First Class Grammars for Language Oriented Programming

Tony Clark
Centre for Model Driven Software Engineering
Thames Valley University, St Mary’s Road, Ealing, UK, W5 5RF
tony.clark@tvu.ac.uk

January 22, 2009

Abstract

Programming languages that support Language Oriented
Programming (LOP) allow developers to extend the host
language with new programming features. The extensions
include new concrete syntax constructs that are both re-
placements for and interleaved with the host language.
This paper describes the general features that are re-
quired in order to support the LOP approach in a lan-
guage. The paper shows how many of the features are
implemented in the XMF language system, describes the
shortcomings of the implementation and outlines an ex-
tension to Java that would address these shortcomings.

1 Introduction

Language oriented programming (LOP) [3] is a technique
used to support language driven software engineering and
domain specific languages [4]. In his influential presenta-
tion, Guy Steele [5] identified the need for developers to
grow languages as part of the development process.

There are many different technologies currently used
to support LOP. These include macros [6], pre-processors
and parsing libraries. LOP involves defining new lan-
guages that can be categorized as external and internal
[14]. An external language is used in separate program
units and is not integrated with a host language. An in-
ternal language provides constructs that are embedded
within a host language and possibly interleaved with host
language constructs.

Ultimately, technology supporting LOP must provide
ways of integrating new language features with a host
language [2]. This paper describes the general features
of such technology and shows how they are implemented
in the language system XMF. The implementation takes

the form of a novel parsing engine that can be embed-
ded in other language systems. The paper concludes by
analysing the shortcomings of the XMF mechanisms and
proposing how these can be addressed by implementing
the features in Java.

2 Language Features for DSLs

Many languages provide some form of interface to rela-
tional databases and SQL. Often this is achieved using
strings to represent SQL; however, if the language is em-
bedded as a DSL then values from the surrounding pro-
gram can be used and tool support can check type infor-
mation. For example the following produces a collection
of employee names for those less than a given age:

Vector<String> youngEmployees(int ageLim) {
@select age,name from Employees
where age < agelim {
produce name;
}
}

Consider processing text that represents customer sales
transactions. Often this information is held in a text file
and must be dissected before it can be processed. A con-
venient way to process this information is via a DSL, in
this case specified externally to the main application, that
specifies the format of the data:

reader CallReader
map (SVCL,ServiceCall)
4-18:CustomerName
19-23:CustomerId

end
map (USGE, Usage)

end
end

Finally, frameworks often require additional information
to be supplied together with the source or binaries for an
application. A typical example of this is J2EE which re-
quires information to be added to Java classes describing
how they are to be used. Rather than mark up the exist-
ing language and supply the information via XML files,
it is more convenient to modify the externally visible lan-
guage constructs. For example, the following is a Java
class definition with methods using a language designed
to support enterprise beans:

@enterprisebean Calculator isStateless {
remotelocal double calculate(...) {

}

remote String getServerInfo() {

}
}

What kind of technology is required to support the defini-
tion of these features? It is possible to support language
extension via pre-processing. However, it is difficult to
embed the features properly since the pre-processor does
not have access to the language analysis and manipulation
features of the host language tools. It is much more effec-
tive to embed the language extension mechanisms inside
the host language.

Each of the examples given above requires the syn-
tax of the host language to be extended in some way.
In some cases, e.g. the bean example, extensions will
be fairly trivial wrappers around existing constructs. In
some cases the extensions will be completely external lan-
guages as in the text dissection example. However, the
SQL example shows that ultimately, syntax must be inter-
leaved; Java statements and expressions can occur within
select-statements that occur within Java expressions and
statements etc.

Ideally, extensible language technology will allow new
language constructs to be defined as modular units in
terms of their syntax and semantics. Such units should
be portable between different users of the technology so
that DSL developers can easily distribute the language
definition without having to also distribute the support-
ing technology.

New language features must integrate with the host
language in terms of analysis and transformation. For ex-
ample the SQL example above makes reference to the ar-
gument supplied to the method. The host system should
be able to check new constructs for unbound identifiers
and type inconsistencies. Furthermore, new language
constructs should be able to transform themselves into
existing constructs or compile themselves directly in or-
der to implement the feature. All of these activities imply
that the abstract syntax of the language has a standard
interface that can be implemented and extended by DSL
constructs.

3 XMF

XMF is a system that supports language oriented pro-
gramming. It provides many of the technologies required
to support DSL definition, in particular the ability to em-
bed language definitions within the host language and
to interleave new language constructs with existing con-
structs. This section describes the key aspects of XMF
that support LOP. The following section describes how
they are implemented and therefore how they could be
integrated within other language systems. The final sec-
tion of this paper analyses the features in term of their
shortcomings and proposes a mechanism for extending
Java for LOP based on an extension of XMF.

Suppose that we have a class Sig that defines a simple
type signature. Given an instance s of Sig, it is possi-
ble to check that a given table t conforms by performing
s.check(t). We could require all uses of tables to con-
form to the following pattern:

let t = Table(3)

in t.put("x",100);
t.put("y","Fred");
t.put("z",true);
s.check(t);

However, programmers can easily forget or purposfully
omit the check. It would be better to have a language
construct for table construction that enforces the check:

parserImport Table;

let t =

@Table(s)
x = 100;

y = "Fred";

z = true
end

in ...

This new construct is embedded within the surrounding
XMF language and can be used wherever an expression is
expected. The new construct can be implemented within
XMF using syntax classes. Each syntax class defines a
grammar for the concrete syntax. The grammar syn-
thesizes an abstract syntax construct that implements a
syntax interface. In the case of Table, define below, the
grammar uses quasi-quotes to synthesize an instance of
existing abstract syntax classes defined by XMF:

@Class Field
@Attribute name :
QAttribute value :
end

String end
Exp end

context Table
OGrammar extends XMF.grammar
Table ::= s = Sig fs = Field* ’end’ {
[l let t = Table(<fs->size.lift()>)
in <fs->iterate(f e=[|<s>.check(t)|] |
let nExp = f.name.lift()
vExp = t.value
in [| t.put(<nExp>,<vExp>);

<e> |]
end) >
end |]

}.

Sig ::= (> s = Exp)’ { s }.

Field ::= n = Name ’=’ e = Exp ’;’
{ Field(n,e) }.

end

A grammar can be added to any class in XMF, result-
ing in a syntax class for a new language construct. The
grammar must synthesize a instance of abstract syntax
in XMF which guarantees that the host system can ma-
nipulate the new language construct using a predefined
interface. The grammar for Table returns an instance
of existing abstract syntax classes in XMF and therefore
does not need to define any of the interface operations.
If it returned an instance of a new class then that would
need to define operations such as eval, FV and compile.

A grammar consists of a collection of named clauses
(Table, Sig and Field in the example). Each clause body
is a sequence of parse elements, each of which produces a
value. A parse element is: a call (e.g. Sig in the clause

Table); a binding to a local variable (s =and fs =); a ter-
minal (*end’, ’=’); the repetition of an element (*) that
produces a sequence of all synthesized values, an action
which is an expression inside { and }that can reference
any local variables in scope. A grammar may also extend
an existing grammar in which case all the clauses from
the parent are included in the child.

The grammar for Table parses a signature followed by
a sequence of fields and returns a let-statement that is
constructed in terms of the signature and fields. A sig-
nature is any valid XMF expression inside parentheses.
A field is a name, followed by = and then an expression
followed by ;.

The final Table action constructs a let-statement in
terms of the signature and fields. Working with abstract
syntax can be done by creating instances of abstract syn-
tax classes and linking them together. However, this can
be a lengthy process and does not provide the reader with
an appropriate visual rendering of the translation. There-
fore, the Table grammar makes use of XMF quasi-quotes
which allow abstract syntaz to be constructed in terms of
concrete syntaz.

Quasi-quotes are [| and |] that surround any XMF
expression or statement and are based on the Template
Haskell feature [13]. The result is an instance of appropri-
ate abstract syntax classes. The quotes are usually used
when constructing syntax that conforms to some sort of
pattern or template. In this case, there will be fixed parts
of the template and variable parts of the template. The
variable parts can be inserted by surrounding them with
< > drop quotes. Therefore [| x + y |] is a binary ad-
dition expression involving variables x and y, whereas [|
<x> + <y> |] is a binary addition expression that whose
left and right operands are the expressions which are the
values of x and y.

Table also uses XMF sequences and the iterate ex-
pression. A sequence in XMF Seq{h|t} is built from cons-
pairs like Lisp, where Seq{} is equivalent to nil. An iterate
expression is used to accumulate a value whilst looping
through the elements of a list: s->iterate(x sum = 0
| sum + x) adds up all the elements of the sequence s,
building up the result in sum.

Once a new syntax class has been introduced to XMF,
the language construct can be used in a file providing
that the file header includes a parserImport declaration
for the name-space including the syntax class. Each file is
processed with respect to a collection of imported name-
spaces, and parserImport extends the current list.

Once a syntax class has been imported, concrete in-
stances of the construct can be encountered anywhere the

host language permits an at-escape (so-called because the
default character that denotes the start of a language es-
cape is @). When an at-escape is encountered, the XMF
parser resolves the following reference to produce a gram-
mar via the syntax class and then makes a context switch
to use the new grammar. When the new grammar has
completed a parse, the XMF parser returns to the origi-
nal grammar and continues.

4 Implementation

The previous section has described technology for LOP
that provides a modular approach to the definition of
embedded and external DSLs. The technology is imple-
mented in the XMF system, however the key features are
not restricted to that system and could be implemented
in any object-oriented based language system.

This section describes the implementation in terms of
3 phases: section 4.1 defines a simple representation for
grammars and shows how a grammar is translated into a
normal form and then into machine instructions. Section
4.2 describes how LL(1) prediction tables are constructed
ready to drive the parseing engine. Section 4.3 defines
the parsing engine and how it handles syntax classes.

4.1 Grammar Compilation

An XMF grammar is written in a language called XBNF
that extends BNF with: grammar inheritance that allows
one grammar to extend another; clause arguments that
allow data to be passed between grammar rules; clause
actions and local variables that allow data to be synthe-
sized by a parse; cut that provides control over choice
points.

The body of each grammar clause is a data value of
type Parse as defined below:

Parse ::=
Action(Fun)

And (Parse,Parse)
At

Bind (Str)
Call(Str, [Strl)
EQOF

Float

Integer

Name

Or (Parse,Parse)
Star (Parse)

| String
| Term(Str)

An action consists of a function that is invoked with re-
spect to the current parse context (and can therefore ac-
cess local variables). The At parse element is used as
an escape that defines where new language features can
be embedded in the host language. Each parse element
produces a value that can be bound to a local name us-
ing Bind. A clause is called and supplied with the values
of local variables using Call. The elements EOF, Float,
Integer, Name, String and Term are used to test the next
input token. Alternative parses are expressed using Or
and sequenced parses are expressed using And. The Star
parse element is used to greedily consume input tokens
and to synthesize sequences of results.

A grammar is a collection of clauses that define non-
terminals, and a name that designates a starting non-
terminal:

Grammar == ([Clause],Str)
Clause == (Str, [Str],Parse)

The following simple examples will be used to show how
compilation works:

Q@Grammar
S ::=
end

x=Int xs=(’,’ Int)* ’.

> {f(x,xs)}.

which is represented as an instance of Grammar as fol-
lows (nested And trees are shown as a single And with a
sequence argument):

([(s,[],And([Int,
Bind(x),
Star (And(Terminal(","),Int)),
Bind(xs), Terminal("."),
Action(£)1))1,S)

Compilation of a grammar is defined as a seqeunce of
transformations that produces a compiled grammar con-
taining compiled clauses. The first transformation is to
remove uses of the Star parse element that greedily con-
sumes tokens and builds lists of synthesized values. Each
Star element is replaced by a call to a new recursive clause
that continually calls itself and builds a list of values from
the results or alternatively produces the single value Nil
(using an action with the same name). The transforma-
tion is performed by the function nf. The result of per-
forming nf on the example grammar is shown as follows:

([(s,[],And([Int,Bind(x),

Call(c,[1),

Bind(xs),Terminal(","),

Action(£)])),

(c, [1,0r(Ni1,
And([Term(","),Int,Bind(h),
Call(c, [1),Bind(t),
Cons(h,t)1)))],
S)

Each clause body is translated into a clause normal form
that removes disjuctions by distributing And elements over
Or elements to produce clause bodies that are disjunctive
sequences. After translation with cnf, the example gram-
mar clause bodies are:

[[Int,Bind(x),Call(c, []1),Bind(xs),Action(f)]]
[[Nil],

[Term(","),Int,Bind(h),

Call(c,[1),Bind(t),

Cons(h,t)]]

The next step in compilation is to translate clause bodies
into sequences of parse machine instructions. Each Parse
constructor has a Parse_I equivalent except for Bind that
compiles to SetLoc. The following definition shows just
the non-obvious instructions:

Parse_I ::=

| Call_I(Str,[Int])
| Cons_I(Int,Int)

| ...
| SetLoc(Int)
|

A call is transformed into an instruction that names the
clause to be called and includes an argument map. An
argument m map associates argument positions with local
variable offsets in the current context. A map will be used
as a function from integers to integers. A cons instruction
constructs a cons-pair from local variable offsets for the
hed and tail. A local variable is updated using its offset
in the current context by SetLoc.

The instruction compilation is performed by the com-
piler defined below (only the non-trivial mappings are
shown). It takes a parse element and an argument map
as arguments:

compile : (Parse, [Str]) -> Parse_I

SetLoc(1s(s))
Call_I(s,map 1ls ss)
= Cons_I(1s(h),1s(t))

compile(Bind(s),1s)
compile(Call(s,ss)) =
compile(Cons(h,t),1s)

A compiled grammar consists of compiled clauses as de-
fined below. A compiled clause consists of a name, the
number of locals and a disjunctive sequence of instruction
sequences:

CGrammar == ([CClause],Str)
CClause == (Str,Int,[[Parse_I]])

The grammar compiler is defined below (FV calculates free
variables):

compile : Grammar -> CGrammar
compile(g) = (compile(cs),n)
where (cs,n) = nf(g)
compile : [Clause] -> [CClause]
compile(c:cs) = compile(c):compile(cs)
compile : Clause -> CClause
compile(n,as,p) =
let pss = cnf(p)
vs = FV(p) then
1ls = removeDups(as + vs) then
iss = map(\ps.map(\p.compile(p,1ls))ps)pss
in (n,len(ls),iss)

The result of compiling the example grammar is as fol-
lows:

([(s,2,[[Int_I,SetLoc(1),
Call_I(c,[]),SetLoc(2),
Terminal _I("."),
Action_I(£)1)),

(c,2,[[Ni1_1],
[Term_I(","),Int_I,SetLoc(1),
Call_I(c,[]),SetLoc(2),
Cons_I(1,2)1I)1],
S)

4.2 Parsing Tables

The XBNF parse is LL(k) which means that it can cope
with grammars that require lookahead in the input to-
kens. They are not as efficient as LL(1) grammars that
do not require any lookahead. A standard way to parse
an LL(1) grammar is to use a prediction table in which
clause bodies can be indexed by clause names and tokens.

XMEF tries to achieve the best of both worlds by compil-
ing XBNF grammars to prediction tables for LL(1) pars-
ing but allows the entries in the table to be ambiguous.
In the case that the entry is not ambiguous, the parse is
very efficient. Otherwise, the parse maintains a stack of
choice points that can be used if the wrong alternative is
chosen. This section gives an overview of the approach.

A compiled grammar is used to construct a preduction
table in two phases. Firstly, a clause table is constructed
containing information about a clause: whether one of the
bodies allows a parse to succeed without consuming any
input; the set of tokens that start a successful parse; the
set of tokens that follow a successful parse of the clause.
Secondly, the clause table is used to construct a prediction
table.

4.2.1 Clause Tables

A clause table has the following type definition:

CTable == Str -> (Bool, [Str], [Str])
isNullable : (CTable,Str) -> Bool
setNullable : (CTable,Str) -> CTable
first : (CTable,Str) -> [Str]

addFirst : (CTable,Str,[Str]) -> CTable
follow : (CTable,Str) -> [Str]

addFollow : (CTable,Str, [Str]) -> CTable

It is populated by processing a compiled grammar. Each
compiled clause in the grammar is analysed in turn and
the table is updated with any new information based on
the current state of the clause table.

Each compiled clause has a disjunctive collection of
bodies consisting of machine instructions. Therefore, a
compiled grammar can be thought of as having a collec-
tion of clauses of the form:

C::=XY7Z ...

Each clause is analysed with respect to three properties:
nullable, first sets and follow sets. A clause is nullable
when every instruction is nullable:

nullable : (Parse_I,CTable) -> Bool

The first set of a clause determines the tokens that pre-
dict the use of the particular clause body. The first set
of each clause is gradually constructed by analysing the

instruction prefixes: X, X Y, X Y Z of a clause definition.
If every instruction is nullable then the instruction that

follows the prefix determines an element for the first set
of the clause.

The follow set of a clause is used to calculate those tokens
that predict an empty parse for a clause. Consider the
following:

C ::=XYCall_I(D,[]1) GHI

If G H I are all nullable then the follow set of C is added
to the follow set of D. If G H is nullable then add the first
set of I to the follow set of D.

The clause table for the example grammar is shown
below:

ctable(S)
ctable(c) =

(false, [Int], [1)
(true, [u , n] , [n . u])

4.2.2 Prediction Tables

A prediction table maps clause names and tokens to se-
quences of parse instructions. The parser uses the table
when a clause is called. The type of the prediction table
is defined below:

PTable == (CGrammar,Str,Str) -> [[Parse_I]]
extend: (CGrammar,Str, [Str], [Parse_I],PTable)
->PTable

The predict operation is supplied with each clause name
n and body is; the operation extends the prediction table
by associating the clause and each token with the instruc-
tions:

(CGrammar,Str, [Parse_I],CTable,Ptable)
-> Ptable

predict(g,n,is,ct,pt) =
if every(\i. isNullable(i,ct))is

predict :

then extend(g,n,first(n,ct) + follow(n,ct),pt,is)

else extend(g,n,first(n,ct),pt,is)

4.3 Parsing Engine

The XMF parser is implemented as a machine that
processes a compiled grammar with respect to a tok-
The tokenizer is responsible for processing an
input stream of characters and transforming them into
tokens. Each token has a type which XMF defines to
be: INT; FLOAT; STR; NAME; EOF; SPECIAL. When
asked for the next token, the tokenizer returns both the
type and the string of characters.

enizer.

The machine uses two stacks: the call stack and the
fail stack. The call stack is used to maintain the context
of the currently executing clause. It is implemented as
an array CALL_STACK with a CALL_.FRAME current
frame pointer. The elements of a frame are indexed by
constant offsets:

CALL_LOCn

CALL_LOCO
CALL_LOCALS
CALL_cuT
CALL_TARGET
CALL_CODE
CALL_GRAMMAR
CALL_PREV

CALL_FRAME —

CALL_STACK

The contents of the frame are: the previous call
frame (CALL_PREV); the currently executing gram-
mar (CALL_.GRAMMAR); the compiled instructions
as a list (CALL_.CODE); the current value of ’self’
(CALL_-TARGET); the choices to throw away in the
event of cut (CALL_CUT); the number of local variables
(CALL_LOCALS); the locals (CALL_.LOCO ...n).

The fail stack is used to record choice points:

FAIL_ARGn

FAIL_ARGO
FAIL_ARGS
FAIL_NAME
FAIL_TYPE
FAIL_TOKEN
FAIL_CODE
FAIL_GRAMMAR
FAIL_CHARPOS
FAIL_FAIL
FAIL_PREV

FAIL_FRAME —

FAIL_STACK

A choice point is encountered when a clause is called
during a parse and when the prediction table cannot re-
duce the choice of alternatives down to a single clause
body. In that case the alternative bodies, supplied argu-
ments and parsing context are saved on the fail stack.

The current frame (FAIL_FRAME) contains the follow-
ing information: a pointer to a call frame (FAIL_PREV);
a pointer to the previous fail frame (FAIL_FAIL);
the character position used to unwind the tokenizer
(FAIL_CHARPOS); the grammar that was current when
the choice-point was encountered (FAIL_.GRAMMAR); a
sequence of alternative instruction lists (FAIL_.CODE);
the token that was current when the choice point
was encountered (FAIL_TOKEN and FAIL_TYPE); the
number and values of the arguments (FAIL_ARGS,
FAIL_ARGO...n).

Figure 1 shows the definition of the parsing engine main
loop. The engine is started by supplying some arguments,

a target object, the grammar and some instructions (usu-
ally Call_I(NT,[])). An initial call frame is created on
the call stack and the arguments are inserted into the
frame. The engine is primed with a new token by call-
ing nextToken() which just updates the global variables
TOKEN and TYPE using TOKENIZER.

The engine proceeds by entering a loop and processing
the next instruction at the head of CALL_CODE. If the call
stack is ever exhausted then the synthesized result is left
in RESULT. Otherwise some error was encountered via the
ERROR flag.

If the instruction list in the current frame becomes ex-
hausted then the frame is popped via CALL_PREV. Oth-
erwise the head instruction is popped and the machine
proceeds by case analysis on the instruction. The rest
of this section describes each of the main instructions in
turn.

The instruction At_T is used to switch language con-
text. The input stream will contain a path that ref-
erences a class in the current context. The operation
resolveGrammar is used to read the path from the to-
kenizer and return the grammar. The machine proceeds
by calling the starting non-terminal of the grammar with
0 arguments.

The instruction Call_I(n,as) causes the clause named
n to be called. The as component is an argument map
that describes how to map locals in the current stack
frame to arguments in the call frame to be constructed
when calling the clause named n.

5 Analysis

5.1 Analysis of Technology

The XMF technology for LOP has been tried and tested
on a number of industrial applications (including a large
meta-modelling toolkit XMF-Mosaic; it is open source
and is available at [1].

The LOP features of XMF have proved to be effec-
tive at defining language constructs. They provide good
modularity and control over the visibility and use of the
constructs via syntax-classes contained in name-spaces.
Working with syntax has been greatly facilitated through
the use of quasi-quotes. Code templates constructed us-
ing quasi-quotes are much easier to work with than the
equivalent raw data structures. A weakness of the syntax
manipulation mechanism is the lack of support for hygene
[12].

XMF abstract syntax defines an interface that deals

procedure parse(args,target,grammar,code,context) {
CALL_FRAME := pushCall(-1,grammar,code,target,-1,len(args));
for i = 0 to len(args) { CALL_STACK[CALL_FRAME + LOCO + i] := args[i]; }
nextToken() ;
while CALL_FRAME >= 0 & 'ERROR {
if CALL_STACK[CALL_FRAME + CODE] = Nil;
then popFrame();
else
case popInstr() {
At_I —>
CGrammar g = resolveGrammar (TOKENIZER,context) ;
call(g,startNT(g),[1);
Call_I(n,argMap) -> call(CALL_STACK[CALL_FRAME + CALL_GRAMMAR] ,name,argMap) ;
Int_I ->
if TYPE = INT
then RESULT := asInt(TOKEN); nextToken();
else fail();
Action_I(f) -> RESULT := f();
SetLoc(i) -> CALL_STACK[CALL_FRAME + LOCO + i] := RESULT;
Cons_I(h,t) ->
RESULT := new Cons(CALL_STACK[CALL_FRAME+L0OCO+h],CALL_STACK[CALL_FRAME+L0OCO+t]);
Terminal_I(t) -> if TOKEN = t then nextToken(); else fail();

}
}
procedure call(g,name,argMap) {
CClause c = clauseNamed(NT,g);
int locals = clauselLocals(c);
int cp = charPos(TOKENIZER);
Object t = CALL_STACK[CALL_FRAME + TARGET];
List(List(Parse_I)) code = ptable(g,NT,TYPE);
int prev = CALL_PREV;
if isEmpty(code)
then failCall();
else {
CALL_FRAME := pushCall(CALL_FRAME,g,head(code),t,FAIL_FRAME,locals);
for i = 0 to len(argMap) {
CALL_STACK[CALL_FRAME + CALL_LOCO + locals,CALL_STACK[prev + LOCO + argMap([i]l];
3
if len(iss) > 1
then pushFail(prev,FAIL_FRAME,cp,g,tail(code) ,t,FAIL_FRAME,TOKEN,TYPE,name,argMap) ;

Figure 1: The Parsing Engine

with execution and compilation. XMF is a dynamically
typed system and therefore there is no typing aspect to
this interface. For more widespread use, this interface
would need to be more extensive and to incorporate fea-
tures such as static typing and support for IDE operations
such as refactoring.

A final weakness of the XMF-based technology is that
XMF is a non-standard language. Its features grew out
of the OCL which is part of UML and as such it con-
tains a number of unusual features. In addition, XMF is
a dynamic open meta-circular language (in the sense of
Smalltalk); this makes static analysis diffficult. For LOP
and DSLs to be effective, applications and their languages
should be portable and easily accessible without having
to distribute implementation technology.

5.2 Related Work

[7] provides a good overview of the field of DSLs and de-
scribes how LOP is supported by the programming lan-
guage Converge. There are a number of pre-processing
systems that have been proposed for implementing DSLs,
for example TXL [8] and MetaBorg [10]. A shortcoming
of all pre-processing systems is that the support for em-
bedded DSLs is often weak and not integrated with the
development tools for the host language. The mechanisms
proposed in this paper addess these directly by requir-
ing that the language extension mechanisms be embed-
ded within and fully integrated with the host language.
The ASF_SDF language [9] allows DSLs to be defined in
similar ways to the XMF system, however, like XMF, the
host language is not mainstream. Fortress [11] aims to
be a mainstream language and has included specific fea-
tures in its language definition to allow escapes of the
type described in this paper.

5.3 Proposal for Java

The paper [2] describes how the syntax of Java could be
extended with syntax-classes. This paper takes the pro-
posal further by showing how the technology could be im-
plemented. Languages defined in Java would be portable.
In order to use new language features it would simply be
necessary for a Java compiler (and optionally run-tine sys-
tem) to have access to the compiled syntax-classes, which
would be written in Java.

There are other systems that support LOP within Java.
OpenJava (OJ) [15] supports LOP using a meta object
protocol (MOP) that supports syntax expansion. Each

class may specify a meta-class that is responsible for ex-
panding its definition. The meta-class uses a standard
interface to process its instances. However, OJ does not
include a mechanism for extending the concrete syntax of
the language.

References

[1] The XMF system at www.cetev.com/XMF.

[2] A. Clark, J. Willans, P. Sammut. Beyond Anno-
tations: A Proposal for Extensible Java (XJ). In
proc. Eighth IEE Int. Working Conference on Source
Code Analysis and Manipulation (SCAM 08), Bei-
jing, China, 2008. pp 229-238.

[3] Language Oriented Programming. Martin Ward.
Software - Concepts and Tools, Vol.15, No.4, pp 147-
161, 1994.

[4] M. Mernik, J Herring, A. Sloane. When and How
to Develop Domain-Specific Languages. ACM Com-
puting Surveys, Vol. 37, No. 4, December 2005, pp.
316-344.

[5] Steele, G. L. 1998. Growing a language. In Adden-
dum To the 1998 Proceedings of the Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications (Addendum) (Vancou- ver,
British Columbia, Canada). J. Haungs, Ed. OOP-
SLA ’98 Addendum. ACM Press, New York.

[6] C. Braband, M. Schwartzbach. Growing Languages
with Metamorphic Syntax Macros. In Proceedings
of Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, PEPM 2002. ACM.

[7] L. Tratt Domain Specic Language Implementation
via Compile-Time Meta-Programming. To appear,
ACM Transactions on Programming Languages and
Systems (TOPLAS), October 2008.

[8] J. Cordy. TXL - a language for programming lan-
guage tools and applications. In Proc. LDTA 2004,
ACM 4th International Workshop on Language De-
scriptions, Tools and Applications.

[9] M. van den Brand, J. Heering, P. Klint, P. A. Olivier.
Compiling language denitions: the asf+sdf compiler.
ACM Trans. Program. Lang. Syst. 24, 4, 334-368.
2002.

M. Bravenboer, E. Visser. Concrete syntax for ob-
jects. Domain-specic language embedding and assim-
ilation without restrictions. In Proc. OOPSLA’04,

[10]

(11]

(12]

(13]

D. C. Schmidt, Ed. ACM SIGPLAN, Vancouver,
Canada.

The Fortress Language Specication. Allen
et al. Version 1.0 2008. Available from
http://research.sun.com/projects/plrg/ Publi-
cations/fortress.1.0.pdf

E. Kohlbecker, D. Friedman, M. Felleisen, B. Duba,
Hygienic macro expan- sion. In Symposium on Lisp
and Functional Programming. ACM, 151-161.

T. Sheard, S. Peyton-Jones. Template metaprogram-
ming for Haskell. In proc. ACM SIGPLAN Haskell
Workshop 2002. ACM Press.

Martin Fowler’'s blog on Domain Specic Lan-
guages. http://www.martinfowler.com/ arti-
cles/languageWorkbench.html

OpenJava: A Class-based Macro System for Java.
Michiaki Tatsubori, Shigeru Chiba, Marc-Olivier
Killijian and Kozo Itano LNCS 1826, Reection and
Software En- gineering, , Walter Cazzola, Robert
J. Stroud, Francesco Tisato (Eds.), Springer-Verlag,
pp.117- 133, 2000.

10

