rests on the
observation that the structure of binding variables can be intertwined with that of the out-of-scope
potential terms, which a syntactic format would need to anticipate. By contrast, with the modular
semantic approach, it suffices to choose a suitable type constructor: (a, 71, 72) F = (& X 1) list X 13,
with 6 = {(1,2)}. As another example, the type schemes in Hindley—Milner type inference [Milner
1978] are assumed to have all the schematic type variables bound at the top level, but not in a
particular order. A permutative type such as that of finite sets can be used: («,7) F = « fset X 7,
with 6 = {(1,1)}. In summary:

ProPoOSAL 1. A binder type is a type constructor with a binding dispatcher on its inputs.

As it stands, this proposal is not particularly impressive. For all its generality, it tells us nothing
about how to construct actual terms with bindings or how to reason about them. Let us take a closer
look and try to improve it. By modeling “binder types” not just as types but as type constructors,
we can distinguish between the binder’s structure (the shape) and the variables and potential terms
that populate it (the content), following our intuition of BNFs (Section 2.2). And indeed, all the type
constructors used so far would seem to be BNFs. So let us be more specific:

PropPoOsAL 2. A binder type is a BNF with a binding dispatcher on its inputs.

This would make our notion of binder type more versatile, given all the operations available on
BNFs. In particular, we could use their map functions to perform renaming of bound variables, an
essential operation for developing a theory of syntax with bindings. Moreover, complex binders
could be constructed via the fixpoint operations on BNFs.

Unfortunately, there is a flaw. Full functoriality of (@, 7) F in the binding-variable components @ is
problematic due to a requirement shared by many binders: nonrepetitiveness of the (simultaneously)
binding variables. When we modeled the binder A(g, b). t, which binds a and b in t, we take
(a,7) F = a X a X 7. However, this is imprecise, because a and b must also be distinct. Similarly,
ai, ...,an, must be mutually distinct in let a; = t; and ... and a, = t, in t, and p may not have
repeated variables in pattern-let p = #; in t.
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This means that we must further restrict the type constructors to nonrepetitive items on the
binding-variable components—for example, by taking («,7) F to be {(a,b) : a X @ | a # b} X T
instead of & X a X 7. Unfortunately, the resulting type constructor is not a functor, since its map
function cannot cope with noninjective functions f : « — «’. If f identifies two variables that
occur at different positions in x : (@, 7) F, then mapr f id x would no longer be nonrepetitive;
hence, it would not belong to (a’, ) F.

To address this issue, we refine the notion of BNF by restricting, on selected inputs, all conditions
involving the map function, including the functoriality, to injective functions only. For symmetry,
but also to avoid the bureaucracy of considering local inverses of functions, we take the more
drastic measure of restricting the conditions to bijective functions only, which additionally have the
same domain and codomain. We call these endobijections; they are also known as “permutations.”
All the BNF conditions (Definition 1) remain the same, except that on some of the inputs, marked as
“restricted,” they are further conditioned by endobijectiveness assumptions about the corresponding
functions. For our type constructor (@, 7) F, the restricted inputs will be @, meaning that F will
behave like a functor with respect to endobijections f : @ — @ and arbitrary functions g : 7 — 7.
All our examples involving multiple variable bindings satisfy these weaker requirements. We call
this notion map-restricted BNF (MRBNF, or a-MRBNF).

ProprosAL 3. A binder type is a map-restricted BNF with a binding dispatcher on its inputs.

MRBNFs remain general while offering a sound mechanism for renaming bound variables. To
validate this proposal, we ask two questions, which will be answered in the next sections: How can
nonrepetitive MRBNFs be constructed from possibly repetitive ones? How can MRBNFs be used to
define and reason about actual terms with bindings and their basic operators?

4 CONSTRUCTING NONREPETITIVE MAP-RESTRICTED BNFS

To construct arbitrarily complex BNFs, we can start with the basic BNFs and repeatedly apply
composition, least fixpoint (datatype), and greatest fixpoint (codatatype). Any BNF also constitutes
a map-restricted BNF, and it is in principle possible to lift the map-restricted arguments through
fixpoints on the nonrestricted type arguments. However, nonrepetitiveness is not closed under
fixpoints. Thus, if («, 7) F is a nonrepetitive a-MRBNF, the (least or greatest) fixpoint a T specified
as (a,a T)F =~ a T will be an a-MRBNF, but not necessarily a nonrepetitive one. For example,
(a, 7) F = unit + (a X 7) is a nonrepetitive a-MRBNF (because « atoms cannot occur multiple times
in members of (a, 7) F), but its least and greatest fixpoints are « list and « llist, the types of list and
lazy lists, and these are repetitive «-MRBNFs because they may contain duplicate elements.

This means that complex nonrepetitive MRBNFs cannot be built recursively from simpler com-
ponents. But there is an alternative: We can employ the fixpoint constructions on BNFs, and as a
last step carve out nonrepetitive MRBNFs from BNFs, by taking the subset of items whose atoms
of selected type arguments are nonrepetitive. For example, from the BNF « list, we construct the
MRBNF of nonrepetitive lists: {xs : a list | nonrep;,, xs}. Similarly, from the “pattern let” BNF
a pat (built recursively from the BNF a X type + (label, f) record), we construct the MRBNF of
nonrepetitive patterns: {xs : a pat | nonrep pat xs}. In both examples, we have a clear intuition for
what it means to be a nonrepetitive member of the given BNF: A list xs is nonrepetitive, written
nonrepy,, xs, if no @ atom occurs more than once in it; and similarly for the members of p : « pat,
which are essentially trees whose leaf nodes are labeled with « atoms.

Can we express nonrepetitiveness generally for any BNF? A first idea is to rely on the cardinality
of sets of atoms. For the « list BNF, the nonrepetitive items are those lists as = [ay,...,ay]
containing precisely n distinct elements ay, . . ., a,—or, equivalently, having a maximal cardinality
of atoms, |sety;;; x|, among the lists of a given length. This idea can be generalized to arbitrary
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BNFs a F by observing that the length of a list fully characterizes its shape. We say that two
members x, x” of a F have the same shape, written sameShape; x x’, if relr T x x’ holds, where
T :a — a — bool is the vacuously true relation that ignores the content. Recall from Section 2.2
that the main intuition behind a BNF relator relp is that relr R x x’ holds if and only if x and x’
have the same shape and their atoms are positionwise related by R. The second condition is trivially
satisfied for R := T. For lists and lazy lists, sameShape means “same length,” and for various kinds
of trees it means that the two trees become identical if we erase their labels.

We could define nonrepy x to mean that, for all x” such that sameShapey x x’, |setp x| < |setr x|.
This works for finitary BNFs such as lists and finitely branching well-founded trees, but fails for
infinitary ones. For example, a lazy list as = [1,1,2,2,...] : nat stream has |set;s as| of maximal
cardinality, and yet it is repetitive. We need a more abstract approach. An essential property of the
nonrepetitive lists as = [ay, . . ., a,] is their ability to pattern-match any other list as’ = [a], ..., a},]
of the same length n; and the pattern-matching process yields the function f that sends each q; to
a; (and leaves the shape unchanged), where f achieves the overall effect that it maps as to as’.

In general, for x : a F, we define nonrep; x so that for all x” such that sameShapey x x’, there
exists a function f that maps x to x’, meaning that x” = map, f x. This works for lists, lazy lists,
trees, and any other combination of (co)datatypes where each atom has a fixed position in the
shape—i.e., strong BNFs. We can define the corresponding nonrepetitive MRBNF:

THEOREM 2. If o F is a strong BNF and nonrepy is nonempty, then « G = {x : « F | nonrepy x},
in conjunction with the corresponding restrictions of mapy, setr, relr, and bdr, forms an MRBNF.

This construction works for any n-ary BNF & F, which can be restricted to nonrepetitive members
with respect to any of its strong inputs «;, and more generally to any @-MRBNF («, T) F, which can
be further restricted with respect to any of its unrestricted strong inputs ;.

We introduce the notation (@, 7) F @ 7; to indicate such further restricted nonrepetitive MRBNFs.
For example, we write « list @ o for the «-MRBNF of nonrepetitive lists over a, and (a X f) list @ «
for the a-MRBNF of lists of pairs in a X § that do not have repeated occurrences of the first
component. Thus, given a,a’ : « with a # a’ and b, b’ : f with b # b’, the type (a X f) list @ «
contains the list [(a, b), (a’, b)] but not the list [(a, b), (a, b")].

For BNFs that are not strong, such as finite sets and multisets, the nonrepetitiveness construction
tends to give counterintuitive results; for example, no finite set but the empty one is nonrepetitive.
Nevertheless, these structures are useful as they are, without any nonrepetitiveness restriction. For
example, Hindley—-Milner type schemes bind finite sets of variables.

In summary, our nonrepetitiveness construction removes all the possible variable duplication
introduced by fixpoint definitions. The construction reflects informal practice. For example, the
POPLmark recursive “let” patterns are defined inductively, and then it is stated that the variables
and the labels should not be repetitive. We capture this informal practice under a uniform concept,
applicable to a large class of (binders modeled as) functors.

5 DEFINING TERMS WITH BINDINGS VIA MAP-RESTRICTED BNFS

So far, we have modeled binders as @-MRBNFs (a, 7) F, with m = len @, n = len 7, together with a
binding dispatcher 8 C [m] x [n]. We think of each a; as a type of variables, of each 7; as a type of
potential terms, and of (i, j) € 6 as indicating that a; variables are binding in 7; terms.

Before we can define actual terms, we must prepare for a dual phenomenon to the binding of
variables: The terms must be allowed to have free variables in the first place, before these can be
bound. Thus, in addition to binding mechanisms, we need mechanisms to inject free variables into
potential terms. This can be achieved by upgrading F: Instead of (@, 7) F, we work with (8, @,7) F,
where we consider an additional vector of inputs E representing the types of (injected) free variables.
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It is natural to consider the same types of variables as possibly free and possibly bound. Hence, we
will assume len B = len @ = m and use (@, @, 7) F when defining actual terms. Nevertheless, it is
important to allow F to distinguish between the two—this distinction will affect the central notions
of free variable and alpha-equivalence.

Actual terms can be defined by means of a datatype construction framed by F. For simplicity,
we will define a single type of terms in which all the types of variables «; can be bound, which
means assuming that all potential term types z; are equal. This is achieved by taking the following
datatype a T of F-framed terms with variables in a:

aT ~ (@@ [aT]")F

where [a T]" denotes the tuple consisting of n occurrences of & T. The fully general case, of multiple
(mutually recursive) term types, is a straightforward but technical generalization.

ExampLE 3. Consider the syntax of the A-calculus, where the collection @ T of terms ¢ with
variables in « are defined by the grammar

t == Vara | Aa.t | tt

A term is either a variable, an abstraction, or an application. This is supported by taking m = 1,
n=2,0={(1,1)}, and

(ﬁ’ a, 7'rlsﬁl—Z)F = ﬂ + ((X X Tl) + (TZ X TZ)

The resulting « T satisfies the recursive equation
aT ~a+(a@xaTl)+(aTxaT)

Not visible in this equation is how F distinguishes (1) between the free-variable type § and the
binding-variable type « and (2) between two different types of potential terms, 7; and 7,. The
first distinction ensures that the occurrence of « as the first summand stands for an injection
of free variables, whereas the first occurrence of « in the second summand stands for binding
variables. The second distinction ensures, in conjunction with 8, that ’s binding powers extend to
the occurrence of « T in the second summand but not to the two occurrences in the third summand.
This additional information is needed for the proper treatment of the bindings.

The functor F both binds variables and injects free variables. Despite this dual role, we will call F
a binder type. Multiple binding or free-variable injecting operators can be handled simultaneously
by defining F appropriately.

ExampLE 4. Consider the extension of the A-calculus syntax with “parallel let” binders:
tu=---|letag=t;and ... anda, =t, int

We can add a further summand, ((@ X 1) list X 7;) @ @, to the previous definition of (§, a, 71, 72) F.
The choice of the type variables in (@ X 13) list X 71, in conjunction with 0’s relating & with 7; but
not with 7,, indicates that the term ¢, but not the terms ¢;, is in the scope of the binding variables a;.

To summarize, we have extended the MRBNF F with a further vector of inputs, B The new
functor (8, @, 7) F has the following inputs:
. E are types of free variables;
e 1 are types of binding variables;

e T are types of potential terms, which are made into actual terms when defining the datatype
aTasaT=~(a,a,[aT]")F.
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We have assumed F to be an unrestricted functor on 7, and to be a functor on @ with respect to
endobijections. (We qualify as “unrestricted” a functor whose morphism component operates on
arbitrary functions as opposed to restricted types of functions.) But how should F behave on B?
A natural answer would be to require unrestricted functoriality, because the nonrepetitiveness
condition that compelled us to restrict F’s behavior on binding variable inputs seems unnecessary
here: There is no apparent need to avoid repeated occurrences of free variables. In fact, the central
operation of substitution introduces repetitions—e.g., by substituting a’ for a in a term that already
contains a free occurrence of a’. For now, we will assume unrestricted functoriality on f.

ProrosAL 4. A binder type is a map-restricted BNF that

e distinguishes between free-variable, binding-variable, and potential term inputs, and
e puts the map restriction on the binding-variable inputs only,

together with a binding dispatcher between the binding-variable inputs and the potential term inputs.

Let us see if this is sufficient to support fundamental constructions on terms. A small running
example, exhibiting enough binding diversity, will keep us company.

ExampLE 5. Consider a A-calculus variant in which abstractions simultaneously bind two vari-
ables in two terms, given by the grammar

= Vara | Ma,b).(t,t;)
with the usual requirement that the variables a and b are distinct. We can take 6 = {(1,1)} and

Boa, ) F=f+((axa) @ a) X1 X1)

We write Inl and Inr for the left and right injections of the components into sums types: Inl : § —
(B,a,t)FandInr: ((axa) @ a) Xt X1 — (f,a,7)F.

5.1 Free Variables
Any element ¢ : @ T can be written as ctor x, where x : (@, : @, : [@ T|") F has three kinds of atoms:

e the (i-)top-free variables, topFree; x : a;, are elements of setf x for i € [m] representing the
free variables injected by the topmost constructor of t;

o the (i-)top-binding variables, topBind,; x : a;, are elements of setfnﬂ x for i € [m] representing
the binding variables introduced by the topmost constructor of ¢;

e the (j-)recursive components, rec; x : @ T, are elements of set} . x for j € [n].

2m+j
To refer precisely to the scope of bindings in light of the binding dispatcher 0, for each i € [m]
and j € [n] we define topBind, ; x to be topBind; x if (i, j) € 6 and & otherwise. We can think of
topBind, ; x as the top- blndmg varlables that are actually binding in all of the rec; x components,
31multaneously Since topBind, ; incorporates the information provided by 6, the latter will be left
implicit in our forthcoming constructlons.

Equipped with these notations, we can define a free variable of a term to be either a top-free
variable or, recursively, a free variable of some recursive component that is not among the relevant
top-binding variables. Formally, FVars; t for i € [m] is defined inductively by the following rules:

a € topFree; x t €recjx a € FVars; ¢\ topBind,; ; x

a € FVars; (ctor x) a € FVars; (ctor x)

In the context of our running Example 5, let us assume from now on thata, b, c, d, . . . are mutually
distinct variables. Consider the term t = Var c. It can be written as ctor x, where x = Inl c. Therefore,
topFree x = {c}, topBind x = &, and rec x = &. (We omit the subscripts since m = n = 1.) Thus, ¢
has c as its single top-free variable, has no top-binding variables, and has no recursive components.
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Moreover, c is the only free variable in t: Applying the first rule in the definition of FVars, we infer
¢ € FVars (ctor x) from ¢ € topFree x.

Now consider the term t = A(a, b). (Vara, Varc). It can be written as t = ctor x, where x =
Inr ((a, b), (Var a, Var c)). We have topFree x = &, topBind x = {a, b}, and recx = {Vara, Varc}.In
other words, t has no top-free variables, has a and b as top-binding variables, and has Var a and
Var ¢ as recursive components. Moreover, t has ¢ as its single free variable: Applying the second
rule in the definition of FVars, we infer ¢ € FVars(ctorx) from Var ¢ € rec x and ¢ € FVars(Varc) \
topBind x = {c} \ {a,b} = {c} using (1,1) € 0.

5.2 Alpha-Equivalence

To express alpha-equivalence, we first need to define the notion of renaming the variables of a term
via m bijections f. This can be achieved using by the map function of a T, defined recursively as

mapT? (ctor x) = ctor (mapg ?7 [mapTJ_‘]” x)

Thus, mapT]_v applies ? to the top-binding and top-free variables of any term ctor x, and calls
itself recursively for the recursive components. The overall effect is the application of 7 to all the
variables (free or not) of a term.

Intuitively, two terms t; and ¢, should be alpha-equivalent if they are the same up to a renaming
of their bound variables. More precisely, the situation is as follows (Fig. 2):

o Their top-free variables (marked in the figure as a; and a,) are positionwise equal.

e The top-binding variables of one (marked as a}) are positionwise renamed into the top-binding
variables of the other (marked as a}), e.g., by a bijection f;.

e The results of correspondingly (i.e., via f) renaming the recursive components of t; are
positionwise alpha-equivalent to the recursive components of ¢;. In symbols, we will express
this fact as map f t1 = t,.

Relators can be used to express positionwise correspondences such as the above (Section 2.2).
Formally, we define the (infix) alpha-equivalence relation = : « T — a T — bool inductively by

relp [(=)]™ (Gr f1) ... (Gr fi) [(At1, t2. mapy ?tl =1)]" x1 x, cond; fi -+ condy, f

ctor x; = ctor x,

The first hypothesis is the inductive one. It employs the relator relr to express how the three kinds
of atoms of x; and x, must be positionwise related: by equality for the top-free variables, by the
graph of the m renaming functions f; for the top-binding variables, and by alpha-equivalence after
renaming with f for the recursive components. The second hypothesis is a condition on the f;’s.
Clearly, f; : @i — «; must be a bijection (written bij : (¢ — a) — bool), to avoid collapsing top-
binding variables. Moreover, f; should not be allowed to change the free variables of the recursive
components t; that are not captured by the top-binding variables. We thus take cond; f; to be

bij fi A Va € (Ujem) (Unerec; x, FVars t1) X topBind; ; x1). fia=a

Returning to Example 5, we note that Var a = Var a for every a. This is shown by applying the
definitional clause of = with the identity for f. The first hypothesis can be immediately verified:
Since Var a has no top-binding variables or recursive components, only the condition concerning
the top-free variables needs to be checked: a = a.

Now consider the terms t; = A(a, b). (Vara, Varc¢) and t, = A(b, a). (Var b, Var ¢), which can be
written as ctor x; and ctor x,, where x; = Inr((a, b), (Var a, Var ¢)) and x, = Inr((b, a), (Var b, Var c)).
We can prove their alpha-equivalence by taking f to swap a and b (i.e., send a to b and b to a)
and leaving all the other variables unchanged. Verifying the first hypothesis of =’s definitional
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Fig. 2. Alpha-equivalence

rule amounts to the following: Concerning positionwise equality of the top-free variables, there
is nothing to check (since t; and ¢, have none); concerning the top-binding variables, we must
check that f a = b and f b = a; concerning the recursive components, we must check that
mapy f (Var a) = Var b and mapy f (Var ¢) = Var c. Applying the definition of map, the last
equivalences become Var (f a) = Var b—i.e., Var b = Var b and Var ¢ = Var c. Finally, verifying
the second hypothesis, cond f, amounts to checking that f is bijective and that f is the identity on
all variables in (Uy, e (var a,varc} FVars t1) N {a, b} = {a,c} \ {a,b} = {c}—ie., f sends c toc.

There are other approaches to define alpha-equivalence. We could pose stricter conditions on
the functions f;, allowing them to change only the top-binding variables, but no other (nonfree)
variables occurring in the components. In the running example, if the left term is A(a, b). (Var c,
AMec, d). (Varc, Var d)), then both approaches allow f to change a and b, and forbid it to change c.
Our definition additionally allows f to change d. Another alternative would consist in a symmetric
formulation: Rather than renaming variables of the left term only, we could rename the variables
of both terms to a third term, whose binding variables are all distinct from those of the first two.
All these variants have different virtues in terms of the ease or elegance of proving various basic
properties, but they produce the same concept of alpha-equivalence.

For any MRBNF F, we can prove the following crucial properties of alpha-equivalence. All these
results follow by either rule induction on the definition of = or structural induction on @ T.

THEOREM 6. Alpha-equivalence is an equivalence and is compatible with

e the term constructor, in that relp [(=)]" [(=)]" [(£)]" x1 x; implies ctor x; = ctor x; for all
x1,% : (@, a, [a T]") F;

o the free-variable operators, in that t; = ¢, implies FVars; t; = FVars; t, for all i € [m];

e the map function of T, in that, if f; : @ — « for i € [m] are (endo)bijections, then t; = t,

implies mapTT t1 = mapy f to.

5.3 Alpha-Quotiented Terms

Exploiting Theorem 6, we can define the quotient @ T = (a T)/=, and lift the relevant functions to
a T. Using overloaded notation, we obtain the constructor ctor : (o, @, [a T]") F — a T and the
operators FVars : a T — a set and mapy: (@ > 1) = -+ = (am = ap) > aT > aT.

Whereas on a T the constructor is bijective, on a T it is only surjective. Quotienting allows us to
obtain equal results even if we bind different variables in different terms. In our running example, as
a T terms, A(a, b). (Var a, Var ¢) and A(D, a). (Var b, Var c) are actually equal, since ctor x; = ctor x,
where x; = Inr ((a, b), (Var a, Varc)) and x, = Inr ((b, a), (Var b, Var ¢)); but x; # x».

Nevertheless, the quotient type enjoys injectivity up to a renaming, which follows from the
definition of a, its compatibility with ctor and map, and the properties of relators.

ProrosITION 7. Given x1, x; : (@, @, [a@ T]") F, we have ctor x; = ctor x; if and only if there exist
functions f; : &; — «; satisfying cond; f; for i € [m] such that x; = map [id]™ f [mapr f]* xi.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 22. Publication date: January 2019.



22:14 J. C. Blanchette, L. Gheri, A. Popescu, and D. Traytel

In summary, « T is defined as a fixpoint framed by F followed by a quotienting construction
with respect to alpha-equivalence determined by the binding dispatcher 6, which for (§, @, 7) F
states what o binds in 7. We will use the suggestive notation

aT =~y (a,a,[a T]")F

to express the definition of this binding-aware datatype, where the 0 subscript emphasizes that we
have an isomorphism up to the alpha-equivalence notion determined by 6.

The presence of the operators ctor, FVars, and mapr on quotiented terms offers them a large
degree of independence from the underlying terms. Indeed, one of our main design goals is to
develop an abstraction layer for reasoning about the type o T that allows us to forget about « T.

CONVENTION 8. From now on, we will call the members of & T terms and the members of the
underlying type a T raw terms.

5.4 Infinitely Branching Terms

Our constructions do not commit to the finite branching of terms, thus capturing situations required
by some calculi [Milner 1989] and logics [Hennessy and Milner 1980; Keisler 1971].

ExaMmPLE 9. A simplified version of the syntax for processes in the calculus of communicating
systems (CCS) [Milner 1989] is the following, where ¢ ranges over a fixed type C of channels, e
over a type a E of arithmetic expressions with variables in «, and J over subsets of a fixed, possibly
infinite type I of indices:

pu=cla).plcep| Xiespi
Above, c(a) . p is an input-prefix process with the binding variable a modeling the receiving of data
on channel ¢, and ¢ e. p is an output-prefixed process that starts by sending the value of expression e
on ¢. The sum constructor models nondeterministic choice from a variety of possible continuations
(pi)iey. The terminating process 0 is defined as an empty sum.

In our framework, a E is a standard datatype BNF and the type a T of process terms can be
defined as the binding-aware datatype givenby m = 1, n = 2,0 = {(1, 1)}, and

B,a,11,12) F = (Cxaxt)+ (CXPEXT1)+ (I > (12 + unit))

where we have modeled functions from subsets of I to 7» as functions from I to 7, + unit. Hence, as
desired, a T satisfies the recursive equation

aT =~ (CxaxaT)+(CxaExaT)+ (I — (aT+ unit))

where the notion of alpha-equivalence induced by @ asks that in the first summand the « variables
bind in their neighboring terms.

5.5 Substitution

An important operation we want to support on terms « T is capture-avoiding substitution. With
our current infrastructure, we would hope to be able to define simultaneous substitution of variables
for variables, sub : (a1 — a1) = -+ = (am — am) = a T — a T. It would take m functions
fi @i = a; and a term ¢ and return a term obtained by substituting in ¢, in a capture-avoiding
fashion, all its free variables a with f; a. Substitution with injective functions f; is customarily
called “renaming.” Moreover, unary substitution is a particular case of simultaneous substitution,
defined as t[a/b] = sub f, p t, where f, ; sends b to a and all other variables to themselves.

A candidate for sub that suggests itself is map,, which o T inherits from o T. However, this
operator is not suitable, since it works only with bijections f;. The fundamental desired property of
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sub concerns its recursive behavior on terms of the form ctor x:
(Vi € [m]. topBind; x N FVars; (ctor x) = @ A topBind; x Nsupp f; = @)

—> sub ]7 (ctor x) = ctor (mapp ]_‘ [id]™ [sub ]_‘]” x) ()

where supp f;, the support of f;, is defined as the union of A; = {a : a; | fi a # a} and image f; A;
(A;’s image through f;). Thus, sub f would distribute over the term constructor when neither the
term’s free variables nor the variables affected by f; overlap with the top-binding variables.

The first of these two conditions, topBind; x N FVars; (ctor x) = &, which we will abbreviate
to nonClash; x, is an instance of Barendregt’s variable convention. All our proof and definition
principles observe it; we never consider variables that appear both bound and free in the same
term. The condition is vacuously true for syntaxes in which no constructor simultaneously binds
variables and introduces free variables.

To satisfy the two conditions, it must be possible to replace any binding variables in x that
belong to the offending sets FVars; (ctor x) or supp f; with variables from outside these sets,
resulting in x’. This replacement would be immaterial as far as the input term ctor x is concerned:
Alpha-equivalence being equality on a T, we would have ctor x” = ctor x. By this argument, it
would be legitimate to assume the premise of (*) whenever we apply substitution. However, there
is the issue that FVars; (ctor x) U supp f; may be too large; indeed, it may even exhaust the entire
type a;. We need a mechanism to ensure that enough fresh variables are available.

5.6 Fresh Variable Acquisition

An advantage of our functorial setting is that the collection of variables @ is not a priori fixed.
Since the functor F that underlies @ T is a BNF, we can prove Vi € [m]. |FVars; t| < bdr for all
raw terms t, hence also for all terms t, where bdp is the bound of F (Section 2.2). To ensure that
|FVars; t| < ||, it suffices to instantiate «; with a type with a cardinality > bdp. We can therefore
hope to prove the existence of a function sub : (¢ » 1) = -+ > (@ = am) D aT —>aT
satisfying () if bdr < |@;| and |supp f;i| < |a;|. The proof will be given in Section 7.1.

Here is an illustration of the above phenomenon, in a case that goes beyond finite support. Using
the notations of Example 9, let J = I = nat and let ¢ be the process term ¢ (ag). X’ ;cpar € @i- 0, where
the a;’s are all distinct variables. Then what is the term sub f ¢, where f is the function that sends
ag to ag and any a;4; to a;? Clearly, sub f t should start with ¢ (a) for some variable a. However, a
cannot be an a;, since a; must be free in sub f t (due to a;;; being free in t). But what if the a;’s
exhaust all the available variables? To avoid this scenario, we ask that the support of f be smaller
than the set of available variables, which is true for example (1) if the support is finite and there
are infinitely many variables, or (2) if the support is countable and there are uncountably many
variables. In the first case, f is not deemed suitable for substitution. In the second case, there exists
a fresh variable x, with the help of which we can express tsub f t as c(ar). 2;cpar € a;. 0, where
a, = ar and a;,, = a;. By keeping the type a T of terms polymorphic in the type & of variables,
we can avoid committing to a specific scenario. This contributes to modularity: When using a T as
part of a larger (co)datatype (perhaps defined as a T-nested fixed point), T will be able to export
collections of variables of any required size. (See also Section 5.9.)

The above solution seems to require needlessly many variables when F is finitary—i.e., bdp = No—
which is the case with all finitely branching datatypes. With our approach, we would need « to be
uncountable, even though countably infinitely many variables would suffice. It could be argued
that variable countability is theoretically unimportant, and indeed some textbooks only assume an
infinite supply of variables. But in practice the situation is different. For example, when writing a
code generator for operations on finitary syntax, it helps if variables come in a countable supply.
Therefore, it is worth salvaging countability if we can. It turns out that we can do this with a little
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insight from the theory of cardinals—noting that |FVars; t| < |a;| for alli € [m] and t : @ T can be
achieved using the nonstrict inequality bdr < |e;| if |a;| is a regular cardinal.

THEOREM 10. There exists a (polymorphic) function sub : (a1 — 1) = -+ = (@ — am) —
a T — «a T satisfying () for all a; and f; if |a;| is regular, bdp < |a;|, and [supp fi| < |a;].

This solution is applicable for any MRBNF F: Since there exist arbitrarily large regular cardinals,
for any bdr we can choose suitable types a;—for example, we can choose «; whose cardinality is
the successor cardinal of bdr. Moreover, the solution gracefully caters for the finitary case: Since
Ny is regular, for a countable bound bdr we can choose countable types «;.

5.7 Term-for-Variable Substitution

So far, we have only discussed variable-for-variable substitutions. Often it is necessary to perform a
term-for-variable substitution, in a capture-avoiding fashion. In the A-calculus, we could substitute
Ac.Vara for b in Aa. (Var a) (Var b), yielding Aa’. (Var a’) (Ac. Var a) (after a renaming which does
not affect alpha-equivalence). However, not all syntaxes with bindings allow substituting terms for
variables. Process terms in the s-calculus [Milner 1999] contain channel variables (names), which
can be substituted by other channel variables but not by processes.

So when is term-for-variable substitution possible? A key difference is that the A-calculus, unlike
the 7-calculus, can embed single variables into terms. This can be achieved either explicitly via an
operator (e.g., Var) or implicitly by stating that variables are terms.

We can express such situations abstractly in our framework, by requiring that the framing
MRBNF (B, @, 7) F accommodate such embeddings. We fix I C [m] and assume injective natural
transformations ; : f; — (B, @, T)F for i € I such that set‘iE (n; @) = {a}. Moreover, we assume that
n; is the only source of variables in F, by requiring that setf x = & for every x that is not in the
image of 1;. The injections of variables into terms, Var; : @; — a T, are defined as Var; = ctor o n;.
For the syntax of our running Example 5, where (f,a,7) F = f + (¢ X @) @ &) X T X 7, we have
thatn : f — (B, a, 7) F is the injection of the leftmost summand.

We can now define simultaneous term-for-variable substitution similarly to variable-for-variable
substitution, parameterized by functions f; : @; — @ T of suitable small support:

fia if x has the form n; a
ctor (mapy [id]™ [id]™ [tsub ]_”I]" x) otherwise

tsub ]_d (ctor x) = { (€))
provided that Vi € I. nonClash; x A topBind; x Nsupp f; = @. Above, supp f; is the union of
A; ={a:a; | fia # Var a} and image (FVars; o f;) A; (A;’s image through FVars; o f;), and f!
denotes the tuple (f;);er-

For a term t = ctor x, saying that x has the form 7; a is the same as saying that ¢ has the form
Var; a—hence the first case in the above equality is the base case of a variable term Var; a.

The existence of an operator tsub exhibiting such recursive behavior can be established by
playing a similar cardinality game as we did for sub:

THEOREM 11. There exists a (polymorphic) function tsub : [];c;(0i »aT) » aT —» aT

satisfying (xx) for all «; and f; if |;| is regular, bdr < |a;|, and |supp fi| < |a;].

5.8 Non-Well-Founded Terms

We have developed the theory of well-founded terms framed by an abstract binder type F using a
binding dispatcher 6. An analogous development results in a theory for possibly non-well-founded
terms, yielding non-well-founded terms modulo the alpha-equivalence induced by 6:

aT =5 (@a[@aTI)F

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 22. Publication date: January 2019.



Bindings as Bounded Natural Functors 22:17

To this end, raw terms are defined as a greatest fixpoint: @ T ~* (a, a,[a T]") F. Then alpha-
equivalence =: @ T — a T — bool is defined by the same rules as in Section 5.2, but employing a
coinductive (greatest-fixpoint) interpretation. On the other hand, the free-variable operator is still
defined inductively, by the same rules as in Section 5.1.

To see why alpha-equivalence becomes coinductive whereas free variables stay inductive, imagine
coinductive terms as infinite trees: If two terms are alpha-equivalent, this cannot be determined
by a finite number of the applications of =; by contrast, if a variable is free in a term, it must be
located somewhere at a finite depth, so a finite number of rule applications should suffice to find it.

This asymmetry between the inductive and the coinductive case would appear to stand in the
way of a duality principle that would enable us to reuse, or at least copy, the proofs above to cover
non-well-founded terms. Fortunately, there is a way to restore the symmetry. On well-founded
terms, = could have been equivalently defined coinductively. This is because the fixpoint operator
Op_:(@T —>aT — bool) » (aT — a T — bool) underlying the definition of = has a unique
fixpoint: (=) = Ifp Op_ = gfp Op_. In addition, the recursive definition of map on well-founded
terms in Section 5.2 has an identical formulation for non-well-founded terms, although it has a
different, corecursive justification.

As a result, many properties concerning the constructor, alpha-equivalence, free variables, the
map function, and their combination on raw terms, including Theorem 6 (which justifies the
construction of @ T), can be proved in exactly the same way for possibly non-well-founded terms.
All the theorems stated in Sections 5.1 to 5.7 hold for non-well-founded terms as well, with identical
formulations. In particular, our solution to allow infinite support also applies to non-well-founded
terms, which is crucial given that infinite terms rarely have finite support.

ExampLE 12. In Example 3’s setting, i.e., with the MRBNF and binding dispatcher for the syntax
of A-calculus, by switching from the least to the greatest fixpoint we obtain that o T consists of all
possibly non-well-founded A-terms, known as Bohm trees [Barendregt 1984; Kennaway et al. 1997].

5.9 Modularity Considerations

Starting with a binding dispatcher 6 and an @-MRBNF (B, @, 7) F, we have constructed the binding-

aware datatype (or codatatype) a T asa T :‘(;o) (a,a,[a T]") F. It enjoys the following property.

THEOREM 13. a T is an a-MRBNF with map function map and set functions FVars;.

This suggests that our framework is modular in the sense that we can employ T in further
constructions of binding-aware types. This is indeed possible if we want to use the variables o
that parameterize @ T as binding variables. For example, if len @ = 1 and we take (8, &, 7) F’ to be
B + a T X1, then F’ is an a-MRBNF, which can in turn be used to build further binding-aware
datatypes a T" asa T’ ~¢ (a,a,a T') F'.

However, T cannot also export its variables as free variables. For example, if again len @ = 1 and
we take (f,a,7) F tobe f + a X f T X t, then F’ is not an «-MRBNF,; it is only a (f, «)-MRBNF,
since it is defined using f T, which imposes a map-restriction on f as well. In particular, F cannot
be employed in fixpoints a T ~¢ (a,a,a T') F’, since they require unrestricted functoriality of
(B, a, T) F’ on B. Unfortunately, this second scenario seems to be the most useful. The next example
illustrates it. It considers a syntactic category of types that allows binding type variables, while
participating as annotations in a syntactic category of terms that also allows binding type variables.

ExampLE 14. Consider the syntax of System F types

o u:=TyVara | Va.o | 0 > 0o
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assumed to be quotiented by the alpha-equivalence standardly induced by the V-binders. In our
framework, this is modeled as « T ~¢ (a, a, « T, a T) F, where 6 = {(1,1)} and

B,o,11,02) F = f+(aX1ry) + (12 X 12)
Now consider the syntax of System F terms, writing a’ for term variables:
t u==Varad | Aa.t | Aa’:o.t | to |ttt
This should be expressed as @ T’ ~¢ (a, @, [a T']*) F’, where 0 = {(1,1),(2,2)} and
(B aTF = fo+ (a1 X11) + (@2 X P TX 1) + (73 X pr T) + (3 X 73)
with len E =len @ = 2 and len 7 = 3. Indeed, this would give the overall fixpoint equation
aT =g ax+ (e XaT)+ (X TXaT)+@T' xaT)+aT xaT

In this scheme, a; stores the System F type variables, and a; stores the System F term variables. As
usual, this isomorphism is considered up to the alpha-equivalence induced by 8, which tells us that
in the second summand «; binds in its neighboring @ T”, and in the third summand «; binds in its
neighboring & T’. Note that System F type variables (represented by «;) appear as binding in the
second summand and as free (as part of ¢; T) in the third summand. However, the definition of
@ T’ is not possible; due to the presence of f; T as a component, (8, @,7) F’ is not an @-restricted
MRBNEF, but is additionally map-restricted on f;.

The above problem would disappear if T were an unrestricted functor (with respect to arbitrary
functions). However, the map function mapy’s restriction to endobijections is quite fundamental:
Its definition is based on the low-level map on raw terms, which preserves alpha-equivalence only
if applied to endoinjections or endobijections. (This phenomenon is also the reason for nominal
logic’s focus on bijective renaming.)

On the other hand, besides mapr : (7 > 1) = -+ = (@ @ am) > aT > aT,ona T, we
can also rely on the capture-avoiding substitution operator sub : (¢; = 1) = -+ = (am — am)
— a T — a T. The latter has functorial behavior with respect to functions f; : @; — «; that
are not endobijections, but suffers from a different kind of limitation: It requires that f has small
support (of cardinality less than |a|). Thus, we do have a partial preservation of functoriality that
goes beyond endobijections: On «, the framing F was an unrestricted functor, while the emerging
datatype is a functor only with respect to small-support endofunctions.

At this point, it is worth asking whether unrestricted functoriality of (E, «,T) F on its free-variable
inputs B is really necessary for the constructions leading to @ T and its properties. It turns out that
the answer is no. It is enough to assume functoriality with respect to small-support endofunctions
to recover everything we developed, at the cost of minor changes to the definitions to assume
that all the functions involved have small support; in particular, we must add this condition to the
cond; f; hypothesis in the definition of alpha-equivalence. This leads us to our final proposal:

PrOPOSAL 5. A binder type is a map-restricted BNF that

o distinguishes between free-variable, binding-variable and potential term inputs,
o puts a small-support endobijection map restriction on the binding-variable inputs, and
o puts a small-support endofunction map restriction on the free-variable inputs,

together with a binding dispatcher between the binding-variable inputs and the term inputs.

Thus, we will require that (,E, @, 7) F be a functor with respect to small-support endofunctions
on f, with respect to small-support endobijections on @ and arbitrary functions on 7. Unrestricted
functoriality on 7 is necessary to solve the fixpoint equations that define the (co)datatypes. To
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clearly indicate this refined classification of its inputs, we will call (8, @,7) F a f-free @-binding
MRBNF, where we omit “f-free” or “a- binding” if the corresponding vector Borais empty.

This final notion of MRBNF, whose full definition is given in our technical report [Blanchette
et al. 2019a], achieves the desired modularity, in the sense that the free variables of terms are really
a free MRBNF component:

THEOREM 15. @ T is an a-free MRBNF with map function sub and set functions FVars;.

6 BINDING-AWARE (CO)INDUCTION PROOF PRINCIPLES

In this and the next section, we provide an abstraction layer, consisting of reasoning and definitional
principles, that insulates the user from raw terms. The present section is dedicated to reasoning
about terms, whether well-founded or not, taking their binding structure into consideration. In
what follows, we will assume that «; is such that |¢;| is regular and bdr < |;].

6.1 Induction

Let @ T be the type of well-founded terms, as introduced in Section 5.3. Let us also fix a polymorphic
type @ P, of entities we will call parameters. For proving a property suchas Vt:a T.Vp:a P. ¢ t p,
we have at our disposal the standard structural induction principle inherited by the quotient @ T
from the free datatype a T of raw terms: It suffices to prove that, for each term ctor x, the predicate
At. Vp:aP. ¢ t p holds provided that it holds for each of the term’s recursive components.
However, we can be more ambitious. The following fresh structural induction (FSI) is a binding-
aware improvement inspired by the nominal logic principle of Urban and Tasson [2005], which in
turn is a formally rigorous incarnation of Barendregt’s variable convention:

THEOREM 16 (FSI). Let PFVars; : @ P — «; set with Vp : @ P. |PFVars; p| < |a;|. Given a predi-
cate o : « T — a P — bool, to prove Vt : a T.Vp:a P. ¢ t p, it suffices to prove

Vx:(a,a,[aT]")F. (Vje[n].Vt€erec;x.Vp:aP. ¢t p)
— (Vp:aP. (Vi € [m]. nonClash; x A topBind; x N PFVars; p = @) — ¢ (ctor x) p)

Above, we highlighted the two differences with standard structural induction: We assume that
parameters p come with sets of variables PFVars; p which are smaller than «;. This weakens what
we must prove in the induction step for a given term ctor x, by allowing us to further assume that
x does not clash and that its top-binding variables are fresh for the parameter’s variables.

The (FSI) principle is especially useful when the parameters are themselves terms, variables, or
functions on them, which is often the case. An example is the distributivity over composition of sub:

PROPOSITION 17. We have sub (g; © fi) ... (gm © fin) = sub gosub f forall f;, g; : &; — a; such
that |supp fi| < || and |supp gi| < |a| for all i € [m].

This property would be difficult to prove by standard induction, since the support of the functions
f and g may capture bound variables. With (FSI), by taking (f,g) as parameters, we can rule out
capture and apply sub’s recursive law (x) directly.

6.2 Coinduction

Next, let @ T be the type of non-well-founded terms, as introduced in Section 5.8. Concerning
binding-aware proof principles for o T, we encounter a discrepancy from the inductive case. The
standard structural coinduction principle imported from raw terms would allow us to prove that a
binary relation on @ T is included in the equality if it is an F-bisimulation (i.e., if it is preserved by
F’s relator). Using the ideas discussed in the previous subsection, we can prove a parameter-based
fresh variation of this principle, where we again emphasize the binding-specific enhancements.
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THEOREM 18 (FSC). Let @ P and PFVars; be as in Theorem 16. Given a binary relation ¢ : &« T —
aT — a P — bool, to prove Vi, t: a T.Np:a P. ¢ t; t, p — t1 = t,, it suffices to prove

Vx1,x2: (@, @, [a@ T|*) F. (Vp: @ P. ¢ (ctor x1) (ctor x3) p
A (Vi € [m]. nonClash; x; A nonClash; x; A (topBind; x; U topBind; x;) N PFVars; p = @) )
— relp [(S)]™ [(2)]™ [Aty 2. Vp:a P. ¢ ty t2 p]" x1 x2

However, this proof principle is not as useful as its inductive counterpart. Consider the task of
proving Proposition 17 for non-well-founded terms. Let us attempt to prove it using (FSC). We
again take the parameters to be tuples (f,g) of endofunctions of small support and PFVars; (f,)
to be supp f; U supp g;. We define ¢ t; t, (f,g) as 3t. t; = sub (g1 0 fi) ... (gm © fm)t A
ty = (sub g o sub ?) t. Then, it suffices to verify (FSC)’s hypothesis. We may assume that, for
all endofunctions of small support f; and g;, (1) ctor x; = sub (g1 © f1) ... (gm © fm) t and
ctor x; = (sub g o subf) t, and (2) (supp f; U supp ¢;) N (topBind; x; U topBind; x;) = @ for all
i € [m]. We must prove (3) relr [(=)]™ [(=)]™ [Aty to. Y(£.9). ¢ 1 t (f,§)]™ x1 x,. To this end,
assume t has the form ctor x, where thanks to the availability of enough fresh variables we may
assume (supp f; U supp g;) N topBind; x = @ for all i € [m]. This allows us to push sub under the
constructor in the equalities (1), obtaining (4) ctor x; = ctor x] and ctor x; = ctor x;, where

x; = mapg (910 fi) .. (gm © fm) [id]™ [sub (g1 0 f1) ... (gm © fm)]" x

x, = mapp (g1 fi) ... (gm © fm) [id]™ [subg o sub f]" x
At this point, we are stuck. To prove (3), we seem to need (5) x; = x] and x, = x;, which do not
follow from the equalities (4), and the freshness assumption (2) does not help. Indeed, we could use
(2) in conjunction with a suitable choice of x to prove one of the equalities (5), but not both.

The problem above is a certain synchronization requirement between the top-binding variables
of x; and x,, which is not accounted for by the freshness hypothesis. To accommodate such a
synchronization, we prove a different enhancement of structural coinduction, (ESC). Instead of
explicitly avoiding clashes with parameters, (ESC) enables the terms themselves to avoid any clashes,
and also to synchronize their decompositions via ctor, as long as this does not change their identity:

THEOREM 19 (ESC). Given a binary relation ¢ : @ T — a T — bool, to prove Vi1, ty:a T. ¢t t;
—> 1y = Iy, it suffices to prove

Vx1,x2: (@, @, [@ T]") F. ¢ (ctor x1) (ctor x3)
— (3xy,x;. ctor x; = ctor x; A ctor x; = ctor x; A relp [(=)]™ [(=)]" [At; ta. @ 11 12]" x] x;)

(ESC) is more general than (FSC) and can easily be used to prove it. It solves the problem in
our concrete example with substitution (by allowing us to dynamically switch from x; and x; to
x; and x;) and similar problems when proving equational theorems on non-well-founded terms.

7 BINDING-AWARE (CO)RECURSIVE DEFINITION PRINCIPLES

Two important aspects have not been formally addressed so far. The first concerns Theorems 10
and 11, stating the existence of substitution operators. While we have shown how the need for
sufficiently many fresh variables can be fulfilled, we have not accounted for the possibility of
defining the substitutions as well-behaved functions on (quotiented) terms. The second aspect
concerns a standard litmus test for abstract data types: the unique characterization of a construction
up to isomorphism. In contrast to raw terms, which are known to form initial objects in categories
of algebras for BNFs [Traytel et al. 2012], the status of terms is currently less abstract, since they
rely on alpha-equivalence. Can we also characterize the term algebras as initial objects?

The answer is yes if we can provide suitable (co)recursion definitional principles, (co)recursors,
for the types of terms. The main difficulty in developing such a recursor is that since terms do
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not form a free datatype, we cannot define functions on terms by simply listing some constructor-
based recursive clauses. Instead, the recursor must be aware of the nonfreeness introduced by
bindings, and in fact must take advantage of this nonfreeness to incorporate Barendregt’s variable
convention. And a similar (dual) problem holds for the corecursor. The key to address these problems
is to identify suitable abstract algebraic structures that satisfy term-like properties, to be used as
(co)domains for (co)recursive definitions.

We will present a simple version of the (co)recursors, which are more commonly called “(co)iter-
ators” Our technical report [Blanchette et al. 2019a] covers the straightforward extension to
full-fledged (co)recursors. Below, we implicitly assume that |@;| is regular and bdr < |¢;|. In
addition, unless otherwise stated, f; and g; range over (endo)bijections of type a; — «; that have
small support: [supp fi| < |e;| and |supp ¢;| < |a;].

DEFINITION 20. A term-like structure is a triple D = (a D, DFVars, Dmap), where

e o D is a polymorphic type;
o DFVars is a tuple of functions DFVars; : @ D — a; set for i € [m];
e Dmap : (@ > 1) > -+ = (@ > aym) > aD—aD

are such that the following properties hold:

Dmap [id]™ = id;

Dmap (g1 0 f1) --. (gm © fin) = Dmap g o DmaRf;

(Vie[m]. Yae DFVars;d. fia=a) — Dmap f d = d;

a € DFVars; (Dmap f d) «—> f ! a € DFVars; d.

Term-like structures imitate to a degree the type of terms. Indeed, (& T, FVars, map ) forms the
archetypal term-like structure.

7.1 Binding-Aware Recursor

Let @ T be the type of well-founded terms (Section 5.3). Recall from Section 6.1 that fresh induction
relies on parameters, assumed to be equipped with small-cardinality free-variable-like operators.
To discuss recursion, we need parameters to have map functions as well.

DEFINITION 21. A parameter structure is a term-like structure P = (« P, FVars, Pmap) such that
Vp:aP. |PFVars; p| < |a;].

The codomains of our recursive definitions, called models, must be even more similar to the type
of terms than term-like structures. Namely, they must also have a constructor-like operator.

DEFINITION 22. Given a parameter structure $, a -model is a quadruple U = (a U, UFVars,
Umap, Uctor), where
e (a U,UFVars, Umap) is a term-like structure;
e Uctor: (a,a,[aP > aU|")F>aP —->alU
such that the following properties hold:
(MC) Umap f (Uctor y p) = Uctor (mapy f f [Umap f]" y) (Pmap f p)
(VC) (Vi € [m]. topBind; y N PFVars; p = @) A
(Vi€ [m]. Vj € [n]. Vpu € rec; y. Vp. UFVars; (pu p) \ topBind, ;y C PFVars; p)
— Vie[m]. UFVars; (Uctor y p) C topFree y U PFVars; p
Above, we use similar concepts for models as for terms, such as topBind; and rec;, applied
to members y of (@, @, [@a P — a U]") F. They are defined in the same way and follow the same

intuition as for terms, with Uctor playing the role of ctor. The recursion theorem states the existence
and uniqueness of a “recursively defined” function from terms to any model:
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THEOREM 23. Given a parameter structure £ and a P-model U, there exists a unique function
H:aT — aP — a U that preserves the constructor, mapping, and free-variable operators:

(C) (Vi € [m]. nonClash; x A topBind; x N PFVars; p = @) —
H (ctor x) p = Uctor (mapy [id]*™ [H]" x) p

(M) H (mapy f t) p = Umap f (H t (Pmap f' p))
(V) Vi e [m]. UFVars; (H t p) C FVars; t U PFVars; p

This theorem captures the following contract: To define a function H from o T to « U, it suffices
to organize @ U as a -model for some parameter structure #. In other words, it suffices to define
on a U some £-model operators and check that they satisfy the required properties. In exchange,
we obtain the function H, which is also guaranteed to preserve the operators.

This function depends on both terms and parameters. Intuitively, H recurses over terms while the
binding variables are assumed to avoid the parameters’ variables. Indeed, the theorem’s clause (C)
specifies the behavior of H on terms of the form ctor x not for an arbitrary x, but for a (nonclashing) x
whose top-binding variables do not overlap with those of a given parameter p. This is the recursive-
definition incarnation of Barendregt’s convention, in the same way as the parameter trick of fresh
induction (Theorem 16) is its inductive-proof incarnation.

The two additional model axioms are also generalizations of term properties. They describe the
interaction between the constructor-like operator and the other operators. (MC) states that the
map function commutes with the constructor (for endobijections f of small support). (VC) is more
subtle. If we ignore its first premise, (VC) states an implication that generalizes and weakens the
following property of the term constructor’s free variables:

Vi € [m]. FVars; (ctor x) = topFree y U (Ujc(y Uterec; x FVars; ¢\ topBind, ; x

The weakening consists of turning the above equality, which has the form Vi € [m]. L; = R; UR],
into an inclusion Vi € [m]. L; C R; U R} and further weakening the latter into an “inclusion modulo
parameters,” Vi € [m]. R; € PFVars; p — L; € R; U PFVars; p, which is equivalent to

(Vi€ [m].Vj€[n]. Vt € rec; x. FVars; t \ topBind, ; x € PFVars; p)
—> Vi€ [m]. FVars; (ctor x) C topFree y U PFVars; p

(VC) is the model version of this last property, mutatis mutandis (e.g., replacing ctor and FVars; with
Uctor and UFVars;), together with the additional weakening brought by its first premise: The top-
binding variables in Uctor y p are fresh for the parameters. Given that weaker model axiomatizations
lead to more expressive recursors, our recursor improves on the state of the art (Section 9).

To define the variable-for-variable substitution sub, we define # by taking @ P to consist of all
tuples of small-support endofunctions 7 PFVars; ]_‘ = supp f; and Pmap g 7 =go ]_” og . We
define the -model U by taking « U = a T, UFVars; = FVars;, Umap = map; and Uctor y ? =
ctor (mapy f [id]™ [Apu. pu f]" y). To apply Theorem 23, we must check its hypotheses, which
amount to standard identities on terms. We obtain a function sub : @ T — o P — o T satisfying
three clauses, among which

(C) (Vi € [m]. nonClash; x A topBind; x Nsupp f; = Q)
—> sub (ctor x) f = ctor (mapy f [id]™ [Apu. pu f]" (mapy [id]*™ [sub]” x))
By (restricted) functoriality, mapy ? [id]™ [Apu. pu?]" (mapy [id]*™ [sub]™ x) = mapy ]_‘ [id]™
[At. sub t f]" x, making (C) equivalent to Section 5.5’s clause (), hence proving the desired behavior

for substitution (Theorem 10)—after flipping the arguments of sub, to turn it into a function of
typea P — a T — o T. Term-for-variable substitution (Section 5.7) can be defined similarly.
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To characterize terms as an abstract data type, let L be the parameter structure where the carrier
type is a singleton, the map function is trivial, and PFVars; returns @ for all i € [m]. We obtain the
following, as an immediate consequence of Theorem 23:

COROLLARY 24. (a T, FVars, map, ctor) is the initial 1-model (where a model morphism is a
function that preserves all the operators).

To summarize, the generalization of natural term properties has led us to the axiomatization of
models and to an associated recursor. The axiomatization factors in parameters, which are useful
for enforcing Barendregt’s convention; in particular, they allow a uniform recursive definition of
substitution. If we ignore parameters, our recursor exhibits the term model as initial, which yields
an up to isomorphism characterization in a standard way (via Lambek’s lemma).

7.2 Binding-Aware Corecursor

Next, we take @ T to be the type of non-well-founded terms. Traditionally, a corecursor is based on
an identification of our collection of interest as a final coalgebra for a suitable functor. The problem
here is that, unlike raw terms, terms do not form a standard coalgebra for F. Indeed, since ctor is
not injective, there is no destructor operation dtor : a T — (@, «, [a T]") F.

Yet something akin to a coalgebaic structure can still be obtained if we leave some room for non-
determinism. Namely, we define a nondeterministic destructor dtor : @ T — ((«, a, [a T]") F) set
as dtor t = {x | t = ctor x}. Crucially, this destructor is still deterministic up to a renaming of
the top-binding variables. Indeed, Proposition 7 ensures that, for any x,x’ € dtor t, we have
x" = mapp [id]™ f [mapp F1™ x for some small-support endobijections f subject to some suitable
conditions. This suggests the following axiomatization of corecursive models:

DEFINITION 25. A comodel is a quadruple U = (« U, UFVars, Umap, Udtor), where

e (a U, UFVars, Umap) is a term-like structure;
e Udtor:a U — ((a,a, [a U]")F) set

such that the following properties hold:

(Dne) Udtoru # @
(DRen) y,y’ € Udtor u — 3f. (Vi € [m]. bij f; A |supp fi| < |ai] A
(Ya € (Ujen (Uuerec, y UFVars; u) \ topBind, ; y). fi a = a)) A
y’ = mapy [id]™ f [Umap f]"
(MD) Udtor (Umap fu) C |mage (mapy f f [Umap f]") (Udtor u)
(VD) y € Udtor u —
Vi€ [m]. topFree y U Uje(n) (Uuerec; y UFVars; u’) X topBind; ;y C UFVars; u

Thus, comodels exhibit the term-like structure of models; but instead of a constructor-like opera-
tor, they are equipped with a destructor-like operator Udtor that returns nonempty sets (Dne) and
is deterministic modulo a renaming (DRen), thereby generalizing properties of the term destructor.
Moreover, (MD) generalizes the term property dtor (mapr t) C image (mapF frfl map k)
(dtor t), which after expanding the definition of dtor from ctor becomes map f t = ctorx’ —

n

Jx. t = ctor x A x’ = mapp ff [mapy f] x. Since this property is (1mphc1tly) quantlﬁed

universally over the small-support endobijections f by mapping with the inverses g = f of these
functions and using the restricted functoriality of map and map; we can rewrite it into

mapy g (mapy ? t) = mapy g (ctor x’) —
Fx. t = ctor x Amapy g g [mapy " x” = map; g g [mapy 91" (mapy f f [mapy f1" x)
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then into t = mapy g (ctor x’) — Jx. t = ctor x A mapy g g [mapy g]" x” = x and finally
into mapy g (ctor x’) = ctor (mapy g g [mapy g]* x’). This last property is the one that
inspired the model axiom (MC), which shows the conceptual duality between (MC) and (MD): They
generalize the same term property, but one from a constructor and the other from a destructor
point of view. The property (VD) is also in a dual relationship with the corresponding model
axiom (VC). Both can be traced back to the term property Vi € [m]. FVars; (ctor x) = topFree x U
Ujetn) (Urerec, x FVars; t) X topBind; ; x, which is weakened by (VC) and (VD) into inclusions of
opposite polarities. And indeed, comodels achieve the dual of what models achieve:

THEOREM 26. Given a comodel U, there exists a unique function H : « U — « T that preserves
the destructor, mapping and free-variable operators, in the following sense:
(D) map; [id]*™ [H]" (Udtor d) C dtor (H d)
(M) H(Umap f u) = mapy f (H u)
(V) Vi€ [m].UFVars; (Ht) C FVars; t

Note that clause (D) can be rewritten into y € Udtor d — map;. [id]*™ [H]" y € dtor (H d)
and, expanding the definition of dtor from ctor, further into
(D’) y € Udtor u — H u = ctor (mapy [id]*™ [H]" y)
which shows the corecursive behavior of H in a more operational fashion: To build a (possibly
infinite) term starting with the input d, H can choose any y € Udtor d and then delve into y after
“producing” a ctor. Thanks to the comodel axioms, notably, (DRen), the choice of y is irrelevant.

CoRrOLLARY 27. (a T, FVars, map, dtor) is the final comodel.

Unlike models, our comodels do not have parameters. This is because, in the corecursive case,
any freshness assumptions can be easily incorporated in the choice of the destructor-like operator.
(This mirrors the situation of binding-aware coinduction, which also departs from binding-aware
induction precisely on the topic of explicit parameters.) The corecursive definition of substitution is a
good illustration of this phenomenon. We define the comodel U by taking & U to consists of all pairs
(t,f) with ¢ term and f tuple of small-support endofunctions, UVar; (¢, f) = FVars; t U supp fi,
Umapg(t, f) = (maprgt.go f og '), and Udtor (¢, f) = {map f [id]™ [(A¢".(t/, f)I" x | x €
dtor t A nonClash; x A topBind; x N supp f; = @ }. We have highlighted how we insulate, among
all possible ways to choose x € dtor t, those x’s that avoid capture, as required by the desired
clause () for substitution—which is the same as for well-founded terms. This is a general trick for
replacing the explicit use of parameters. After checking that this is indeed a comodel, Theorem 26
offers the function sub : @ U — « T that satisfies three clauses, among which

(D’) x e dtor t A (Vi € [m]. nonClash; x A topBind; x N supp f; = @)
—> sub(f,t) = ctor (mapy [id]*™ [sub]® (map f [id]™ [(At". (¢, £)]" x))
This is equivalent to (+) by the functoriality of map, and the equivalence x € dtor «— ¢t = ctor x.

8 ISABELLE FORMALIZATION AND IMPLEMENTATION

All our results have been formalized in Isabelle/HOL, in a slightly less general case than presented
in this paper [Blanchette et al. 2019b]. While the formalization is expressed abstractly in terms
of arbitrary type constructors and constants (such as F and mapyp), it is concrete in that it fixes
arities for the type constructors. Thus, for the fixpoint constructions, instead of 8 C [m] X [n] and
(,B, «,7) F where len B = len @ = m and len T = n, we work with a fixed (f;, a1, 71, 72) F, taking
m=n=1and 0 ={(1,2)}.

There is no way to avoid this while working in the Isabelle/HOL user space, given that in HOL
we cannot consider type constructors depending on varying numbers of type variables. On the
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positive side, having the fixed-arity case fully worked out gives us strong confidence that our results
are correct. Moreover, by doing a lot of copy-pasting, we can easily adapt our formalization to any
given m, n, and §. On the negative side, our framework is not yet usable in the way a definitional
package such as Isabelle Nominal [Urban and Tasson 2005] and the BNF-based (co)datatype package
[Blanchette et al. 2014] is. Besides the above issue with arities, another missing component is a
mechanism for hiding the category theory under some user-friendly notation—for example, splitting
the single abstract constructor ctor into multiple user-named constructors. As a first step, we have
implemented in Standard ML an axiomatic tool that automates the process of instantiating an
Isabelle formalization parameterized by some type constructors and polymorphic constants with
user-specified instances. This tool is not necessary for developing our theory, but it is helpful for
avoiding proof duplication—for example, when instantiating the arbitrary (co)models used by our
(co)recursion principles with the specific ones needed to define substitution.

The main benefit of our approach is the semantic treatment of binders, which allows us to
combine arbitrarily complex binders with (co)datatypes. But the functorial approach is not a cure
for the combinatorial complexity associated with many-sortedness: multiple types of variables
bound in multiple types of terms. To cope with these, we need to consider multiple arguments for
our functors, and mutually recursive (co)datatypes. This complicates the implementation.

9 RELATED WORK

We will articulate our discussion of related work around three main paradigms in reasoning about
bindings: the “nameful” paradigm, the nameless paradigm, and higher-order abstract syntax. The
main distinction between these lies in the way they consider binders and associated concepts such
as substitution. We will continue using the same notational style as above, writing « for a type
of variables and a T for the type of terms over these variables. Concretely, @ T will consist of
A-calculus terms equipped with a binding operator A.

In what we call the nameful paradigm, binding variables are passed explicitly to the binding oper-
ator (so that A has type « — a T — a T), and terms are usually equated modulo alpha-equivalence.
The nameful paradigm is followed by most of the informal, pen-and-paper developments of logic,
A-calculi, and programming languages. In his famous monograph on the A-calculus, Barendregt
[1984] has developed a systematic (yet informal) methodology for nameful reasoning, which is
summarized by his variable convention. A rigorous account of this paradigm is offered by nominal
logic [Gabbay and Pitts 2002; Pitts 2003, 2006]. In contrast, with the nameless paradigm originating
with the work of de Bruijn [1972], the bindings are indicated through nameless pointers to binding
positions in a term. The A constructor has type @ T — a T or a variation of it, and there is a conven-
tion on what element of « is being bound, such as de Bruijn indices and de Bruijn levels [Lescanne
and Rouyer-Degli 1995]. A type-safe variation of the above is achieved by enhancing the source type
of A to (& + unit) T, with the understanding that the binding positions are the occurrences of *: unit.
The third paradigm, higher-order abstract syntax (HOAS), is based on the reduction of all binders to
the binder of a fixed A-calculus provided by the metalogic. It relies on higher-order types for the
binding operators; for example, the type of A wouldbe (¢ T — a T) — a T or, for weak HOAS,
(¢ > a T) — a T. As a technique for representing and implementing logics and programming
languages, HOAS originated in the early 1980s with Martin-Lof’s work [Nordstrom et al. 1990,
Chapter 3], although its ideas can be traced back to Huet and Lang [1978] and even Church [1940].
The paradigm gained traction in the formal methods community with the works of Harper et al.
[1987], Pfenning and Elliott [1988], and Paulson [1989]. HOAS has been subsequently extended with
sophisticated definition and (meta)reasoning capabilities (e.g., Pfenning and Schiirmann [1999],
Despeyroux et al. [1995], Chlipala [2008], Felty and Pientka [2010]), including (structural) recursion
in a functional setting [Ferreira and Pientka 2017; Pientka 2010; Schiirmann et al. 2001].
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Some approaches in the literature combine two paradigms [Aydemir et al. 2008; Charguéraud
2012; Felty and Momigliano 2012; Popescu et al. 2010]. Moreover, it should be emphasized that
the three paradigms do not differ fundamentally in the employed datatype of terms. Regardless
of whether terms are defined by quotienting raw terms to alpha-equivalence, defined as a free
datatype using nameless pointers, or encoded using a metalevel binder, they yield essentially
the same concept. (In HOAS approaches, this fact is often reinforced by an adequacy proof.) The
distinction is also not so much about what constructors are available to build terms; for example,
the nameful constructors are easily definable from the nameless constructors and vice versa. The
deeper difference lies in their respective reasoning and definitional styles, which are optimized for
the default types of the binding constructors. Consider a recursively defined function f. If its A
clause has the form f (Aa.t) = ..., the burden is to maintain compatibility with alpha-equivalence.
On the other hand, if it has the form f (1¢) = ..., the difficulty is to shift the pointers properly
[Berghofer and Urban 2007]. From a proof assistant perspective, in either case the challenge is to
provide convenient abstractions to support the chosen style.

Essentially a functorial generalization of Barendregt’s variable convention, our work belongs
squarely to the nameful paradigm. It is inspired by, and extends, nominal logic (Section 9.1). Its
generality and modularity is owed to category theory, which has a rich tradition of functorial
representation of binding structures (Section 9.2). A distinguishing feature of our work is an abstract
axiomatization of binders, which differs from the syntactic approaches described in the literature
(Section 9.3). We also consider infinitely branching and non-well-founded terms; these are seldom
considered in conjunction with bindings (Section 9.4). Finally, as a contribution to proof assistant
infrastructure for syntax with bindings, our work joins a large body of prior art (Section 9.5).

9.1 Comparison with Nominal Logic

There is considerable overlap between our framework and nominal logic, which is itself a syntax-
free axiomatization of term-like entities that can contain variables, called atoms. We can establish
a precise correspondence between a specific fragment of our framework and nominal logic. Let & F
be an a-binding MRBNF (whose inputs are all binding inputs) that is finitary (i.e., bdp = Ny), and
fix @ to some countable types. Then @ F is a (multi-atom) nominal set with « as its sets of atoms.
Moreover, our endobijections f; : @; — «; of small support coincide with what nominal logic calls
permutations of finite support, and the map, function is the same as the nominal permutation
action. This is no coincidence: Our MRBNF restriction to small-support functions, as well as our
fresh induction proof principle, are inspired by the nominal approach.

Nevertheless, there are important differences. First, we employ functors for modeling the presence
of variables, instead of atom-enriched sets. We exploit a mechanism that is already present in the
logical foundation: the dependence of type constructors on type variables. Moreover, unlike nominal
sets, which are assigned fixed collections of atoms, the inputs to our functors are parameters that can
be instantiated in various ways. We exploit this flexibility to remove the finite support restriction
and to accept terms that are infinitely branching, that have infinite depth, or both. To accommodate
such large entities, we only need to instantiate type variables with suitably large types.

Another difference concerns the amount of theory (structure and properties) that is built into the
framework as opposed to developed in an ad hoc fashion. Unlike nominal sets, whose atoms can
only be manipulated via bijections, our functors distinguish between binding variables (manipulated
via bijections) and free variables (manipulated via possibly nonbijective functions). These functors
allow us to apply not only swappings or permutations but arbitrary substitutions.

With our approach, the reasoning and definitional principles associated with binding-aware
(co)datatypes are also more abstract and uniform than with nominal logic. For any syntactic
framework, the difficulty of providing such an infrastructure increases with the complexity of the
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supported binders. For example, Nominal Isabelle includes simple binders supported by induction
[Urban and Tasson 2005] and recursion [Urban and Berghofer 2006], whereas Isabelle Nominal2
provides complex binders but only induction. By contrast, our induction and recursion principles
operate generically for arbitrary MRBNFs, regardless of the binders’ complexity. For finitary syntax,
our (co)induction and (co)recursion principles are as expressive as those of nominal logic, via the
correspondence between MRBNFs and nominal sets described above; any predicate that is provable
or function that is definable using one approach is also provable or definable with the other.
Binding-aware recursion is technically more complex than induction, because we must produce a
function that is well defined on alpha-quotiented terms. Here, the state of the art on high expressive-
ness is the nominal recursor [Pitts 2006] (implemented in Isabelle/HOL [Urban and Berghofer 2006],
Coq [Aydemir et al. 2007], and Agda [Copello et al. 2018]) and its essential variations due to Norrish
[2004] (in HOL4) and Gheri and Popescu [2017] (in Isabelle/HOL). Our recursor improves on all
these recursors, by combining their respective strengths: It supports Norrish’s flexible (dynamic)
parameters and Gheri and Popescu’s improved Horn-style axiomatization, while circumventing
the nominal recursor’s limitation that freshness must be definable from the permutation action.
Our technical report [Blanchette et al. 2019a] formally proves these claims for the A-calculus.

9.2 Category-Theoretic Approaches

Category theory is a source of highly general and modular representations of datatypes. Our work
on endowing Isabelle/HOL with modular (co)datatypes, initiated in 2012 with the introduction
of bounded natural functors (BNFs), draws heavily from category theory. As discussed in Traytel
et al. [2012, Section III.C], BNFs have been designed as a HOL-friendly class of functors after
analyzing various classes from the literature, including set-based functors [Aczel and Mendler
1989], accessible functors [Makkai and Paré 1990], datafunctors [Hensel and Jacobs 1997], container
types [Hoogendijk and de Moor 2000], and containers [Abbott et al. 2005]. The last two have
inspired the “shape and content” intuition described in Section 2.2. Like Hoogendijk and de Moor’s
container types, BNFs are a class of functors specified extensionally by some additional structure
and properties; shapes and contents are handled implicitly, through the properties of functors and
relators. By contrast, Abbot et al’s containers are described by a format that explicitly refers to shapes
with positions to be filled with content; for the category of sets, containers are a subclass of what
we call strong BNFs. Quotient containers [Abbott et al. 2004], introduced for capturing permutative
datatypes, form a proper generalization of analytic functors [Joyal 1986] and are a subclass of BNFs.
Both containers and BNFs enjoy nice closure properties, which is crucial for modularity. Closure
properties have not been studied for container types, which seem to form a superclass of strong BNFs.
The BNF natural transformation to sets is also similar to the notion of support in Pierce’s [2002]
account of (co)inductive types and with the urelement relation employed by Abel and Altenkirch
[1999] in their predicative proof of strong normalization for A-calculus with (co)inductive types.

Among category-theoretic work that addresses bindings specifically, there is a substantial body
of work based on presheaves, which are (co- or contravariant) functors P : C — Set, where C is
often taken to be (a skeleton of) the category of finite sets having as morphisms arbitrary functions,
injections, or bijections. The last case gives the species [Joyal 1981], which have been used in
conjunction with analytic functors in the study of combinatorial properties of labeled structures
[Bergeron et al. 1997], where bijections rename labels. Our MRBNFs employ a blend of arbitrary
functions and bijections, where bijections rename only binding variables.

Representations of syntax with bindings using presheaves [Fiore et al. 1999; Hofmann 1999]
follow the nameless paradigm. Terms with bindings form the initial object in a category of algebras
over a presheaf topos. For example, in Fiore et al. [1999], which is explicitly inspired by de Bruijn
levels, the binding constructor A is a natural transformation between the context-extended presheaf
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of terms and the presheaf of terms. Concretely, this means that A is a family (1,,),enq: such that
An i [n+1] T — [n] T, where [n] T can be construed as the collection of all terms with free variables
among Xy, . . . , Xp—1 (the first n variables), the intuition being that A,, binds the (n + 1)st variable x,,. A
closely related approach is taken by Bird and Paterson [1999] and Altenkirch and Reus [1999]. They
use nested datatypes to extend the context, yielding A : (« + unit) T — a T. The same construction
is available for Joyal’s species using the differentiation operator, as noted by Yorgey [2014, p. 119].

Generalizations of the early presheaf representations have been developed using the (related)
concepts of dependent polynomial functors [Gambino and Hyland 2003], generalized species [Fiore
et al. 2008], polynomial functors over grupoids [Kock 2012], and indexed containers [Altenkirch
et al. 2015; Morris et al. 2009]. Indexed containers feature a stronger type-theoretic view that
complements the category-theoretic view. They are extensions of the containers developed with
the goal of extending the specification language beyond standard datatypes, to capture bindings,
constraints, nested recursion, and dependency on data. Like our MRBNFs, they have been shown
to admit least and greatest fixpoints (datatypes and codatatypes) and powerful corresponding
(co)induction principles [Ghani et al. 2013].

Recent work [Ahrens et al. 2018] on the univalent foundation of mathematics (having roots in
earlier category-theoretic advances [Ghani et al. 2006; Hirschowitz and Maggesi 2012]) defines
a general notion of signature for syntax with bindings and identifies criteria for the existence of
initial models, again following the nameless paradigm. Like our work, it emphasizes modularity
and studies the existence of substitution operators.

Despite being generalizations and type- and scope-safe enhancements of de Bruijn’s construc-
tion, presheaf-based and related representations reach beyond the nameless paradigm. By virtue
of working in a suitable presheaf topos where context extension is isomorphic to the function
space from the presheaf of variables, some presheaf representations yield a weak-HOAS-like view
[Hofmann 1999]. In addition, the notion of presheaf itself is not committed to a nameless paradigm.
In fact, the (quintessentially nameful) category of nominal sets is equivalent to a category of sheaves
(pullback-preserving presheaves), namely the Schanuel topos [Johnstone 1983]. However, the nom-
inal induction and recursion principles, which we generalize in this paper, have a different flavor
from the principles stemming from presheaf-based representations: The inductive and recursive
clauses refer to bound variables, and Barendregt’s variable convention is observed. Gabbay and
Pitts [2002, Section 7] and Staton [2007, Chapter 7] explain this distinction, also emphasizing the
Schanuel topos’s classical logic nature.

9.3 Complex Bindings

The literature on specification mechanisms for syntax with bindings offers a wide range of syntactic
formats of various levels of sophistication, including those underlying CaMl [Pottier 2006], Ott
[Sewell et al. 2010], Unbound [Weirich et al. 2011], Isabelle Nominal2 [Urban and Kaliszyk 2012],
and Needle & Knot [Keuchel et al. 2016]. By contrast, we axiomatize binders semantically, via a
class of functors. To our knowledge, our approach is the first in which category theory is used not
only for constructing (co)datatypes with bindings but also for axiomatizing complex binders.
Scope graphs [van Antwerpen et al. 2016] are a language-independent framework for specifying
bindings. This research focuses on the integration of bindings with compilers and static analyzers.

9.4 Non-Well-Founded Terms with Bindings

Infinitely branching and non-well-founded nameless A-terms have been studied in the context
of infinitary higher-order rewriting and proof theory [Joachimski 2001]. Moreover, corecursion
and coinduction techniques for non-well-founded terms with bindings have been developed for
presheaves [Matthes and Uustalu 2004] and also fall within the scope of the work on indexed
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containers and fibrational coinduction [Ghani et al. 2013]. Kurz et al. have studied nameful corecur-
sion for Bohm trees [2012] and more generally for nominal codatatypes associated with a binding
signature [2013]. They also showed how definitions from the theory of the infinitary A-calculus
[Kennaway et al. 1997], including substitution and various normal forms, can be rigorously cast as
corecursive definitions. The main difference from our work is that they stay in a nominal setting by
restricting the non-well-founded terms to have finitely many free variables, whereas we avoid this
restriction by resorting to transfinite cardinals. Going beyond finite support has also been proposed
by Gabbay [2007] as an infinitary extension of nonstandard set-theoretic foundations for nominal
logic [Gabbay and Pitts 1999, 2002].

9.5 Proof Assistant Representations of Bindings

Much of the work we have mentioned so far has been formalized or implemented in proof assistants
or logical frameworks, which has become a scientific norm for syntax with bindings. HOAS
is supported by dedicated frameworks (e.g., Abella [Baelde et al. 2014], Beluga [Pientka 2010],
Delphin [Poswolsky and Schiirmann 2009] and Twelf [Pfenning and Schiirmann 1999]) and is also
implemented in general-purpose proof assistants such as Coq [Chlipala 2008; Despeyroux et al.
1995] and Isabelle/HOL [Gunter et al. 2009].

Indexed containers are particularly suitable for dependent type theories and have been formal-
ized in Agda and deployed for generic programming in the dependently typed language Epigram
[McBride 2004]. An expressive type theory such as Agda’s or Coq’s caters for generic developments
using universes populated by codes for types. Besides containers, universe-based developments
include the works of Keuchel and Jeuring [2012] (using HOAS and nameless representations),
Keuchel et al. [2016], Licata and Harper [2009], Allais et al. [2018], Lee et al. [2012] (using nameless
representations), and Copello et al. [2018] (using a nameful representation). Some of these support
formats for complex binder patterns and feature a substantial amount of infrastructure lemmas and
formalized case studies. The work of Copello et al. is most similar to ours in that it provides nameful,
Barendregt-style definition and reasoning principles. Their terms, like ours, are constructed from
raw terms via an alpha-equivalence relation operating on elements of functors, but the construction
has a more concrete flavor, because their functors are generated by a grammar whereas ours are
described abstractly by properties. All these works have been performed in a constructive setting,
in contrast to ours, which relies on classical logic. It is not clear if our approach can be adapted to
constructive type theory; a prerequisite would be the availability of (co)datatypes based explicitly
on functors, as those recently designed for Cedille [Firsov and Stump 2018] and Lean.

An alternative to generic programming via universes is the definitional package approach, which
is available in proof assistants based on a weaker logic such as HOL. Definitional packages produce
the datatypes and associated theorems dynamically for each user-specified syntax. This is the
approach taken for Isabelle Nominal but also for Coq’s Autosubst tool [Schifer et al. 2015]. We plan
to use our MRBNF formalization as the basis of a definitional package that will extend Isabelle’s
BNF-based (co)datatypes [Blanchette et al. 2014]. We are looking forward to taking on POPLmark
[Aydemir et al. 2005] and its follow-up challenges [Abel et al. 2017; Felty et al. 2015b].
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