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Abstract

The proliferation of mobile devices over the past several years has cre-

ated a whole new world of the Internet. The deluge of applications for

every aspect of today’s life has raised the expectation of having ubiq-

uitous connectivity, with a desired Quality of Service (QoS). However,

it has violated the original Internet design which was not intended to

support mobility, neither better than best-effort delivery.

The problem of end-to-end QoS provisioning has been an active area of

research for many years. While designed for fixed networks, the use of

QoS protocols in IP-based mobile networks, where hosts dynamically

change their point of attachments, imposes new challenges to be stud-

ied and analysed. Furthermore, a massive growth in the backbone net-

work traffic with its highly unpredictable nature can cause bottlenecks

in some links while others are under-utilised, and therefore, breach-

ing the QoS provisioning commitments. The research presented here

proposes a new end-to-end QoS mechanism for mobile networks. The

scheme is composed of two different approaches for QoS provisioning

in access and backbone networks. Firstly, a new scheme is proposed

to minimise the signalling overhead, as well as how the QoS is inter-

rupted at the time of handover. By virtue of a developed analytical

framework and simulation scenario, the performance of the scheme is

investigated thoroughly, emphasising on the figures of merits that af-

fect the efficiency of using QoS signalling protocols in access networks.

Secondly, a new QoS-aware routing mechanism is proposed for back-

bone networks, intending to minimise the congestion on the links while

complying traffic requirement. The developed optimisation framework

shows that the scheme can achieve near-optimal link utilisation, even

under sudden traffic spikes, while complying with traffic needs.
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Chapter 1

Introduction

Of all the major inventions of the twentieth century, without a doubt, the Internet

is one of the greatest inventions at all times. The widespread use of the Internet

technologies has created a wave of innovations, resulting in a profound impact on

human lives. Over the past few decades, the Internet’s popularity has increased,

so much so that life without it would be unimaginable, at least for young people

if not for all.

The successful widespread adoption of the Internet has acted as a driver behind

the growth of applications, from the release of the world wide web and email

in 90s to a deluge of applications for different parts of today’s life. With the

uncontrollable increase of mobile devices and the popularity of smart phones, a

second revolution of Internet has started to emerge. Even more massive than the

first one, the second involves the integration of the virtual and physical worlds

almost everywhere all the time. With six of the world’s seven billion people

have mobile phones [1], it has become the first screen of choice among many of

its users, for entertainment, communication, comment, interaction, gaming and

socialising. From the business point-of-view, it is a tremendous opportunity to

create new revenue streams for the subscriber-saturated mobile networks. What

is certain is that success cannot be achieved unless the quality of service meets

the users’ expectations.

The Internet owes its success to its naive operation, treating all packets with

different characteristics (e.g., voice, video, data) the same. Due to the burst of

real-time applications, this one-size-fit-all service design principle, although being

1



Introduction

robust enough to stand the huge expansion, cannot live up with today’s demands

anymore. Therefore, the need to migrate from the best-effort service model to

one, in which service differentiation can be provided, seems inevitable for future

Internet architectures. This challenging issue has inspired a large body of research

over the last few years.

1.1 Scope of the Work

The original design of the Internet Protocol (IP), as the single common communi-

cation protocol of the Internet, does not support a better than best-effort service.

Neither does it support mobility. Each of these two issues has been adequately,

though separately, addressed by multiple approaches in different categories [2–7].

Mobile IP [8] is the most promising protocol proposed for supporting host mobil-

ity in IP networks. However, it is also required to provide an adequate Quality of

Service (QoS) forwarding treatment to the mobile user’s data flow at the inter-

mediate nodes along a path, so that QoS-sensitive IP services can be supported

over Mobile IP.

QoS provisioning has been one of the long lasting focuses in the network research

community, resulting in a number of well-studied protocols, e.g., Resource ReSer-

Vation Protocol (RSVP) [4, 6]. Nevertheless, the use of these protocols, that were

originality designed in the context of a static environment (fixed hosts and net-

works), over Mobile IP networks has been a challenging issue. The frequent

changes of mobile users’ point-of-attachment in a network can cause a violation

of the assured QoS, which would impose severe delays and packet losses, if not

a service disconnection. Nevertheless, access network is not the only challenging

part of an effort to provide an end-to-end QoS. The massive growth in backbone

network traffic, and the increasingly volatile traffic patterns can cause significant

scaling, provisioning and operational inefficiencies for service providers, resulting

in over-utilisation of some links while others are under-utilised. There has been

a great deal of research to conduct packets routing in a way that not only does a

selected path fulfil a flow’s requirement, but also helps to distribute traffic evenly

among links.

In the work presented in this thesis, a new end-to-end QoS mechanism for mobile

2
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networks is developed, and analysed. The scheme proposes a two tier architecture.

A lower tier focuses on QoS guarantees in access networks, while an upper tier is

based on a QoS-aware routing in backbone networks. The mechanisms proposed

for QoS provisioning in each tier are independent from each other, and therefore,

can be applied separately or in combination.

The lower tier is an efficient RSVP mobility support mechanism for access net-

works. It stems from the intention of enhancing the efficiency of QoS-enabled

mobility management, with very small change in the existing infrastructure and

protocols. The proposed mechanism aims to minimise the signalling overhead,

as well as the interruption in QoS at the time of handover, by localising the

QoS re-establishment to the affected parts of the data path in the domain. The

performance of the proposed scheme is investigated thoroughly, by means of a

developed analytical framework, and a simulation scenario conducted in Network

Simulator-2 (NS-2) . Various figures of merit such as a resource re-establishment

latency; a network-layer signalling cost and an effect of the number of mobile

nodes and their average cell residence time on it; a number of packet loss; and a

number of packets treated as a best-effort are used to measure the efficiency of

this scheme.

For the upper tier accountable to the QoS provisioning in backbone networks, a

new QoS-aware routing of flows by means of the multi-topology routing approach

is proposed. The developed mechanism is two-fold. First, new algorithms are

designed to extract fully edge-disjoint logical views of a network, in a way that

the delay of a longest path between each pair of nodes becomes upper bounded.

Then, the longest acceptable path for each traffic type, in accordance with the

negotiated Service Level Agreement (SLA), is selected. This can guarantee that

the shortest paths are used by the most legitimate flows in the network, the ones

that other paths cannot satisfy their delay constraints. The investigation on the

performance, based on a real topology and traffic matrices, shows that the scheme

can achieve efficient resource utilisation, even under unpredictable traffic spikes,

while at the same time comply with traffic need.

3
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1.2 Aim and Objectives

The aim of this work is to propose an end-to-end QoS mechanism capable of

tackling challenges in access and core networks. To that end, following objectives

are set out:

• Enhancing the efficiency of QoS enabled mobility management, while affect-

ing as little as possible the existing protocols. A proposed scheme should

result in reducing the resource re-establishment latency after handover, re-

ducing the mobility-management and resource-reservation signalling over-

heads, reducing the number of packets treated as best-effort packets and

number of dropped packets due to the handover in the network.

• Providing an acceptable level of QoS by preventing congestion in core net-

work, taking full advantage of traffic characteristic in path selection process.

A proposed scheme should lead to an even traffic distribution through all

the possible paths, resulting in reducing the congestion in shortest paths.

1.3 Contributions of the Thesis

The main contributions of the research work presented in this thesis, which lead

to the design of an end-to-end QoS for mobile networks, is two-fold: the work

demonstrates an efficient QoS mobility support mechanism for access networks,

taking into the account possible approaches for mobility management and per-flow

resource reservation. Second, a new mechanism for QoS provisioning in backbone

networks is proposed. To that end, the breakdown of the major contributions can

be listed as follows:

• The proposal for access networks discussed in Chapter 3 is an efficient RSVP

mobility support mechanism in Hierarchical Mobile IPv6 (HMIPv6) [9] net-

works. The architecture of the scheme, in terms of the mobility management

and resource reservation, is elaborated in detail. The results obtained show

that not only does the scheme reduce the signalling overhead, but also the

interruption in QoS at the time of handover. An analytical framework,

alongside the network level simulation scenario in NS-2, is developed to

4
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investigate the performance of the new scheme in access networks, taking

into the account mobile users mobility and traffic behaviours. While being

adopted in different contexts, the model is used to derive the equations used

to analyse the different scenarios mentioned below.

• An efficient QoS-aware routing, based on the multi-topology routing ap-

proach, is proposed for backbone networks. New algorithms are introduced.

To evaluate the degree of sub-optimality in the proposed scheme, an opti-

misation framework is presented that intends to minimise the cost of con-

gestion in the network, subject to newly defined constraints in compliance

with the proposed mechanism.

Apart from the main contributions, following sub-major contributions can be

listed as follows:

• The applicability of the proposed scheme to other environments, with re-

gard to the existing protocols for QoS signalling and localised mobility

management protocols in access networks, is investigated. To this end, the

Next Steps In Signalling (NSIS) [5, 10] protocol and Proxy Mobile IPv6

(PMIPv6) [7] are chosen as substitute for RSVP and HMIPv6, respectively.

• First-in-literature analytical-based comparison between the NSIS and RSVP

operations in access networks, using the network-based localised mobility

management protocol is conducted. The aim is not to advocate which one

is better, but rather to study the effects of various network parameters on

their performance to enlighten decision-making.

1.4 Structure of the Thesis

The structure of this thesis is designed as follows: The background study of

existing solutions for providing the mobility, as well as the QoS in access and core

networks are given in Chapter 2. The advantage and disadvantage of each solution

are describe in detail, providing a comprehensive ground to justify the choices

made in this work. Chapter 3 describes the architecture of the proposed scheme

with regard to the access network, using RSVP and HMIPv6 as a QoS signalling

5
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and mobility management protocols. A developed analytical model and the NS-2

based simulation scenario are used to elaborate the performance of the scheme.

The applicability of the proposed scheme to other QoS and mobility management

protocols, NSIS and PMIPv6, is investigated in Chapter 4. Chapter 5 defines

the first-in-literature analytical-based comparison between RSVP and NSIS in a

PMIPv6-based access network. The proposed mechanism for QoS provisioning

in the backbone is discussed in Chapter 6, wherein the system model, proposed

heuristic algorithms and the performance analysis are described in detail. Finally,

the concluding remarks and future research in Chapter 7 bring closure to this

thesis.
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Chapter 2

Background Study

2.1 Introduction

The Internet does not support the flow prioritisation, and neither does it include

considerations for host mobility. By emerging new facets of the applicability of

the Internet on users’ daily lives, an end-to-end quality of service provision has

become a stringent demand for ever-increasing bandwidth starved applications,

and therefore, an issue of great interest within the research community. The

proliferation of Internet-connected mobile users with distinct requirements, not

only drives up the demands for seamless connectivity, it raises the expectations

of service quality for the video-dominant mobile data traffic. Nevertheless, most

of the well-known QoS protocols were designed when the mobile IP was in its

infancy, and hence, mobility was not initially a concern in their design. As a

result, the usage of these protocols over IP-based mobile networks, in which users

frequently change their point of attachment to the fixed network, usually causes

limitations in terms of operation and performance.

This chapter gives the comprehensive knowledge in this field. It starts with an

overview of the major quality of service protocols standardised by IETF in Sec-

tion 2.2. Section 2.3 overviews the main concept of Mobile IP. Interoperability

issues between resource reservation and mobility management protocols and some

of the proposed solutions are elaborated in Section 2.4. Finally, discussing major

candidates for the provision of QoS support in core networks brings closure to

7
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this chapter.

2.2 Quality of Service Protocols

In recent years, multimedia services have become the most significant applications

among users in the Internet. A new generation of multimedia services is consid-

ered as a solution to create new revenue streams for the subscriber-saturated

networks. What is certain is that the success cannot be achieved unless the

quality of service meets the users’ expectation. This section describes the most

important QoS mechanisms used in IP-based networks.

2.2.1 Integrated Services

The development of the Integrated Services (IntServ) architecture model [2] was

motivated by the poor performance of real-time applications across the Internet,

mainly caused by the variable queuing delays and congestion losses. The Internet,

as originally conceived, offers only a best-effort data delivery. Therefore, a new

service model of the Internet, capable of providing some control over end-to-end

packet delays, was a prerequisite for new generations of Internet applications.

Another motivation for developing IntServ model, apart from guaranteeing real-

time QoS, was a rising demand for controlling the allocation of bandwidth among

different classes of traffic. Network operators were requesting a system model ca-

pable of dividing traffic into a few administrative classes and assigning to each a

minimum percentage of the available bandwidth under overload conditions. To

this end, IntServ was introduced by the Internet Engineering Task Force (IETF)

as a new Internet service model. Being capable of explicitly managing network

resources, IntServ can provide an end-to-end QoS to certain flows. In addition

to the best-effort, IntServ supports two types of services: Controlled-load service

and Guaranteed service.

The controlled-load service [11] is closely equivalent to the best-effort delivery

in a lightly loaded network. Applications using this model can assume that the

packet loss rate is almost equal to the basic packet error rate of the transmission

medium, meaning that a very high percentage of transmitted packets will be
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delivered successfully. The service also guarantees that a very high percentage of

the delivered packets will experience a delay which does not greatly exceed the

minimum delay experienced by any successfully delivered packet. However, the

specific target value cannot be requested for delay, and neither for the loss rate

in the controlled-load service.

To ensure that these conditions are met, users provide the en-route network

elements with an estimation of the data traffic they will generate, indicated in

the flow’s Traffic Specification (TSpec), asking adequate bandwidth and packet

processing resources for the lifetime of the flow. The process is done by means

of a reservation set-up protocol, used to create and maintain a flow state in the

endpoints and routers along the path to the destination. Each network element

accepting a request must ensure that the requested resources are available for

a flow with given TSpec without impacting earlier guarantees. This must be

accomplished through active admission control [11].

Given the admission being granted, all the incoming packets belonging to the

given flow must be mapped into the same class and receive the same treatment.

This mapping is performed by the classifier. A class may correspond to a broad

category of flows (in the case of aggregation in backbone routers) or only a

single flow and is chosen based on processing the parameters in the IP packet

header, called Multi-Field (MF) classification. After being classified in different

queues/class, the packet scheduler manages the forwarding of different packets.

The scheduler decides whether and which packet to transmit next, ensuring that

they receive the service that has been requested [11].

Should the defined traffic properties fall outside of the ones described by the

TSpec parameters, the flow may experience large numbers of delayed or dropped

packets. The controlled-load service is intended to support a broad class of ap-

plications which have been developed for use in today’s Internet, but are highly

sensitive to overloaded conditions.

The guaranteed service [12], on the other hand, is intended to emulate, over a

packet-switch network, a dedicated rate circuit. Not only does this service provide

applications with a bandwidth guarantee, it can control the maximum end-to-end

queuing delay. It also guarantees that packets will not be deleted due to the buffer

overload, provided the flow’s traffic stays within its specified traffic parameters.
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The guaranteed service, however, does not control the minimal or average delay.

Not being justified for all applications due to the cost aspect, such guarantees are

required for applications with hard real-time requirements such as remote process

control, tele-medicine, etc [13].

The IntServ provides different controlled levels of packet delivery services for ap-

plications. However, supporting this capability requires two conditions. First,

both applications and all individual network elements along the path must sup-

port mechanisms to control the QoS delivered to those packets. Second, there

should be a mechanism to convey QoS management information between the ap-

plication and en-route network elements [14]. While the former is provided by

QoS control services such as controlled-load and guaranteed services, the latter is

frequently implemented by a resource reservation set-up protocol such as RSVP.

2.2.2 Resource ReSerVation Protocol

RSVP is a reservation set-up protocol for IntServ-based IP networks. It is a soft

state, receiver-oriented signalling protocol, that can reserve resources for unicast

and multicast applications. RSVP is used by both endpoints and routers. End-

points utilise RSVP to request a specific QoS level for their flows. Subsequently,

routers use RSVP to inform all network elements along a flow’s path(s) to de-

liver and maintain the required QoS throughout the transmission. RSVP is not

a routing protocol, however, it strongly depends on present and future routing

protocols to determine where it should carry the reservation request. The infor-

mation conveyed by RSVP can be categorised as follows [15]:

• Sender-generated information: This information describes the charac-

teristics of the data traffic the application expects to generate (the Sender

TSpec), and the format of data packets the sender originates i.e., the sender

IP address and optionally the UDP/TCP sender port (the Sender Tem-

plate). These parameters flow downstream towards the receiver without

being modified by the intermediate nodes.

• Intermediate-node-generated information: This information is gen-

erated or modified by the intermediate nodes along the path between the
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sender and receiver. It describes the properties of data path, including

the availability of specific QoS control services and parameters required by

them to operate correctly. The information is carried in an RSVP ADSPEC

object towards the receiver, wherein it can be used to make a reservation

decision.

• Receiver-generated information: This information specifies the receiver’s

desired QoS (the FlowSpec) and a set of data packets to receive the re-

quested QoS (the FilterSpec). The former, the FlowSpec, includes the

receiver’s desired integrated service type (guaranteed or controlled-load),

the traffic characteristics of the data flow for which the resources should be

reserved (the Receiver TSpec), and if the guaranteed service was selected,

other information required to invoke this service (the RSpec). The latter,

the FilterSpec, together with a session specification, defines a set of data

packets to receive the requested QoS. The receiver generated information

follows exactly the reverse path the data packets will use, upstream to the

sender.

The two fundamental RSVP message types are Path and Resv. The Path message

is sent by the sender downstream towards the receiver, following the same route

as the data packets. The message contains the Sender Template, Sender TSpec

and ADSPEC objects in addition to the previous (RSVP-aware) hop address. It

creates a path state in each RSVP aware router along its way without assigning

actual resources. The states keep information about the flow and IP address of the

previous hop used to route the signalling messages in the reverse direction. RSVP

defines a session to be a data flow with a specific destination and transport-layer

protocol, identified by the destination IP address, transport protocol ID (TCP

or UDP) and destination port number (optional). Session identification (session

ID) is used to refer to the state stored for it.

When the receiver receives the Path message, it sends the reservation request

(the Resv) message upstream towards the sender, following exactly the reverse

of the path paved by the received Path message. The Resv message contains the

FlowSpec and FilterSpec objects, used to create and maintain the reservation

states in each RSVP-aware router along its way. These states are in charge of

11



Quality of Service Protocols

actual resource reservation. Assuming admission control succeeds, The FlowSpec

is used to parametrise a resource class in the router’s packet scheduler, while

the FilterSpec is utilised to set parameters in the packet classifier to map the

appropriate packets into this class.

The Path messages have the same source and destination IP addresses as their

associated data packets, assuring that they can be routed correctly through non-

RSVP capable domains. In contrast to the Path, the Resv messages are sent

hop-by-hop from the receiver to the sender. Each RSVP-aware router changes

the destination address of the Resv messages to a unicast address of the previous

hop stored in the path state (Figure 2.1). The IP source address is the address

of the router sending the message. The RSVP states along the path are refreshed

by sending the periodic Path and Resv messages to maintain the end-to-end

reservation. By default the RSVP messages are carried by raw IP datagrams

with no reliability enhancement, however, UDP encapsulation can also be used

for hosts that do not support the raw network I/O capability. During its life-

Figure 2.1: RSVP operation in wired network

time, RSVP has received substantial research community attention being one of

the most persistent and altered protocols. In turn it has not escaped criticisms

for its complexity, and potentially bad scalability, especially in the Internet core.

In RSVP, the amount of state information is directly proportional to the number

of flows, implying a massive processing and storage overhead on the core routers.
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Nevertheless, instead of being abandoned, over the years several extensions to

alleviate the crises have been proposed. The most recent up-to-date survey of the

RSVP extensions can be found in [16].

2.2.3 Differentiated Services

The Differentiated Services (DiffServ) [17] effort in IETF has developed a simple

model to differentiate the qualities of packet delivery. The intent of the DiffServ

model is the provision of scalable service discrimination in the Internet with no

need to have per-flow state and signalling in every router. The model achieves

scalability and flexibility by separating the architecture into two major compo-

nents: Forwarding path and Management plane [3].

The forwarding path behaviours, also called Per-Hop Behaviours (PHB), include

the differential treatment an individual packet receives at each router’s output

interface queue along its path, implemented by queue management disciplines,

e.g., Weighted Round-Robin (WRR). Within the backbone of the network, each

router selects a particular forwarding behaviour for packets based on the value of

the DiffServ Code Point (DSCP) set in the IP packet header, without having to

know which flows or what types of applications the packets belong to. The process

of setting the DSCP in a packet based on defined rules, or Marking, is performed

at network edges, the sender or first-hop router, and administrative boundaries.

The management plane, on the other hand, involves the configuration of network

elements with respect to which packets get special treatment and what kinds

of rules are to be applied for allocating adequate resource to each treatment in

each router. A logical entity such as bandwidth brokers is in charge of resource

management in an administrative domain.

In order to enforce requirements associated with the delivery of the special treat-

ment, the forwarding path may require some control elements, used to enforce

that traffic conforms to predefined profiles. These elements include the policer

and shaper. While the policer drops the out-of-profile traffic, the shaper delays

packets within a traffic stream making traffic conform to its profile. However,

similar to the marking, these operations need only be implemented at network

boundaries or hosts while preserving the simplicity of the core network. Within
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the core network, routers perform a simple Behaviour Aggregate (BA) classifi-

cation wherein a collection of packets with the same DSCP, crossing a link in

a particular direction, are aggregated and receive the same treatment. In the

DiffServ model, packets can receive one of these forwarding behaviours:

• Default PHB: The default PHB [3] provides the common, best-effort for-

warding behaviour available in existing networks. Packets belong to this

aggregate when either no other agreements are in place, or when the DSCP

value is not mapped to any of the available PHBs.

• Assured Forwarding PHB: The Assured Forwarding (AF) PHB [18, 19]

provides four different forwarding assurances/classes in ascending order of

priority where each one is allocated a certain amount of buffer space and

interface bandwidth. Within each AF class the IP packets are marked with

one of three levels of drop precedence. The assigned drop precedence reflects

the relative importance of the packet within its class in case of congestion,

wherein packets with a higher drop precedence will be discarded in favour

of ones with a lower value. AF is a rough equivalent of the controlled-Load

services defined in the IntServ architecture.

• Expedited Forwarding PHB: Almost similar to the guaranteed service

in the IntServ, the Expedited Forwarding (EF) PHB [20] intends to provide

a low loss, low delay, and low jitter service in DiffServ domains. Such a

service, when implemented, provides a premium service such as a point-to-

point connection or virtual leased line. However, for optimal efficiency, it

should be reserved for only the most critical applications, clearly because in

case of congestion it is impossible to treat all or most traffic as high priority.

The Internet is composed of several domains managed by administrative author-

ities based on different policies. That means the forwarding services provided by

a sender domain based on the contracted SLA may not be compatible with the

ones provided by other domains. This is due to the fact that the packet handling

in DiffServ architecture is left to each administrative domain. Consequently, the

DSCP chosen for packets by the sender may change on their way towards the re-

ceiver. Therefore, a packet marked with a high priority may be regarded as a low
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priority or even best-effort, resulting in a violation of service quality. Although it

is strong on simplicity, DiffServ is weak on guarantees. Finally, it does not offer

any receiver control.

2.2.4 Next Steps in Signalling

In an effort to support the QoS signalling and other various signalling applica-

tions, IETF introduced the NSIS suite as a generic framework. Intended for more

purposes than just resource reservation, NSIS decouples the signalling application

from signalling transport. The new two-layer structure solves the lack of flexi-

bility faced by some signalling protocols like RSVP. The signalling application

layer, called NSIS Signalling Layer Protocol (NSLP), supports various signalling

applications, i.e., QoS NSLP [21] or NAT/Firewall NSLP [22], that need to in-

stall and/or manipulate states for a data flow along its path in the network. The

signalling transport layer, also called NSIS Transport Layer Protocol (NTLP)

[5], provides the common functionality of node discovery, message routing and

message transport for all the NSLP signalling applications.

QoS-NSIS Signalling Layer Protocol

The QoS NSLP, henceforth referred to as NSLP in this section, provides some for-

warding resources for a flow by establishing and maintaining resource reservation

states along the path. Although conceptually similar to RSVP, NSLP attempts

to overcome the RSVP shortcomings by supporting additional features such as

sender- and receiver-oriented reservations, location-independent session identifier

(session-id) for mobility support, bi-directional reservation, and the ability to use

existing transport and security protocols.

Similar to RSVP, reservation states are referred by session-id. However, unlike

RSVP in which session-id is defined by a particular destination and transport

protocol, NSLP uses a cryptographically random number as a session-id. This

makes the session and associated states independent of the flow identity and any

changes that may occur. Note that, while an RSVP session is defined as a flow

with a particular destination and transport protocol, NSLP defines a session as

an application layer concept for an exchange of packets between two endpoints,
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in which some network state is to be allocated or monitored. A certain flow(s)

associated with a session is identified by the flow-id, also called Message Routing

Information (MRI). MRI includes flow source and destination IP addresses, the

direction of the signalling (upstream or downstream), and the Message Routing

Method (MRM) which by default is the path-coupled signalling.

NSLP performs different signalling functions for sender-oriented and receiver-

oriented reservations, however, in both scenarios signalling should be initiated by

the sender in the downstream direction. This gives rise to NSIS problems in mo-

bile networks discussed in Section 2.4. The reservation requirements are defined

as the general parameters in the QoS Specification (QSPEC) object, interpreted

by the Resource Management Function (RMF) for a desired QoS model, i.e.,

IntServ/DiffServ/others, in all NSLP-aware nodes along the path. The request

can be accepted or rejected depending on the policy control and admission con-

trol decisions. In the sender-oriented reservation, the sender initiates a Reserve

message towards the receiver. Upon receiving the message, the receiver sends

a Response message to confirm the reservation establishment, following exactly

the reverse of the path paved by the Reserve message. The Response message

usually provides the information about the previous NSLP message (if the previ-

ous NSLP message contains the Request Identification Information (RII) object).

The message cannot install any state, however, it may modify the existing states

if it carries the information about an error.

For the receiver initiated reservation, the sender first sends a Query message

towards the receiver. The message is used to request information about the data

path characteristics without making a reservation. Using this information, the

receiver sends the Reserve message to the sender that follows exactly the reverse of

the path the Query message used. If the confirmation is requested, the Response

should be sent by the flow sender.

Apart from the Reserve, Response and Query, there is another NSLP message

called Notify, used to exchange information, typically related to error conditions,

between NSLP-aware nodes. In contrast to the Response, the Notify messages

are sent asynchronously, rather than in response to other messages and need

not refer to any particular state or previously received message. As a soft state

protocol, NSLP uses the Reserve message to refresh the reservation states in the

16



Quality of Service Protocols

downstream or upstream for the sender-oriented or receiver-oriented reservation,

respectively. A refresh right along the path can be forced by requesting a Response

from the far end. Without this, a refresh Reserve would not trigger Reserve

messages to be sent further along the path, as each hop has its own refresh timer.

NSIS Transport Layer Protocol

The NTLP is a common transport layer for all the NSLP signalling applications,

i.e., QoS NSLP, Firewall/NAT NSLP. The core part of the NTLP is the Gen-

eral Internet Signalling Transport (GIST) protocol [23], the rest comprise of the

existing security and transport protocols.

While being completely independent from NSLPs, the only information visible to

the GIST about them is their id (NSLP-id). GIST provides the common func-

tionality of node discovery, message routing, and message transport for multiple

signalling applications. In contrast to RSVP, in which the message routing (deter-

mining the identity of the GIST peer) and message delivery are performed in one

step, the GIST performs them sequentially. It first defines a three-way handshake

that probes the network to set up the necessary routing states between adjacent

peers. Once the routing decision has been made, the node has to select a mech-

anism for transport of the message to the peer, Connection-Mode (C-Mode) or

Datagram-Mode (D-Mode). The former sends the GISP messages between nodes

using point-to-point messaging association (MA). The MA can use any stream-

or message-oriented transport protocol with TCP as its initial choice; if security

protection is required, it may use a network or transport-layer security associa-

tion. In the latter, the D-Mode, the GIST messages are sent without using any

transport layer state or security protection. UDP is used as the initial choice of

this mode.

The GIST node discovery/message routing is triggered by receiving an NSLP

signalling message, requesting the establishment of a new signalling state along

a path between the sender and receiver. The request may result from a local

application request or processing an incoming NSLP message. The discovery

phase is performed hop-by-hop through the three-way handshake between GIST

peers, performed in the D-Mode. The first message is the Query, destined to the
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receiver of the flow. When the correct peer, a fist node supporting the requested

NSLP, receives the Query, it sends a Response message to the querying node.

Then, it creates the Message Routing State (MRS) to keep the identity of its

upstream node for that particular session explicitly. The MRS is configured and

kept separately for each flow in the GIST layer used to manage the processing of

the outgoing messages. It is conceptually organised as a table in which each row

corresponds to the unique combination of the MRI, session-id and NSLP-id.

When the querying node receives the Response, it uses the information conveyed

to create its own MRS for the downstream node. At this stage the querying node

can send the NSLP signalling message as a payload in the Data message. If the

responder node asks for the confirmation, the Confirm is sent before the Data

message. Upon receipt of the NSLP message to the responder node, the same

process is performed between a next GIST peer along the path till the NSLP

signalling message reaches the destination of the flow.

If the C-Mode operation is preferred, the MA should be established between

the GIST peers during the handshake process. Similar to the D-Mode, first

the Query and Response messages are sent as the UDP traffic. They contain

extra information about the available combinations of the security and transport

protocols carried in the Stack-Proposal object, and the overall information of the

MA carried in the Stack-Config-Data object. By default, in C-Mode, the GIST

handshake process is followed by the TCP three-way handshake. During the MA

establishment, the responder node should request for the Confirm, which is sent

as a first message within the recently established MA. In contrast to the D-Mode,

the responder node creates its MRS after receiving the Confirm message.

Unlike the MRS, the MA is not per flow and can be used by the multiple flows be-

tween a GIST peer. Therefore, if there is an MA that can meet the requirements

(the same routing state and desired properties), the Response and Confirm can

be sent through it. Note that even if the MA exists, the three-way handshake

should be performed between GIST peers for each flow. The process is essen-

tial to define the upstream and downstream nodes and inform them about their

security and transport requirements.

GIST is a soft state protocol wherein MRS and MA states are refreshed period-

ically. The MA states can stay alive, with no need of sending refresh messages,
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as long as at least one flow is using them. After that, if either the local policy or

the GIST peer wants the MA retained, a refresh message (MA-Hello) should be

sent periodically. To keep the MRS states alive, the querying node, the one that

initiates the handshake process, should send a periodic Query message.

2.2.5 Other QoS Signalling Protocols

The section introduces briefly two proprietary QoS signalling protocols for IP

networks, YESSIR and Boomerang. A survey of different signalling protocols

and other architecture can be found in [24, 25].

YESSIR

To overcome the complexity and scalability issues in RSVP, YEt another Sender

Session Internet Reservations (YESSIR) [26] was developed as a new resource

reservation protocol. While preserving many unique features introduced by RSVP,

such as soft states, advertising the network service availability and resource shar-

ing among multiple senders, YESSIR intends to simplify the process of establish-

ing reserved flows, and therefore, the proposed mechanism generates reservation

requests by senders to reduce the processing overhead. As an in-band signalling

protocol, YESSIR messages are piggybacked in the Real-Time Transport Control

Protocol (RTCP) messages, a control protocol for Real Time Protocol (RTP)

[27]. RTP provides end-to-end network transport functions suitable for appli-

cations transmitting real-time data, such as audio and video, over multicast or

unicast network services. However, neither does it address resource reservation

nor does it guarantee QoS for real-time services. RTCP works as a control proto-

col to allow monitoring of the data delivery in a manner scalable to large multicast

networks, and to provide minimal control and identification functionality.

YESSIR assumes that a large fraction of the applications that require guaranteed

QoS are continuous media applications and that a substantial fraction of these ei-

ther use or will use RTP to deliver their data. This assumption, although it offers

significantly lower signalling and run-time complexity than RSVP, requires sup-

port in applications since YESSIR is an integral part of RTCP. Clearly, the most

obvious disadvantage of YESSIR is that it can only be used with RTP sessions.
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Boomerang

In an effort to reduce complexity, Boomerang [28] was introduced as another soft-

state lightweight resource reservation protocol for IP networks. It intends to be

quick and simple, yet powerful. A Boomerang signalling message is only gener-

ated by an initiating node, i.e., the sender, receiver or any Boomerang-aware node

en-route, containing the desired QoS specification. The message follows standard

routing protocols and allocates resources hop-by-hop in every Boomerang-aware

node along the path. Upon reaching the destination (other end-point of the data

flow), the message is echoed back to the initiating node. By using this method,

keeping complexity and intelligence to only one end of communication while the

other end only needs to be able to bounce the message back, Boomerang can

provide a simple implementation. In addition, a bi-directional resource reserva-

tion can be made independently of the path by each of the end-points enabling

sender- or receiver-oriented reservations.

Boomerang seems to be a very lightweight protocol with the apparent low pro-

cessing overhead and bandwidth consumption. A comparison made between

Boomerang and RSVP in [29] showed that the Boomerang signalling message pro-

cessing overhead, defined as the time interval that a signalling message spends

inside the router, is considerably lower than that of the RSVP daemon imple-

mentation. However, this superiority is mainly due to the limited functionalities

provided by the protocol as compared to the ones supported in RSVP. For exam-

ple, no support for multicast or policy-based interaction is provided.

Similar to those of any host-network-host protocol, Boomerang requires an im-

plementation at (at least) one end of communication and in routers. Boomerang-

unaware routers should be able to forward Boomerang messages transparently.

In the initial implementation, Boomerang messages are transported in ICMP

Echo/Reply messages, i.e., into the Ping message. Although encapsulating the

signalling information in the ICMP messages makes the protocol implementation

simple, firewalls often drop ICMP packets making the protocol implementation

impractical.

20



Mobility Management

2.3 Mobility Management

Internet Protocol assumes that a node’s IP address uniquely identifies its physi-

cal attachment to the Internet; hence, in order to receive packets destined to the

node, it should be attached to the network indicated by its IP address. Although

working well under such assumption, IP cannot meet the needs of the burgeoning

population of mobile users who wish to change their point of attachment from

one network to another without losing their ability to communicate. To that end,

Mobile IP protocol was developed as a scalable mechanism for accommodating

node mobility within the Internet [8]. While being the standard network-layer

solution, Mobile IP is not the only proposed solution for the node mobility sup-

port. An overview of existing protocols for mobility management in IP networks

is given in [30, 31].

This section introduces the main concept of Mobile IP, including its basic op-

eration under IPv4 and IPv6 networks, and different mobility management ap-

proaches used to design local mobility management for Mobile IP.

2.3.1 Mobile IP

Mobile IP protocol, introduced by IETF, is the standard network-layer, mobility-

enabling protocol for the Internet. It enables a Mobile Node (MN) to change

its serving network without need of changing its permanent IP address. This is

accomplished by providing an MN with two IP addresses: Home Address (HoA)

and Care-of Address (CoA). The former is a long-term IP address obtained by

an MN on its home network, administrated in the same way as a permanent IP

address is provided to a stationary node. The MN is always identified by its

HoA, regardless of its current point of attachment to the Internet. The latter,

the CoA, is a temporary IP address obtained by the MN whenever it moves to

a foreign network. The CoA reflects the MN’s current location in the Internet.

The MN operating away from home needs to register its new CoA with its home

agent, informing it about its current location. All the packets destined to the

MN are then intercepted and tunnelled by the HA to the MN’s new CoA. By

using this mechanism, the MN can continue its ongoing communication with

Correspondent Nodes (CN) after moving to a new IP subnet, while keeping its
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movement transparent to the higher-layer protocols and CNs.

The main components of Mobile IP and its operation depend on the version of

the Internet address protocol used in the network, IPv4 or IPv6.

2.3.1.1 Mobile IPv4

The Mobile IP protocol was initially designed to offer seamless mobility to IPv4

nodes, and hence, mainly referred to as Mobile IPv4 [32]. Its two main entities

are: Home Agent and Foreign Agent. The Home Agent (HA) is an Mobile-IP-

aware router on an MN’s home network. It maintains the information about

the MN’s current location to re-direct the packets there while it is away from

home. The latter, Foreign Agent (FA), is a Mobile-IP-aware router on an MN’s

visited network that provides routing services to the MN while registered. The

FA de-tunnels the packets, that were tunnelled by the MN’s HA, and delivers

them to the MN. The termination point of a tunnel can be the MN instead of

the FA. In this case, when the MN registers in a foreign network, instead of using

the address of the FA as its new CoA, the MN should externally obtain a local

address, called co-located CoA. Of the two modes, using the foreign agent CoA is

preferred because it meets the community goals of better utilisation of the limited

IPv4 address space. The basic operation of Mobile IP can be outlined into the

following steps:

• Movement Detection: In Mobile IP both mobility agents, the HA and

FA, advertise their presence via Agent Advertisement messages. The mes-

sage is used by the MN to detect the movement and determine if it has

entered a new subnet (layer-3 handover). A solicitation can be sent by a

newly arrived MN to discover any prospective agent. This can reduce the

handover delay influenced by the movement detection.

• Registration: Upon entering a new subnet, the MN needs to register with

the FA and obtain a new CoA, either a foreign agent CoA or a co-located

CoA. The former is the IP address of the FA obtained from the Agent Ad-

vertisement messages, while the latter is acquired by the MN through some

external mechanism such as Dynamic Host Configuration Protocol (DHCP).
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• Location/Binding Update: After obtaining the IP address, the MN

registers its new CoA with the HA, informing it about its current point of

attachment. The process is done through exchange of registration request

and registration reply messages. The HA associates the MN’s HoA with the

CoA and lifetime together in a routing record known as a binding. While

being away from home, the HA intercepts all the packets destined to the

MN and tunnels them to its latest CoA.

By default packets originated by the MN carry its HoA as their source IP address.

Assume that routing is independent of source address, they are delivered to CN(s)

using standard IP routing mechanisms, with no need of passing through the

HA. This leads to asymmetrical delays for upstream and downstream directions,

known as the Triangle Routing problem. The name came from the three distinct

routing paths that the round trip communications should travel, routes CN-HA-

MN for the packets sent to the MN and a route MN-CN for the packets originated

from the MN. An extension to Mobile IPv4 known as Route Optimization [33] was

proposed to eliminate the routing anomalies caused by the Mobile IP specification.

According to this extension, the CN is provided by the information about the

MN’s current point of attachment and kept updated whenever it changes. Being

informed about the MN’s CoA, the CN can tunnel packets directly to it.

Due to the security concerns, some routers do not allow forwarding of packets

with a topologically incompatible source address format. This raises concerns for

MNs sending packets in a visited network, using HoA as a source address. In envi-

ronments where this is a problem, the reverse tunnelling [34] can be used between

an MN and its HA, with the CoA and home agent address as the source and des-

tination addresses. Upon reaching the HA, the packets are de-tunnelled and sent

to their final destination, the CN. Although solving the problem, the reverse tun-

nelling sends the packets through a path significantly longer than the optimal one.

2.3.1.2 Mobile IPv6

In an effort to support mobility for the emerging next generation Internet (IPv6),

Mobile IPv6 [35] was introduced by the IETF. Mobile IPv6 specifies a protocol

which allows nodes to remain reachable while moving around IPv6 networks. The
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design of this protocol has exploited both the lessons taken from the Mobile IPv4

development and the new features introduced in IPv6. Having the same concept

at the core, Mobile IPv6 offers some major improvements as compared to Mobile

IPv4. The use of new features introduced in IPv6, such as neighbour discovery

and address auto-configuration, enables MNs to operate without any special sup-

port required from local routers in a visited network, and therefore, eliminates

the necessity of having FA entity. While away from its home, an MN acquires its

CoA using either a stateful or stateless auto-configuration mechanism. A stateful

mechanism requires the presence of a IPv6 DHCP server located in the boundaries

of the visited network, however, the tight control over address assignments can be

assured. In contrast, in the stateless auto-configuration [36] the MN configures its

CoA using a combination of its Ethernet hardware address, also known as MAC

address, and information advertised by a local router. To ensure the uniqueness

of the configured addresses on a subnet domain, MNs run a Duplicate Address

Detection (DAD) algorithm on a newly configured address before assigning it to

an interface. The DAD algorithm is performed on all addresses, independently

of whether they are obtained via stateless auto-configuration or DHCPv6 [36].

After the IP address acquisition phase, the MN sends a Binding Update (BU)

to its HA informing it about its new point of attachment. Upon receiving the

message, HA responds to the MN by sending a Binding Acknowledgement (BA)

message. If a CN does not support Mobile IPv6, bi-directional tunnels are es-

tablished between the MN and HA. Packets from the CN are routed to the HA

wherein tunnelled to the MN. Packets to the CN are tunnelled from the MN to

the HA (reverse tunnelling), and then after being de-tunnelled, routed normally

from the home network to their destination, the CN.

Unlike Mobile IPv4 wherein the route optimization was defined as an extension,

in Mobile IPv6 route optimization support is a fundamental part of the protocol,

allowing a direct communication between the MN and CN(s). However, it requires

the MN to register its newly-obtained CoA with the Mobile IPv6-aware CN(s).

When sending a packet to any IPv6 destination, the CN checks if any binding

exists for the packet’s destination address (i.e., MN’s home address). If there

is, the associated CoA is copied to the destination address field of the packet’s

header. A new type of IPv6 routing header, called Type-2 Routing header, is also
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added to the packet to carry the MN’s home address. Once the packet arrives at

the CoA, the MN retrieves its home address from the routing header, and this is

used as the final destination address for the packet. Routing the packet directly

to the MN’s CoA has some distinct advantages. Not only does it use the shortest

path for communication, it eliminates the need of packet tunnelling, reducing the

amount of resulting overhead compared to Mobile IPv4.

For packets destined to the CN, the MN copies its CoA to the source address

field in the packet’s header, sending them directly to the CN’s IP address. The

information about the MN’s home address is carried in a new IPv6 extension

header, called Home Address option. When the CN receives the packet, it replaces

the original value of the source address field with the MN’s HA, carried in the

home address option. This enables the upper layers (e.g., the transport layer) to

process the packet without the knowledge that it came originally from a CoA or

that a Home Address option was used.

2.3.2 Localised IP Mobility Management

Mobile IPv6 empowers users to move freely within the Internet while still keeping

their on-going connection(s), however, this comes at the cost of transferring sig-

nalling messages to the HA/CN after each layer-3 handover (henceforth referred

to as handover in this document). The process of exchanging the BU and the BA

can cause significant delays or disruptions on active connections if the HA/CN is

far away. Some packets will be lost. Together with link layer and IP layer connec-

tion set-up delays, there may be effects to upper-layer protocols. Moreover, the

signalling exchanges can increase the signalling overhead on the network especially

on a wireless link, and finally it can jeopardize the location privacy of the MN.

To alleviate such performance problems, a number of Localised Mobility Manage-

ment protocols have been proposed, intending to maintain the IP connectivity and

reachability of an MN when it moves, while confining the mobility management

signalling to an access/local domain. Although using different approaches, i.e.,

host-based or network-based to be described later in this section, all the proposed

solutions utilise a new entity defined as a local home agent, a home agent closer to

the MN. The MN’s movement over the local domain, local mobility, requires only
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signalling exchanges with the MN’s local home agent. This is in contrast with the

Global Mobility Management protocols such as Mobile IP which invalidates an

MN’s global unicast IP address after each handover, causing a global, end-to-end

routing of signalling messages between the MN and CN/HA. Note that local do-

main is a generic term for a collection of fixed and mobile network components,

allowing access to the Internet, all belonging to a single operational domain.

Depending on the access technology, geographically the area can be large.

2.3.2.1 Host-Based Mobility

The host-based mobility management protocols require a mobile user involvement

at the IP layer. The user needs to take care of the signalling required to manage

its mobility, and be aware of the local/micro and global/macro mobility manage-

ment solutions, thus acting accordingly. One of the most successful solutions for

the host-based mobility management is HMIPv6 protocol. As a simple extension

to Mobile IP, its intent is to improve the performance by handling MNs’ mobility

within a local region locally. The protocol utilises a new entity called the Mobility

Anchor Point (MAP). The MAP is a router located in a visiting domain, usually

at the gateway, acting as a local home agent. Its domain’s boundaries are defined

by the means of router advertisement messages advertising the MAP information

to MNs.

Upon entering a new MAP domain, the MN configures two addresses: Local

Care-of Address (LCoA) and Regional Care-of Address (RCoA). The former is

the on-link CoA configured on an MN’s interface, based on the prefix advertised

by its default router. This address defines the current location of the MN within

the MAP domain. It changes when the MN moves from one subnet to another

both belonging to the same MAP domain (local/micro mobility). The latter,

the RCoA, is formed in a stateless manner by combining the MN’s interface

identifier with the MAP’s subnet prefix obtained from the MAP option in router

advertisement messages. The RCoA changes when the MN moves from one subnet

to another each belonging to a different MAP domain (global/macro mobility).

After IP-layer configuration, the MN needs to register with its local home agent,

the serving MAP, by sending it a local BU. The message contains the MN’s
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RCoA (similar to a home address) and LCoA. The MAP will then return a BA

to the MN. If the registration is successful, the bi-directional tunnel is established

between the MAP and MN. After receiving the BA from the MAP, the MN should

register its new RCoA with its HA/CN by sending a BU to each, as in Mobile

IPv6. The message will bind the MN’s original home address to the newly-

configured RCoA. The confirmation of registration, the BA, will be sent to the

MN. Following the successful registration, packets sent by the HA or CN to the

MN will have the MN’s RCoA in their destination address. The MAP, as a local

HA, intercepts the packets and tunnels them to the MN’s LCoA. Similarly, all

packets sent by the MN are tunnelled to the MAP, having the MN’s LCoA and

MAP’s IP address as a source and destination address in their outer header. The

inner header contains the MN’s RCoA as a source address and the HA/CN IP

address as the destination address.

Based on this architecture, the MN’s location inside the MAP domain remains

transparent to all the nodes it communicates with but the MAP. Moreover, in-

stead of exchanging a pair of BU/BA with the HA and CNs after each handover,

the MN just needs to register with the MAP, as long as its movement is confined

to within the MAP domain (intra-domain handover). This results in a smaller

signalling overhead in comparison with Mobile IP.

2.3.2.2 Network-Based Mobility

Host-based mobility protocols require changes in MNs’ software stack that may

not be compatible with all global mobility protocols. Although the existing lo-

calised mobility management solutions all depend on Mobile IP or derivatives,

future MNs may select other global mobility management protocols, such as Host

Identity Protocol (HIP) [37]. Moreover, considering the resource constraint char-

acteristic of mobile devices and users reluctance to host stack software modifica-

tion [38], having a mechanism that relocates mobility procedures from MNs to

network components has become an issue of great interest in recent years.

To that end, Network-based Localised Mobility Management (NETLMM) ap-

proach [38] was introduced to enable IP mobility for an MN without its partic-

ipation, and therefore, it requires no software changes on the host. PMIPv6 is
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the protocol standardised by IETF to provide this approach.

The core functional entities in PMIP are: the Local Mobility Anchor (LMA)

and Mobile Access Gateway (MAG). Acting as a local home agent in the PMIP

domain, the LMA (usually located at the gateway) manages the MN’s mobility

inside domain under its control. It maintains a collection of routes for individual

MNs and manages their binding states. The latter is the PMIP-enabled access

router responsible for tracking the movements of the MN and initiating the re-

quired IP-layer mobility signalling on its behalf.

An MN entering a PMIP domain will be first identified by a serving MAG which

the MN attached to its access link. The identification is performed by means of

an MN identifier. Every MN roaming within the PMIP domain should have a

unique identifier, such as a Media Access Control (MAC) address. The MN iden-

tifier has an associated policy profile, accessible by network entities i.e., MAG

and LMA, that identifies the MN’s serving LMA IP address (mandatory field),

permitted address configuration modes, roaming policy, and MN’s home network

prefix. After a successful authorisation, the MAG sends a Proxy Binding Up-

date (PBU) message to the LMA, informing it of the current location of the MN.

The message contains the MN identifier for identifying the MN. On receiving the

message, the LMA sets up its end-point of bi-directional tunnel to the MAG,

binds the MN’s home address prefix to the MAG’s address, and replies back by

sending a Proxy Binding Acknowledgement (PBA) message including the MN’s

home network prefix. On receiving the acknowledgement, the MAG configures its

end-point of the bi-directional tunnel to the LMA. Having the knowledge of the

MN’s home network prefix allows the MAG to emulate the MN’s home link. It

puts this prefix in the router advertisement message and sends it to the MN. The

MN, on receiving the same home network prefix, starts to configure its IP address

without detecting any change with respect to the layer-3 attachment of its inter-

face. As far as the MN is concerned, it is still in its home network. The LMA as

a topological anchor point for the MN’s home network prefix, intercepts all the

packets destined to the MN’s home address and sends them to its serving MAG

through the pre-defined bi-directional tunnel. Packets sent by the MN will be

received by the serving MAG and tunnelled to the LMA. The LMA, on receiving

the packets, removes the outer header and routes them to the destination,the CN.
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2.4 QoS Guarantees in Access Networks

During the last few years, mobile users have witnessed the rapid evolution in

next generation mobile networks and services offered. A new generation of mul-

timedia value-added services have intended to persuade potential customers to

spend more, creating new service values. The competition between providers is

so intense that a small improvement in service quality can go a long way. Al-

though Mobile IP is the de facto standard chosen for IP mobility management,

in its basic form it inherits the IP incapability to provide QoS guarantees, and

therefore, depending on external mechanisms. Nevertheless, when compared with

fixed networks, provision of QoS in mobile networks is more complex than that.

This section gives insight into the problems of QoS-guarantee signalling proto-

cols in mobile networks, and then describes some prominent solutions proposed

to overcome these challenges.

2.4.1 RSVP in Access Networks

RSVP can provide guaranteed QoS on best-effort basis IP infrastructure, however,

the lack of mobility considerations in its initial design has played a significant

role in its inefficiency in mobile networks. RSVP and Mobile IP are both well-

established protocols with satisfactory performances when deployed separately.

However, if their functionality is combined, the incompatibility issues between

them give raises to some serious challenges in terms of QoS deterioration and

inefficient use of resources.

Tunnelling

Although being the essential part of Mobile IP, tunnelling causes significant prob-

lems for RSVP operations in mobile networks. It changes the protocol ID of the

RSVP messages (i.e., Path and Resv messages) from 46 to 4, making them invis-

ible to RSVP-aware routers along the tunnel path. Conceivably, there will not

be any reservation state on the routers to meet the flow’s requirements. To over-

come the problem, authors in [39, 40] proposed a simple solution called RSVP

Tunnels. In this method, tunnel entry and exit points in Mobile IP are considered
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as two end hosts, and for each RSVP session an individual RSVP Tunnel is es-

tablished between tunnel end-points, if one does not exist. All end-to-end RSVP

Path and Resv messages are encapsulated and passed through the RSVP tunnel,

treated as a regular data packet. After reaching the tunnel exit point, packets

are de-encapsulated and sent as regular end-to-end RSVP messages towards the

destinations. The tunnels can be established in advance even if there are no

end-to-end RSVP sessions between two tunnel end points. RSVP Tunnels have

proven to be simple yet efficient. However, some refinements can be applied to

end-to-end signalling management at tunnel entry points, resulting in a decrease

in a number of end-to-end signalling messages passing through the tunnels.

IP-layer Handover

In RSVP, states are identified by a session-id, defined as a data flow with a

particular destination address and transport layer protocol. When an MN changes

its point of attachment in a network, it needs to acquire a new IP address. The

change of IP address implies the change of session identity; consequently, the

filters will not be able to identify the flow that had a reservation. A new end-to-

end reservation should be established on a new path based on the new identity

of the session, and since the old reservations will be of no use to any flow, they

need to be released immediately, improving the network resource utilization. The

new reservation may not be established immediately after handover, causing the

QoS degradation or interruption for real time services. Therefore, the faster the

resources are established along a new path, the fewer packets will be dropped or

treated as a best-effort, and hence, is of great interest.

Receiver End

RSVP specification in [41] defines that only the Path message, RSVP message

initiated by a sender, can create a new reservation state on routers along a path.

The Resv message, the one initiated by a receiver, cannot. Conceivably when

the MN as a receiver of the flow performs handover, it cannot simply invoke a

resource reservation along the new path. On the other hand, RSVP in essence,

does not support any internal mechanism to detect the MN’s handover. Some
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external mechanisms should be used to inform the CN or other nodes in charge

(RSVP proxy [42]) about the necessity of sending a Path message on the new

path based on the flow’s new identity. Upon receiving the message, the MN can

send a Resv message, making the necessary resource reservation.

2.4.2 NSIS in Access Networks

Thoroughly analysing the RSVP problems in a mobile environment, the mobility

support was considered in the initial stages of the QoS NSLP design. However, it

was incompetent, and as a result, NSIS is experiencing the same incompatibility

issues as RSVP when its functionality is combined with mobility management

protocols.

Tunnelling

Similar to RSVP, without additional supports, NSIS signalling cannot be effec-

tive within IP tunnel segments of a signalling path. Traversing through the tun-

nel, NSIS signalling messages are transparent on the tunnelling path due to the

packet encapsulation. Without having proper states to meet the flow’s require-

ments, the tunnel segments become the weakest QoS links, and therefore, result

in a violation of the end-to-end QoS support. Drawing similar concepts from

RSVP Tunnels [40], authors in [43] suggested having an individual NSIS session

established between the tunnel end-points, either preconfigured or dynamically

created. All end-to-end QoS sessions traversing through are mapped to the NSIS

tunnel session, receiving appropriate QoS treatments.

IP-layer Handover

In an effort to have mobility support, NSIS identifies a session by a globally

unique session-id. That makes the session and associated states independent of

the MN’s location. In contrast, a flow associated with the session is identified by

the MRI which is dependent on the IP addresses, and therefore, any changes to

the MN’s point of attachment will not affect the session but the flow associated

with it. Consequently, the resource assigned to the session may not be used as it

may refer to a non-existing flow. When the MRI changes due to handovers, an
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end-to-end signalling propagation seems inevitable. New information for proper

data flow identification must be provided all the way between the data sender and

receiver, e.g., in order to update filters, QoS profiles, or other flow-related session

data [44]. Therefore, the NSLP signalling should be triggered after each handover

along the new path while the old reservations need to be released immediately.

Being the Receiver

In NSIS, new resource reservation signalling can only be initiated in the down-

stream direction, from a sender to receiver of the flow. Being the sender, the

MN can easily trigger the NSLP signalling messages on a new path, the Reserve

or Query for the sender- or receiver-oriented reservation, respectively. However,

having the MN as the receiver of the flow rises a concern. In order to reserve the

resources on the new path, the next GIST peer discovery should be performed

hop-by-hop on the upstream direction. However, the GIST upstream signalling

is not possible except for some specific situations i.e., when the upstream peer is

a default router of the single-homed network or is just one hop away which can

be reached by tracking back the interface used to deliver the flow [23]. Therefore,

the NSLP is very much dependent on the external driver, i.e., the network layer

mobility management such as Mobile IP, to inform the CN about the MN’s lo-

cation and necessity of sending the NSLP messages on the downstream direction

based on its new IP address.

2.4.3 Related Work

Tackling the interworking issues between the QoS signalling protocols and mobil-

ity management protocols has stimulated growing interest in the research com-

munity, resulting in the development of many proposals in recent years. Since the

core of this work, in provision of QoS in access networks, is based on RSVP, this

section focuses on introducing some of the prominent RSVP extensions to support

mobility. However, being almost the same in the main concept of reservation sig-

nalling and the nature of the problems which arose in mobile networks, as shown

earlier in this section, the similar approaches can be/have been applied to NSIS.

A survey of other RSVP extensions to support mobility can be found in [16, 45].
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MRSVP

MRSVP [46] is one of the first RSVP extensions for mobile networks. Intending

to achieve seamless resource reservation after handover, MRSVP proposes two

types of reservation: passive/advance reservation and active reservation. The

MN makes passive reservations in multiple locations that might be visited during

its connection lifetime, and once it enters their domain, their passive status will

be changed to an active one. MRSVP assumes that this set of future locations,

called Mobility Specification (MSpec), can be obtained in advance, from either

the network or the MN as part of its mobility profile. The protocol introduces

a new entity, called Proxy Agent, that makes the reservation along the paths,

from the locations in the sender’s MSpec to the ones in the receiver’s MSpec.

The agent located in the MN’s visiting cell is called Local Proxy Agent, while the

ones in other locations, specified in the MSpec, are called Remote Proxy Agent.

All active and passive reservations between the MN and CN are established via

the local and remote proxy agents, respectively. To increase the network utiliza-

tion, the passive reservations can be used by best-effort or lower-priority traffic.

However, upon changing their status to active, they need to be released immedi-

ately by the flows using them. This may cause the connection interruption and

an increase in the call dropping rate.

MRSVP can guarantee a seamless QoS for the MN during handovers. However,

reserving network resources as a passive reservation for MNs that might use them

in the future causes significant wastage of resources in the network. Although

they can be used by the lower-priority traffic, flows with the same QoS priority or

higher cannot use them, and therefore resulting in an increase of the call block-

ing probability for new arrival users. Moreover, having a high number of active

and passive reservation states for each MN and a necessity of sending periodic

refresh messages causes a significant signalling load on the network and the pro-

cessing overhead on proxy agents. Finally, the assumption of having knowledge of

the MN’s future locations is an important research question which has not been

addressed in the paper.

The notion of using advance resource reservations has been used in other work

to provide a seamless handover. Hierarchical Mobile RSVP (HMRSVP) [47] in-
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tegrates RSVP with HMIP protocol. However, it makes advanced reservations

only in potential inter-domain movements that cause the longer handover delay

(in a boundary cell of the MN’s neighbouring MAP domains). Although be-

ing more efficient than MRSVP, due to the inaccuracy of the target cell, the

passive reservations made in all neighbour cells can have significant effect on re-

source wastage and increasing the call drop rate, as well as a number of signalling

exchanges. Moreover, the scheme does not provide any solution for resource

reservation problem inside the domain, raised by the intra-domain handover.

A new RSVP extension based on IP multicast was proposed in [48] in which future

locations of the MN become the leaves of the multicast tree. The mobility of the

host is modelled as a transition in multicast group membership, dynamically

modifying every time the MN is roaming to a neighbouring cell.

Optimised ARR Scheme

A Reservation Optimised Advance Resource Reservation (ARR) Scheme [49] is

another RSVP extension for mobility support. Similar to MRSVP, the proto-

col provides two types of reservations: an active reservation for current location

and passive ones for neighbouring cells. However, to mitigate the wastage of re-

sources caused by passive reservations, the proposed scheme includes two admis-

sion control mechanisms: a passive reservation limited mechanism and Session-

to-Mobility Ratio (SMR)-based replacement mechanism.

The former intends to limit the number of passive reservations by making them

inferior to the active ones. To that end, the available channels (network resources)

are divided into two groups: dedicated channels and standard channels. While

the active reservation requests can always use either of these channels, the passive

reservations can only use the standard ones. Due to the limited amount of re-

sources assigned to the passive reservation requests, the SMR-based replacement

mechanism is defined to accept the most eligible passive reservation requests.

Since the essential objective of an advance resource reservation scheme is to im-

prove the MN’s performance after handover, a request from a MN, which is most

likely to perform a handover during a session and use its passive reservation, will

serve first. Therefore, the less the MN’s residence time in its previous cell, the
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higher its chance is to perform a handover. Both admission control mechanisms

are performed by a new entity located in each cell, called Enhanced Agent (EA).

To guarantee that the channels are allocated correctly, the EAs monitor network

resources and provide necessary information to their neighbouring EAs.

The optimised ARR scheme can achieve better utilization of resources as com-

pared to the conventional advance resource reservation solutions such as MRSVP.

However, the necessity of having the EA in each subnet and its duties increase the

complexity of the mechanism. Also, similar to MRSVP, how to predict the MN

position and define its mobility profile were not addressed specifically in this work.

Mobility-Aware RSVP

As expressed earlier, the major issue of using RSVP in mobile networks is MN’s

handovers, interrupting the acceptable level of QoS required by the flow and

jeopardising its application-level performance. The interruption period consists

of the time needed for the MN’s location update, plus the time taken for re-

establishing the resource reservation along a new path. Intending to shorten

this time, Mobility-Aware RSVP [50–52] couples the existing solutions for the

mobility management (i.e., HMIPv6) with RSVP, performing them as a single

functional block. Based on this method, the mobility-based signalling messages,

BU and BA, are carried by RSVP messages, through two newly defined RSVP

objects. Mobility-aware RSVP takes advantage of RSVP capability in adding

new object types for future compatibility. Base on the RSVP specification [6]

any object that its class number is assigned to 11xxxxxx (where x can be 0 or 1)

is considered as an unknown object class, and therefore, if the RSVP routers along

the path cannot recognise it, they just forward it without further examination

or modification. Exploiting this feature of RSVP, the flow end-points, MN and

CN, can send mobility information (BU and BA) through RSVP objects while

keeping them transparent to the routers along the path. As a result, no changes

are required to be made to the legacy RSVP-enabled routers.

Mobility-Aware RSVP outperforms the other methods using conventional RSVP

in mobile environments, however, both resource reservation and mobility man-

agement protocols need to be changed in order to be tightly coupled with each
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other. Moreover, If the RSVP messages carrying the BU and BA get lost in the

network, the handover latency increases significantly as the default time-out in

RSVP protocol is 30 seconds.

RSVP-MP

Utilising the proxy concept in the localised mobility management protocols such

as HMIP, RSVP Mobility Proxy (RSVP-MP) [53–55] introduces a new functional

entity located at the edge of the local domain, it is e.g., an RSVP enhanced MAP,

that intertwines the RSVP functionality with the localised mobility management

one. The enhanced MAP divides an end-to-end RSVP reservation between the

MN and CN to two parts: outside its domain and inside it. While in the former,

the RSVP messages use the MN’s RCoA, in the latter the reservation messages

are dependent on the MN’s LCoA. Upon receiving any RSVP messages, destined

to the MN’s RCoA, from its external interfaces, the enhanced MAP swaps the

RCoA in the packet header and its content with the associated LCoA, and then

forwards it to the next node inside the domain. Consequently, when the enhanced

MAP receives any RSVP messages through its internal interface (MN’s originated

packets), it changes the LCoA in the packet with the associated RCoA and sends

them to the CN.

In the case of handover, when the MN as a receiver of the flow enters a new

subnet, it sends a BU to the MAP, informing it of its newly acquired LCoA.

Upon receiving the message, the MAP checks if there is any reservation state for

the MN’s associated RCoA. If such an entry exists, a new resource reservation

has to be established along the new path. To that end, the MAP sends a Path

message to the MN’s LCoA, using the CN’s IP as a source address. When the

MN receives the Path, it issues a Resv message destined to the CN. Along the

way to the outside, the message is intercepted by the MAP, wherein any LCoA in

its header and content is swapped with the RCoA, and then forwarded to the CN.

At the same time, and for the uplink direction, the MN triggers the reservation

on a new path by sending a Path message to the CN, using its new LCoA as a

source address. When the MAP receives the message, it first changes the LCoA

to the RCoA, and then forwards it to its external interface. Meanwhile, acting
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as a proxy on behalf of the CN, the MAP responds to the MN by sending a

Resv message. By using this method, the new reservation will be established

along the new path inside the domain, while the reservation for the outside part

remains unchanged. Figure 2.2 shows the operation of RSVP-MP in mobile net-

work [54].

Figure 2.2: RSVP-MP operation in HMIP network

RSVP-MP avoids any type of hard-coupling between the resource reservation

and mobility management protocols, reducing the complexity of the system and

the changes required in the protocols stacks. Moreover, by restricting the RSVP

signalling changes to the local domain, RSVP-MP can reduce the end-to-end

resource re-establishment latency, between CN and MN. Nevertheless, still any

change in the MN’s LCoA requires a new RSVP signalling exchange between

the MN and the MAP, even though the new and old paths have very much in

common. Moreover, the process of swapping between the LCoA and RCoA in the

packets’ headers and contents causes an extra processing overhead in the MAP.
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2.5 QoS in Backbone Networks

The vision of providing an end-to-end QoS was founded on the underlying as-

sumption that a homogeneous Internet environment, equipped with QoS-enabled

routers and end hosts, would be the common case. However, today’s Internet

architecture is in contrast to this assumption. Moreover, on the one hand, the

scalability issue which arose from the state maintenance for every data flow in

intermediate routers along the end-to-end path, creates a problem for the wide

implementation of a fine-grained QoS, i.e., IntServ. On the other hand, the

heterogeneous nature of the Internet, as a concatenation of technologically and

administratively different domains, can jeopardize the coarse-grained traffic prior-

itization (i.e., DiffServ) based on the statically contracted SLA. Therefore, other

solutions, such as Multi-Protocol Label Switching (MPLS), traffic engineering and

constraint-based routing [56], have been proposed to provide QoS in backbone

networks.

2.5.1 Multi-Protocol Label Switching Networks

In a connectionless network layer protocol, as a packet travels through the path,

each router makes an independent forwarding decision to choose a next hop, in-

cluding analysing the packet’s header and running a routing algorithm. However,

information contained in the packet headers is considerably more than that which

is needed just to select the next router. Using this information, the process of

selecting the next hop can be defined as the composition of two functions. The

first one categorises the entire set of possible packets into a set of Forwarding

Equivalence Classes (FEC) [57]. The second function maps each FEC to a next

hop. From the forwarding decision point of view, all packets which belong to the

same FEC and travel from a particular node, are identical, and therefore, follow

the same path.

In a router running the conventional IP forwarding, two packets are in the same

FEC if their destination IP addresses can be matched to the same longest-prefix

in the router’s routing table. The matching process is repeated in each node

along the path wherein the packets are re-examined and assigned to an FEC.

On the contrary, in Multi-Protocol Label Switching (MPLS) [57] the process of
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assigning a packet to a particular FEC is performed only once, as the packet

enters the network. The information about the assigned FEC, encoded as a short

fixed-length value known as a label, is sent along with the packet to the next

hop. Without any further analysis of the packet’s network layer header, the

subsequent routers use the label as an index into a table which specifies the next

hop, and a new label. The new label substitutes the old one and the packet is

forwarded through the path followed by packets in the same FEC, called Label

Switched Path (LSP). Forwarding packets based on labels instead of network

layer destination addresses gives MPLS some outstanding features as compared

to the conventional IP forwarding process. Some of them are listed below:

• Performing an FEC assignment at the entry of the network gives the ingress

router the possibility of using, in determining the assignment, any available

information about the packet apart from the ones obtained from its network

layer header. For example, although being impossible in the conventional

forwarding, the ingress router can assign different FECs for the packets

arriving on different ports.

• A packet that enters the network at a particular router can be labelled

differently than the same packet entering the network at a different router,

and consequently, forwarding decisions that depend on the entry point to

the network can be easily made.

• In some circumstances, it is desirable to route a packet through an explic-

itly pre-defined route, rather than the one chosen by the normal dynamic

routing algorithm as the packet travels through the network. This may be

done as a matter of policy, or to support traffic engineering.

According to the MPLS specification [57], not only can routers analyse a packet’s

network layer header to choose the next hop, but also to determine a packet’s

precedence or class of service, and therefore, making it possible to apply different

discard thresholds or scheduling disciplines to different packets. MPLS allows

(but does not require) the precedence or class of service to be fully or partially

inferred from the label. In this case, one may say that the label represents

the combination of an FEC and a class of service, making it possible to support
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differentiated services. MPLS is not a QoS technology in itself. Rather, it provides

a flexible solution for support of DiffServ over MPLS networks [58]. This solution

enables the MPLS network administrators to select how DiffServ BAs are mapped

onto LSPs so that they can best match the DiffServ, traffic engineering [59] and

protection objectives [60] within their networks.

2.5.2 Traffic Engineering

The main goal of all QoS schemes, such as IntServ and DiffServ, is to provide

different levels of performance degradation during network congestion. In lightly-

loaded network conditions, the IntServ, DiffServ and best-effort services differ

lightly. Stimulated by this insight, traffic engineering has emerged as an efficient

solution to avoid network congestion in the first place. Congestion can be caused

either by the lack of enough network resources or by uneven traffic distribution

among possible paths. The former occurs when all the links are overloaded, and

has no solution but to upgrade the network physical infrastructure. The latter is

caused by selecting the shortest path between two end-points of communication,

used by dynamic routing protocols such as Intermediate System to Intermediate

System (IS-IS) [61] and Open Shortest Path First (OSPF) [62]. Although the

simplicity of selecting the shortest path guarantees the scalability of IP routing

in a large scale network, it does not make efficient use of available resources in

the network. The shortest paths between nodes may become congested while

there might be unused resources on the longer paths, and as a result traffic can

be unevenly distributed across the network.

To alleviate the problem, the Equal Cost Multi-Path (ECMP) feature in OSPF

and IS-IS became an issue of great interest. ECMP discovers all potential paths,

with identical costs, to a destination and splits traffic evenly onto the next hop

routers on these paths. Although, ECMP results in a better load balance com-

pared to a single-path routing, practically, ECMP solely supports even traffic

splitting, which is not enough to approximate the optimal results obtained by

using the arbitrary traffic splitting, such as in MPLS.

Traffic engineering intends to find appropriate routing and traffic allocation schemes,

in order to balance the load distribution and optimise the overall network per-
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formance. Constraint-based routing is an important tool for making the traffic

engineering process automatic [56]. A survey of different mechanisms used for

Internet traffic engineering can be found in [63].

2.5.3 Constraint-Based Routing

Constraint Based Routing (CBR) represents a class of routing algorithms that

compute routes to a flow’s destination, subject to a set of requirements or con-

straints. One can say that CBR evolves from QoS Routing [64], but with a

broader sense. Based on some knowledge of resource availability in the network,

as well as the QoS requirements of the flows, QoS Routing returns the route that

is most likely to be able to meet the given requirements. CBR extends the QoS-

based routing concept by considering not only the topology of the network, but

also the requirement of the flow, the resource availability of the links, and possi-

bly other policies specified by the network administrators. In order to do that,

routers need to distribute new link state information, including topology informa-

tion and resource availability information, and to compute routes based on such

information. While determining a route, CBR selects the one that can meet the

criteria defined, and also can maximise the utilization of the current network fa-

cilities, thus maximise its revenue (or minimise its cost). As a result, a longer yet

lightly-loaded path might be preferred to the shortest yet heavily-loaded path,

hence resulting in the even distribution of network traffic. The constraints in

CBR may be imposed by administrative policies (administrative-oriented), or by

QoS requirements of the flow (service-oriented) [65]. The former is referred to as

policy constraints and the associated routing is referred to as policy-based rout-

ing. While in the latter, the constraints imposed by QoS requirements, such as

bandwidth, delay, or loss, are referred to as QoS constraints, and the associated

routing is referred to as QoS-based routing [64, 66].

Policy-Based Routing

With the Internet continually growing, more stringent administrative constraints

need to be considered when routing users’ traffic. Policy routing ensures ade-

quate resources/services provisioning from unauthorised users attempting to re-
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ceive services that are not included in their SLAs. Policy routing, in its essence,

is a matter of allocating resources in terms of business decisions. Instead of rout-

ing by the destination address, it allows network administrators to allow or deny

paths, based on some pre-defined policies, such as packet size, end hosts’ iden-

tity and an application or protocol used. The constraints can be provided either

manually during network configuration or by extending the link state advertise-

ment exchanged between nodes. By being more restrictive, the policy-based con-

straints are applied before the QoS-based constraints, especially when crossing

autonomous system boundaries.

QoS-Based Routing

QoS-based routing is defined as a routing mechanism under which paths for flows

are determined based on some knowledge of resource availability in the network,

as well as the QoS requirement of the flows [64]. The objective of the QoS-based

routing, a part from finding a path that can accommodate the requested QoS, is

directing network traffic in a way that can maximise the network resource usage

efficiency, e.g., improving the total network throughput, and degrade network

performance gracefully during periods of heavy load.

Two major issues of QoS-based routing are: distribution of link state information

and route computation complexity. One approach to dissemination of resource

availability information between the nodes in the network, such as link available

bandwidth, is to extend the link state advertisements of the routing protocols

such as IS-IS and OSPF. However, due to the frequent change in link residual

bandwidth, the trade-off should be made between the accuracy of the information

and the overhead the frequent flooding of the link state advertisements introduces.

The latter, the route computation algorithms and their degree of complexity, de-

pends on the metrics chosen. Common route metrics are hop-count, bandwidth,

reliability and delay, which can be categorised into three types: additive, con-

cave, and multiplicative. Let m(i1, i2) be a metric for link (i1,i2). For any path

P = (i1, i2, . . . , in), metric M is:

• additive, if M(P ) = m(i1, i2)+m(i2, i3)+· · ·+m(in−1, in) (e.g., delay, jitter,

cost, hop-count)
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• multiplicative, if M(P ) = m(i1, i2) ∗m(i2, i3) ∗ · · · ∗m(in−1, in) (e.g., relia-

bility, in which 0 ≤ m(ii, ij) ≤ 1)

• concave, if M(P ) = minm(i1, i2),m(i2, i3), . . . ,m(in−1, in) (e.g., bandwidth

meaning that the bandwidth of the path as a whole is determined by the

link with the minimum available bandwidth)

Since concave metrics set the upper limit of all the links along a path, such as

bandwidth, all the links that do not comply with the concave constraints can be

simply pruned. Also, multiplicative metrics can be converted into additive ones

by using the logarithmic function. Note that logarithm of the product is equal

to the sum of the logarithms of the factors.

M(P ) =
n−1∏
j=1

m(ij, ij+1) (2.1)

M ′(P ) = log

(
n−1∏
j=1

m(ij, ij+1)

)
=

n−1∑
j=1

logm(ij, ij+1) =
n−1∑
j=1

m′(ij, ij+1)

where M ′(P ) = logM(P )

(2.2)

Therefore, the route computation is basically to find a best possible route that

optimises additive metrics, however, it has been proven that problems involving

two or more additive constraints are NP-complete [67]. Hence, tackling them

requires heuristics.

2.6 Summary

This chapter gave the concise overview of different approaches used in an end-to-

end QoS provisioning and mobility support. The former can be categorised in two

parts: access and core networks. For the access part, RSVP was considered as a

suitable candidate for providing a guaranteed QoS support per flow, establishing

flow-depended states in the routers along the path. However, its problems in
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mobile networks need to be overcome. Furthermore, it was shown that although

mobility support was supposed to be considered in NSIS initial design, it inherited

RSVP problems in mobile environment, while at the same time it proposes more

complex signalling exchange between NSIS-aware nodes. With regard to the core

network, due to the RSVP scalability issues, other solutions such as a constrained-

based traffic engineering was considered as a handy tool in preventing congestion

in the first place, and therefore, avoiding any packet loss or severe delay.

For the latter, the mobility protocol, the localised mobility management protocols

have been selected as an efficient method of restricting the signalling exchange

inside the domain. Two different approaches, host-based and network-based,

were explained. While both follow the same concept in localising the signalling

inside the domain by using a local mobility anchor point, the host-based needs the

mobile user involvement in mobility detection and signalling exhcnage, while in

the network-based approach these responsibilities are delegated to the mobility-

aware access routers.
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Chapter 3

An Efficient RSVP-Based QoS in

Access Networks

3.1 Introduction

With the spread of mobile devices and the popularity of mobile multimedia appli-

cations, next generation wireless networks are expected to increase not only the

quantity but the quality of the services for mobile users, and therefore, providing

the appropriate level of QoS has become one of the major challenges for service

providers in recent years. To that end, an extra control intelligence needs to be

added to nodes along a data path, as just having simple routing and forwarding

capabilities cannot fulfil customers’ expectations any more. The nodes involved

in forwarding the data packets need to be informed of the minimum require-

ments of a flow, dedicate resources, and maintain the reservation alive during the

connection lifetime. Due to the frequent changes in uses’ point of attachments

in mobile networks, solutions for fixed networks, such as RSVP, cannot be con-

sidered as a good candidate. Both RSVP and Mobile IP can accomplish their

goals separately, however, a combination of them does not work well in mobile

networks. Whenever an MN moves to a new subnet, due to the changes in its

address, the previous reservation is no longer valid, and a new reservation needs

to be established along a new path. The process causes a significant signalling

overhead and noticeable service interruption. During this time, QoS-based flows
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are treated as a best-effort, and therefore, prone to packet losses or severe delays

in congested access networks. To mitigate these problems, an efficient RSVP

mobility support for mobile networks is introduced in this chapter, intending to

expedite an end-to-end resource re-establishment latency while reducing the total

signalling overhead. The investigations, by means of an analytical model and a

simulation, are conducted to analyse the behaviour of the proposed scheme in an

access network with the localised mobility management support. The analyti-

cal framework introduced focuses on deriving total network-layer signalling costs,

including the processing and propagation costs, and resource re-establishment la-

tency. The effect of the number of mobile nodes and their average cell residence

time on it, are also examined. On the other hand, the network-layer simulation

scenario conducted in NS-2 investigates the behaviour of the proposed scheme in

terms of the packet-loss, the number of packets treated as a best-effort, and the

resource re-establishment latency.

It is of interest to note that, although, the proposed architecture is based on

the RSVP signalling protocol in the HMIPv6 network, the solution can be ap-

plied to other flow-based signalling protocols in domain-based mobile networks,

as discussed in the next chapter.

The remainder of this chapter is organised as follows: In Section 3.2 the ar-

chitecture of the proposed scheme is studied in detail. Section 3.3 introduces

the analytical framework, followed by the cost and resource re-establishment la-

tency analysis. The simulation model was introduced in Section 3.4. Section 3.5

discusses the numerical results obtained by means of the analytical model and

simulation. Finally, Section 3.6 brings closure to this chapter.

3.2 System Architecture

This section describes, in detail, the operation of the proposed scheme using

RSVP, and HMIPv6 as a host-based localised mobility management protocol.

The scheme architecture comprises of two parts: the mobility management and

resource reservation. The former describes the approach used to support the

node mobility and its location update process, while the latter defines the ap-

proach used for the resource reservation at time of handover. The aim is to have
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minimum changes to the current specifications of both protocols, and just in the

mobility entities, while having no change in access routers and end-points.

3.2.1 Mobility Management Scheme

The proposed scheme extends the one-layer MAP architecture in HMIPv6 to two,

named as Gateway MAP (GMAP) and Local MAP (LMAP). The GMAP is an

enhanced version of MAP, located at the gateway of a regional network, while

the LMAPs are mobility-aware entities located between the GMAP and MNs,

dividing the regional network to M sub-regional domains, where M is a number

of LMAPs.

Assume that each cell/subnet in the GMAP domain associates with at least one

LMAP who has a knowledge of visiting MNs’ home agent and CN(s) IP addresses.

Under above assumptions, when an MN enters a new cell, it triggers the registra-

tion process by sending a Local BU (LBU) to a serving LMAP. The address of

the LMAP can be obtained from the MAP option of a router advertisement. The

sent message contains the MN’s newly configured LCoA and RCoA. The LCoA

is configured based on the prefix advertised by its default router, while the RCoA

is based on the LMAP address’s network prefix.

When the LMAP receives the message, it checks its binding cache table of any

record about the MN’s RCoA. If there is, it acknowledges the successful regis-

tration update by sending a Local BA (LBA) to the MN. In such a handover,

called inner-LMAP handover, the MN’s current location is only updated in the

serving LMAP, making all MN’s movements transparent to the GMAP. Figure

3.1 shows the signalling sequence of the proposed scheme during the inner-LMAP

handover. If there are no records of the MN’s previous location, the LMAP first

assigns a unique ID to the MN. Then, it creates a binding cache entry, and con-

figures a new RCoA′ based on the GMAP’s subnet prefix. After that, it sends a

registration request towards the GMAP. Upon successful completion of the regis-

tration, the GMAP sends a BA, keeping the LMAP address as a next destination

for any packets destined to the MN. When the LMAP receives the message, it

puts the RCoA′ in a new mobility option and forwards it to the MN. The address

is used by the MN as a source address in any packets originated. Such a han-
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Figure 3.1: Proposed scheme signalling in inner-LMAP Handovers

dover, in which the MN’s old and new LMAPs belong to a same GMAP, is called

inter-LMAP handover. Figure 3.2 shows the signalling sequence of the proposed

scheme during this type of handovers.

The signalling process inside the domain will be the same if the old and new

LMAPs belong to different GMAPs (inter-GMAP handover). However, a new

LMAP should send a BU to the MN’s HA and CN(s), on behalf of the MN,

informing them about its new network.

3.2.2 Resource Reservation Scheme

Tunnelling is the essential part of the Mobile IP and its extensions. However,

wrapping RSVP messages makes them indistinguishable on RSVP-aware routers

along a tunnel path. For each end-to-end reservation, a separate RSVP session

called RSVP tunnel needs to be established between the tunnel end-points, i.e.,

the MAP and MNs.
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Figure 3.2: Proposed scheme signalling in inter-LMAP Handovers

Exploiting the multi-layer architecture of the proposed scheme, an end-to-end

reservation inside the GMAP domain can be divided into two parts: the first part

between the LMAP and MN, and the second between the GMAP and LMAP.

While the former needs to be updated whenever the MN changes its point of

attachment, the latter depends on the MN’s current sub-domain, remaining un-

changed as long as the MN stays inside it. Since the second part is the same

for all MNs belonging to a same LMAP domain, instead of having an individual

RSVP tunnel for each session, only one RSVP session can be used between the

LMAP and GMAP as the tunnel end-points. This can reduce the processing cost

on RSVP-aware routers along the tunnel, and the amount of signalling messages

passed through.

According to the process explained in the mobility management scheme, a reser-

vation message, sent by the CN to MN, contains the MN’s RCoA′ as the destina-

tion IP address. When the GMAP receives this message, it acts as an endpoint

of the connection, replying back to the CN on behalf of the MN. At the same

time, it maps the reservation request to the pre-configured RSVP tunnel be-
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tween itself and the MN’s serving LMAP. However, instead of exchanging RSVP

messages through the tunnel, it just sends a new defined RSVP object, called

Session Trigger (Figure 3.3), to the LMAP asking it to reserve the resources for

the MN. The object contains the CN’s IP address, the traffic specification, and

the MN’s ID. Upon receipt of this information, the LMAP works as a proxy and

initiates a new RSVP session destined to the MN’s current location.

Figure 3.3: Trigger Session Object format

When the LMAP receives this object, it tries to find the MN’s LCoA base on

the MN’s ID, and establishes an end-to-end RSVP session between itself and the

MN. When the MN receives a Path message originated by the LMAP, it replies

back by a Resv message. Figure 3.4 depicts the operation of proposed scheme

when the MN operates as the receiver of the flow.

In order to remove the reservation, the Delete Session object is defined with the

same structure as the Trigger Session object, but different class type. The object

can be used by either of the RSVP tunnel end points to inform the other end

about the necessity of removing the resources assigned for an individual flow.

Contrary to the conventional RSVP tunnel wherein all the end-to-end RSVP

messages, including the set-up and refresh, are encapsulated and sent through

the tunnel, in the proposed scheme only the new defined objects are exchanged

between two end-points, resulting in a significant reduction of signalling overhead

between tunnel end-points.

For the sake of simplicity, the static threshold-based mechanism is used to pre-

allocate resources for each tunnel Ct, in which the maximum amount of resources

authorised by administration polices is assigned, Ct = ψmax. However, one can

use the dynamic threshold-based mechanism. In this method the constant value

is assigned to the tunnel, and afterwards, based on the monitoring and predicting
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Figure 3.4: Operation of the proposed Scheme (MN as a receiver)

of the future demand the extra chunk of resources B can be added, or released.

ψmin ≤ Ct = ψmin
+
−B × i ≤ ψmax, where i = 0, 1, ... (3.1)

In order to increase the efficiency of the resources assigned to the RSVP tunnels,

they can be used by the best-effort traffic, if there were no demand for them.

When the MN is the sender of the flow, the main concept is the same as the

previous part. The MN starts the resource reservation process by sending a Path

message to the CN. Upon receiving the message, the LMAP acts as an RSVP

proxy and sends a Resv message to the MN, on behalf of the CN. At the same

time, it maps the session to the RSVP tunnel between itself and the GMAP by

sending the Trigger Session object. The object includes the MN’s ID, CN’s IP

address and Sender TSpec of the received Path. When the GMAP receives this

object, it initiates an end-to-end RSVP session between itself and the CN.
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3.3 Analytical Model

An analytical framework for evaluating the performance of the proposed scheme is

developed in this section. The framework focuses on the MN’s handover scenario

inside the regional domain, taking into the account its traffic behaviour and

mobility behaviour. The former describes the approach used for modelling the

arrival of the user session, while the latter defines the way the MN moves within

the network. The expected outputs of the proposed analytical model are:

1. Probability of performing different types of handover, including the inner-

LMAP, inter-LMAP and inter-GMAP handovers

2. MN’s average residence time inside the regional domain, and sub-domains

Both outputs are used to derive the total cost function and resource re-establishment

latency, discussed later in this section. To highlight the improvements achieved

by the proposed scheme, RSVP-MP introduced in Section 2.4.3 has been cho-

sen as a baseline protocol. The reasons for selecting RSVP-MP are: It does not

waste the network resources by having the passive reservations, neither it needs

the tight coupling between the mobility management and resource reservation

protocols, which makes it appealing to be adopted and implemented in mobile

networks.

3.3.1 User Traffic and Mobility Models

The traffic model comprises of a session and a packet, which the terms session

and call can be used interchangeably. The incoming calls to the MN are the

Poisson process, consequently, the Exponential distribution is considered for the

inter-call time (inter-arrival time). It is possible that a new call arrives when

the previous call is still in progress, and therefore, the call might be blocked. As

a result, an inter-service time will differ from the inter-arrival time, and cannot

follow the Exponential distribution. The phenomenon is called the busy line

effect [68]. Assume that a call duration is smaller than the inter-arrival time, the

busy line effect can be assumed insignificant. Given this assumption, the inter-

service time can follow the Exponential distribution. Although other distribution
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models, such as Gamma and Pareto, have been proposed in the literature to

model the MN’s traffic behaviour, the performance evaluations in [68] show that

the exponential model can be appropriate for cost analysis, making an acceptable

trade-off between complexity and accuracy.

The mobility model was developed under the assumptions introduced in [69],

which has been receiving considerable attentions in the literature. The model is

based on the hexagonal cellular network architecture with K rings (0 to K-1),

wherein each cell corresponds to one subnet domain. The innermost cell is the

centre cell (ring 0). All cells around the centre cell form the ring 1. Consequently,

all cells around the ring k form the ring k + 1. The distance of each cell from

the centre cell is equal to the number of rings between them. Each MN stays

in a cell for a time period then selects, with equal probability of 1/6, any of the

neighbouring cells for its next position. Figure 3.5 shows the architecture of the

model, with an example of the MN’s movement between points A and B.

Figure 3.5: Hexagon cellular architecture

The mobility of the MN is therefore based on a two-dimensional random walk

model. Between all the mobility models, the fluid-flow model and the random

walk model are the two main types of mobility model that have been applied in

location-management studies. The fluid-flow model can derive the average rate

of boundary crossings, per unit time, out of a given area. It usually describes the
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mobility in terms of the mean number of users crossing the boundary of a given

area, and it is difficult to apply the model to the per-user-based location-area

strategies [70]. In the random walk model, on the other hand, a user randomly

chooses a destination point in the given area, moves with constant speed v (uni-

formly distributed between [vmin, vmax]) on a straight line to this point, and then

pauses for certain time before it again chooses a new destination [71]. Users in

cells have identical movement pattern within and across boundaries. Such cells

can be assigned to a single state in the Markov chain model. By using the concept

of ring in a domain, the complex two-dimensional random walk can be reduced

to a simple one-dimensional one with fewer states (Figure 3.6).

Figure 3.6: State diagram for the 1-D random walk model

Under above assumptions, the probability that the MN moves to the ring i + 1

or i− 1, p+
i and p−i , can be given as follows:

p+
i =

2i+ 1

6i
and p−i =

2i− 1

6i
(3.2)

Given K as the number of rings in the domain, the K×K transition matrix, PK ,

becomes:

0 1 0 0 0 . 0 0 0

1/6 1/3 1/2 0 0 . 0 0 0

0 1/4 1/3 5/12 0 . 0 0 0

0 0 5/18 1/3 7/18 . 0 0 0
...

0 0 0 0 0 . 2(K−1)−1
6(K−1)

1/3 2(K−1)+1
6(K−1)

0 0 0 0 0 . 0 0 1


(3.3)

An element pi,j,K in PK and P n
K is defined as the probability that the MN locat-
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ing at a ring-i cell moves to a ring-j cell in one and n cell boundary crossing,

respectively. Let β(k, n) be the probability that after n movements the distance

between the current and initial position of the MN, defined in terms of number of

rings, is k. Given the initial position is the centre cell, β(k, n) can be defined as:

β(k, n) = P n
0,k where P n

0,k = P0,k × P n−1
0,k (3.4)

Assume that the domain consists of K rings, ring 0 to ring K-1, and the MN is

initially located in the centre cell [72]. The probability of performing the inter-

domain handover, q(K), is equal to the probability that the MN be in the Kth ring

(ring number K-1) and decides to go to a cell located at (K+1)th ring. Therefore:

q(K ) = πk × p+
k (3.5)

where πk is the probability that the MN being located in the Kth ring and is:

πk = Σ∞n=0α(n)β(K,n) (3.6)

α(n) is the probability that the MN performs n handovers between two calls. Let

the cell residence time follow the general distribution with the probability density

function fm(t), Laplace transform f ∗m(s) and with a mean of 1
λm

. Given that the

call arrival to the MN follows the Poisson process with the rate λc, α(n) is [73]:

α(n) =

{
1− 1−f∗m(λc)

φ
n = 0

1
φ

[1− f ∗m(λc)]
2 [f ∗m(λc)]

n−1 n > 0
(3.7)

where φ = λc
λm

is the MN’s Session-to-Mobility Ratio (SMR). Although most of

the studies consider the Exponential distribution for the MN residence time, here,

the Gamma distribution has been chosen. The Gamma distribution is a general

type of distribution which can mimic the attributes of other distributions like

the Exponential and Erlang distributions. Moreover, it has the simple Laplace

transform that makes α(n) calculation easier. Equation 3.8 shows the Laplace
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transform of the Gamma distribution with a variance V and a mean 1
λm

:

f ∗m(s) =

(
λmγ

s+ λmγ

)γ
where γ =

1

V λ2
m

(3.8)

After calculating the probability of performing handover, the next step is to

calculate the MN’s average residence time inside the domain. Assume that N(K)

is the total number of cells in a domain with K rings and is equal to:

N(K) =
K−1∑
k=1

6× k + 1 = 3K(K − 1) + 1 (3.9)

The MN’s residence time in the domain, Y, can be expressed as:

Y = X1 +X2 + · · ·+Xm (3.10)

where m is the number of cells visited by the MN, and Xi is the MN residence

time in each cell with Laplace transform f ∗m(s). The Laplace transform of Y can

be obtained as follows:

f ∗Y (s) = E[e−sY ]

= E[E[e−sY ]|M ]

= E[E[e−s(X1+···+Xm)]|M ]

= E[E[e−s(X1)] . . . E[e−s(Xm)]]

= E[f ∗m(s)M ]

= GM(f ∗m(s)) (by the definition E[zM ] = GM(z))

(3.11)

The Generating function GM(z) of the uniform distribution is given by:

GM(z) =
z

N(K)
× 1− zN(K)

1− z
(3.12)
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Using 3.12, the Laplace transform of Y can be written as:

f ∗Y (s) = GM(f ∗m(s)) =

(
λmγ
s+λmγ

)γ
N(K)

×
1−

(
λmγ
s+λmγ

)γN(K)

1−
(

λmγ
s+λmγ

)γ (3.13)

Finally, the mean value of the MN’s residence time in the domain ,τha, can be

expressed as follows [74]:

τha = −df
∗
Y

ds
|s=0 =

N(K) + 1

2λm
(3.14)

3.3.2 Total Signalling Cost

The signalling overhead and resource reservation latency can be considered as

useful metrics to define QoS in IP-based wireless networks [75]. This section

provides detailed analysis of these metrics, in order to evaluate the performance

of the proposed scheme as compared to the baseline protocol, RSVP-MP. In all

scenarios, the MN is considered as a receiver of the flow, since this is the most

challenging part of the RSVP operation in mobile environments.

The signalling cost is defined as the total cost needed to transmit and process

extra signalling messages required during the handover process. As discussed in

[76], the cost parameter has no unit but can be defined to be proportional to the

delay required to send or process a signalling message. Other measurements for

the cost parameters are possible. For example, the network administration can

assign specific cost values to each operation based on the available bandwidth of

a link, computation resources at a node, and the expenses required to operate a

particular mobility agent.

The total signalling cost (CTotal) comprises of a location update signalling cost,

packet delivery signalling cost and resource reservation signalling cost represented

by Clu, Cpd and Crr, respectively.

CTotal = Clu + Cpd + Crr (3.15)
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Table 3.1: Notation of RSVP-based QoS in access networks

λm MN’s cell crossing rate
λc MN’s session arrival rate
K number of rings in the MAP/GMAP domain
K ′ number of rings in the LMAP domain
q probability of performing the inter-MAP/GMAP handover
(1− q) probability of performing the inner-MAP/GMAP handover
q′/(1− q′) probability of performing the inter/inner-LMAP handover
τha MN’s average residence time in the MAP/GMAP domain
τm′ MN’s average residence time in the LMAP domain
tm MN’s average residence time in each cell
Trf binding update lifetime in the MAP/GMAP/LMAP/HA/CN
η RSVP message processing cost at each node
Trrf RSVP message lifetime
Dx−y Hop-based distance between X and Y
TCx−y transmission cost between nodes x and y (δDx−y + ζδ)
δ unit transmission cost in wired link
ζ weighting factor for the unit transmission cost in wireless link
PCx processing cost of mobility control packet at node X
Bw/wl bandwidth of wired/wireless link (in bits per second)
Lw/wl wired/wireless link propagation delay
qf probability of an unsuccessful message delivery on wireless link
b size of the message in bits
Tw time needed to determine that the message is lost

3.3.2.1 Location Update Cost

The hierarchical architecture of the mobility management scheme in RSVP-MP

lets an MN have two kinds of handover: the local handover and the global. The

former occurs whenever the MN moves between two cells both belonging to the

same MAP (inner-MAP handover), while in the latter the cells belong to different

MAPs (inter-MAP handover). The MAP registration process is the same for both

scenarios, however, extra signalling messages need to be exchanged between the

MN and its HA and CN during the inter-MAP handover. Apart from registration,

the periodic BU and BA are exchanged between the peers in order to extend the

binding lifetime. This cost is represented by Cbr. Given that Cg and Cl are

the signalling cost of the global and local handovers, the location update cost of
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RSVP-MP can be given as:

Clu = λm(qCg + (1 − q)Cl) + Cbr (3.16)

Since the link layer, authentication and address configuration delays are the same

in all scenarios, they are omitted in the analysis. Cg, Cl and Cbr can be derived

as follows:

Cl = 2TCmn−map + PCmap

Cg = Cl + 2TCmn−ha + PCha + 2TCmn−cn + PCcn

Cbr = 2b tm
Trf
cTCmn−map + 2bτha

Trf
c(TCmn−ha + TCmn−cn)

(3.17)

According to the proposed mobility management scheme, the MN can perform

three kinds of handover: an inner-LMAP handover, inter-LMAP handover and

inter-GMAP handover. The inner-LMAP handover occurs when the MN moves

between two cells both belonging to the same LMAP in which the MN’s new

location needs to be updated. However, if the new cell belongs to a different

LMAP, extra messages are sent to the GMAP by the new LMAP informing it

about the MN’s new sub-domain address. The process is called the inter-LMAP

handover. It is possible that the new and old LMAPs belong to different GMAPs

resulting in the MN’s inter-GMAP handover. In this case, the registration process

inside the GMAP is the same as the inter-LMAP, however, additional registration

requests are sent by the serving LMAP to the MN’s HA and CN. Considering all

these kinds of handover, the location update cost in the proposed scheme can be

expressed as follows:

Clu = λm

[
qCinterGM + (1− q)

(
q ′CinterLM + (1 − q ′)CinnerLM

)]
+ Cbr (3.18)
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where CinterGM , CinterLM and CinnerLM are the cost of the inter-GMAP, inter-

LMAP and inner-LMAP handovers:

CinnerLM = 2TCmn−lmap + PClmap

CinterLM = CinnerLM + 2TClmap−gmap + PClmap + PCgmap

CinterGM = CinterLM + 2TClmap−ha + PCha + 2TClmap−cn + PCcn

Cbr = 2b tm
Trf
cTCmn−lmap + 2bτm

′

Trf
cTClmap−gmap + 2bτha

Trf
c(TClmap−ha + TClm−cn)

(3.19)

3.3.2.2 Resource Reservation Cost

In the RSVP-MP operation, MAP acts as an RSVP proxy dividing an end-to-end

reservation between the MN and CN into two parts. The first part is between the

MAP and CN based on the MN’s RCoA, while the second is between the MAP

and MN depending on the MN’s LCoA. Consequently, any changes in the MN’s

LCoA or RCoA, as a result of the inner-MAP or inter-MAP handover, makes

the previous reservation invalid. To fulfil the QoS requirement after handover, a

new reservation should be placed along a new path immediately. Moreover, due

to the soft-sate nature of RSVP, periodic messages, i.e., Path and Resv, need to

be exchanged between the peers with the cost of Rrf. Therefore, the resource

reservation cost in RSVP-MP becomes:

Crr = λm

(
qRg + (1 − q)Rl

)
+Rrf (3.20)

where Rl and Rg are the cost of reservation re-establishment due to the inner-

MAP and inter-MAP handovers, respectively. Assume that nodes are RSVP

aware, the RSVP signalling cost, including the transmission cost and processing

cost in all the nodes along the path, can be given as follows:

Rl = 2TCmap−mn + 2Dmap−mn × η

Rg = Rl + 2TCmap−cn + 2Dmap−cn × η

Rrf = 2b τha
Trrf
cTCmap−cn + 2b tm

Trrf
cTCmap−mn

(3.21)
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In the proposed scheme, an end-to-end RSVP session between the CN and MN is

divided into three parts. The first part is between the CN and GMAP, based on

the MN’s GMAP domain address. The next is between the GMAP and LMAP,

based on the MN’s LMAP address. The last part is between the LMAP and MN

depending on the MN’s current point of attachment in the LMAP domain. Given

Rrf as the RSVP refresh overhead, the resource reservation cost of the proposed

scheme becomes:

Crr = λm

(
qRinterGM + (1− q)

[
q ′RinterLM + (1 − q ′)RinnerLM

])
+Rrf (3.22)

where RinterGM , RinterLM , and RinnerLM are the cost of reservation establishment

due to the inter-GMAP, inter-LMAP, and inner-LMAP handovers, respectively.

Note that the resource reservation cost comprises of the transmission and pro-

cessing costs of the RSVP Path and Resv messages in all the nodes between

two end-points of the reservation session. This is the same for all the reserva-

tion costs introduced in this section but RinterLM . The reason is that when the

MN’s changes its LMAP domain, its resource reservation request is mapped to

the RSVP tunnel, established in advance between the GMAP and LMAP. There-

fore, the reservation cost is diminished to the transmission of the one RSVP

message, sent by the GMAP to inform a new LMAP about the MN’s reservation

requirement. The costs can be expressed as follows:

RinnerLM = 2TClmap−mn + 2ηDlmap−mn

RinterLM = RinnerLM + TClmap−gmap + ηDlmap−gmap

RinterGM = RinterLM + 2TCgmap−cn + 2ηDgmap−cn

Rrf = 2b τha
Trrf
cTCgmap−cn + 2b τm

′

Trrf ′
cTClmap−gmap

N ′ × w
+ 2b tm

Trrf
cTClmap−mn

(3.23)

where N ′ is the number of access routers in a LMAP domain, each serving w

mobile nodes.
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3.3.2.3 Packet Delivery Cost

Assume that Route Optimization is enabled, the first packet in a session goes to

the HA, while the rest are directed to the MAP who intercepts and tunnels them

to the MN’s LCoA. The packet delivery cost of RSVP-MP can be given as:

CPD = Cha + Cmap + CT (3.24)

where CT is the packet transmission cost between the CN and MN. Cha and Cmap

are the packet processing cost at the HA and MAP, respectively. Given that Θha is

a constant value for a packet processing cost at the HA, Cha can be expressed as:

Cha = λc ×Θha (3.25)

The packet processing cost at the MAP consists of two parts: a cost of search-

ing the binding table to find the MN’s LCoA, as well as a cost of routing the

encapsulated packet to the MN. The former is proportional to the size of the

mapping table. The size of binding-table is proportional to the number of MNs

located in the MAP domain. Using the Binary search, the average routing cost

becomes proportional to the logarithm of the number of access routers in the

MAP domain. Assuming that there are N access routers in the MAP domain,

each serving w MNs, Cmap becomes:

Cmap = λcE(S)(αN × w + β log(N)) (3.26)

where α and β are weighting factors and E(S) is the average number of packets

in each session. The packet transmission cost, CT , can be found as follows:

Ct = λc(E(S)− 1)TCcn−mn + λc(TCcn−ha + TCha−mn) (3.27)

In the proposed scheme, Cha and Ct are the same as the ones calculated for RSVP-

MP in Equations 3.25 and 3.27. However, the packet processing cost inside the

GMAP domain is higher than the one in RSVP-MP. This is due to having an

extra processing cost, including the table look-up and routing costs, in the LMAP

for each packet. Assume that the GMAP has N access routers, and the LMAP
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has N′, Cgm can be expressed as:

Cgm = λcE(s)[(αNw + β log(N)) + (αN ′w + β log(N ′))] (3.28)

3.3.3 Resource Re-establishment Latency

The resource reservation latency tRL is defined as a total time taken to perform a

handover, as well as re-establish an end-to-end resource reservation along a new

path in the MAP/GMAP domain. The handover latency comprises of the delays

imposed by the layer 2 handover tL2, new IP address configuration tAC , and bind-

ing update process. In RSVP-MP, when the MAP receives a BU, it sends a BA,

and afterwards a new RSVP Path message towards the MN. The reservation on

the new route is completed when the MAP receives the Resv message initiated by

the MN. Therefore, the reservation latency in RSVP-MP can be given as follows:

trl = tl2 + tac + [m(bu) +max(m(ba),m(path))+m(resv)]mn−map (3.29)

where m(x) is the time taken to send a message x between two nodes, including

the transmission time and propagation time, and is equal to [77]:

m =
b

bw/wl
+ lw/wl

mwired = dx−y ×m

mwireless = m + (tw + m)× qf
1− qf

(3.30)

Consequently, the message transmission time between a node X and node Y can

be written as time taken in the wired part, as well as the wireless part of the

route. While the former is proportional to the distance between nodes X and Y,

based on the hop distance unit (denoted by the DX−Y ), the latter depends on the

probability of the wireless link failure (qf ). Due to the unpredicted nature of the

wireless link, the time of sending the message on the wireless link composes of the

one successful transmission denoted by M , and (Tw +M)× qf
1−qf

times unsuccess-

ful packet transmissions [77]. For the proposed scheme, based on the probability

of performing different types of handover, the resource re-establishment latency
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can be given as follows:

trl = tl2 + tac + q′tinterLM + (1− q′)tinnerLM (3.31)

where tinnerLM and tinterLM are the reservation latency during the inner-LMAP

and inter-LMAP handover, respectively. For the inner-LMAP handover, tinnerLM

can be obtained as in Equation 3.29 except that here the distance is limited

between the MN and serving LMAP.

During the inter-LMAP handover, when the LMAP receives the LBU, it first

sends the registration request to the GMAP. Upon receiving the message, the

GMAP binds the reservation to the pre-configured RSVP tunnel. Then, by send-

ing the Session Trigger object piggy-backed in the RSVP message, it asks LMAP

to place the reservation for the MN. tinterLM and tinnerLM can be given as:

tinnerLM = [M(LBU) +max(M(LBA),M(Path)) +M(Resv)]mn−lmap

tinterLM = tinnerLM + [M(BU) +max(M(BA),M(Path))]lmap−gmap
(3.32)

Finally, for inter-GMAP handover the resource reservation latency can be ex-

pressed as the delay of an inter-LMAP handover plus the time taken to re-

establish the resource reservation between the new GMAP and the CN, assuming

there is no aggregated reservation between two end-points (serving GMAP and

CN). The delay tinterGM can be derived as follows:

tinterGM = tinterLM + [M(BU) +max(M(BA),m(Path)) +m(Resv)]gmap−CN

(3.33)
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3.4 Simulation Model

This section describes the network-level simulation scenario, and the metrics used

to evaluate the performance of the proposed scheme as compared to the baseline

protocol, RSVP-MP. The simulation scenario is set up on NS-2.33 patched with

the RSVP and HMIPv6 extensions [78, 79], as well as the implementation of the

proposed scheme and baseline protocol. Route Optimization is also implemented

to avoid triangular routing problem. The queuing mechanism is based on the

Weighted Fair Queuing (WFQ) discipline [80]. The upper bound on the number

of hops through which the packet can pass varies within the certain range defined

by the Time To Live (TTL) field in IP header [81]. Finally, the proposed model

assumes a well behaved MN movement pattern, in which the MN moves linearly

from one access router to another at a constant speed of 1 meter/s [82]. The

simulation topology and its parameters are depicted in Figure 3.7, and Table

3.2. Link characteristics, namely the bandwidth (Megabits/s) and delay (mil-

liseconds), are shown beside each link. The topology used here shows a typical

Mobile IP and its extensions deployment configuration, which have been used

extensively by various research in recent years [50, 82–84].

Table 3.2: Values of parameters used in the simulation

Parameter Value
One hop wired link delay 2 ms

Bandwidth and Delay between GMAP-HA 10 Mbps, 18 ms
Bandwidth and Delay between GMAP-LMAP 1 Mbps, 10 ms

Bandwidth and Delay between LMAP-AR 1 Mbps, 2 ms
MN speed 1 meter/s

Frequency channel 2.437 GHz
Mobility Type Random Walk

Propagation Model Free Space

The simulation scenario is made up of three MNs, three CNs, a HA, a GMAP,

four LMAPs and towel Access Routers (ARs). It is of interest to note that the

GMAP and LMAPs are considered as a MAP and regular routing nodes in the
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Figure 3.7: Simulation topology

RSVP-MP scenario, respectively. The topology used here reflects the set-up of

an open space local environment where the MN is located, and connected to its

home network via anonymous networks. It is also important to point out that the

location of LMAPs are intentionally selected to be close to the MNs. This lets us

to analysis the performance of the proposed scheme in the worse case scenario,

wherein the LMAP domain is small. This lead to more numbers of handover to

be between LMAP domains. The link between the GMAP and a dummy node

N1 models the Internet backbone connection, and simulates the distance home

network in the scenario (macro mobility). Below the GMAP is considered as a

regional network (micro mobility). The GMAP is connected to four LMAP nodes

with 10 ms, 1 Mbps links. These links make bottlenecks for flows. Each LMAP

is connected to three ARs, responsible for serving MNs entering their domain.

All ARs are using 802.11b in their MAC layer, and their effective coverage area

is set to 40 meters in radius. The distance between each two ARs is set to 70

meters with the free space environment in between. The assumption is made to
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reduce the complexity of the result analysis. The MN reserves the resources in

the network at the beginning of the simulation, before receiving traffic from the

CN1. The NS-2 traffic source attached to the CN1 generates the constant bit

rate UDP stream with a packet size of 500 bytes, and a rate of 450 Kbps which

is the maximum average sending rate of Skype Video [85].

The background traffic in the network is emulated by having two best-effort

traffic streams between CNs (CN2 and CN3) and two other MNs (MN2 and

MN3). All three MNs are moving with the same speed toward the same direction.

Each of these flows consist of the constant bit rate UDP traffic with a packet

size of 500 bytes, and the rates of 150Kbps and 400Kbps used to simulate the

middle and highly-loaded networks, respectively. Considering the MN1 and the

background traffic, it can be noticed that the links inside the regional network

are approximately 75% and 125% loaded representing the middle-loaded and

highly-loaded networks. All three MNs belong to the same HA and move at

the same average speed. The layer-2 handover latency and address configuration

latency are set to 20 ms and 100 ms, respectively. Simulation is run for 800

seconds. During this time all three MNs perform twelve handovers inside the

GMAP domain.

3.5 Performance Investigations

This section evaluates the performance of the proposed scheme by means of the

analytical framework and simulation scenario, introduced earlier in Section 3.3

and 3.4 of this chapter. In mobile access networks, QoS may be defined by

signalling overhead, resource re-establishment latency, packet loss, and number

of packets treated as a best-effort [86–88]. Analysis of these metrics is very useful

to evaluate the performance of the proposed scheme in mobile networks.

3.5.1 Analytical Metrics and Results

This section presents the numerical results of the comparison between the pro-

posed scheme and RSVP-MP, with regard to quantitative aspects such as a sig-

nalling overhead and resource re-establishment latency. Most of the parameters
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used here are the ones used in the previous work [75, 86, 89] and are as follows:

η = 4, α = 0.2, β = 0.8, θha = 20, K = 5, K ′ = 3, Dlmap−mn = 2, Dlmap−gmap =

5, Dmn−gmap = 7, Dmn−cn/ha = 16, Dcn−ha = 6 and ζ = 5. Similar to the sim-

ulation scenario, the LMAP location is considered to be very close to the MN

(Dlmap−mn = 2), making it possible to analysis the performance of the scheme

in the worse case situation (having high number of inter-LMAP handover). The

topology is consist of 61 cells (ARs), four LMAPs and one GMAPs.

The session arrival rate λc is set to 0.1, with the Exponential distribution. The

number of packets per session E(S) is set to 10. The binding lifetime is 20 minutes.

The RSVP tunnel refresh interval is considered to be three times more than the

default value. The average cell residence time is 3 seconds. The BU processing

cost in different nodes are defined as follows: PClmap = 10, PCmap/gmap = 12,

PCha = 24 and PCcn = 4. For demonstration purpose, γ is set to 1, resulting in

the Exponential distribution for the MN’s cell residence time with a mean and

variance of 1
λm

and 1
λ2m

[90].

Total Cost Comparison

The total signalling cost induced by the mobility management, resource reserva-

tion and packet delivery, based on Equation 3.15, is depicted in Figure 3.8. The

RSVP refresh overhead between the GMAP/MAP and CN is the same for both

protocols and does not have an effect on the signalling load inside the domain,

therefore, it is not considered in the results. As shown in the figure, for the small

number of MNs the signalling cost of both protocols are close. However, as the

number of MNs rises the noticeable difference grows, indicating the superiority

of the proposed scheme by having up to 17% less signalling cost as compared to

RSVP-MP. The less overhead comes from localising the MN’s mobility and reser-

vation managements inside the LMAP domain resulting in a significant reduce

in the distance travelled by messages. Moreover, having a pre-configured RSVP

tunnel shared between all MNs inside a LMAP domain can reduce the number of

RSVP messages required to establish end-to-end reservations inside the GMAP

domain.

Although the proposed scheme can achieve total cost reduction, by having less
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Figure 3.8: Total signalling cost as a function of number of MNs

mobility management and resource reservation signalling costs as compared to

the ones in the baseline, it has a higher cost per packet delivery. Figure 3.9 shows

the packet delivery cost as a function of average packet arrival rate (packet per

second) for one MN. The results are obtained from Equation 5.11. As expected,

the packet delivery cost increases linearly as the number of arrival packets in

unit time increases. The proposed scheme higher cost, as shown in the figure,

comes from having an additional mobility agent along the path, due to the two

tier architecture of the propose scheme. After being processed by the GMAP, the

packets are then tunnelled to the LMAP where the same process but in a smaller

scale, finding the current location of the MN in the binding table (table lookup

cost) and routing of the packet towards a serving access router (routing cost),

should be conducted. This results in an increase in the packet delivery of the new

scheme by an average of 8%. To mitigate this impact, it is possible to minimise

the lookup latency in the binding table using efficient search algorithms.

Impact of SMR on Signalling Cost

The impact of the SMR on the location update and resource reservation signalling

costs inside the MAP/GMAP domain, is shown in Figure 3.10. The small value
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Figure 3.9: Packet delivery cost as a function of packet arrival rate

of the SMR indicates that the MN’s mobility rate is higher than its session ar-

rival rate. Consequently, the MN changes its point of attachment more frequently,

resulting in the high signalling cost caused by the mobility update and resource re-

establishment after each handover. On the other hand, the large value of the SMR

implies the low mobility rate, leading to an increase in the MN’s cell residence

time. Therefore, less handover is performed, and less signalling messages are ex-

changed. As can be seen from Figure 3.10(a), the proposed scheme signalling cost

is considerably lower than the one in RSVP-MP. However, the cost rises abruptly

when the SMR value passes the point 1.4, making the proposed scheme signalling

cost significantly higher. The reason is that as the SMR goes up, due to the low

mobility rate, the MN’s cell residence time and intuitively the MN’s LMAP resi-

dence time increase. At SMR=1.4, the MN’s residence time in the LMAP domain

increases so much so that an extra cost is imposed by the RSVP tunnel refreshing

process, resulting in a sharp rise in the signalling cost. However, the impact can

be mitigated by having more number of MNs located in the LMAP domain.

Figure 3.10(b) shows the impact of the SMR on the signalling cost for the large

number of MNs, 20. As shown in the figure, there is a steady reduction on the

proposed scheme signalling cost over all values of the SMR. Similar to Figure
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(a) One MN (b) 20 MNs

Figure 3.10: Signalling cost as a function of SMR

3.10(a) when the MNs’ residence time in the LMAP increases (SMR ≥ 1.4), an

extra RSVP tunnel refresh overhead is added to the cost. Nevertheless, being in-

dependent of the number of MNs alleviates its burden on the total cost, making

its impact insignificant as compared to the large amount of overhead reduction

accomplished.

The impact of an increase in the number of MNs can be seen more clearly in Figure

3.11 wherein the ratio of the proposed scheme signalling cost C to the RSVP-MP

signalling cost C ′′, is presented. The RSVP tunnel refresh cost imposes significant

overhead on the new scheme. However, having as less as five MNs who are in

the same LMAP domain sharing an RSVP tunnel can alleviate the impact of this

cost, keeping the ratio below one. As shown in Figure 3.11(b), the amount of

improvement is proportional to the number of MNs in the LMAP domain. The

higher the number of MNs, the better the gain of the proposed scheme.

The breakdown of the new scheme total signalling cost, including location update

and resource re-establishment costs, as a function of SMR on a larger scale, is

shown in Figure 3.12(a) and (b). While the former depicts the cost of each, the

latter presents the ratio of each cost to its correspondent in the baseline protocol.

The number of MNs is assumed to be 20. As seen in Figure 3.12(a) there is a

rapid increase at SMR=4 in the new scheme mobility management cost, making
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(a) 1 MN (b) More than one MN

Figure 3.11: Signalling cost ratio as a function of SMR

a direct impact on the total cost. This is caused by an extra signalling messages

sent to refresh the binding cash in the MN’s home agent and CNs, which causes

a significant increase in the total cost of both protocols.

The more detailed behaviour of each cost can be seen in Figure 3.12(b). While the

cost ratio of location update decreases almost smoothly (except for an increase

caused by the refresh signalling messages), the cost ratio of resource reservation

suffers from periodic changes, imposed by the RSVP tunnel refresh cost. Al-

though the cost can be mitigated by selecting a longer refresh period time, the

global binding refresh signalling cost imposed at SMR=4 is much higher than the

local RSVP-tunnel refresh signalling cost, and therefore, making it a dominant

factor in the total signalling cost ratio. On the other hand, although both pro-

tocols suffer from an extra cost of sending the global binding refresh messages,

the effect is less significant for the proposed scheme. The reason the new scheme

has a lower refresh cost is that, unlike RSVP-MP, the origin of the refresh mas-

sages is the serving LMAP, and not the MN. This causes significant reduction in

the transmission cost, guaranteeing the superiority of the new scheme in spite of

larger reservation signalling cost.

72



An Efficient RSVP-Based QoS in Access Networks

(a) Individual Cost (b) Cost Ratio

Figure 3.12: Signalling cost breakdown as a function of SMR

Impact of LMAP Size on Total Cost

The impact of the LMAP domain size, defined by the number of rings in a domain,

on the total cost and its components are depicted in Figure 3.13(a)–(d). The

number of MNs is set to one. As shown by the figure, increasing the number of

rings results in a decrease of the location update and resource reservation costs,

but an increase in the packet delivery cost. The reason they decrease is that

according to Equation 3.9, the domain size is proportional to the number of rings

it has. By increasing the number of rings, an MN located in a bigger LMAP

domain is less likely to perform the inter-LMAP handover. Consequently, the

more number of handovers can be managed locally by the serving LMAP, with

no need of sending the mobility management and reservation signalling messages

up to the GMAP. This results in a decrease of the location update and reservation

overheads. However, this is not the case for the packet delivery cost. In general,

as explained in Section 3.3.2.3, the number of cells/access routers is proportional

to the number of rings in a domain. When the domain size grows, the number of

access routers in the LMAP domain increases. Consequently, the size of routing

tables increases, resulting in a higher routing cost for each packet.
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(a) Location Update Cost (b) Resource Reservation Cost

(c) Packet Delivery Cost (d) Total Cost

Figure 3.13: Impact of LMAP size on the costs
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Impact of q′ on Signalling Cost

Under the design assumptions, increasing the domain size leads to the more lo-

calised signalling management in the LMAP domain, resulting in a noticeable

reduction of signalling overhead. Nevertheless, there might be exceptional situ-

ations in which the probability of performing inter-LMAP handover q′ becomes

higher than the inner-LMAP one, 1 − q′. Since any increase in q′ has a direct

impact on the signalling overhead, it is of interest to study the effect of its change

on the total signalling cost. To that end, Figure 3.14 shows the comparison of

the RSVP-MP total cost and the new scheme with different values for q′, as a

function of cell residence time. Number of MNs is set to 20.

Figure 3.14: Impact of q′ on signalling cost as a function of cell residence time

As shown in the figure, the higher the probability of performing inter-LMAP han-

dover, the lower the amount of reduction of the new scheme signalling overhead.

However, it is interesting to see that even when the high number of handovers is

assumed to be the inter-LMAP ones, the new scheme still outperforms the base-

line protocol. The inter-LMAP handover in the proposed scheme is the same as

the inner-MAP handover in RSVP-MP, but with an extra cost in LMAP for each

handover. When q′ is very high (e.g, q′ = 0.8), the cost of location update in the
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new scheme exceeds the one in RSVP-MP. On the other hand, while in RSVP-MP

an end-to-end RSVP signalling propagation after each handover seems inevitable,

having a preconfigured RSVP tunnel in some part of an end-to-end path results

in a noticeable reduction in the reservation signalling cost of the new scheme.

Interestingly, not only does this reduction cancel out the negative effect of the

extra location update overhead, but it causes an average of 10% improvement in

the total cost.

Resource Re-establishment Latency

One of the important metrics to assess the performance of the new scheme is

the resource re-establishment latency, occurring after each handover. In order

to compute this time, defined as the time the MN starts its handover till a new

end-to-end RSVP session is established between the MN and MAP/GMAP, the

following parameters are defined: The wired and wireless link bandwidth are set

to 1Mbps and 2Mbps. The wireless link failure probability qf is 0.2. The wired

link propagation delay Lw is set to 2 milliseconds (ms). The L2 handover delay

and the address configuration delay are set to 20ms and 100ms, respectively [82].

The mobility and RSVP control message size are 96 bytes and 140 bytes. The

values assigned are in compliance with the ones used in the simulation scenario,

making it possible to have a fair comparison of the result obtained here, and the

one obtained by means of simulation, discussed in the next section.

Figure 3.15 shows the impact of the wireless link propagation delay on the re-

source re-establishment latency, for the different values of q′. As expected, the

latency of both protocols increase linearly as the the wireless link delay increases.

Exploiting the pre-configured RSVP sessions and localised signalling manage-

ment, the reservation on a new path can be placed by an average of 14% faster in

the proposed scheme, when q′ = 0.3, as compared to RSVP-MP. However, as the

more inter-LMAP handover occurs, the gain obtained by the new scheme falls

off, reaching up to an average of 8% for q′ = 0.8. The reason the gain drops is

that each inter-LMP handover imposes an extra delay, caused by the time taken

to map a new request to an RSVP-tunnel between the GMAP and a new serving

LMAP.
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Figure 3.15: RSVp-based resource re-establishment latency as a function of wire-
less link delay

Assume that almost one-third of all MN’s handovers are the inter-LMAP han-

dover, i.e., q′ = 0.3, for the small values of wireless link propagation delay (less

than 10ms) the proposed scheme reduces the resource re-establishment latency

by up to 21%. This result will be validated by means of simulation in the next

section.

3.5.2 Simulation Metrics and Results

The comparison between the performance of the proposed scheme and RSVP-

MP, by means of the network-level simulation scenario, is conducted in this sec-

tion. The metrics assessed include: the average resource reservation latency, the

average number of dropped packets per handover, and the average number of

best-effort packets per handover. The evaluation is based on the simulation of

a scenario depicted in Figure 3.7, and assumptions made in Section 3.4. The

simulation was run for 100 times and the average values are used in the graphs.
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Resource Reservation Latency

Figure 3.16 shows the average resource reservation latency in the proposed scheme

and RSVP-MP, as a function of traffic load in the network.

Figure 3.16: Average resource reservation latency after handover(simulation-
based)

The results obtained show that the proposed scheme reduces the resource reser-

vation latency by an average of 26% and 31%, in the middle-loaded and highly-

loaded networks, as compared to the ones in RSVP-MP. The significant reduction

in the reservation set-up time in the proposed scheme comes from having the

pre-configured RSVP tunnel between the GMAP and LMAP. Therefore, an end-

to-end reservation re-establishment after each handover is just confined to the

last part of the network, between the MN and a new serving LMAP. Contrary to

the proposed scheme, in RSVP-MP the RSVP signalling messages should travel

between the MN and MAP after each handover, even if there is a common part

between old and new paths.

Considering the fact that one-third of the handovers are the inter-LMAP one, it

is of interest to note that the 26% reduction in the middle-loaded network is very

close to the 21% obtained by means of analytical modelling, for the small values
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of wireless link propagation delay (See Section 3.5.1).

Number of Best-Effort Packets

At the time of handover, if the intermediate nodes on a new path have not been

informed about a flow’s requirements, the packets cannot receive better than

best-effort delivery. This results in an interruption of the acceptable level of QoS

required by the flow, and jeopardising its application-level performance. Such

QoS interruption must be minimised. A good metric for this performance is the

number of packets that may potentially get served with the default QoS at the

time of handover [87]. To avoid any kind of violation in QoS, the number of such

packets should be kept minimised.

Figure 3.17 shows an average number of best-effort packets, defined as the ones

transmitted by the GMAP/MAP after being informed about the MN’s new loca-

tion till an end-to-end reservation is placed along a new path. As shown in the

Figure 3.17: Average number of best-effort packet sent after handover

figure, the proposed scheme can achieve an average of 81% and 89% reduction in

the number of packets treated as a best-effort, in the middle-loaded and highly-

loaded networks, as compared to the ones in RSVP-MP. This is due to the fact
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that when the LMAP receives a LBU from the MN, it sends a new Path mes-

sage, straightforward after sending the LBA, towards the MN. Upon receiving the

Path, a Resv message is sent by the MN destined to the LMAP. The end-to-end

reservation in the regional network is completed when the LMAP receives the

Resv message. However, in RSVP-MP this is a duty of the MAP to trigger the

reservation signalling by sending the Path message.

Considering the longer distance between the MAP and MN, as compared to the

distance between the LMAP and MN in the new scheme, completing the end-

to-end reservation takes longer time in RSVP-MP, and therefore, results in a

significant increase in the number of best-effort packets.

Number of Dropped Packets

The average number of dropped packets during a handover is defined as the

number of packets dropped from the time that the MN loses its connectivity with

an old access router till the time the resource reservation is established along a

new path. Therefore, the total number of dropped packets includes the packets

dropped during the handover in addition to the ones dropped by the nodes along

the path, due to congestion. Figure 3.18 shows the average number of dropped

packets during a handover in both scenarios. The result shows that the proposed

scheme can reduce the number of dropped packets by an average of 12% and

43% as compared to RSVP-MP in the middle-loaded and highly-loaded network,

respectively. The better achievement comes from the fact that in the proposed

scheme most of the MN’s handovers are the inner-LMAP type where the MN

only needs to register its new LCoA with a serving LMAP. Since the LMAPs

are considerably closer to the MN as compared to the MAP in RSVP-MP, the

handover delay is reduced in the proposed scheme, resulting in a less number of

dropped packets.

The results obtained from Figure 3.18 also shows that the difference between

the number of dropped packets of the proposed scheme and RSVP-MP increases

as the load in the network increases, implying that the proposed scheme is less

load-sensitive than RSVP-MP.
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Figure 3.18: Average number of dropped packet during handover

3.6 Summary

In an effort to support an efficient QoS-enabled mobility with the minimum

changes in existing protocols, the chapter proposed a new scheme to tackle RSVP

problems in mobile networks, the resource re-establishment latency and signalling

overhead. The comprehensive analytical framework was developed to analyse the

performance of the proposed scheme as compared to RSVP-MP. Through a de-

veloped analytical framework, the performance of the new scheme is investigated

thoroughly, with the focus on the various figures of merit such as resource re-

establishment latency, network-layer signalling cost and effect of the number of

mobile nodes and their average cell residence time on it, are used to measure the

efficiency of the new scheme. Numerical results obtained showed an average of

17% and 14% improvements of the signalling cost and resource re-establishment

latency in the proposed scheme over the baseline protocol.

A part from the analytical framework, the network-level simulation scenario was

implemented in NS-2, used to evaluate the performance of the new scheme with

regard to the resource re-establishment latency. The obtained results indicated

that the proposed scheme can reduce the resource re-establishment latency by
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an average of 26% and 31% as compared to RSVP-MP in the middle-loaded and

highly-loaded networks, respectively. The value obtained for the middle-loaded

network was very close to the 21% reduction achieved through the analytical

model. Although the main purpose of the simulation was to validate the analytical

result, it was used to evaluate other QoS performance metrics, such as the number

of packets treated as a best-effort and number of dropped packets. Exploiting the

fast reservation set-up in the proposed scheme causes an average of 81% and 89%

reductions in the number of packets treated as a best-effort in the middle and

highly-loaded networks. With regard to the number of dropped packets during

handover, the proposed scheme can have an average of 12% and 43% reductions

as compared to RSVP-MP in the middle and highly-loaded network, respectively.

The results obtained by means of analytical model and network-level simulation

clearly indicate the superiority of the proposed scheme to the RSVP-MP oper-

ation in mobile networks, improving the efficiency of the RSVP operation by

reducing the signalling overhead, resource re-establishment latency, number of

dropped packets, and number of packets treated as a best-effort.
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Chapter 4

An Efficient NSIS-Based QoS in

Access Networks

4.1 Introduction

MMoving towards new generations of mobile networks, multimedia services have

become the most significant applications among users. A new generation of

these services is considered as a solution to create new revenue streams for the

subscriber-saturated mobile networks. What is certain is that success cannot be

achieved unless the quality of service meets the users’ expectations.

In an effort to support resource reservation signalling, IETF introduced the NSIS

suite as a generic framework. NSIS can support both the sender- and receiver-

oriented reservation models. However, in both scenarios only a flow sender can

trigger the NSLP signalling in a downstream direction. Figure 4.1 shows the

signalling exchange of each mode.

If an MN, as the sender of the flow, moves to a new cell, it can easily initiate

signalling messages downstream towards a CN. However, having the MN as the

receiver raises a concern. The reason it does is that the receiver cannot trigger

the NSLP messages in the upstream direction. The use of an external mechanism

seems inevitable to inform the CN about the MN’s handover, and the necessity

of having new signalling states along a new path. While the NSIS suffers from

the long state set-up latency and signalling overhead, the lack of an internal
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Figure 4.1: NSIS Signalling Exchange

mechanism to detect the MN’s handover causes an extra burden on its operation

in mobile networks.

In this chapter, the applicability of using the proposed scheme described in Chap-

ter 3, to tackle the NSIS problems in mobile environments is discussed and,

evaluated. The results obtained, by means of analytical model, show that the

scheme can improve the efficiency of NSIS not only by reducing the amount of

signalling overhead caused after each handover, but by expediting the resource

re-establishment on a new path. Since the NSIS protocol is not supported in

NS-2, the simulation experience is not conducted in this chapter.

The remainder of this chapter is organised as follows: In Section 4.2 the archi-

tecture of the proposed scheme is studied in detail. Section 4.3 elaborates the

signalling cost and resource re-establishment latency. Section 4.4 discusses the

numerical results obtained by means of the analytical model. Finally, Section 4.5

brings closure to this chapter.
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4.2 System Model

This section describes the architecture and operation of the proposed scheme

from two different aspects: the mobility management and resource reservation.

Mobility Management

The mobility protocol selected is based on the network-based localised mobil-

ity management, PMIPv6. The proposed scheme can be used in any localised-

mobility management protocols. While the applicability of it in HMIPv6 envi-

ronment was analysed in Chapter 3, in this chapter the proposed scheme effect in

PMIPv6 environment is investigated. As explained in detail in Section 2.3.2, the

main advantage of PMIP to HMIP (host-based localised mobility management

protocol) is that an MN does not participate in IP mobility procedures. That

is, network operators can provide mobility support without requiring additional

software and complex security configuration in the mobile users. Therefore, the

deployment of network-based mobility solutions is greatly facilitated.

PMIP architecture consists of LMA, usually located at the gateway of the net-

work, and the MAGs. Using the the proposed scheme in a PMIPv6 environment,

the one layer LMA architecture is extended to two: G-LMA and L-LMA. The

G-LMA is located at the gateway of the regional network while the L-LMAs

are located between the G-LMA and MNs, dividing the regional network to M

sub-regional domains (M is the number of L-LMAs). Each MAG in the G-LMA

domain associates with at least one L-LMA.

When the MN attaches to an access link, the MAG detects its movement, it then

acquires the MN’s identity, and determines whether the MN is authorised to use

the service. For the authorised MN, the MAG sends a PBU to a serving L-LMA.

When the L-LMA receives the message, it checks its binding cache table of any

records about the MN’s old MAG. If there is a record, it accepts the PBU and

sends a PBA, including the MN’s Home Network Prefix (HNP), to the MAG.

The scenario is called inner L-LMA handover in which the MN’s current location

is only updated in the L-LMA, making all MN’s movements inside the L-LMA

domain transparent to the G-LMA.

However, if there are no records of the MN’s previous location, the L-LMA creates
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a binding cache entry for the MN and sends the registration request to the G-

LMA, asking for MN’s HNP. The G-LMA accepts the registration by sending a

PBA and keeps the L-LMA address for next destination for any packets destined

to the MN. When the L-LMA receives the PBA including the MN’s HNP, it

forwards it to the MAG. Upon receipt of the PBA, the router advertisement is

sent by the MAG to the MN advertising the MN’s HNP. At this stage, a bi-

directional tunnel is established between the G-LMA and L-LMA , as well as the

L-LMA and the MAG in order to convey messages to/from the MN.

Resource Reservation

Based on the proposed mobility architecture, the route between the G-LMA and

MN is divided into two parts: from G-LMA to L-LMA and from L-LMA to

MN. The former is the common part for all MNs located in the same L-LMA

domain. Therefore, instead of having an individual NSIS session for each MN, a

pre-configured NSIS session is established between the G-LMA and each L-LMA

as a tunnel entry and exit points. When the G-LMA receives the reservation

request for the MN, it maps the request to the NSIS tunnel between itself and

the MN’s serving L-LMA. Then, it passes an NSLP Query message containing the

flow information to the L-LMA, asking it to reserve the resources in its domain

for this MN. When the L-LMA receives this information, it works as a proxy and

initiates a new NSIS session destined to the MN’s current location.

To avoid an extra overhead, the mechanism used to pre-allocate resources for each

tunnel Ct is based on the static threshold-based method in which the maximum

amount of resources authorised by administration polices is assigned, Ct = ψmax.

However, one can use the dynamic threshold-based method where the constant

value is assigned to the tunnel and then based on the monitoring and predicting

of the future demand the extra chunk of resources B can be added or released

from the tunnel. Therefore,

ψmin ≤ Ct = ψmin
+
−Bi ≤ ψmax, i = 0, 1, ...

The resources assigned to these NSIS tunnels can be used by the best-effort

traffic if there is no demand for them, and therefore, preventing the wastage of

the resource in the NSIS tunnels.
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4.3 Total Cost Function

The analytical model used to derive the equations is the one introduced in Section

3.3. It is assumed that in the PMIPv6, the LMA domain consists of K rings (ring

0 to ring K-1), and the MN is initially located in the centre cell.

The performance metrics used to analysis of the proposed scheme include the

resource re-establishment latency, and signalling cost induced by the mobility

management and resource reservation. Note that in all scenarios, the MN acts as a

receiver of the flow since this is the most challenging part of the NSIS operation in

mobile networks. Also, it is assumed that there are pre-configured NSIS sessions

between the G-LMA and L-LMAs. Therefore, their set-up cost is not taken into

account in the analysis, but their maintenance cost is. The total signalling cost

includes a location update signalling cost (CLU), a resource reservation signalling

cost (CRR), and the packet delivery signalling cost (CPD), respectively:

CTotal = CLU + CRR + CPD (4.1)

The notations used in all the equations introduced in this section can be found

in Table 4.1.

Location Update Cost

In PMIPv6 mobile users can perform two kinds of handover: the inner and inter-

domain handovers, described in detail in [7, 91]. The LMA registration process

is the same in both types of handover. However, in order to keep the current

connection(s) alive after the inter-domain handover, the LMA sends a PBU to

the CN(s) and MN’s Home LMA informing them about the MN’s new regional

network. Their addresses can be obtained from the router solicitation sent by the

MN, upon entering a new cell, and are passed on by the MAG to the LMA[91].

Apart from registration, the periodic PBU and PBA are exchanged between the

peers in order to extend the binding lifetime in the LMA, HA and CN(s). This

cost is represented by CBR. Given that Cg and Cl are the signalling cost of the

inter-LMA/global and inner-LMA/local binding updates, the location update
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Table 4.1: Notation of NSIS-based QoS in access networks

λm the MN’s cell crossing rate
λc the MN’s session arrival rate
K number of rings in the LMA/G-LMA domain
K ′ number of rings in the L-LMA domain
q probability of performing the inter LMA/G-LMA handover
(1− q) probability of performing the inner LMA/G-LMA handover
q′/(1− q′) probability of performing the inter/inner L-LMA handover
tm the MN’s average residence time in each cell/MAG domain
τm′ the MN’s average residence time in the L-LMA domain
τha the MN’s average residence time in the LMA/G-LMA domain
Trf the binding update lifetime in the LMA/G-LMA/L-LMA/HA/CN
η NSIS message processing cost at each node
Trrf NSIS message lifetime
TCx−y transmission cost between nodes x and y(δDx−y + ζδ)
δ unit transmission cost in wired link
ζ weighting factor for the unit transmission cost in wireless link
PCx processing cost of control packet at node X
Bw/wl bandwidth of wired/wireless link (in bits per second)
Lw/wl wired/wireless link propagation delay
qf probability of an unsuccessful message delivery on wireless link
Tw time needed to determine that the message is lost
b size of the message in bits

cost can be written as follows:

CLU = λm(qCg + (1 − q)Cl) + CBR (4.2)

where q and (1-q) are the probability of performing the inter-LMA and inner-

LMA handovers obtained from Equation (3.5). Since the link layer, authentica-

tion and address configuration delays are the same in all scenarios; thus, they are

omitted in the analysis.The detailed cost of Cg, Cl, and CBR can be expressed as
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follows:

Cl = 2TCmag−lma + PCmag + PClma

Cg = Cl + 2TClma−ha + PCha + 2TClma−cn + PCcn

CBR = 2(b tm

Trf

cTCmag−lma + bτha

Trf

c(TClma−ha + TClma−cn))

(4.3)

where τha is the MN average residence time in the LMA domain, which can be

obtained from Equation 3.14.

In the proposed scheme, the MN can perform three kinds of handover: the inner

L-LMA handover, inter L-LMA handover and inter G-LMA handover. In the

inner L-LMA handover, the MN moves between two MAGs both belonging to

the same L-LMA. The inter L-LMA handover occurs whenever the MN moves

from one MAG subnet to another, each belonging to a different L-LMA. In this

case, a new serving L-LMA informs G-LMA about the MN’s new local domain

address. In the inter G-LMA handover,, the MN enters a MAG subnet belonging

to a different G-LMA. Here the new G-LMA sends the registration request to the

MN’s HA/CN. Therefore, the total cost in the proposed scheme can be derived

as follows:

CLU = λm
(
qCglma + (1− q)[q ′Cllma + (1 − q ′)Cmag]

)
+ CBR (4.4)

where Cmag, Cllma and Cglma represent the cost of inner L-LMA, inter L-LMA

and inter G-LMA handovers, respectively, and are equal to:

Cmag = 2TCmag−llma + PCmag + PCllma

Cllma = Cmag + 2TCllma−glma + PCllma + PCglma

Cglma = Cllma + 2TCglma−ha + PCha + 2TCglma−cn + PCcn

CBR = 2(b tm
Trf
cTCmag−llma + bτm

′

Trf
cTCllma−glma + bτha

Trf
c(TCglma−ha + TCglma−cn))

(4.5)
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Reservation Signalling Cost

In the basic operation of NSIS in PMIPv6 networks, the LMA can act as a proxy

dividing an NSIS end-to-end reservation into two parts: the outer part and the

inner part. The former is between the LMA and CN, re-established with the cost

of Rg when the MN performs the inter LMA handover. The latter is between

the LMA and MN, wherein MAG acts as an NSIS proxy. This part needs to be

re-established, with the cost of Rl, when the MN changes its point of attachment

inside the LMA domain (inner LMA handover). With these insights, the resource

reservation cost can be expressed as follows:

CRR = λm(qRg + (1 − q)Rl) + CRF (4.6)

Both Rl and Rg include the NSLP signalling cost, and the GIST three-way hand-

shake signalling cost in the D-mode represented by Cnslp and Cgist, respectively.

The costs can be written as:

Rl = [Cnslp + Cgist]lma−mn

Rg = Rl + [Cnslp + Cgist]lma−cn

(4.7)

The GIST cost in the D-mode includes the transmission and processing costs

of the GIST Query/Response/Confirm messages, exchanged between the GIST

peers along the path.

Since both NSLP and GIST are the soft state, the refresh messages, the Re-

serve and Response for NSLP and the Query message for GIST, should be sent

periodically, though independently, between the peers. Therefore, the refresh sig-

nalling cost CRF in Equation 4.6 is made up of the NSLP and GIST refresh costs,

performed with the cost of RFnslp and RFgist. Thus:

CRF = b tm

Trrf

c[RFnslp + RFgist]lma−mn

RFnslp = [TCReserve + TCResponse]x−y

RFgist = [TCQuery]x−y

(4.8)

In the proposed scheme an end-to-end reservation between the CN and MN is
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divided into three parts. The first part is between the G-LMA and CN, with

the cost of Rglma. The second part is between the G-LMA and the serving L-

LMA, with the cost of Rllma. Finally, the last part is between the L-LMA and

MN re-established, with the cost of Rmag. Exploiting the pre-configured NSIS

tunnel between two end points, the second cost (Rllma) just comprises of binding

an individual reservation to the NSIS tunnel, and informing the L-LMA about

the necessity of reserving the resources for the MN in its domain. Therefore, the

reservation cost in the new scheme can be written as follows:

CRR = λm

[
qRglma + (1 − q)(q ′Rllma + (1 − q ′)Rmag)

]
+ CRF (4.9)

The detailed costs can be expressed as:

Rmag = [Cnslp + Cgist]llma−mn

Rllma = Rmag + [TCQuery + ηQuery]glma−llma

Rglma = Rllma + [Cnslp + Cgist]glma−cn

CRF = b tm

Trrf

c[RFnslp + RFgist]llma−mn + b τm′

Trrf

c[RFnslp + RFgist]llma−glma

(4.10)

The Cnslp and Cgist costs used in Equation 4.7 and Equation 4.10 can be written

as follows:

Cnslp
sender = [TCReserve + TCResponse + (ηReserve + ηResponse)]x−y

Cnslp
receiver = [TCQuery + TCReserve + TCResponse + (ηQuery + ηReserve + ηResponse)]x−y

Cgist = [TCQuery + TCResponse + TCconfirm + (ηQuery + ηResponse + ηConfirm)]x−y

(4.11)

Note that according to the type of reservation, the receiver-oriented or the sender-

oriented, the cost of NSLP varies.

Packet Delivery Cost

The packet delivery cost is the same as the one derived in Section 3.3.2.3, wherein

the MAP, GMAP and LMAP are replaced by LMA, G-LMA and L-LMA,respectively.
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Resource Re-establishment Latency

The resource re-establishment latency tRL is defined as a time needed to perform

a handover and re-establish an end-to-end resource reservation along a new path

in the LMA/G-LMA domain. The handover latency comprises of the delays

caused by the layer-2 handover and binding update. In the basic operation of

NSIS, the receipt of a PBU can be interpreted as the necessity of re-establishing

the resource reservation on a new path. Therefore, when the LMA receives this

message, it sends a PBA along with a new NSLP message, Reserve[Query ] in

the sender[receiver]-oriented reservation, towards the MN. Upon receiving the

message, the MN sends a Response[Reserve] to the LMA. Therefore, the resource

reservation latency for the sender-oriented (tS
RL), and receiver-oriented reservation

(tR
RL) can be written as follows:

tsrl = tl2 +
[
m(pbu)+max(m(pba),m(reserve))+m(response)

]
mn−lma

trrl = tl2 +
[
m(pbu) + max(m(pba),m(query))

+m(reserve)+m(response)
]

mn−lma

(4.12)

where m(x) is the time to send a message x between two nodes, including the

transmission time and the propagation time, and is equal to [77] :

m =
b

bw/wl
+ lw/wl

where

mwired = dx−y ×m

mwireless = m + (tw + m)× qf
1− qf

(4.13)

The average resource re-establishment latency in the proposed scheme, for the

sender- and receiver-oriented reservation, can be calculated as follows:

t
s/r
rl = q′t

s/r
rlllma + (1− q′)ts/rrlmag (4.14)
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where t
s/r
rlmag and t

s/r
rlllma are the average reservation latency during the inner L-

LMA and inter L-LMA handover, respectively. For the inner L-LMA handover,

t
s/r
rlmag can be obtained from Equation 4.12, except that here the distance is limited

between the MN and serving L-LMA, resulting in a shorter distance for the

signalling messages. During the inter L-LMA handover, when the L-LMA receives

the PBU, it first sends the registration request to the G-LMA. When the G-

LMA receives the message, it binds the reservation to the pre-configured NSIS

tunnel. Then by sending the necessary information included in the NSLP Query

message, it asks L-LMA to initiate the reservation for this MN. The equation for

the resource reservation latency during the inter L-LMAP handover trlllma , for

the sender- or receiver-oriented reservation models, can be written as follows:

t
s/r
rlllma = t

s/r
rlmag + [m(pbu) + max(m(pba),m(query)]glma−llma (4.15)

4.4 Performance Investigations

This section presents the numeric comparisons of the signalling cost and resource

reservation latency between the proposed scheme and the baseline protocol. The

parameters used here are the ones used in [75, 92, 93]. The binding lifetime is 20

minutes. The NSIS refresh interval for the individual and pre-configured tunnel

are set to 45 and 135 seconds, respectively. The average cell residence time is 30

seconds. The session arrival rate λc is set to 0.1, with the Exponential distribu-

tion. The PBU processing cost in different nodes are pcmag = 12, pcllma = 18,

pclma/glma/ha = 24, and pccn = 4. The other variables are set to: δ = 1, ζ = 10,

ηnslp = 4, ηgist = 1, k = 5, k′ = 3, dmag−llma = 4, dmag−lma = 10, dha−cn = 6,

dlma−ha = 25 and dlma−cn = 8. For demonstration purposes, γ is set to 1, result-

ing in the Exponential distribution for the MN’s cell residence time with the mean

and variance equal to 1
λm

and 1
λ2m

, respectively [90]. Since the resource reservation

refresh signalling cost between the LMA/GLMA and CN does not have any effect

on the signalling load inside the LMA domain; then, it is not considered in the

rest of the analytical analysis.

Figure 4.2 shows the total signalling cost, including the location update, resource

reservation signalling costs and a packet delivery cost, as a function of the number
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of MNs in the PMIP domain. As it can be seen from the figure, in both protocols,

the costs of receiver-oriented mode (RO) are higher than the sender-oriented (SO).

This is due to the necessity of sending extra NSLP signalling messages between

the end-points in this mode. Moreover, the results obtained show that for a

small number of MNs the costs of the proposed scheme, in both sender- and

receiver-oriented modes, exceed the ones in the baseline protocol.

Figure 4.2: Impact of number of MNs on the NSIS-based signalling cost

The higher cost of the proposed scheme comes from the extra signalling cost

imposed by refreshing the pre-configured NSIS tunnel. However, as the number

of MNs increases, the total costs of the proposed scheme for both the sender- and

receiver-oriented decreases. This comes from the fact that the cost of refreshing

the NSIS tunnel is independent of the number of MNs in the L-LMA domain.

Therefore, by increasing the number of MNs, its burden on the total cost is

alleviated. The results show that using the new scheme, the total signalling cost

can be reduced by an average of 5% and 10.5%, for the sender-oriented and the

receiver-oriented reservation, respectively.

Figure 4.3(a) and Figure 4.3(b) show the impact of SMR on the signalling cost
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(a) One MN

(b) 20 MNs

Figure 4.3: Impact of SMR on the NSIS-based signalling cost
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for the 1 and 20 MNs. The SMR indicates the MN’s session arrival rate to its

mobility rate. The small value of the SMR means the MN’s mobility rate is higher

than the session arrival. Therefore, the MN changes its point of attachment more

frequently, resulting in the high signalling cost induced by the mobility update

and resource re-establishment after each handover. On the other hand, the large

value of the SMR indicates the low mobility rate which results in an increase in

the MN’s residence time in each cell. Therefore, less handover is performed and

less signalling is initiated.

In Figure 4.3(a), the proposed scheme signalling costs for both the sender- and

receiver-oriented reservation models are significantly lower than the ones in the

baseline. However, when the SMR increases (SMR ≥1.4) the costs increase

sharply. The reason is as the SMR increases the MN’s cell residence time also

increases. Intuitively, the MN’s residence time in the L-LMA domain increases.

When the SMR=1.4, the MN’s residence time in the L-LMA domain reaches a

point that the extra cost caused by the NSIS tunnel refreshing process is added

to the total cost, resulting in a sharp increase in the total cost.

Figure 4.3(b) shows the impact of the SMR on the total signalling cost for the

large number of MNs (the number of MNs is set to 20). The results obtained

show that for all values of SMR, the proposed scheme shows less signalling cost

as compared to the baseline. Unlike Figure 4.3(a), there is no sudden increase

in the proposed scheme signalling cost for larger values of SMR. This is due to

the fact that when the MNs’ residence time in the L-LMA increases (large value

of SMR), the extra NSIS tunnel refresh signalling overhead is added to the total

cost. However, this cost is independent of the number of MNs, and therefore,

having a large number of MNs makes its effect insignificant on the total cost.

The comparison of the total signalling cost between the proposed scheme and

baseline can be seen more clearly in Figure 4.4(a) and Figure 4.4(b), wherein the

results show the ratio of the proposed scheme signalling cost to the baseline, C

and C ′ respectively. In both figures as the SMR increases the ratio of the proposed

scheme signalling cost to the baseline decreases, which indicates more signalling

cost reduction in the proposed scheme. The reason is as the SMR increases, the

probability of performing the inter L-LMA handover decreases. Therefore, most

of the mobility and reservation signalling costs are handled by the L-LMA, which
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(a) One MN

(b) 20 MNs

Figure 4.4: The ratio of the NSIS-based signalling costs( C
C′

)
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is located closer to the MN as compared to the LMA in the baseline protocol.

However, this will not last long. The extra signalling cost due to the NSIS tunnel

refreshment causes a significant overhead on the proposed scheme signalling cost

resulting in a sudden slop on the ratio, when the number of MNs is 1 (Figure

4.4(a)). Nevertheless, when the number of MNs increases, the effect becomes less

severe keeping the ratio still significantly low (Figure 4.4(b)).

Finally, Figure 4.5 shows the reservation re-establishment latency as a function of

the wireless link propagation delay. It is defined as the time when the MN starts

its handover till a new NSIS-based reservation is established, hop by hop, along

the new path inside the LMA/G-LMA domain. The parameters used are set as

follows: lw = 1ms, bw = 100mbps, bwl = 11mbps, qf = 0.5 and tl2 = 50ms.

Figure 4.5: NSIS-based resource re-establishment latency as a function of wireless
link delay

As it can be seen, the latency increases linearly as the wireless link propagation

delay increases. Moreover, as expected, the delay of receiver-oriented reserva-

tion (the dashed-line with red and navy squares) is higher than the one in the
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sender-oriented (represented with solid lines in blue and purple with circle marks).

However, comparing the dashed-line results with each other and the solid-lines

with each other, the results obtained show that exploiting the pre-configured NSIS

tunnel, the proposed scheme can reduce the resource re-establishment latency by

an average of 15%, as compared to the baseline protocol.

4.5 Summary

In this chapter, the proposed scheme and analytical framework given in Section

3.3, has been adopted to tackle the NSIS problems in the PMIPv6 environment,

its long resource re-establishment latency and high signalling cost. The scheme

consisted of the multi-layer LMA, G-LMA and L-LMAs, and the pre-configured

NSIS session between them.

Having the multi-layer mobility agent architecture can localise the MN’s resource

reservation and mobility management inside the domain, resulting in a decrease in

the amount of the signalling cost. Results showed that under above assumptions,

the new scheme has achieved an average of 5% and 10.5%, for the sender-oriented

and the receiver-oriented reservation, in total signalling cost. Moreover, exploited

the pre-configured NSIS sessions between the G-LMA and L-LMAs, has caused

a noticeable decrease of 15% in the reservation latency.
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Chapter 5

A Comparison of RSVP and

NSIS in Access Networks

5.1 Introduction

IIn an effort to support resource reservation signalling and other various signalling

applications, IETF introduced NSIS [5] suite as a generic framework. Concep-

tually similar to RSVP, NSLP attempts to overcome the RSVP shortcomings

by supporting additional features such as sender- and receiver-oriented reserva-

tions, location-independent session identifier (session-id) for mobility support,

bi-directional reservation, and ability to use existing transport and security pro-

tocols. Nevertheless, the gains come with the cost of significant overhead in the

network. Mobility is one of the major issues in RSVP, which is also left almost

untouched in NSIS. There are some proposals to address the problem [44, 94, 95],

however, the lack of internal mechanism has led NSIS to the same path passed

by RSVP years ago. Scalability was another issue that surrounds RSVP. Never-

theless, the results obtained from the testbed implementation in [93, 96], without

considering the mobility, show that NSIS cannot address the scalability issue in

RSVP, but worsens it.

In this chapter the comparison of the RSVP and NSIS operations in access net-

works is made. To the best of the author’s knowledge, this is the first analytical

comparison between these two signalling protocols in the literature. The aim is
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not to advocate which one is better, but rather to study the effects of various

network parameters on their performance to enlighten decision-making.

5.2 Analytical Model

The analytical model used here is based on the one introduced in Section 3.3.

The mobility management protocol chosen is the network-based localised mobil-

ity management protocol, PMIPv6. The protocol exempts the MN from partici-

pating in any mobility-related signalling. Similar to the one in previous chapter,

it is assumed that the LMA domain consists of K rings (ring 0 to ring K-1), and

the MN is initially located in the centre cell.

5.2.1 Total Cost Function

In this section, the total signalling cost and resource re-establishment latency of

both protocols, RSVP and NSIS, are studied in detail. In all scenarios, the MN

is considered as a receiver of the flow, since this is the most challenging part of

the RSVP and NSIS operations in mobile environments. Also, it is assumed that,

there is no pre-configured RSVP/NSIS sessions between LMA and MAGs.

The total signalling cost CTotal comprises of a location update signalling cost, a

resource reservation signalling cost and packet delivery cost, CLU , CRR, and CPD

respectively.

CTotal = CLU + CRR + CPD (5.2)

5.2.1.1 Location Update Cost

In PMIPv6, the MN can perform two kinds of handover: the inner-domain and

inter-domain handovers, described in detail in [7] and [91]. The former is per-

formed whenever the MN enters a cell/MAG belong to the same LMA domain,

while in the latter, a new cell belongs to a different LMA. The registration process

to the LMA is the same for both types of handover. However, in order to keep the

current connection(s) alive, after entering a new domain during the inter-domain

handover, the LMA sends a PBU to the MN’s Home LMA and CN(s) [91]. Their
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addresses are included in the router solicitation, sent by the MN upon entering a

new cell, and are passed on by the MAG to the LMA. Apart from registration,

the PBU and PBA should be exchanged between the peers periodically in order

to extend the binding lifetime. This cost is represented by CBR. Given that Cg

and Cl are the signalling costs in the inter-domain/global and inner-domain/local

handovers, the location update cost can be expressed as follows:

CLU = λm

(
qCg + (1 − q)Cl

)
+ CBR (5.3)

where q and (1-q) are the probability of performing the inter-domain and inner-

domain handovers obtained from Equation (3.5). Other notations are the same

as the ones introduced in Table 3.1, but in the PMIP context. The cost of sending

binding refresh messages CBR, Cg and Cl can be derived as follows:

Cl = 2TCmag−lma + PCmag + PClma

Cg = 2TClma−ha + PCha +Ncn(2TClma−cn + PCcn) + Cl

CBR = 2b tm
Trf
cTCmag−lma + 2bτha

Trf
c(TClma−ha +NcnTClma−cn)

(5.4)

5.2.1.2 RSVP Signalling Cost

In the PMIPv6 network, the LMA can act as an RSVP proxy [42], dividing an

end-to-end reservation session between the MN and CN into two parts: the outer

part and the inner part. The former is between the CN and serving LMA, re-

established when the MN enters a new LMA domain. In the latter, the resources

are reserved between the LMA and MN, needed to re-establish when the MN

enters a new cell. The cost of the outer part and inner part reservation are

represented by the Rg and Rl, respectively. Thus:

CRR = λm

(
qRg + (1 − q)Rl

)
+RRF (5.5)

where RRF is the cost of the RSVP refresh messages. Assume that all the nodes

in the network to be RSVP aware, the RSVP signalling cost consists of the trans-

mission cost and processing cost in all the nodes through the path. Therefore:
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Rl = 2TCmn−lma + 2Dmn−lma × η

Rg = 2TClma−cn + 2Dlma−cn × η +Rl

RRF = 2b tm
Trrf
cTCmn−lma + 2b τha

Trrf
cTClma−cn

(5.6)

5.2.1.3 NSIS Signalling Cost

Similar to the RSVP operation in the PMIP network, the NSIS end-to-end reser-

vation can be divided into two parts: the outer part between the CN and LMA,

and the inner part between the LMA and MN. Therefore, the total cost can be

represented as follows:

CRR = λm

(
qRg + (1 − q)Rl

)
+RRF (5.7)

The cost of each part consists of the NSLP signalling cost, and GIST three-way

handshake signalling cost represented by CN
l/g and CG

l/g, respectively. Since both

NSLP and GIST can operate in two different modes, the sender- or receiver-

oriented reservation in NSLP and the D-mode or C-mode in GIST, four different

scenarios can be considered. To this end, the signalling cost of each part has

been further categorised into two sub-groups. CNS
l/g and CNR

l/g represent the cost

of sender- and receiver-oriented reservations, while CGD
l/g and CGC

l/g denote the

GIST operations in the D-mode and C-mode. Therefore, the total signalling cost

of the sender-oriented reservation in D-mode becomes:

CSD
RR = λm

(
qRSD

g + (1 − q)RSD
l

)
+RRF

where

RSD
l = [CNS + CGD]mn−lma + [RN

RF +RG
RF ]mn−lma

RSD
g = RSD

l + [CNS + CGD]lma−cn/ha + [RN
RF +RG

RF ]lma−cn/ha

CNS = TCReserve + TCResponse +D(ηReserve + ηResponse)

CGD = TCQuery(D) + TCResponse(D) + TCconfirm(D) +D(ηQuery + ηResponse + ηConfirm)

(5.8)
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The total signalling cost of the receiver-oriented reservation in C-mode becomes:

CRC
RR =λm

(
qRRC

g + (1 − q)RRC
l

)
+RRF

RRC
l =[CNR

l + CGC
l ]mn−lma + [RN

RF +RG
RF ]mn−lma

RRC
g =RRC

l + [CNR
g + CGC

g ]lma−cn/ha + [RN
RF +RG

RF ]lma−cn/ha

where

CNR =TCQuery + TCReserve + TCResponse +D(ηQuery + ηReserve + ηResponse)

CGC =TCQuery(C) + TCResponse(C) + TCconfirm(C) +D(ηQuery + ηResponse + ηConfirm)+

TCPSyn/SynAck/Ack

(5.9)

The refresh signalling cost of the NSLP and GIST can be given as follows:

RFN = 2
[
b τha
Trrf
cTClma−cn + b tm

Trrf
cTCmn−lma

]Reserve/Response
RFG =

[
b τha
Trrf
cTClma−cn + b tm

Trrf
cTCmn−lma

]Query (5.10)

The total cost of other scenarios, the sender-oriented in the C-mode and the

receiver-oriented in the D-mode, can be obtained from the costs introduced in

Equation 5.8, and Equation 5.9. The NSLP cost, for the sender-oriented reser-

vation, comprises of the transmission and processing costs of the Reserve and

Response messages. Given that the receiver-oriented reservation was preferred,

the cost includes the transmission and processing costs of the Query, Reserve, and

Response messages along the data path. Node that the cost includes the overhead

of the GIST-Data message used to convey the NSLP messages as a payload.

The cost of the GIST layer depends on the type of the operation required by

the flow, the D-mode or C-mode, respectively. The GIST cost in the D-mode

includes the transmission and processing costs of the Query(D), Response(D),

and Confirm(D) messages between the GIST peers along the path. Assume that

there is no matching MA between peers in the C-mode operation, the GIST

messages (Query(C), Response(C), and Confirm(C)) should carry extra objects,
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i.e., Stack-Proposal and cookies, in order to establish the MA between peers.

Therefore, their sizes are different from the ones in the D-mode. Moreover, the

TCP three-way handshake should be performed before sending the GIST-Confirm

message.

Both NSLP and GIST use the soft sate mechanism to manage their states. There-

fore, the refresh messages, NSLP Reserve/Response and GIST-Query, should be

sent periodically between the peers. The RFN and RFG represent their costs in

this calculation. Note that their refreshing process are independent from each

other. Based on [96], the refresh signalling messages in the NSLP includes both

Reserve and Response. The GIST refresh mechanism consists of the MRS and MA

updates, however similar to the assumption in [93], the MA refreshing overhead

is not considered in this analysis.

5.2.1.4 Packet Delivery Cost

Assume that Route Optimization is enabled, the first packet in a session goes to

the HA, while the rest are directed to the LMA who intercepts and tunnels them

to the serving MAG. The packet delivery cost can be given as:

CPD = Cha + CLMA + CT (5.11)

where CT is the packet transmission cost between the CN and MN. Cha and CLMA

are the packet processing cost at the HA and LMA, respectively. All the costs

are the same as the one used in Section 3.3.2.3, Equation 3.27, Equation 3.26 and

Equation 3.25.

5.2.1.5 Resource Re-establishment Latency

The resource reservation latency tRL is defined as a total time taken to perform a

handover, as well as re-establish an end-to-end resource reservation along a new

path in the LMA domain. The time comprises of the delays imposed by the L2

handover, and binding update process represented by tL2 and tBU , respectively.

In the RSVP-based scenario, when the LMA receives a PBU, it sends a PBA,

followed by a new RSVP Path message, towards the MN. Upon receiving the Path

message, the MN sends a Resv message destined to the LMA. The reservation on
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the new route is completed when the Resv message reaches the LMA. Therefore,

total resource re-establishment latency can be given as follows:

tRL = tL2+
[
M(pbu)+Max

(
M(pba),M(path)

)
+M(resv)

]
mn/mag−lma

(5.12)

where M is the time taken to send a message between two nodes, including the

transmission time and the propagation time [77]. Therefore:

M =
b

Bw/wl

+ Lw/wl

Mwired = DX−Y ×M

Mwireless = M + (Tw +M)× qf
1− qf

(5.13)

In NSIS, when the LMA receives a PBU, it sends a PBA followed by a new

NSLP message (Reserve or Query message in the sender- or receiver-oriented

reservation) towards the MN. Upon receiving the Reserve[Query ] message, the

MN sends a Response[Reserve] message to the LMA. In the sender initiated

model, the reservation on the new route is completed when the Response message

reaches the LMA. However, in the receiver initiated scenario, the reservation

on the new route is completed when the Response message reaches the MN.

Therefore:

tSRL = tL2 +
[
M(PBU) +Max(M(PBA),M(Reserve)) +M(Response)

]
mn/mag−lma

tRRL = tL2+[
M(PBU) +Max(M(PBA),M(Query)) +M(Reserve) +M(Response)

]
mn/mag−lma

(5.14)
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5.3 Performance Investigations

This section presents the numerical results of the NSIS operation in terms of the

total signalling cost, bandwidth consumption, and resource reservation latency as

compared to the ones in RSVP. Most parameters used in this analysis are based

on the typical values found in [75, 81, 93, 96]. The domain has one LMA/GLAM

consists of 61 cells. The session arrival rate, λc, is set to 0.1, with the Exponential

distribution. The binding lifetime is 20 minutes. The RSVP and NSIS refresh

interval are set to 45 seconds. The average cell residence time is 30 seconds.

The control message processing cost in different nodes are defined as follows:

PCmag = 12, PClma/ha = 24, and PCcn = 4. The other variables are set to:

δ = 1, ζ = 10, ηnslp/rsvp = 4, ηgist = 1, ηtcphandshake = 1, K = 5, Dmag−lma = 10,

Dlma−ha = 25, Dlma−cn = 8, Dha−cn = 8, and Ncn = 1. For demonstration

purposes γ is set to 1, resulting in the Exponential distribution for the MN’s cell

residence time with the mean and variance equal to 1
λm

and 1
λ2m

, respectively [90].

Since the reservation refresh signalling cost between the LMA and CN does not

have any effect on the signalling load inside the LMA domain, therefore, it is not

considered in the final calculations.

Total signalling cost, including the mobility, resource reservation and packet de-

livery costs, as a function of the number of MNs in the PMIP domain, is depicted

in Figure 5.1. The results indicate that RSVP has the smallest signalling cost,

while the NSIS with the C-Mode operation in the GIST layer, and the receiver

initiated reservation in the NSLP layer has the biggest one. As the compari-

son shows the NSIS’s rich functionality, enhanced modularity, message-transfer

reliability and security support are accompanied by the certain cost, increasing

the total signalling cost by an average of 48% and 64% in the NSIS sender- and

receiver-oriented operation conducted in C-mode, as compared to RSVP. Even

without reliable transport and security support, i.e., NSIS operation in the D-

mode, the overheads are noticeably higher that the one in RSVP, by an average

of 24% and 41% increase in the sender- and receiver-oriented reservations. This

mainly comes from decoupling the node discovery from the signalling message de-

livery in the GIST layer, resulting in a high number of message exchanges during

the three-way handshaking process.
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Figure 5.1: Cost comparison of RSVP and NSIS

The impact of the SMR on the resource reservation signalling cost is depicted

in Figure 5.2(a). Small value of the SMR denotes that the MN’s mobility rate

is higher than the session arrival rate, and therefore, resulting in more frequent

handovers. Having the high number of handovers increases the resource reserva-

tion signalling cost. The reason is that in order to fulfil the QoS requirement,

the resources should be reserved on a new path immediately. When the SMR

value is large, the MN performs less handover, intuitively, imposing less resource

reservation signalling cost. As the figure shows, RSVP has the least resource

reservation signalling cost among other scenarios, for all the value of SMR. The

clear comparison between the RSVP and NSIS signalling cost can be shown in

Figure 5.2(b), in which results indicate the ratio of the NSIS signalling cost to

the RSVP signalling cost, C and C′ respectively. It is interesting to see that

the simplest form of NSIS operation, the sender-oriented with neither reliability

nor security support, has 80 percentage more signalling overhead as compared

to RSVP. Having the NSIS operation with its full functionalities, including the

receiver-oriented with TCP in its transport layer and support of using the ex-
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(a) Individual Cost

(b) Cost Ratio

Figure 5.2: Impact of SMR on the RSVP and NSIS signalling cost
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isting security protocols, imposes almost 3 times more overhead as compared to

RSVP. Having the sequential process of discovering the next capable node and

transporting the NSLP signalling message, as well as the necessity of perform-

ing both of them after each handover cause the significant increase in the NSIS

signalling overhead.

Figure 5.3 shows the total amount of bandwidth consumption by the signalling

messages as a function of the session lifetime. The number of active sessions is

set to be one. Also, it is assumed that the MN’s average cell residence time is

greater than its session lifetime. Under this assumption, the impact of having an

extra signalling overhead, due to the MN’s handover, will be excluded.

The total bandwidth consumed comprises of the bandwidth used to set-up the

reservation, as well as the one used to keep it alive during the session lifetime.

Assuming that the session lasts for n seconds, the total bandwidth consumption

in RSVP can be derived as follows:

BW = (MPath+MResv) +
( n

Trf
× (MPath+MResv)

)
(5.15)

Figure 5.3: Bandwidth consumption by signalling messages
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where MPath and MResv are the size of the Path and Resv messages in bytes,

and Trf is the refresh interval in seconds.

The amount of bandwidth taken by the NSIS signalling messages depends on two

factors: the GIST layer operation mode (C-Mode or D-Mode), and the NSLP

reservation type (sender- or receiver-oriented reservation). The total bandwidth

consumed can be expressed as follows:

BW = (MGist+MNslp) +
( n

Trf
× (MNslpR +MGistR)

)
(5.16)

where MGist represents the total size of GIST messages sent in each GIST op-

eration mode. MNslp denotes the total size of NSLP messages exchanged, based

on the NSLP reservation type chosen. Total size of the refresh messages, used

in NSLP and GIST, are represented by MNslpR and MGistR. Table 5.1 shows

the size of the messages used in each protocol, including the transport layer and

IP layer overheads. Note that RSVP uses raw IP, therefore the transport layer

overhead would be zero for its massages.

Table 5.1: Signalling Message Size in IPv6

Message Type Message Size(Bytes)
NSLP Query/Reserve/Response 44/112/44

GIST(D)Query/Response/Confirm/Data 212/240/200/164
GIST(C)Query/Response/Confirm/Data 244/244/208/176

TCP Syn/SynAck /Ack 64/64/60
RSVP Papth/Resv 124/148
PMIP PBU/PBA 76/76

As shown in Figure 5.3, RSVP consumes the lowest amount of bandwidth among

all the scenarios. The higher amount of the bandwidth consumption in the NSIS

comes from the higher number of messages sent, and their larger sizes as compared

to the ones in RSVP. By increasing the session lifetime, the costs remain constant

for the all scenarios until the time that the refresh messages should be sent in

order to keep the reservation alive (t = 45s). Sending the refresh messages adds

extra signalling overhead in both RSVP and NSIS. The results show that the NSIS

set-up operation consumes between 4 to 6 times more bandwidth compared to

RSVP. This can give rise to concern to the NSIS operation and the functionality
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chosen, in the heavy load access networks especially in the wireless part.

Finally, Figure 5.4 shows the reservation re-establishment latency as a function

of the wireless link propagation delay. This time is defined as the time when the

MN starts its handover till a new reservation is established hop by hop between

the MN and LMA inside the PMIP domain. The parameters used to calculate

the resource reservation latency are as follows: Lw = 1ms, Bw = 100Mbps,

Bwl = 11Mbps, qf = 0.5 and TL2 = 50ms.

Figure 5.4: Comparison of RSVP resource re-establishment latency and NSIS as
a function of wireless link delay

Since all the packets between the LMA and MAGs are tunnelled, the Crossover

Node Discovery (CND) mechanism cannot be used by default, and all the sig-

nalling messages should traverse between the MN and LMA as the two end points

of the session. The reason is that CRN discovery for an end-to-end path is initi-

ated by the MN by sending a Reserve (sender-oriented case) or Query (receiver-

oriented case) message. Since in PMIP the MN uses its home address as the source

address after handover, a CRN is found by normal route change process,i.e., the

same session-id and Flow ID, but a different identifiers of the next signalling peer

defined by Source Identification Information (SII) handle.
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Assuming the MN as a receiver of the flow and the LMA as a sender (on behalf of

the CN), both RSVP and NSIS suffer from the lack of the internal mechanism to

trigger the required signalling messages on the new path after handover (issuing

the Path message in RSVP and the NSLP Query/Reserve in NSIS). Therefore,

both are dependent on the external mechanism, i.e., receiving the PBU message in

the PMIP protocol. The problem adds an extra delay on the reservation latency

in both protocols. However, the results obtained show that RSVP has the low-

est resource re-establishment latency, in the cost of having limited functionality,

making it more appropriate candidate for real time applications in mobile net-

works. After that the NSIS sender- and receiver-oriented operations in D-mode

by an average of 67% and 102%, and the NSIS sender- and receiver-oriented in

C-mode by an average of 135% and 169% longer resource reservation latency, as

compared to the one in RSVP, are ranked from second to the fifth.

5.4 Summary

In this chapter, a comparison between the RSVP and NSIS operations in a PMIP-

based access network has been presented. Thoroughly analysing the RSVP op-

eration, NSIS was introduced by IETF to overcome the RSVP shortcomings by

supporting additional features such as sender- and receiver-oriented reservations,

location-independent session-id for mobility support, bi-directional reservation,

and reusing existing transport and security protocols. However, it inherits the

RSVP problem in a mobile environment, while its extra functionalities come with

noticeable costs. By adopting the analytical framework introduced in Section 3.3,

the performance of each protocol, RSVP and NSIS, in terms of the network sig-

nalling cost, bandwidth consumption and resource re-establishment latency were

investigated. The results obtained highlighted the noticeable costs of using NSIS

features as compared to the plain operation of RSVP. Going through these out-

comes, one can get clear insights about the pros and cons of using NSIS in access

networks.
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Chapter 6

An Efficient QoS-Based Routing

in Backbone Networks

6.1 Introduction

As the growing multimedia applications such as IPTV and VoIP have become

ubiquitous, the need to migrate from the best-effort service model to one, in

which service differentiation can be provided, seems inevitable for future Internet

architectures. The Internet owes its success to its naive operation, routing all

requests along the shortest paths based on the predefined link weights. However,

that sort of simplicity comes at the cost of optimality. It fails to effectively utilise

network resources for today’s traffic demand, mostly characterised by highly vari-

able traffic behaviour over time.

In this chapter, a new multi-topology routing based traffic engineering approach

is proposed. The scheme can support two major practical issues, the service level

agreement requirements and link failure resiliency. First, based on a proposed

algorithm, fully edge-disjoint logical views of a network are extracted, in a way

that the delay of the longest path is upper bounded. Then, the proposed scheme

selects the longest acceptable path for each traffic type. This can guarantee that

the shortest paths are always available, and can be used by the most legitimate

flows in the network, the ones that other paths cannot satisfy their delay con-

straints. Having edge-disjoint logical topologies, it would be possible to shift the
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traffic to the next to the best alternative rout in case of a link failure, and there-

fore, providing an efficient failure resiliency. Since the defined problem, finding

the multiple disjointed logical topology, is NP-hard, heuristic algorithms to han-

dle the problem are proposed. Thorough investigations on the performance of the

proposed scheme, based on a real topology and traffic matrices, show that the

scheme can achieve an efficient resource utilisation, even under sudden increases

in traffic demands, while at the same time can comply with flows’ service level

agreements.

The rest of this chapter is organised as follows: In the next section, the related

literature is reviewed. The system model and the problem definition are intro-

duced in Section 6.3. Section 6.4 investigates the hardness of the problem. The

proposed algorithms to build disjoint routing topologies, and select the best one

based on the flow’s requirements are discussed in Section 6.5. The numerical

results are discussed in Section 6.6, followed by the remarking conclusions in

Section 6.7.

6.2 Background Overview

Achieving optimal link utilisation, or more accurately the near-optimal link util-

isation due to the NP-hard nature of the problem [97, 98], requires link weights

adjustment, based on a network-wide view of the traffic and topology, within

a domain. Such adjusted-weights would result in a balanced load distribution

across all links, and total cost minimisation. The procedure, that takes the traf-

fic matrix as an input and returns an optimal set of link weights for a given

topology as an output, is called traffic engineering.

Of all of the available traffic engineering techniques, many of them rely on the

offline methods, where long-term average traffic demands over multiple days or

potentially months are used as an input. Though simple to implement, their

output might cause a suboptimal or even an inadequate load distribution, caused

by the highly unpredictable variation of traffic demand. Consequently, the next

step would be using online traffic engineering, that can react to the real-time

traffic demand [99, 100]. Making link weights sensitive to the current load of net-

work, however, requires the flooding of new link weights throughout the network,

115



An Efficient QoS-Based Routing in Backbone Networks

causing route instability and transient forwarding loops [101, 102].

To account for the effect of the on-the-fly link weight changes, the Multi-Topology

routing (MT-Routing) [103, 104] has been used excessively in recent years [105–

107], especially in the context of TE [101, 102, 108–113]. MT-Routing provides

routers with multiple logical views of the network’s physical topology, each one

with an independent set of link weights. A separate routing table is maintained

for each topology, allowing routers to leverage the high flexibility in better path

selections.

The basic properties of the existing algorithms for building logical topologies are

as follows: for each link in the network there exists at least one topology where

the link is excluded. At the same time, it is tried to reduce the chance of the link

being selected by all the remaining logical topologies. Consequently, the result

would be multiple logical topologies with overlapped parts. Since each logical

topology has a separate routing table and updating process, any decrement in its

number and size can have a significant signalling and routing overhead reduction,

and therefore, is of prime importance in this work.

Although having multiple logical topologies offers a high level of flexibility in path

selection for different traffic types, they still share the same physical topology.

Therefore, while concerning about overall resource utilisation is still indispens-

able, carriers have to guarantee that a topology chosen to carry a given flow

satisfies its SLA requirements. Having multiple logical topologies, with the sets

of link weights that minimise the overall cost of the network yet breach the SLA

carrier commits to its customers, makes the solution impractical in an operational

network.

Based on this insight, the approach of this work differs from the existing pro-

posals in that, the proposed scheme focuses on an edge-disjoint logical-topologies

construction and the SLA based traffic assignment. However, contrary to the

current routing protocols, that send packets along a best possible route, the pro-

posed approach always selects the last possible one, the route with the longest

possible delay that does not breach the SLA. To this end, heuristic algorithms

to decompose a given physical topology to multiple edge-disjoint logical ones are

introduced, wherein each traffic class is assigned to one of them. The traffic de-

mand between each Origin-Destination (O-D) pair is a combination of different
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traffic classes, each with its own SLA requirement defined here as the average

end-to-end delay across all O-D node pairs [114]. Therefore, the proposed ap-

proach assigns the high-priority traffic with a very tight requirements, e.g., voice,

to a logical topology containing the shortest path between the pair. Unlike the

high-priority traffic, which has a stringent delay requirement, low-priority traffic

(e.g., data) can survive gradual degradation as the network performance reduces.

Therefore, they can be mapped to a topology containing the longest path between

the pair. In order to ensure a minimum acceptable service level for low-priority

traffic, the proposed algorithm bounds the worst-case performance, guaranteeing

that a longest path delay cannot be more than the maximum acceptable delay.

If the number of disjoint topologies was more than two, other traffic types can

be defined and assigned to one of the remaining topologies. The proposed al-

gorithm can be deployed in each router independently. Moreover, having fully

edge-disjoint logical topologies can enhance failure resiliency, making it more ro-

bust to changes in the network status.

6.3 System Model and Problem Definition

A network is represented by a weighted directed graph G = (V,E, c, d), where V

is the set of nodes and E is the set of links. The delay and capacity of a link

(i, j) from node i to node j are represented by d(i, j) and c(i, j), respectively. Let

p be a path between an origin s and a destination t, the delay of path p, as an

additive metric, can be expressed as follows:

d(p) =
∑

(i,j)∈p

d(i, j) (6.1)

The traffic matrices reflect the volume of traffic R = {rst | s, t ∈ V }, where rst is

the traffic demand between a given O-D pair s → t. For each pair node, a link-

based routing X is defined by a set of variables X = {xab(i, j) | a, b, i, j ∈ V },
where xab(i, j) is a fraction of traffic demand between a pair a → b, that goes

through the link (i, j). The flow conservation and non-negativity constraints on
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the variable xab, can be defined by the following equations:

∀i, j 6= a, b :
∑

j:(i,j)∈E xab(i, j)−
∑

j:(j,i)∈E xab(j, i) = 0

∀a, b ∈ V :
∑

j:(a,j)∈E xab(a, j)−
∑

j:(j,a)∈E xab(j, a) = 1

∀a, b ∈ V :
∑

j:(b,j)∈E xab(b, j)−
∑

j:(j,b)∈E xab(j, b) = −1

∀(i, j) ∈ E : 0 ≤ xab(i, j) ≤ 1

(6.2)

Traffic engineering usually considers a link-cost function Φ(fi,j, c(i, j)) that is an

increasing function of the load fi,j on each link (i, j). While Φ(fi,j, c(i, j)) can

represent any increasing and convex objective function, in this work the objective

is to keep the load on a link within its capacity which consequently reduces the

cost Φ(fi,j, c(i, j)). More precisely, the defined cost function Φ(.) adds up the cost

of all the links, where the cost of a link is obtained from the relationship between

the link capacity c(i, j), and its current load fi,j. Based on the experimental

study, the cost function is defined as follows [97]:

Φ(fi,j, c(i, j)) =



fi,j
fi,j
c(i,j) < 1

3

3fi,j − 2
3c(i, j)

1
3 ≤

fi,j
c(i,j) < 2

3

10fi,j − 16
3 c(i, j) 2

3 ≤
fi,j
c(i,j) < 9

10

70fi,j − 178
3 c(i, j) 9

10 ≤
fi,j
c(i,j) < 1

500fi,j − 1486
3 c(i, j) 1 ≤ fi,j

c(i,j) < 11
10

5000fi,j − 16318
3 c(i, j) 11

10 ≤
fi,j
c(i,j)

(6.3)

Equation 6.3 is the function of link utilisation, defined as a load over a link to its

maximum capacity. The higher tha value, the bigger the outcome as a cost. The

logical concept behind this function is that, it is cheap to send a flow through

a link with a small utilisation (defined as
fi,j
c(i,j)

). As the utilisation approaches

the link capacity, it becomes more expensive to use this link. Under above as-

sumption, the ultimate objective is to minimise
∑

(i,j) Φ(fi,j, c(i, j)), subject to

the defined constraints.

Assume there are K disjoint logical topologies each one containing a path pk

between the O-D pair indexed by (s, t). Each pk : k = 1, 2, ..., K is associated
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with a delay dk(p), obtained from Equation 6.1. A traffic demand rst with the

delay constraint Dτ , defined in its SLA requirement, can be routed through the

network if there is a path in any of defined topologies whose delay is less than or

equal to the delay constraint of the given flow.

∀rτst ∈ R, ∃k = 1, ..., K : d(pk) ≤ Dτ (6.4)

where τ is one of the traffic classes defined in the SLA.

With this insight, the problem can be formulated as a linear optimisation problem

with following objective and constraints, defined as below:

Minimise

K∑
k=1

∑
(i,j)∈pk

Φ(fki,j, c(i, j)) (6.5)

s.t:

(1)∀i ∈ V :
∑

j:(i,j)∈E

∑
k

xkst(i, j)−
∑

j:(j,i)∈E

∑
k

xkst(j, i) =


−1 i = t

0 i 6= s, t

1 i = s

(2)∀s, t ∈ V :
∑
k∈K

xkst = 1

(3)∀(i, j) ∈ E, r ∈ R, and s, t ∈ V :
∑
st

xkst(i, j)rst = fki,j

(4)∀(i, j) ∈ E : 0 ≤ xkst(i, j) ≤ 1

(5)∀(i, j) ∈ E : 0 ≤ fi,j ≤ Ci,j

(6)∀s, t ∈ V, r ∈ R, k ∈ K : maximise
∑
k∈K

O(rτst, k)

where O(rτst, k) =
∑

(i,j)∈pk

d(i, j)

Dτ
≤ Γ

d(i, j) comprises of both propagation and transfer delays. The flow conservation

is defined in constraint(1). Constraint(2) guarantees that the sum of all traffic’s

fractions routed along different topologies (e.g., assigned for real-time and non

real-time traffic) is equal to one. Constraint(3) shows that the load of a link
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(i,j), belonged to the topology k, is equal to the sum of all the fractional traffic

(between all the O-D pairs) routed through this link. Assume that the link delay

and the SLA-based delay constraint Dτ are non-negative, Γ is bound to fall in the

(0, 1] interval. The last constraint in Equation 6.5 guarantees that the shortest

paths are used by the most legitimate flows, the ones that other paths cannot

satisfy their delay constraints.

Since Equation 6.5 does not comply with the standard linear programming for-

mulation, the last constraint can be tested by solving the following slave linear

optimisation problem:

Maximise
∑
k∈K

∑
(i,j)∈pk

d(i, j)

Dτ

s.t:

∀k ∈ K :
∑

(i,j)∈pk
d(i, j) ≤ Dτ

∀(i, j) ∈ E : d(i, j) > 0, Dτ > 0

(6.6)

Although the best-effort traffic is not included in the SLA, in order to ensure

that it can still get the acceptable service, the proposed algorithms, discussed

later in Section 6.5, guarantee that the longest path delay will be lower than the

acceptable upper bound delay.

6.4 Hardness of the Proposed Algorithm

This section shows that finding the edge-disjoint logical topologies is an NP-hard

problem. First, the definition of the problem is provided. Then, the proof of the

NP-hardness of the definition is given.

Definition 1. Let G = (V,E, c, d) be a weighted directed graph with a node set V

and a link set E, where each link ei : i = 1, 2, .., ‖E‖ has a capacity of c(ei) and

a delay of d(ei). Let the delay of the longest path be bounded to D. Without loss

of generality, assume that the maximum number of logical topologies is two. The

problem of finding two fully edge-disjoint paths with the maximum delay of D is

NP-hard.
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Figure 6.1: Transformation from Partition problem to the proposed scheme

Proof. Using a transformation from Partition problem, it can be shown that

Definition 1 is NP-hard.

Partition ≤p Definition1

Given a partition problem on a set E with element values s(.), with the help of

Figure 6.1 an instance of Definition 1 on the same set is constructed. For every

ei ∈ E, delay of each link d(ei) and the maximum delay of the paths D can be

defined as d(ei) = s(i) and D =
∑
i∈S s(i)

2
, respectively. The goal is to partition

the set E into two disjoint subsets I and E − I such that, the sum of the sizes

of the elements in subset I is equal to the sum of the sizes of the elements in the

subset E − I. This can be expressed as follows:

∑
s(i)∈I

s(i) =
∑

s(i)∈E−I

s(i) =

∑
i∈S s(i)

2
(6.7)

That is by definition the Partition problem and has been proven to be NP-hard

[115]. Substituting s(i) by d(ei) and
∑
i∈S s(i)

2
by D, Equation 6.7 can be rewritten

as follows:∑
d(i)∈I

d(i) =
∑

d(i)∈V−I

d(i) = D (6.8)
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This can give us two disjoint paths with the maximum delay of D. If there is

no solution to the Partition problem defined in Equation 6.7, then there is no

solution to find two disjoint paths defined in Equation 6.8. Moreover, since the

transformation function is a polynomial-time function (see Figure 6.1), therefore,

Definition 1 ∈ NP-hard.

6.5 Proposed Heuristic Algorithms

This section describes the proposed algorithms for defining the edge-disjoint rout-

ing topologies, and assigning flows to a best possible one which can fulfil their

SLA needs.

6.5.1 Edge-Disjoint Routing Topologies (EDRT)

Due to NP-hard nature of the problem, a heuristic algorithm to find a set of

disjoint logical topologies, while their maximum delay is less than D, is proposed

in this section. The algorithm is based on a graph transformation technique used

by [116]. Let an instance of the network be given by the graph G = (V,E, c, d)

with the maximum delay constraint D > 0 and O-D pair (s, t), while s is a

current node and t can be any given node in the network. Both D and the delay

of links are assumed to be integers. The algorithm aims to construct a layered

graph GD = (V D, ED) from G in the following way:

• Make D copies u1, u2, ..., uD of each node u ∈ V . Node uk in the GD

represents node u of the original network at time k.

• Include link (ik, jl) of capacity c(i, j) in GD whenever link (i, j) ∈ E and

l− k = d(i, j). The link (ik, jl) in GD represents the potential movement of

a commodity from node i to node j in time d(i, j).

• Reduce the multiple-source, multiple-sink problem in GD to the single-

source, single-sink problem by introducing a super-source S and super-sink

t with the set of links, each with the bandwidth ∞.

It is easy to see that any path between origin s1 and destination t in GD has a

corresponding path p ∈ G such that d(p) < D. The constructed layered graph
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(a) Graph G where each
link is represented by (c, d)

(b) Graph GD with D=6

Figure 6.2: Constructing a layered graph GD from a graph G

GD contains all the disjoint paths, with the delay less then D, between S and any

given node in the network. By selecting any given node u as a destination, the

set of u1, u2, ..., uD can be reduced to a super-sink with a set of links, each with

infinite bandwidth capacity. Therefore, by moving from s1 to the super-sink, all

possible disjoint paths can be discovered. An example of the graph G and its

transformation to the graph GD with D = 6 is shown in Figure 6.2.

After constructing GD, Algorithm 1 is used to find all existing disjoint logical

topologies for a given network. For each link coming out of s1, the shortest paths

between s1 and a given destination t are calculated, and the corresponding links

are added to the G[K] (lines 6-7). The process continues until all of the other

nodes are selected as a destination and their disjoint paths are discovered (loop

in line 5). After adding the corresponding links to the G[K], these links would be

deleted from the main graph GD (line 9), guaranteeing that they will not be used

in other topologies. The same process will be repeated for all of the outgoing

links from s1.

At the end if any link is left out, it will be included in the topology of which its

parent link belongs, as long as the maximum delay constraint of the path is not

violated. Adding these links can increase the number of possible routes in some

part of each topology, resulting in a better link utilisation.
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Algorithm 1 Finding K Disjoint Logical Topologies G[K]

1: Construct GD from G using the proposed graph transformation technique
2: K = 0
3: while outdegree(s1) 6= 0 do
4: K = K + 1
5: while all the nodes have been selected as a destination t do
6: find the shortest path pK between O-D pair (s1, t)
7: Put ∀(u, v) ∈ pk in G[K]

8: end while
9: Remove ∀(u, v) ∈ pK from GD

10: outdegree(s1) = outdegree(s1)− 1
11: end while
12: return G[k], k = 1, ..., K as the set of disjoint logical topologies

Not only does having fully disjoint topologies reduce the size of a routing table

associated with each topology, but it increases the failure resiliency in the network.

6.5.2 Finding The Best Logical Topology

After finding all the edge-disjoint topologies in the network, all possible candi-

dates need to be chosen for a given flow, in a way that each one complies with the

flow’s requirement. Algorithm 2 describes how the best set of logical topologies

would be chosen by taking into the account the flow’s traffic class τ and its SLA

based delay constraint Dτ . Based on the proposed algorithm, for each logical

topology, if a delay of the path between two end points in less than the flow’s

delay constraint, the topology is added as one possible solution. If there is more

than one candidate, the path with the longest delay is selected.

Although this policy may violate routing efficiency, it is important to emphasis

that the cost introduced as an objective in the optimisation is related to the

congestion in the network, which is the convex function of link utilisation (Equa-

tion 6.3). In other words, the aim is to reduce the congestion in the network by

shifting the traffic from highly-loaded links to the lightly utilised ones. This can

help to reduce the total cost in the network.
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Algorithm 2 Finding Best Topology for Flow (rτs1t, D
τ )

1: for each G[k] do

2: if d(pk)
Dτ
≤ 1 then

3: Add G[k] to the set of feasible solutions χr
4: χr = χr + 1
5: end if
6: end for
7: switch χr do
8: case ‖χr‖ = 0
9: No feasible path is found to comply with SLA

10: case ‖χr‖ = 1
11: Send the flow (rτs1t, D

τ ) through the only possible topology

12: case ‖χr‖ > 1

13: Select a topology with the highest d(pk)
Dτ

value

14: end switch

6.6 Performance Investigations

This section presents the numerical results obtained to measure the effectiveness

of the proposed scheme. All the experiments are performed on a 2.0GHz PC with

2GB of memory. A real topology and traffic matrices are taken from Internet2

network, formerly known as Abilene [117].

The Internet2 router-level topology, shown in Figure 6.3, contains 9 advanced

layer-3 nodes and 26 links, all of which have 10Gbps capacity. The delay of each

link is set to an average of one week of observation obtained from OWAMP-

Internet2 Network IPv4 Latency [118]. For traffic input 6 months of traffic de-

mands driven from Abilene Observatory, publicly available at [119], is used.

Algorithms

The algorithms evaluated in this work are as follows:

• Default-Metric: In this algorithm, used by the Interior Gateway Protocols

(IGP) e.g., OSPF, default weights are assigned to the links in operational

networks. In this work the default IGP metrics assigned to the Internet2

topology are taken from [117].
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Figure 6.3: Internet2 connections [117]

• InvCap: This algorithm, commonly used by Cisco routers, sets the weights

proportional to the inverse of the link capacity and runs OSPF [120].

• MDelay: In this algorithm, traffic demands are distributed in a given net-

work based on the proposed scheme. Since the Internet2 network topology

can guarantee the existence of two disjoint paths for each node pair, a

traffic demand between each pair is divided into two classes with different

SLA requirements: data and multimedia. The number X next to MDelay

(MDelay-X%) in the upcoming figures shows the multimedia share of the

total traffic between each node pair.

• Optimal: In this algorithm, Optimal traffic routing for a given topology

and traffic demands are calculated, and used as a baseline for the compar-

isons.

All the algorithms have been implemented by using the IBM ILOG CPLEX [121]

as the optimisation solver.
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Performance Metrics:

The following two performance metrics are used to make comparisons between the

algorithms: (i) the cost defined as an objective in our optimisation equation. The

cost is proportional to the maximum of traffic to capacity of a link, and therefore,

the small value of cost indicates the lower link utilisation. (ii) cost ratio defined

as the ratio of the cost of using each algorithm to the cost of the optimal routing

for given traffic matrices and network topology. For both metrics, lower values

indicate more efficient resource utilisation, and hence are preferred.

Evaluation Results:

This part compares the cost of the different algorithms versus the time interval

in the Internet2 topology. Each time interval spans five minutes traffic matrix,

starting from 8 AM (interval 100) in the morning to 5 PM (interval 200) in the

afternoon. Based on this scale on hour period is represented by 12 intervals, each

expanding for 5 minutes. Figure 6.4 shows the cost of using each method during

the 4 different days of the Abilene traces. The days are extended from the one

with the relatively steady traffic without having sudden and unexpected traffic

spikes (April 9, Figure 6.4(a)) to the ones with the sudden increases in traffic

demands during different times of the day (April 10, 12 and 14, Figure 6.4(b),(c)

and (d)).

As shown in Figure 6.4(a), on April 9 the network has steady-state traffic demands

with a very low network utilisation. Note that unlike Figure6.4(a) where the

maximum cost is extended upto the 0.09, the other figures have a maximum

cost of more than one. The reason of selecting lower unit in Figure6.4(a) is to

highlight the drawback of the proposed scheme more clearly. The average optimal

cost is less than 5% and there is no bottleneck link in the network at a given level

of traffic. Conceivably, DMetric has the highest cost followed by the MDelay

and InvCap. For the proposed scheme (MDelay), it is assumed that 25% of the

total traffic between each node pair is for multimedia traffic and the rest is data.

The result shows that when the network utilisation is very low, the cost of the

proposed scheme is close to the InvCap and its worst-case cost does not exceed

the one obtained by the DMetric. The result obtained is expectable. When the

127



An Efficient QoS-Based Routing in Backbone Networks

100 120 140 160 180 200
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time Interval

C
os

t

 

 

DMetric
InvCap
Optimal
MDelay−25%

(a) Friday, April 9

100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Interval

C
os

t

 

 

DMetric
InvCap
Optimal
MDelay−25%

(b) Saturday, April 10

100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Interval

C
os

t

 

 

DMetric
InvCap
Optimal
MDelay−25%

(c) Monday, April 12

100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

Time Interval

C
os

t

 

 
DMetric
InvCap
Optimal
MDelay−25%

(d) Wednesday, April 14

Figure 6.4: Time interval plots of cost, Abilene traces
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network is highly over-provision for a given traffic demand, forcing some parts of

traffic to follow the longest path would increase the cost in the network.

Next the performance of algorithms when the network experiences sudden and

unexpected traffic spikes several times in a day, as is the case for the rest of the

days in Figure 6.4, is evaluated. To make it more clear, few intervals in the day

are focused. As shown in Figure 6.4(b), the network suffers sudden peak in the

traffic at interval 161, increasing the optimal cost to almost 30%. Both DMetric

and InvCap drive the traffic intensity of the bottleneck link to be 100% more than

the optimal value, resulting in a three-fold increase in their costs (according to

the cost function defined in Equation (6.3)). However, it is interesting to observe

that the proposed scheme (MDelay) can achieve close to optimal performance.

Next, the cost ratio of the algorithms with respect to the optimal cost as a

baseline is evaluated. Moreover, it is of interest to analyse the effect of increasing

the multimedia share of the total traffic on the proposed scheme performance.

Therefore, the cost ratio of the MDelay with the multimedia share of the total

traffic to be equal to 25, 35 and 50 percent of the demand between each node

pair is studied. Figure 6.5 depicts the results of all 4 days. The time intervals are

sorted in the ascending order of the cost ratio. It is worth noting that for DMetric

and InvCap the worse cost ratios (the ones with the higher values) belong to the

intervals when the network experiences the sudden traffic spikes (e.g. interval

161 on April 10) or high link utilisation (e.g. interval 180 on April 12). However,

in the proposed scheme the majority of worse performance ratios happen during

the times when the network is highly in the over-provision state and predictable.

Results also show that the proposed scheme performs well under increasing the

multimedia share of the total traffic (Figure 6.5, MDelay-25%, MDelay-35% and

MDelay-50%).

The results indicate that except for the time when the network is highly un-

derutilised (e.g. on April 9), the proposed scheme outperforms other algorithms

while at the same time tries to comply with the delay requirements of each flow.

This makes the scheme more competent for future Internet with the multimedia

real-time traffic being deemed to be dominant. Forcing flows to chose the longest

acceptable paths and keeping the shortest path for the most eligible traffic can

alleviate the effect of heterogeneous and bursty nature of multimedia traffic.
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Figure 6.5: Time interval plots of cost ratio, Abilene traces
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The summary of the cost ratio is given in Figure 6.6. The figure compares the

algorithms, including the proposed scheme with different percentages of multime-

dia traffic, from April 9 until April 14. The time intervals are sorted in ascending

order of the cost ratio. The result indicates that even by increasing the share of

multimedia traffic, the proposed scheme can perform well.

Going through all outcomes of experiments, the following conclusions can be

made: (i) the proposed scheme is good at optimising the unexpectable traffic

spikes or heavy traffic demands between pairs, (ii) it can achieve an acceptable

performance under a highly over-provisioning network due to low traffic demands,

(iii) it takes into account the QoS based requirements of the flow.
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Figure 6.6: Cost ratio of Abilene between April 9-14

6.7 Summary

In this chapter, a new traffic engineering approach based on multi-topology rout-

ing was proposed. The proposed scheme provided the efficient load distribution

in an IP network. Exploiting the multi-topology routing protocols, the scheme
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forces the traffic to go through the longest acceptable path, sparing the shortest

paths for the most legitimate traffic, the one with the tight SLA requirements.

The simulation results, based on the Internet2 routing-level topology and traffic

matrices, showed that the proposed scheme can be a competent approach for

future networks, with the multimedia traffic being dominant and in severe needs

of the QoS based routing approaches.
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Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

This thesis has proposed a new mechanism that provided an end-to-end QoS pro-

visioning in mobile networks. The proposal was of two tiers in which the lower tier

concentrated on the QoS guarantees in access networks, while the other focused

on the QoS-aware routing in backbone networks. The main objectives of this

design have been to not only tackle the inefficiency of QoS signalling protocols,

i.e., RSVP and NSIS, in mobile environments, but provide an efficient QoS-aware

routing of flows, with the objective of minimising network congestion, in back-

bone networks. The mechanisms proposed are independent from each other, and

therefore, can be applied separately or in combination. The breakdown of the

major contributions can be listed as follows:

• An efficient RSVP mobility support mechanism in Hierarchical Mobile IPv6

(HMIPv6) networks was proposed. The architecture of the scheme, in terms

of the mobility management and resource reservation, are elaborated in

detail. The results obtained showed that not only does the scheme reduce

the signalling overhead, but also the interruption in QoS at the time of

handover.

• An efficient QoS-aware routing, based on the multi-topology routing ap-

proach, was proposed. New algorithms are introduced. To evaluate the

degree of sub-optimality in the proposed scheme, an optimisation frame-
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work is presented that intends to minimise the cost of congestion in the

network, subject to newly defined constraints in compliance with the pro-

posed mechanism.

Of the two, the first proposed technique, which is applicable to access networks,

intended to improve the efficiency of QoS-enabled mobility management, with a

light change in the existing infrastructure and protocols. It aimed to minimise the

signalling overhead, as well as the interruption in QoS at the time of handover,

by localising the QoS re-establishment to the affected parts of the path in the

domain. To that end, the proposed architecture was comprised of the multi-layer

mobility agent in the host-based localised mobility management environment,

i.e., HMIPv6-based network, and the pre-configured RSVP tunnel established

between them. The former localised the mobility management and resource re-

establishment processes to the hierarchically distributed sub-domains, resulting

in a decrease of the signalling cost. The latter alleviated the long resource re-

establishment latency at the time of handover. The performance of the proposed

scheme was thoroughly investigated by means of the developed analytical frame-

work, and the network-level simulation scenario conducted in NS-2. Various fig-

ures of merit including the resource re-establishment latency; the network-layer

signalling cost and the effect of the number of mobile nodes and their average

cell residence time on it; the number of packet loss; and the number of packets

treated as a best-effort, were used to verify the efficiency of the proposed scheme.

With regards to the core networks related to the second contribution, a new QoS-

aware routing, based on the multi-topology routing approach, was introduced.

The proposed approach aimed to minimise the cost, in terms of the load on each

link, with respect to how to select longest possible routes that comply with the

flows’ requirements. To that end, heuristic algorithms were presented to extract

fully edge-disjoint logical views of a network in which the delay of the longest path

is lower than the acceptable upper bound delay. After extracting the topologies,

traffic is routed through the longest path that is in compliance with the negotiated

SLA. Applying this strategy, the proposed scheme can ensure that the shortest

paths in the network are always used by the flows with the tightest requirements.

To investigate the performance of the new scheme, the optimisation framework

was presented, aiming to minimise the congestion cost of the network subject to
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defined constraints. Using a real topology and traffic matrices, the degree of sub-

optimality was verified. The results obtained showed that the efficient resource

utilisation, even under unpredictable traffic spikes, can be ensured, while at the

same time the traffic need can be fulfilled by the selected path.

In addition to the main contributions discussed above, this research work pro-

vided the following complementary contributions: The applicability of the pro-

posed scheme to the existing QoS and mobility management protocols in a similar

context, in particular NSIS and the network-based localised mobility management

protocol, was investigated. To that end, the proposed architecture was used to in-

crease the efficiency of the NSIS signalling protocol in the PMIPv6 environment,

reducing its long resource re-establishment latency and high signalling cost. The

numerical results obtained by means of the analytical model indicated that hav-

ing multi-layer mobility agent in PMIPv6 with the pre-configured NSIS sessions

between them can mitigate the costs imposed by the NSIS rich functionalities.

In order to justify the decision of selecting RSVP as the first choice of this work

for QoS signalling in access networks, in spite of presence of the NSIS, the pro-

posed analytical framework was adopted to make a clear comparison of NSIS

and RSVP operations in mobile networks. Several metrics, such as the network

signalling cost, the amount of bandwidth consumed by signalling messages and

the resource re-establishment latency, were thoroughly investigated. The results

achieved highlighted the significant costs of using the NSIS appealing features as

compared to RSVP. Having these insights, one can get clear insights about the

pros and cons of using NSIS in access networks.

7.2 Future Work

In this section, I would like to open the following interesting issues, that among

many others, can be continued as future work.

• New QoS Signalling for Access Networks

QoS provisioning in access networks has been a challenging issue in recent

years. The vast majority of research has concentrated on extending the ex-

isting QoS signalling protocols for QoS provisioning in mobile environments.
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However, the lack of an internal mechanism for mobility support in these

protocols, which were originally designed in the context of a static environ-

ment, always causes sub-optimal performance in mobile networks. To fulfil

the stringent demand for high quality for the ever-increasing bandwidth

starved applications, there is a great need to have new QoS signalling which

considers mobile environment characteristics, at its initial design stage. The

lessons taken from the RSVP and NSIS shortcomings in mobile networks

can shed light on understanding this path.

• Traffic Optimisation in Mobile IP networks

Using traffic optimisation for QoS provisioning in backbone networks, due

to its amount of traffic volume, has become a very intense research field in

recent years. However, the deluge of bandwidth-starving applications for

mobile users, peaking during the daily commute with 70% usage [122], as

well as the upcoming changes in users’ traffic types, has opened up a whole

new area of challenges not only for backbone networks, but also for access

networks. It has been estimated that these changes will lead to the 13-fold

increase in global mobile data traffic between 2012 and 2017. While mobile

video traffic exceeded 50% of traffic for the first time in 2012, it is expected

to increase 16-fold by 2017 [123]. If not foreseen appropriately, the changes

in amounts and patterns of traffic can lead to a significant inefficiency of

traffic routing in access networks. It is believed that the use of QoS-aware

traffic optimisation, in the context of the mobility in IP networks, is a new

area with a great scope of innovation. Therefore, applying the optimisation

ideas introduced in this thesis to mobile networks, wherein there are areas

of congestion created due to the presence of the mobility anchor points, can

yield interesting insights.
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