
MX 0100433 6

live rsit̂ j Library-.

Providing a Formal Linkage between M D G and

HOL Based on a Verified M D G System /

/

A thesis submitted to Middlesex University

in partial fulfilment of the requirement for the degree of

Doctor of Philosophy

Haiyan Xiong

School of Computing Science

Middlesex University

January 2002

Site MIDDLESEX
UNIVERSITY

LIBRARY

Accession
No. C 1 U 0 4 3 3

Class
No.

OoL+ . 0\S\

y
Special
Collection

Abstract

Formal vérification techniques cari be classified into two catégories: deductive the-

orem proving and symbolic state enumeration. Each method has complementary

advantages and disadvantages. In general, theorem provers are high reliability Sys­

tems. They can be applied to the expressive formalisms that are capable of model-

ing complex designs such as processors. However, theorem provers use a glass-box

approach. To complete a vérification, it is necessary to understand the internal'

structure in detail. The learning curve is very steep and modeling and verifying a

System is very time-consuming. In contrast, symbolic state enumeration tools use a

black-box approach. When verifying a design, the user does not need to understand

its internai structure. Their advantages are their speed and ease of use. But they

can only be used to prove relatively simple designs and the system security is much

lower than the theorem proving system. Many hybrid tools have been developed to

reap the benefits of both theorem proving Systems and symbolic state enumeration

Systems. Normalìy, the vérification results from one system are translated to another

system. In other words, there is a linkage between the two Systems. However, how

can we ensure that this linkage can be trusted? How can we ensure the vérification

system itself is correct?

The contribution of this thesis is that we have produced a methodology which

can provide a formai linkage between a symbolic state enumeration system and a

theorem proving system based on a verified symbolic state enumeration system. The

methodology has been partly realized in two simplified versions of the M D G system

i

(a symbolic state enumeration system) and the H O L system (a theorem proving

system) which involves the following three steps. First, we have verified aspects of

correctness of two simplifìed versions of the M D G system. We have made certain that

the semantics of a program is preserved in those of its translated form. Secondly, we

have provided a formai linkage between the M D G system and the HOL system based

on importing theorems. The M D G verifìcation results can be formally imported

into HOL to form the HO L theorems. Thirdly, we have combined the translator

correctness theorems with the importing theorems. This combination allows the low

level M D G verifìcation results to be imported into H O L in terms of the semantics of a

high level language (MDG-HDL) . We have also summarized a genera! method which

is used to prove the ex is ten t ia l theorem for the specification and implementation

of the design. The feasibility of this approach has been demonstrated in a case study:

the verifìcation of the correctness and usability theorems of a vending machine.

ii

Acknowledgments

I have been very fortunate to have had Dr. Paul Curzon, Prof. Ann Blandford

and Prof. Sofiene Tahar as my supervisors. I am deeply grateful for their support

and encouragement throughout my Ph.D studies. I am most indebted to them for

the considerable amount of time they each devoted to me in my research work. I

extend my deepest thanks especially to Dr. Paul Curzon, without whose invaluable

guidance I could not have completed this work.

In this thesis, several of the chapters are based on publications that were pro­

duced in the course of this research. The papers published jointly with my supervi­

sors were all first-authored by me, and all report on my own work, completed under

their supervision [78 - 83]. The work reported in Chapter 5 realized a general idea of

Curzon and Tahar [80]: I formalized that idea in HOL. The work reported in Chap­

ter 8 takes an example that was originally developed by Curzon and Blandford [24],

and applies the approach developed within this thesis to that same example. The

M D G verification was completed with the help of Tahar. A l l the HOL proof is my

own work, again completed under their supervision.

I would like to thank people in the Automated Reasoning Group in Cambridge

and the M D G group in Montreal, Prof. Mike Gordon, Dr. Konrad Slind, Dr.

Michael Norrish, Joe Hurd, Dr. Richard Boulton and Prof. Tom Melham. When I

have needed help they have always lent me a hand. I have benefitted so very much

iii

from their vast knowledge and insight.

I am particulariy thankful to Dr. Wai Wong, who not only introduced me to

this Meld, but also provided a great deal of assistance.

Many thanks to Sardia, who provided fabulous administrative support, and to

Leonard, who was always available whenever I had problems with my computer.

I would like to reserve my deepest thanks for my parents for their perpetuai love

and encouragement, and to my husband and my son for their sacrifices and patience.

I can never thank them enough.

Lastly, I would like to acknowledge the support obtained from the School of

Computing Science, Middlesex University and E P S R C grant GR/M45221.

Haiyan Xiong

iv

Contents

Abstract ii

Acknowledgments iv

1 Introduction 1

1.1 The M D G System 5

1.2 The H O L System 7

1.3 Overview of the Research 8

1.3.1 Verifying the M D G Translators 10

1.3.2 The Importing Theorems 16

1.3.3 Combining the Translator Correctness Theorems with the Im­

porting Theorems 18

1.3.4 Proving the Existential Theorem 21

1.4 Outline of Thesis 22

v

2 Literature Review 26

2.1 Semantic Embedding 27

2.2 Verifying Verification Systems 29

2.3 Verifying Compiler Correctness 32

2.4 Trusting Combined Systems 35

3 Verifying the M D G Translators for a Boolean Subset 42

3.1 The Syntax of the M D G - H D L Language 43

3.2 The Syntax of the Core M D G - H D L Language 48

3.3 The Syntax of the M D G Formula Representation Program 48

3.4 Translating M D G - H D L into the Core M D G - H D L Language 50

3.5 Translating the Core M D G - H D L Program into the M D G Formula

Representation Program 52

3.6 The Semantics of the M D G - H D L Program 56

3.7 The Semantics of the Core M D G - H D L Program 63

3.8 The Semantics of the M D G Formula Representation Program 64

3.9 Translator Correctness Theorems 66

4 Verifying the M D G Translator for the Extended Subset 70

4.1 State Transitions of the Fairisle Switch Fabric Timing Block 71

vi

4.2 The Syntax of the M D G - H D L Language 73

4.3 The Syntax of the Core M D G - H D L Language 75

4.4 Compiling M D G - H D L into the Core M D G - H D L Language 76

4.5 The Semantics of the M D G - H D L Program 77

4.6 The Semantics of the Core M D G - H D L language 85

4.7 Translator Correctness Theorem 87

5 Importing Theorems 89

5.1 Combinational Verification 92

5.2 Sequential Verification 92

5.3 Invariant Checking 96

6 Combining the Compiler Correctness Theorems with the Importing

Theorems 99

6.1 Combining the Translator Correctness Theorems with the Importing

Theorems for a Boolean Subset 102

6.1.1 Combinational Verification 102

6.1.2 Sequential Verification 105

6.2 Combining the Translator Correctness Theorem with the Importing

Theorems for an Extended Subset I l i

6.2.1 Combinational Verification I l i

vii

6.2.2 Sequential Verification 112

7 Existential Theorems 115

7.1 Existential Theorem for the Extended Subset 118

7.2 The Output Representation for the Basic M D G - H D L Components . . 119

7.3 The Output Representation for T A B L E Components 121

7.4 Dealing with the Existential Quantified Internal Variables 126

7.5 An Example 127

8 Case Study: Verification of the Correctness and Usability Theo­

rems of a Vending Machine 131

8.1 Chocolate Machine 134

8.2 Proving the Chocolate Machine using the M D G System 134

8.2.1 The Implementation 136

8.2.2 The Specification 139

8.2.3 Three Other Specification Files 141

8.3 The Importation Process of the Verification Results 141

8.3.1 The Syntax and the Semantics of the Chocolate Machine . . . 142

8.3.2 Importing the M D G Results into HOL 146

8.4 Verification of the Usability Theorems 151

viii

9 Conclusions and Future Work 156

9.1 Conclusions 156

9.2 Future work 161

A The Abstract Syntax of a Boolean Subset 174

B The Abstract Syntax of an Extended Subset 177

C The MDG-HDL programs of the vérification of the Chocolaté Ma­

chine 180

ix

List of Figures

1.1 Overview of the Research 9

1.2 The A N D Table 11

1.3 Overview of the M D G Translation Phases 11

1.4 The AND Gâte in the M D G Formula Représentation 12

1.5 The M D G Translation Phases 12

1.6 Compilation Correctness 14

1.7 Hierarchical Vérification 17

1.8 The M D G Vérification Process 20

2.1 The M D G Vérification System 32

3.1 The Circuit Description File of Three N O T Gates and One Register . 44

3.2 The Syntax of a NOT Gâte Table 46

3.3 The Abstract Syntax of a Core M D G - H D L Program 49

x

3.4 The Syntax of an A N D Gate Table 51

3.5 Translating the M D G - H D L program into the Core M D G - H D L program 53

4.1 State Transitions of the Fairisle Switch Fabric Timing Block 72

4.2 The Behavior of the Fairisle Switch Fabric Timing Block 72

5.1 The Hierarchy of Module A 90

5.2 The Product Machine used in M D G Sequential Verification 93

5.3 The Machine Verified in Invariant Checking 96

6.1 Combining the Translator Correctness Theorems with Importing The­

orems for a Boolean Subset- 100

6.2 Combining the Translator Correctness Theorems with Importing The­

orems for an Extended Subset 101

6.3 Two Equivalent Combinational Circuits 104

6.4 The Machine used for Sequential Verification of the R E G N O T 3 M

Circuit 108

7.1 The Output of a TABLE is a State Variable and Contains in the Input

list 124

7.2 A Circuit 127

8.1 The Chocolate Machine 135

xi

8.2 The Circuit of the Chocolate Machine 137

8.3 The State Transition Diagram of the Chocolate Machine 139

8.4 The Abstract Syntax of the Specification File 144

8.5 The Abstract Syntax of the Implementation File 145

8.6 The Semantics of the Specification File 147

8.7 The Existential Theorem of the Specification of the Chocolate Machinel49

xii

Chapter 1

Introduction

Formal methods are the application of applied mathematics - formal logie - to the

design and analysis of computer Systems. Generally, formal verification techniques

can be classified into two categories: deduetive theorem proving and symbolic state

enumeration. In deduetive theorem proving Systems, the correetness condition for

a design is represented as a theorem in a mathematical logie, and a mechanically

checked proof of this theorem is generated using a general-purpose theorem prover.

In symbolic state enumeration Systems, the design being verifìed is represented as a

decision diagram. Techniques such as reachability analysis are used to automatically

verify given properties of the design or machine equivalence. Much of this work is

based on Binary Decision Diagrams (BDD) [4] [11].

Deduetive theorem proving Systems use interactive proof methods. In these

Systems, an implementation and its behavioral specifìcation are represented as first-

order or higher-order logie formuìas. The user interactively construets a formai proof

which proves a theorem stating the correetness of this implementation. Theorem

proving Systems are naturally deduetive process Systems. They aìlow a hierarchical

verification method to be used to model the overall functionality of designs with

complex datapaths. They are very general in their applications. The theorems can

1

not only be used to formalize a specific design but also can be abstracted as a general

Situation of this class of design. Theorem proving Systems are semi-automated. To

complete a vérification, experts with good knowledge of the internal structure of the

design are required to guide the proof searching process. This enables the designer

to gain greater insight into the system and thus achieve better designs. However,

the learning curve is very steep, modelling and verifying a system is very time-

consuming. This is the major difficulty to applying the theorem proving Systems in

industry.

In contrast, symbolic state enumeration Systems are automated décision dia-

gram approaches. In this kind of approach, an implementation and its behavioral

spécification are represented as décision diagrams. A set of algorithms is used to

efficienti}' manipulate the décision diagrams so as to get the correctness results. The

introduction to the B D D based method by Hu [47] may be taken as a good référ­

ence. In contrast to the theorem prover, symbolic state enumeration vérification is

a relatively modest activity. It normally deals with a single model rather than the

whole design. The symbolic state enumeration vérification approach can be viewed

as a black-box approach. Düring the vérification, the user does not need to under-

stand the internal structure of the design. The strength of this approach is its speed

and ease of use. However, it does not scale well to complex designs since it uses

non-hierarchy state-based descriptions of the design. A n increase in the number of

design components can resuit in the state space growing exponentially.

In the 1990s, the efficiency breakthrough in symbolic state enumeration was such

that industry has successfully applied symbolic state enumeration tools in digitai

circuit synthesis and vérification. Since then, more and more tools have been devel-

oped including Spin [45], M D G [20], STE [72] and so on. Although they have been

very successfully used in industry, there are stili many deficiencies in the currently

available symbolic state enumeration tools. Although the symbolic state enumera­

tion based tools can be applicable to circuits of considérable size, they stili do not

scale up sufficiently. However, the theorem proving Systems can be applied to large

2

designs in theory, although in practice it is time consuming. One solution is to com­

bine thèse two kind of Systems to reap the advantages of both. This combination

allows the fully automated proof tools to rely on a theorem proving system and the

increasing size and complexity of a design can be handled in practice.

Recently, there has been a great deal of work concerned with combining the

theorem proving and symbolic state enumeration Systems. A common approach

to combining proof tools is to use an symbolic state enumeration system as an

oracle to provide results to the theorem proving system. The issue in such work

is to guarantee that the results provided by external tools are theorems within the

theory of the proof system. In other words, an oracle is used to receive problems

and return answers. For example, the HOL system provides approaches for tagging

theorems that are dépendent on the correctness of external vérification tools. An

oracle can be built in the HOL system is viewed as a plug-in. This brings about two

questions.

1. Can we ensure the automated vérification system produces the correct results?

2. Have the vérification results from an automated vérification system been cor-

rectly converted into a valid theorem in the current theory of the theorem

proving system?

The research describe here investigates the answers to the above two questions.

In fact, some symbolic state enumeration based Systems such as M D G [20] consist

of a séries of translators and a set of algorithms. Higher level languages such as

hardware description languages are used to describe the spécification and imple-

mentation of the design. The spécification and implementation are then translated

into the décision diagrams via intermediate languages. The algorithms in the system

are used to efficiently and automatically deal with the décision diagrams so as to

obtain the correctness results. We need to verify the translators and algorithms in

order to get the answer of the first question. For solving the second question, we

need to formally justify the correctness results, which are obtained from a symbolic

3

state enumeration system, into a theorem prover, to ensure the correctness of the

theorem création process.

In this thesis, we wil! produce a methodology, which can provide a formai link-

age between a theorem proving system and a symbolic state enumeration system

based on a verified symbolic state enumeration system, to ensure the correctness of

the theorem création process. We first need to verify aspects of correctness of the

symbolic state enumeration system in an interactive theorem proving system. We

then need to prove the translators and algorithms to ensure the correctness of the

system. By combining the translator correctness theorems with the importing the-

orems, the vérification results from the state enumeration system can be imported

into the theorem proving system in terms of the semantics of high leve] language

(HDL) rather than low leve! language (décision graph). We also need to summarize

a general method to prove the ex i s t en t i a l theorem of the design, which is needed

for importing sequential vérification resuit into the theorem proving system.

We will partly realize the methodology in the HOL system and two simpli-

fied versions of the M D G system. We will prove the correctness of aspects of the

simplified versions of the M D G system and provide a formai linkage between the

HOL system and the simplified versions of the M D G system. Lessons from the

research could be applicable to other related Systems. We chose HOL and M D G

because this research is part of a large project in collaboration with the Hardware

Vérification group at Concordia University. They are developing a hybrid system

(MDG-HOL) [54] [53] [66] which combines the M D G system and the H O L system.

Our aim is différent to theirs. We are not developing a practical tool. We are do-

ing theoretical research about how to verify the M D G system and provide a formai

linkage between the HOL system and the M D G system. Our deep embedding se­

mantics is in terms of the spécification of the M D G system. Since we will consider

the simplified versions of the M D G system, in the rest of this thesis, we will refer

to the simplified versions of the M D G system as 'the M D G system' except in the

section 1.1.

4

In the research, we first consider verifying the translation phases of the M D G

system using the HOL system and obtain a series of correctness theorems. By

combining those theorems, we obtain that the semantics of a low level M D G program

equals the semantics of a high level M D G - H D L program (the M D G input language).

We then consider how to formally import the M D G verification results to a form

that can be used in the H O L system. We formalize the M D G verification results

in terms of the semantics of the low level M D G program and turn them into HOL

to form the HOL theorems. By combining the translation correctness theorems

with the importing theorems, we obtain theorems which convert the low level M D G

verification results into HOL to form the HOL theorem based on the semantics of

the M D G input language. In other words, this combination allows the imported

theorem to be in terms of the semantics of the M D G - H D L . For easily importing

the M D G results into HOL for sequential verification, we summarize a general way

to prove the ex i s ten t ia l theorem (a theorem which has form: V i p . 3 op. C ip

op). A l l the theorems in this thesis written with \ - t h m have been proved in HOL.

The structure of the rest of this chapter is as follows: In sections 1.1 and 1.2,

we will briefly introduce the M D G system and the HOL system respectively. An

overview of the research will be given in section 1.3. Finally, an outline of this thesis

will be presented in the last section.

1.1 The MDG System

The full M D G system is an automated verification tool for hardware verification. It

uses a new class of decision graphs called Multiway Decision Graphs, which subsume

the class of Bryant's Reduced and Ordered Binary Decision Diagrams (ROBDD) [12]

while accommodating abstract sorts and uninterpreted function symbols.

A multiway decision graph (MDG) is a finite directed acyclic graph G where the

leaf nodes are labeled by formulas, the internal nodes are labeled by terms and the

5

edges issuing from an internal node, N, are labeled by terms of the same sort as the

label of N. Such a graph represents a formula defined inductively as follows:

1. If G consists of a single leaf node labeled by a formula P, then G represents P,

2. If G has a root node labeled A with edges labeled B\...Bn leading to subgraphs

Gi'...Gn', and if each G/ represents a formula Pi, then G represents the formula

Vi<1<n((A = Bi)APi).

In fact, when an M D G has been constructed as a graph, it must obey the restrictions

that any path from the root to leaf yields a canonical representation. Like ROBDDs,

an M D G must be reduced and ordered. Unlike ROBDDs, all the variables used in

an M D G must have appropriate sort, and sort definitions must be provided for all

functions. M D G can also represent the transition and output relations of a state

machine, as well as the set of possible initial states and the sets of states that arise

during reachability analysis.

The underlying logic of M D G is a subset of many-sorted first-order logic with a

distinction between concrete and abstract sorts. A concrete sort has an enumeration

while an abstract sort does not. Therefore, a data signal can be represented by

a single variable of abstract sort and a data operation can be represented by an

uninterpreted function symbol. It partially fulfills the aim of interactive verification

to verify hardware designs automatically at a high level of abstraction. It also lifts

many R O B D D techniques from the boolean domain to a more abstract domain. In

particular, a data signal in an M D G is represented by a single variable of abstract

sort rather than a vector of boolean variables, and the data represents an operation

by an uninterpreted function symbol. Therefore, MDGs are more compact than

ROBDDs for circuits having a datapath, and this greatly increases the range of

circuit that can be proved.

The M D G package has been implemented in Prolog. Algorithms such as disjunc­

tion, relational product (combination of conjunction and existential quantification),

6

pruning-by-subsumption (for testing of set inclusion) and reachability analysis (using

abstract implicit enumeration) have been developed. Applications for hardware véri­

fication such as combinational vérification, sequential vérification, invariant checking

and model checking are provided.

1.2 The HOL System

The HOL system is an L C F (Logic of Computable Functions) style proof system. It

uses higher-order logie to model and verify a system. There are two main différent

proof methods: forward and backward proof. In forward proof, the Steps of a proof

are implemented by applying inference rules chosen by the user, and H O L checks

that the Steps are safe. A l l derived inference rules are built on top of a small number

of primitive inference rules. In backward proof, the user sets the desired theorem as

a goal. Small programs written in S ML [65] called tactics and tacticals are applied

to breaking the goal into a list of subgoals. Tactics and tacticals are repeatedly

applied to the subgoals until they can be resolved. A justification function is also

created mapping a list of theorems corresponding to subgoals to a theorem that

solves the goal. In practice, forward proof is often used within backward proof to

convert each goal's assumptions to a suitable form.

Theorems in the HOL system are represented by values of the M L abstract type

thm. There is no way to construct a theorem except by carrying out a proof based on

the primitive inference rules and axioms. More complex inference rules and tactics

must ultimately cali a séries of primitive rules to do the work. In this way, the M L

type system proteets the H O L logie from the arbitrary construction of a theorem,

so that every computed value of the type-representing theorem is a theorem. The

user can have a great deal of confidence in the results of the system.

HOL has a rudimentary library facility which enable théories to be shared. This

provides a file structure and documentation format for self contained H O L deveì-

7

opments. Many basic reasoners are given as libraries such as mesonLib, simpLib,

decisionLib and bossLib. Thèse libraries integrate rewriting, conversion and déci­

sion procédures that automate a proof. They free the user from performing low-level

proof.

1.3 Overview of the Research

The intention of our research is to explore a way of increasing the degree of trust

of the M D G system and provide a formai linkage between the HOL system and the

M D G system as shown in Figure 1.1. This work can be divided into three steps. (a)

We must verify the correctness of the M D G system using the H O L system. It con-

sists of two phases-(l) vérification of the translators [82] and (2) vérification of the

algorithms. (b) We then must prove theorems (step 3 in Figure 1.1), which formally

convert the vérification results of différent M D G applications into the traditional

HOL hardware vérification theorems [80]. (c) By combining the correctness theo­

rems (theorems obtain from step 1, 2 in Figure 1.1) of the vérification of the M D G

system with the importing theorems (theorems obtain from step 3 in Figure 1.1),

the M D G vérification results can be imported into HOL in terms of the M D G input

language.

During this study, we concentrate on the vérification of the translation phase of

the M D G System (step 1, Figure 1.1) using the HOL theorem prover and importing

the M D G results into HOL to form the HOL theorems (step 3, Figure 1.1) [80]. Step

2 is similar to Chou and Peled's work [17] which vérifies a partial-order réduction

technique for model checking. Verifying the algorithms is beyond the scope of this

thesis, as we are primariiy concerned with the linkage and how it could be combined

with the correctness theorems and importing theorems. We outline the methodol-

ogy of the whole story and emphasize the importation process of the hybrid system.

We not only verify the correctness of aspects of the M D G system in HOL, but also

formally import the M D G results into HOL to form the HOL theorems based on the

8

M D G H D L

Trans lalor

1.

Verify the trans) aio r

M D G decisi on graphs

M D G verif. algorithms mT̂
2.
Verify the algorithms

Results (Yes/No)

c Con versi on
3.
Verify the conversion

Traditional HOL theorems

Figure 1.1: Overview of the Research

semantics of the high level M D G input language (MDG-HDL) [86] rather than the

semantics of the low level language. Since we use a deep embedding semantics, the

translator correctness theorems can be combined with other translator correctness

theorems and the importing theorems. These combinations allow the low level M D G

results to be converted into a form that can be easily reasoned about in HOL based

on the semantics of M D G - H D L . We also summarize the general method about prov-

ing the ex i s t en t i a l theorem to remove the bürden from the user of the combined

system. This theorem is needed for importing sequential verification result into the

theorem proving system.

In the remainder of this section, we will briefly introduce the individuai steps

that we have undertaken: verifying the translator correctness theorems, proving the

general importing theorems, combining the translator correctness theorems with

the importing theorems on the basis of deep embedding semantics and proving

the ex i s t en t i a l theorem. These will each be considered in detail in subsequent

chapters.

9

1.3.1 Verifying the MDG Translateurs

The input language of the M D G system is a Prolog-style hardware description lan-

guage (MDG-HDL) [86], which allows the use of abstract variables for representing

data signais. It supports structural spécification, behavioral spécification or a mix­

ture of both. A structural spécification is usually a netlist of components connected

by signais, and a behavioral spécification is given by a tabular représentation of

transition/output relations or a truth table. In M D G , a circuit description file dé­

clares signais and their sort assignment, components network, outputs, initial values

for sequential vérification and the mapping between state variables and next state

variables. In the components network, there is a large set of predefined components

such as logie gâtes, flip-flops, registers and constants, etc. Among the predefined

components there is a special component called a Table, which is used to describe

a functional block in the implementation and spécification. The Table constructor

is similar to a truth table, but allows first-order terms in rows. It also allows the

high-level description to construct ITE (If-Then-Else) formulas and C A S E formulas.

A table is essentially a séries of lists, together with a single final default value. The

first list contains variables and cross-terms. The last élément of the list is the output

of the table which must be a variable (either concrete or abstract). For example,

a two input AND gate can be described as the table as shown in Figure 1.2. In the

figure, "*" means "don't care". It states that if x l is equal to false and x2 is DON'T

CARE then the output y is equal to false, if x l is equal to true and x2 is equal to

false then the output y is equal to false, otherwise the output y is equal to true.

Most of the components in the M D G - H D L library are compiled into their own

core M D G - H D L code (tabular codes) first. The core M D G - H D L program can then

be compiled into an internai M D G décision graphs (MDGs). Some components, such

as registers, are implemented directly in terms of MDGs. However, in theory thèse

components also could be implemented as tables to provide general spécification

mechanism. We assume the M D G - H D L program is firstly translated into a core

M D G - H D L program and then the core M D G - H D L program is translated into M D G .

10

Table([[x l , x2, y], [0, * 0], [1, 0, 0]| 1])

INPUTS OUTPUT

xl i x 2 y

IF
F 1 * F

T ! F F

ELSE
T

(a) A N D gate table in M D G - H D L and core M D G - H D L

Figure 1.2: The A N D Table

MDH-HDL 111—>• core MDG-HDL ® MDG décision graphs

Figure 1.3: Overview of the M D G Translation Phases

In this situation, the M D G system could be specified as in Figure 1.3.

Because the Table constructor allows the high-level description to construct ITE

formulas and C A S E formulas, the possible input value of the else condition is not

listed in the table of the core M D G - H D L . For example, the possible input value for

the else condition of the AND gate table should be that if x l is equal to true and x2

is equal to true then the output y is equal to true. It is not contained in the table.

However, an internai M D G décision graph is determined in terms of ail possible

input value of its table which could be represented as a formula représentation.

Therefore, the M D G system translates the core M D G - H D L program into its formula

représentation first. In the M D G formula représentation program, the table not only

contains the input value of the if condition, it also contains the possible input value

of the else condition. For example, an AND gate can be described as shown in the

Figure 1.4.

11

INPUTS OUTPUT

xl ; x2 y

IF
F ! * F

T ' F F

ELSE x i T T

Figure 1.4: The AND Gate in the M D G Formula Representation

MDH-HDL ^ > core MDG-HDL ^ * MDG formula representation-^-^*- MDG decision graphs

Figure 1.5: The M D G Translation Phases

In other words, the step (2) in Figure 1.3 could be further divided into two steps.

The core M D G - H D L program is translated into the M D G formula representation

first and the M D G formula representation program can then be translated into

an internal M D G decision graph. Now, the M D G system could be specified as in

Figure 1.5.

Adopting this approach makes the translation phase more amenable to verifica­

tion. We are not verifying the actual M D G implementation. Rather our formaliza­

tion of the translator is a specification of it. Once combined with a translator from

core M D G - H D L to MDGs, it would be specifying the output required from the im­

plementation. This would be used as the basis for verifying such an implementation.

Effectively we split the problem of verifying the translator into the two problems

of verifying that the implementation meets a functional specification, and that the

functional specification then meets the requirement of preserving semantics. We are

concerned with the latter step here. This split between implementation correctness

and specification correctness was advocated by Chirica and Martin [16] with respect

to compiler correctness.

12

In our research, we intend to verify the translation phase of the M D G system

(Figure 1.5) based on the semantics of the M D G input language using the HOL

theorem prover. As we mentioned above, the M D G system can be considered as a

séries of translators, translating between différent intermediate languages, as shown

in Figure 1.6. The vérification process includes the following steps. Firstly, the

syntax and the semantics of the subset M D G - H D L , core M D G - H D L , M D G formula

représentation and M D G décision graph will be defined. A set of functions, which

translate the program from M D G - H D L to core M D G - H D L , from core M D G - H D L

to the M D G formula représentation and from the M D G formula représentation to

the M D G décision graph, will then be defined. For each program in M D G - H D L ,

core M D G - H D L or the M D G formula représentation, the compilation Operators

are defined as functions, which return their core M D G - H D L , the M D G formula

représentation or M D G décision graph code. Translation functions TransProgMC,

TransProgCF or TransProgFM are applied to each M D G - H D L program, core M D G -

H D L program or the M D G formula représentation so that the corresponding core

M D G - H D L program, M D G formula représentation program or M D G décision graph

program is established. In other words, the relations of the translations can be

represented as below:

V p. TransProgMC p = the core MDG-HDL program

or

V p. TransProgCF (TransProgMC p) =

the MDG formula representation program

or

V p. TransProgFM (TransProgCF (TransProgMC p)) =

the MDG decision graph program

The standard approach to prove a translator between two languages is in terms

of the semantics of the languages, shown in Figure 1.6. Essentially the translation

should preserve the semantics of the source language. This has the traditional form

of compiler spécification correctness used in the vérification of a compiler [16]. The

13

M D G - H D L

Syntax

(P)

MDG-HDL

Semantics
M D G - H D L

semantics p

TransProgMC

core M D G - H D L

Syntax

TransProgMC P

TransProgCF

M D G formula représentation

Syntax

TransProgCF (TransProgMC p)

TransProgFM

M D G décision graph

Syntax

TransProgFM (TransProgCF (TransProgMC p))

core MDG-HDL
Semantics core M D G - H D L

semantics (TransProgMC p)

MDG formula représentation

semantics

M D G formula représentation

semantics (TransProgCF (TransProgMCp))

MDG décision graph

Semantics M D G décision graph

semantics (TransProgFM (TransProgCF (TranProgMC p)))

Figure 1.6: Compilation Correctness

14

analogous method can be used to specify and verify the translation part of the

M D G system. For the translation to core M D G - H D L , the correctness theorem has

the form

V p. Semantics (p) = Semantics (TransProgMC p)

For the translation to the M D G formula representation, the correctness theorem has

the form

V p. Semantics (TransProgMC p) =

Semantics (TransProgCF (TransProgMC p))

For the translation to the M D G decision graph, the correctness theorem has the

form

V p. Semantics (TransProgCF (TransProgMC p)) =

Semantics (TransProgFM (TransProgCF (TransProgMC p)))

By combining the three correctness theorems above, we can obtain a correctness

theorem. This theorem states that the semantics of the low level MDGs is equal to

the semantics of the high level M D G - H D L .

V p. Semantics (p) =

Semantics (TransProgFM (TransProgCF (TransProgMC p)))

The M D G system is based on Multiway Decision Graphs which extend ROBDDs

with concrete sorts, abstract sorts and uninterpreted function symbols. It can also

deal with the boolean subset as other R O B D D tools do. For the sake of easily

applying our method to the other decision graph based verification tools, we will

define the deep embedding semantics for two different subsets of the M D G - H D L

language in this thesis. Both subsets we considered in this thesis do not contain

15

three M D G predefined components (Multiplexer, Driver and Constant) and the

Transform construct used to apply functions. These components are omitted from

our subsets as they have non-boolean inputs or outputs. We make the subset simple

here since we want to explore the feasibility of this method.

The first subset is a boolean subset of the language which corresponds to a

R O B D D system. In this subset, the table representation in the core M D G - H D L

language only can be defined in terms of the corresponding boolean inputs value

(true or false). We consider this subset because it corresponds to a R O B D D system.

The formalization of this subset can be integrated to other R O B D D based tools

with relatively small modification. For this subset, we will concentrate on verifying

the first two translation steps (see (1)(2), Figure 1.5). Detail will be discussed in

Chapter 3.

The second subset is an extension of the first subset. In the rest of this thesis we

will call it the extended subset. This subset allows the program of the M D G - H D L

language to contain concrete sorts. In other words, the subset we considered in

this thesis is a subset language of M D G - H D L whose inputs and outputs of a table

could be boolean sorts and concrete sorts. This is very important because this is

the way the M D G system works. For coping with different types in one list, we

define a new type Mdg_Basic in HOL. The value of the type can be either a boolean

value or a string. As a result, the syntax and the semantics of this subset are more

complex and the difficulty of the M D G translator verification will be increased a lot.

For this subset, we will concentrate on verifying the first translation step (see (1),

Figure 1.5). More detail will be discussed in Chapter 4.

1.3.2 The Importing Theorems

Generally, when we use HOL to verify a design, the design is modelled as a hi­

erarchy structure with modules divided into submodules as shown in Figure 1.7.

The submodules are repeatedly subdivided until the logic gate level is eventually

16

Specification Verification

Module

Submodule Submodule

Subsubmodule Subsubmodule

Figure 1.7: Hierarchical Vérification

reached. Both the structural and the behavioral spécifications of each module are

given as relations in higher-order logic. The vérification of each module is carried out

by proving a theorem asserting that the implementation (its structure) implements

(implies) the spécification (its behavior). They have the very gênerai form:

implementation D specification (i.i)

The correctness theorem for each module states that its implementation down to the

logic gate level satisfies the specification. The correctness theorem for each module

can be established using the correctness theorems of its submodules. In this sense

the submodule is treated as a black-box. A consequence of this is that different

technologies can be used to address the correctness theorem for the submodules. In

particular, we can use the M D G system instead of HOL to prove the correctness of

submodules.

In order to convert the M D G verification results into HOL, we need to formalize

the results of the M D G verification applications in HOL. These formalizations have

different forms for the different verification applications, i.e., combinational verifica­

tion gives a theorem of one form, sequential verification gives a different form and

17

so on. However, the most natural and obvious way to formalize the M D G result

does not give theorems of the form that HOL needs if we are to use traditional HOL

hardware verification techniques. Therefore, we need to be able to convert the M D G

results into a form that can be used. In other words, we need to prove a series of

translation theorems (one for combinational verification and one for sequential ver­

ification, etc.) that state how an M D G result can be converted into the traditional

HOL form:

Formalized MDG result D

(implementation D specification)

We have formally specified the correctness results produced by several different

M D G verification applications. We have given a general importing theorem for

some M D G applications. These theorems do not explicitly deal with the M D G -

H D L semantics or multiway decision graphs. Rather they are given in terms of

general relations on inputs and outputs. The theorems proved could be applicable for

other verification systems with similar architectures based on reachability analysis

or equivalence checking.

1.3.3 Combining the Translator Correctness Theorems with

the Importing Theorems

In this section, we will introduce the basic idea about how to combine the translator

correctness theorems with the importing theorems based on the deep embedding

semantics. This combination allows the M D G results to be reasoned about in HOL

in terms of the M D G input language (MDG-HDL) . Ultimately in HOL we want

a theorem about input language artifacts. However, the M D G verification results

are obtained based on a low level data structure - a M D G representation: that is

what the algorithms apply to. Therefore, the formalization of the M D G verification

results in the importing theorems ought to be based on the semantics of the M D G

18

représentations. However, the theorem about the translator's correctness can be

used to convert the resuit M D G proves about the low level représentation to one

about the input language (MDG-HDL) . By combining the translator correctness

theorems with the importation theorems, we obtain the new importing theorems

which convert the low level M D G vérification results into HOL to form the HOL

theorems in terms of the semantics of a high level language - M D G - H D L . In other

words, we are not only able to import the M D G results into H O L based on a verified

M D G system, but also the M D G vérification results can be converted to the theorems

of HOL in terms of the semantics of M D G - H D L .

For example, if we check that three NOT gâtes are équivalent to a single NOT gate,

the whole M D G vérification process and the importing process can be illustrated

in Figure 1.8. In the Figure 1.8, step (1) gives a main part of the two circuit

description files (the M D G - H D L input language), which are translated into the core

M D G - H D L (tabular représentations) language as shown in step (2). The core M D G -

H D L languages are then translated into the M D G formula représentation language

(step (3)). The M D G formula représentation languages are further translated into

the M D G décision graph language (step (4)). A set of the M D G algorithms is then

applied to the MDGs in order to obtain two canonical MDGs and the M D G tool

checks whether two canonical MDGs are identical and returns true or false (step

(5))-

In our example the M D G tool returns true. The M D G vérification results are

obtained based on the low level MDGs rather than the high level language M D G -

HDL. However, the translator correctness theorems state that the semantics of the

low level M D G is equal to the semantics of the high level M D G - H D L (the M D G input

language). By combining the translator correctness theorems, the M D G vérification

results can be imported into HOL based on the semantics of the M D G input language

(MDG-HDL) . Therefore, the traditional H O L theorem can be obtained in terms of

the semantics of the M D G input language.

In this thesis, we will prove two translators for the boolean subset and one

19

op 'P o p

1. The MDG-HDL language

component (not_gate, not (input (ip), output (u)))

component (not_gate, not (input (u), output (v))

component (not_gaie, not(input (v), output (op)))

component (not_gate, not (input (ip), output (op))

'P u
0
1

1
0

'P u
0
1

1
0

u v
0
1

1
0

u v
0
1

1
0

2. The core MDG-HDL language

V op
0
1

1
0

3. The MDG formula représentation

V op

0
1

1
0

4. The MDGs

1 0/ \ l

V © @
0 l \ / o

5. Apply the MDG algorithms

Obtain the canonical MDGs

compare

True

6. importing theorems

'P o p

0
1

1
0

t
Ip o p

0
1

1
0

Traditional HOL theorems

Figure 1.8: The M D G Vérification Process

20

translator for the extended subset. In order to demonstrate the combination of the

translator correctness theorems and the importing theorems, the formalization of the

M D G results will be in terms of the M D G formula representation for the boolean

subset and the core M D G - H D L for the extended subset. In fact, the principle

is the same. Similar conversion can be done for further translators if we prove

corresponding translators. By combining the translator correctness theorems with

the importation theorems, we obtain the new importing theorems which convert the

low level M D G verification results into H O L to form the H O L theorems in terms of

the semantics of M D G - H D L . The combination also allow the additional assumption

for sequential verification to be proved in terms of the semantics of M D G - H D L and

the conversion theorem to be obtained in terms of the semantics of M D G - H D L .

1.3.4 Proving the Existential Theorem

In the traditional H OL hardware verification, when we prove a design, we need

to prove a theorem stating that the implementation of the design implements its

specification.

V ip op. IMPL ip op D SPEC ip op

However, this representation might meet an inconsistent model that trivially

satisfies any specification. This is sometimes called the "false implies anything

problem" [14]. If the implementation (IMP ip op) of a design is false for all the

inputs and outputs, then this implication is a theorem, no matter what constraint

is imposed on the variables by its SPEC ip op. This is wrong because a theorem like

this provides no meaning to ensure the correctness of the circuit. One solution to

this problem is to verify a stronger consistency theorem against the implementation

as suggested in [58], which has the form:

V i p . 3 op. IMPL ip op

21

This means that for any input ip there is an output op which is consistent with it.

On the other hand, when we formally import the M D G verification results into

HOL to form the HOL theorems [80], we should prove an additional assumption

against the specification. This theorem states that for all possible input traces, the

behavior specification SPEC ip op can be satisfied for some Outputs:

V i p . 3 op. SPEC ip op

This means that the machine must be able to respond to whatever inputs are

given.

For ease of importing of M D G results into HOL for sequential verification and

also for avoiding an inconsistent model, we will summarize a general way to prove

theorem which has the form below:

V i p . 3 op. C ip op

where C represents any circuit, and i p , op represent external input and external

output respectively. We called it the ex i s ten t ia l theorem [83]. More detail will be

discussed in Chapter 7.

1.4 Outline of Thesis

The thesis is organized as follows:

In Chapter 2, we give a review of the literature most directly related to our

research. We discuss embedding a hardware description language (HDL) in a proof

system, previous work on verifying verification Systems, an overview of Compiler

verification work and technologies used in the combination of different verification

Systems.

22

In Chapter 3, we investigate the verification of the translation phases of a simpli­

fied version of the M D G system (boolean subset) based on a theorem prover system

(the HOL system). This can be viewed as a simple compiler correctness problem.

We define a deep embedding formal semantics of the M D G - H D L language, the core

M D G - H D L language and the M D G formula representation in higher order logic. A

set of functions for translating the M D G - H D L subset language to their core M D G -

H D L language and translating the core M D G - H D L language to their M D G formula

representation language are given. The correctness theorems of the translation which

quantifies over syntactic structure are verified. In particular, we demonstrate that

this compiler specification preserves the correctness results produced by the M D G

verification system.

In Chapter 4, we investigate the verification of the translation phases for the

extended subset. We extend our formalization to accommodate a list of inputs (the

first argument of the table component) with boolean sorts and concrete sorts. For

this subset, we prove the first translator. We define the formal syntax and semantics

of the M D G - H D L language and core M D G - H D L language. A set of functions for

translating this subset language to their core M D G - H D L equivalent has then been

given. The correctness theorem about the translation, which quantifies over its

syntactic structure, has been proved.

In Chapter 5, we describe how to convert the M D G results into theorems for

use in the HOL system. The M D G system combines a variety of different hardware

verification applications including combinational verification, sequential verification,

invariant checking and model checking. We give a general importing theorem for

converting M D G results of the different applications (except model checking) into

HOL. The theorems proved do not explicitly deal with the M D G - H D L semantics or

multiway decision graphs. They are given in terms of general relations on inputs

and outputs. Thus they are applicable to other verification systems with a similar

architecture.

In Chapter 6, we show how to combine the translator correctness theorems with

23

the importing theorems for two subsets. This combination alìows the M D G results

to be reasoned about in HOL in terms of the M D G input language (M D G - H D L) .

The two différent M D G vérification applications have been formalized in terms of

the semantics of the low level language and imported into HOL to form the HOL

theorems in terms of the semantics of M D G - H D L . In other word, the low level

M D G vérification resuit has been converted into a high level form which is usable

in a traditional HOL hardware vérification.

In Chapter 7, we summarize a general way of proving the existential theorem for

the implementation and spécification of any design based on the syntax and the se­

mantics of M D G - H D L . This theorem is needed when importing the M D G sequential

vérification resuit into HOL and avoiding an inconsistent model be produced.

In Chapter 8, we use a simple example, the vérification of the correctness theorem

and usability theorems for a vending machine, to demonstrate the feasibility of our

approach. We have verified the correctness of the vending machine in M D G . This has

been imported into HOL to form the HO L theorem. We have then proved a usability

theorem about a spécification of the vending machine in HOL. By combining the

imported theorem and spécification based usability theorem, we obtain a usability

theorem about the vending machine implementation.

In Chapter 9, we conclude the thesis and indicate the future work.

Summary

This chapter has motivated our emphasis on dependability of the hybrid system, and

situated our approach which aims to import the M D G results into HO L in a trusted

way. It also has indicated that we are concerned with how great a degree of trust the

M D G system has, how to formally justify the conversion of the M D G results into

the traditional HOL hardware vérification theorems and how to formally link two

24

systems in a naturai way. This chapter has pointed out that the deep embedding

semantics play a very important role in our research. On the one hand, the deep

embedding semantics could be used to verify the correctness of aspects of the M D G

system using the H OL system. On the other hand, based on the verified M D G

system, the deep embedding semantics is used to combine the translator correctness

theorems with the importing theorems, allowing the M D G results to be reasoned

about in HOL naturally.

25

Chapter 2

Literatur e Review

Combining theorem proving Systems with symbolic state enumeration Systems opens

a way for theorem proving Systems to be applied more widely to the real world. Many

researchers are working in these areas to contribute their ideas and approaches. In

this thesis, we will focus on the vérification of a symbolic state enumeration system

(the M D G system) and provide a theoretical underpinning to the formai linkage

of a symbolic state enumeration system and a theorem proving system (MDG and

HOL). We first verify the correctness of translators of the M D G system by using

the H O L system. This can be viewed as a simple compiler correctness problem.

We next prove theorems that formally convert the M D G vérification results of the

M D G différent applications into the traditional H O L hardware vérification theorems

in the style of Gordon [35]. By combining the translator correctness theorems with

the importing theorems, the M D G vérification results can be imported into H O L in

terms of M D G - H D L . Our work is concerned with embedding a hardware description

language (HDL) in a proof system, verifying vérification Systems, compiler vérifica­

tion and trusting combined Systems. This chapter gives a literature review which is

related to our research and divided into the corresponding subsections listed below:

• We briefly introduce embedding an H D L in a proof system.

26

• We discuss previous work on verifying vérification Systems.

• An overview of compiler vérification work is given.

• We review the différent technologies that have been used to combine the the-

orem proving Systems with other Systems and talk about the combined ap-

proaches and the degree of trust of the system. We then propose our own

ideas.

2.1 Semantic Embedding

Semantic embedding is an approach to defining precise semantics of HDLs inside the

logie so as to support the use of HDLs within a general theorem proving environ-

ment. Many researchers are aiming to find a tractable semantics for the hardware

description languages such as V H D L [64]. For example, Reetz and Kropf [55] defined

the semantics of a significant subset of V H D L in HOL to formalize a compiler gener-

ator. Gordon [31] defined three différent semantics (event semantics, trace semantics

and cycle semantic) for a subset of V H D L for use in the différent applications.

There are two ways to represent the semantics of HDLs inside logie: deep em­

bedding and shallow embedding. With a deep embedding, a type syn, is defined

inside the logie to represent H D L texts. A type, sem, that represents the seman­

tics is also defined, and then a semantic function, meaning:sì/n—>sem, is defined, by

structural induction over syn [33] [32] [7]. With a shallow embedding there is no

type syn or semantics function inside the logie. Instead a parser is used to trans­

late H D L texts directly into terms of the logie. Each of these has advantages and

disadvantages. The advantage of deep embedding is that it allows reasoning about

classes of programs and so about the general properties of the programs. However,

setting up types of abstract syntax and semantics is much work. The advantage

of shallow embedding is that this work is avoided, because the process of assigning

meaning to the texts does not have to be encoded as a function inside the logie.

27

A meta-language program can easily compute differentiy typed terms for différent

H D L texts.

Brock and Hunt [10] described a simple hardware description language in the

Boyer-Moore theorem prover. It lacks delays and does not permit recursion: it

thus deals with combinational logie only. However, this is the earliest research

known to us which deflnes a deep embedding operational semantics for an H D L in

a proof system. In their work, circuits were represented as list constants, which

were interpreted by a semantics function. This semantics function traversed valid

abstract syntax catégories. The circuit descriptions were hierarchically composed.

A well-formed predicate was defined to check that thèse définitions are purely com­

binational.

Melham [58] deeply embedded a denotational semantics of a CMOS circuit in­

side the HOL system, which is an ideal example for getting the general idea about

deep embedding. He defined an abstract data type représentation of C M O S circuit

descriptions. A semantics function was given in terms of the environments which

mapped circuits to a formula describing their switch-level behavior. The environ-

ment with the type :string—ïbool mapped strings string, denoting wire names, to

their values.

Boulton et al [7] embedded semantics of three différent hardware description lan-

guages in higher-order logie (H O L - E L L A , H O L - S I L A G E , H O L - V H D L) . Both the

H O L - E L L A and the H O L - S I L A G E projects used shallow embedding. The HOL-

V H D L .project used deep embedding. In their paper, they compared the two ap-

proaches used in three différent projects and summarized the benefits of the general

technique of embedding a conventional notation in a mechanized formai system and

indicated that embedding the H D L semantics allows the practical tool to act directly

on logie représentations and thereby the designs can be reasoned about in a proof

system.

Goossens [30] investigated the integration of HDLs and automated proof Systems.

28

His aim was to clarify the semantics of the particular H D L and to présent a more

standard interface to formai méthodologies. A formai static and dynamic operational

semantics for a subset of the industriai H D L E L L A [28] were embedded within the

L A M B D A proof system.

In this thesis, we deeply embèd two subsets of M D G - H D L into HOL. We obtain

the logie représentation of each M D G - H D L program, which could be reasoned about

directly into HOL. However, our aim is to verify the correetness of aspects of the

M D G system by using the HOL system and to provide a formai linkage between the

M D G system and the HOL system in terms of the deep embedding semantics. We

use the embedding semantics to prove the translation phases of the M D G system.

Our semantics explicitly represent the relation with the external wires. This rep­

résentation can be used in formalizing the M D G vérification results and importing

the M D G results into HOL naturally. We utilize this fact to allow M D G to be used

when it would be easier than obtaining the result directly in HOL.

2.2 Verifying Vérification Systems

Différent technologies have been used to ensure the correetness of vérification Sys­

tems. In a sense, which method is chosen dépends on the architecture of the véri­

fication system. The Edinburgh L C F [34] (Logic of Computable Functions) family

of theorem provers (including HOL) uses an abstract data type (Thm) to represent

theorems. The type checker ensures the theorems can only be constructed by ap-

plying a small number of primitive inference rules. There is no method to construct

a theorem except by carrying out a proof based on the primitive inference rules and

axioms. This increases the reliability of the system. For HOL, thèse primitive infer­

ence rules have been proved sound via a set-theoretic semantics [40]. Pottinger [68]

has also proved that they are complete with respect to Henkin's general models (the

methods that Henkin used to establish completeness for Systems of second-order and

higher-order logie). In this way if we guarantee the primitive inference rules correct

29

then invalici theorems can be avoided.

The L C F approach also permits proofs to be recorded. Proofs can be stored

in files and be represented by lists of inferences. It allows us to make use of the

availability of the séquence of inferences and to check the consistency of each infer-

ence automatically. Wong [77], changed the HOL system so as to be able to record

each proof and store it into proof files. He developed a proof checker to examine

the correctness of the proof files - lists of inferences generated by the H O L sys­

tem. The proof checker first took a proof file as an argument and then checked

whether the proofs were correct or not. A log file was then produced that contained

the hypothèses, lemmas used by the proof and the resulting theorem of the proof.

The application of this method is significant in developing safety-critical and high-

integrity Systems where high confidence of correctness is required. Since a proof

checker accepts the proof files containing only primitive inference rules, it may pos-

sibly be verified formally. The proof checker also provided an independent means

of ensuring the validity and consistency of the proof. Some other theorem provers

such as Nqthm [9] and Coq [48] already store proof trees in the system. Boyer and

Dowek [8] specified and implemented a proof checker in Nqthm logie.

Is the proof checker itself correct? If the proof checker can be formally verified,

it will greatly increase the confidence in the consistency of checked proofs. Since

the proof checker is relatively simple, it is easier to verify than a full system. Von

Wright [75] formalized the spécification of a proof checker in HOL. In his work, he

carefulìy analysed what constituted a HOL proof, formalized the syntax of the terms,

types, and theorems, and defined predicates to represent the primitive inference

rules. He also demonstrated how the HOL system had been used to formally verify

the spécification of a proof checker for higher-order logie proofs [76]. An alternative

method of using refinement to verify the proof checker was also suggested by von

Wright [74].

The architecture of the symboìic state enumeration based vérification Systems

is différent. In some of thèse Systems, higher level languages such as hardware

30

description languages are used to describe the spécifications and implementations.

The spécifications and implementations are then translated into décision graphs. A

séries of algorithms in the system is used to efficiently and automatically deal with

the décision graphs and obtain the correctness results. For verifying such Systems,

we need to prove the translators from the higher level languages into décision graphs,

and to prove the algorithms correct that are used to manipulate the décision graphs.

Homeier and Martin [46] used the HOL system to verify a vérification system

called a vérification condition generator (VCG) for a simple programming language.

Since the V C G translated the annotated programs to the lists of vérification condi­

tions, the proof of the correctness of the V C G could be considered as an example

of a compiler correctness problem. In other words, the proof of the correctness of

the V C G can be obtained by proving a translator. The semantics of the annotated

programs and vérification conditions were formalized in HOL. The correctness the-

orems showed that the truth of the vérification conditions implied the truth of the

annotated programs.

Chou and Peled [17] used the HOL system to verify a non-trivial algorithm

- the Partial-Order réduction technique, implemented in the protocol tool SPIN.

This algorithm is used to cut down the state-space exploration performed by model

checkers. They built up the groundwork of a formai infrastructure that included the

mathematical support for proving various automatic vérification algorithms. Their

results not only gave more confidence in the algorithm but also demonstrated formai

vérification is a practical and useful tool.

In this thesis, we investigate the correctness of aspects of the M D G system

(figure (2.1)) by using HOL. Verifying the algorithms is beyond the scope of this

thesis which can be done similarly to Chou and Peled's work. We consider verifying

the translation process is correct based on the deep embedding semantics. We need

to verify the translator préserves the semantics of a program through the translation

between languages as suggested for Homeier's work [78] [81] [79]. A différence is that

Homeier used a compiler vérification method to verify a software vérification system.

31

M D G input language

Translator

f >
M D G data structure

M D G verif. algorithms

Resuit (Yes/No)

Figure 2.1: The M D G Vérification System

We used a similar method to verify a hardware vérification system. We consider

verifying the correctness of aspects of the M D G system. In the next section, we will

review previous work that has been done on the compiler correctness problem.

2.3 Verifying Compiler Correctness

The literature on compiler correctness is large. The earliest example was described

more than thirty years ago [56]; this reported how McCarthy and Painter successfully

verified the correctness of a simple algorithm for compiling arithmetic expressions

into machine language on an ideal machine. The syntax and semantics of the source

and object language were given. The compiler correctness theorem stated that the

semantics of the source program preserved the semantics of the target code. Their

basic idea is still being used in compiler vérification.

At the same time, Burstall and Landin [13] first proposed the use of algebraic

32

methods to verify compiler correctness. The key contribution from the algebraic

approach to compiler correctness was to reject the simple function to be used as

a compiler and impose structure on the program involved. Many researchers have

developed this method including Morris [62] [63] and Chirica [15]. A tutorial intro­

duction to the algebraic method was given by Collier [19]. However, the early work

focused on the basic methodology rather than verifying a real language. People

could not deal with the tedium of formai proof if they verified a compiler by hand.

With the development of mechanical assistance Systems, researchers began to

verify some simple imperative languages by using mechanical checking technology.

Milner and Weyhrauch [59] used the Stanford L C F system to mechanically check

the formai vérification of a compiler for a simple imperative language. Cohn änd

Milner [18] used the Edinburgh L C F system to prove a simple parsing algorithm. In

their paper, a generally mechanized method of deriving structural induction rules

within the system was discussed. Chirica and Martin [16] considered the problem

of proving the correctness of parsing and syntax analysis. They indicated that a

compiler implementation should specify exactly how the compiler was implemented

to generate the object code. The correctness of a compiler implementation is verified

by comparing corresponding object programs generated by the compiler spécifica­

tion and implementation. Howcvcr, most work including thosc mentioned above

considered a very simple language and the target machine was idealized (no finite

limitations on word size and memory size).

In 1989, Young [85] verified a code generator which was one level of a stack

of verified system components by using a Boyer-Moore theorem prover (the Boyer-

Moore prover is a theorem prover for a quantifier-free first-order classical logie with

equality). Their source language was a subset of Gypsy [29] and the target language

was the Piton [61] assembly level language. The operational semantics for a subset of

Gypsy and Piton was given. Functions were implemented in the Boyer-Moore logie

that translated Gypsy programs into Piton. The correctness of the translator was

mechanically checked. Moore [60] verified that Piton was successfully implemented

33

on a general purpose microprocessor (FM8502) by using the Boyer-Moore theorem

prover.

Other notable work is that of Joyce [50], who described the formal specification

and verification of a compiler for a very simple imperative programming language on

an non-idealized target machine. The semantics for this programming language, the

target machine and the compiler were all specified in higher-order logic. Inference

rules of higher-order logic were used to construct a formal proof showing that com­

piled programs execute according to the semantics of the language. A compilation

process was split into two phases for controlling the complexity of the formal proof

of correctness. The first phase compiled the hierarchically structured program into

a flat intermediate form. The second phase compiled the intermediate form into

target machine code.

At the same time, Gordon [37] did the original work of constructing within

HOL a framework for proving the correctness of a program. He used a shallow

embedding [7] (i.e. only the semantics is represented in the H O L logic) to embed

the program logic in the HOL logic. HOL is a foundational system which means that

one can define new constants in a way that does not affect the logical consistency

of the system. In other words, thus means the embedding of a language can be

obtained by using constant definitions rather than by introducing arbitrary axioms

to describe the semantics.

Curzon [22] successfully used the HOL system to verify compilers for a subset

of the structured assembly language Vista, for a real microprocessor, V I P E R . The

compiler correctness work was based on a general model of I /O. The verification of

a generic compiler from a generic version of Vista to a generic flat assembly code

had been considered. This made it possible to verify a compiler from different ver­

sions of Vista to the V I P E R microprocessor or to other similar machines easily (i.e.

you just need to change some basic configurations). He also combined the verified

compiler with a derived programming logic so that the corresponding properties of

the compiled code can be automatically derived.

34

Our work concernes with verifying the correctness of the translators that trans­

lates a subset of the M D G input language M D G - H D L into the low level languages.

Curzon et al. [26] did some basic work which verified the M D G components library

in HOL. In their paper, the semantics of the T A B L E had been first formalized in

HOL. The semantics of the M D G - H D L components was in the style of Gordon.

They had verified the table implementations of each of the hardware components

that were implemented in terms of tables in the M D G system.

The work presented in this thesis is based on previous work to verify the M D G

components library in HO L [26] and builds on the work of Curzon [22] concerned

with compiler vérification. The source and target languages are différent to his.

Our source language is a netlist level hardware description language and our target

language is the core M D G - H D L language and the M D G formula représentation

language. We only consider the correctness of a compiler spécification in this thesis.

We define a deep embedding formai semantics for a subset of M D G - H D L and the

corresponding low level languages in higher-order logie. However, the structures of

the proofs are similar and also have been mechanically checked by using the HOL

system. Most importantly, we are trying to investigate and develop a method that

links compiler correctness to the combination of two différent vérification Systems

(MDG and HOL) , rather than just vérifies the correctness of a compiler spécification.

2.4 Trusting Combined Systems

Recently, researchers have paid much attention to combining theorem provers and

other symbolic computation Systems. Theorem provers have been linked to other

theorem provers [49], to model checkers [51] [2] [39] and to computer algebra Sys­

tems [42]. Méthodologies for co-operation between Systems are dépendent on prop-

erties of the system. The motivation for combining différent Systems is to achieve

the benefits of them both and to make the vérification simpler and more effective.

35

A common approach to combining proof tools is to use an automated tool as an

oracle to provide results to the interactive proof process. Joyce and Seger [51] pre-

sented a hybrid verification system: HOL-Voss. In their system, several predicates

were defìned in the HOL system, which presented a mathematical link between the

specification language of the Voss system (symbolic trajectory evaluation) [44] and

that of the HOL system. As a result this link caused the specification language

of Voss to become a subset of the language of the HOL system. In other words,

trajectory evaluation was used as a decision procedure for the HOL proof system. A

HOL tactic, VOSS.TAC, which was implemented as a remote function, was written.

This tactic enabled some HOL goals to be proved by calling symbolic trajectory

evaluation and mirroring the results (true or false) in HOL. If it is true, then the

assertion will be transformed into a HOL theorem and this theorem can be used by

the H O L system to derive additional verification results. Zhu et al. [87] successfully

applied HOL-Voss to the verification of the Tamarack-3 microprocessor.

In 1995, Seger and Hazelhurst overcame some defects of the HOL-Voss system

and created a new hybrid system called VossProver [43]. VossProver was imple­

mented in f i (a strongly-typed functional language in the M L family [65]) in typical

L C F style with an abstract datatype for theorems. Its specification language was

a deep embedding in f i of booleans and integers and shallow embedding of tuples,

lists and other features. The transition from theorem proving to model checking

was done by translating the deeply embedded boolean and integer expressions into

their f i counterparts and then evaluating the resulting f i expressions. A number of

case studies, including the verification of a pipelined IEEE-compliant floating-point

multiplier by Aagaard and Seger [3], has demonstrated the success of the approach

of the system. However, the translation from the deeply embedded specification

language used in the theorem proving to the normal f i used in the model checking

was complicated. The difficulty of evaluating Boolean expressions at the f i prompt

was a serious detraction when compared to the ease of use provided by specification

in f i . Therefore, they wanted a proof system to use f i as both the specification and

implementation.

36

In 1999, Aagaard et al developed the Forte verification system [2][1]. Forte is a

combined model checking (in Voss via symbolic trajectory evaluation) and theorem

proving system (ThmTac) 1. Both specifìcation and implementation language are

f i which has been deeply embedded in itself so as to be lifted. In other words,

the system can execute f i functions in Voss and reason about the behavior of f i

functions in ThmTac. The system has successfully verifìed the correctness of a

floating-point divider unit of an Intel IA-32 microprocessor [52].

Schneider and Kropf [70] used hardware formulas, which are higher order formu­

las, to express the safety and liveliness properties hierarchically. i.e. each module

either consisted of a set of submodules or a basic module. These formulas could

be easily translated into a model-checking problem of temporal logie. In other

words, these allowed each submodule to be verifìed by using state enumeration tech-

niques. Finally, the correctness results of the verifìed hardware could be obtained

by using simple reasoning in HOL. With the same idea, an example, which could

not be handled by decision procedures for temporal logie and was too expensive

to use the theorem prover system, was verifìed easily with the combined model-

checking/theorem proving approach in less than two hours. With the same idea,

Schneider and Kropf [71] presented an approach for combining different proof ap-

proaches in a unifying framcwork to devclop a hybrid system which is caìled C@S.

This system was implemented on top of the HOL system and can be connected to

the model checking system SMV (Symbolic Model Verifier) and the inductionless

induction system R R L (Rewrite Rule Laboratory).

The M D G - H O L system [54] is a hybrid system which links the HOL interactive

proof system and the M D G automated hardware verification system. It supports

a hierarchical verification approach and fits the use of M D G verification naturally

within the H O L framework of compositional hierarchical verification. The HOL

system is used to manage the proof. The M D G system is called to verify the sub­

modules of a design. When the M D G - H O L system is used to verify a design, the

'ThmTac is written in f i and is an LCF style implementation of a higher order classical logie.

37

design is modeled as a hierarchy structure with modules divided into submodules.

The submodules are repeatedly subdivided until the design can be verified by using

the M D G system. If the design of any submodule is sufficiently simple, then the

hierarchical approach can be abandoned for that block and the whole module verified

in one go in M D G . If submodules are ali primitive components and the M D G system

stili cannot prove them, the H O L system can then be used to do the vérification. The

hybrid system is based on an embedding of the M D G hardware description language

in HOL. It allows structural and behavioral spécifications to be given in HOL. M D G

style behavioral spécifications must be used however. Essentially this means the

spécifications must be in the form of a finite state machine or table description. If

a higher level abstraction is unavailable in M D G , a separate HOL proof must be

performed to show that an M D G style spécification meets this abstraction.

Gordon [38] [39] integrated the B D D based vérification system B u D D Y into

HOL in a différent way. Since "LCF-Style" general infrastructure was provided,

users could implement their own BDD-based vérification algorithms inside H O L

by building on top of primitives provided. By implementing B D D primitives in

HOL - as long as they are correct, not only could the standard state algorithms be

effìciently and safely programmed in HOL, but this also made it possible to achieve

the advantage of theorem reason tools and state algorithms. For example, HOL was

used to formalize the Q B F (Quantified Boolean Formulas) of BDDs. The formulas

can be interactiveìy simplified by using a higher-order rewriting tool such as the

HOL simplifier to get simplified BDDs. A table was used to map the simplified

formulas to BDDs. The B D D algorithms can also strengthen its deductive ability

in this system.

Hurd [49] used a différent method to combine the strengths of two theorem-prover

systems. One is Gandalf which is a resolution theorem-prover for first-order classical

logie with equality. The other is the HOL system. A tactic G A N D A L F . T A C was

implemented as a remote function. It called the Gandalf system that was then run as

a child process of the HOL system and mirrored the proof results to the H O L system.

38

Briefly, G A N D A L F _ T A C took the input goal, converted it to a normal form, wrote

it in an acceptable format, sent the string to Gandalf, parsed the Gandalf proof,

translated it to a H O L proof, and proved the original goal. In this way, Gandalf's

fast proof search can be used in HOL, whilst the translation into HOL ensured that

the proofs were logically correct. Most importantly, in translating the Gandalf proof

to HOL proof, he did not just tag the results proved in Gandalf into HOL to get

HOL theorems. He wrote several functions to simulate the Gandalf proof according

to the Gandalf logged file and did the proof in HOL to form the HOL theorems. As

a result, the Gandalf proof results need not be tagged into H O L and the degree of

trust is high. However, it is very hard to achieve a complex goal since the logged

file might lose some détails when the goal is very complex.

Rajan et al. [69] proposed an approach for the integration of model checking with

PVS [21]: the Prototype Vérification System. Harrison and Théry [42] combined

the theorem prover system (HOL) and a computer algebra system (Maple). Argon

and McMillan [5] attempted to use the Coq Proof Assistant to formally prove the

soundness of the proof décomposition rules implemented in the S M V system. Gunter

and Obradovic [41] combined a model checker (SPIN) and a theorem prover (HOL)

though a language GAS (for Guarded Assignments).

A key point of combining theorem proving Systems with other Systems is to make

the use of theorem proving Systems more practical. For example, the project PROS-

P E R 2 [27] aims to combine différent interactive and automated proof tools together

to deliver the benefits of them to industry. A proof management system, which

is an open proof architecture, permits formal methods technology to be combined

in a modular fashion. The Prosper plug-ins allow developers to add specialized

vérification tools (like Gandalf, Spin etc.) to the core proof engine in a relatively

uniform way. In this way, différent advantages of différent techniques can be utilized

according to the différent requirement applications, whilst the translation into HOL

ensures that the proofs are logically correct.
2 The description of the project is available via the Web page http://www.dcs.gla.ac.uk/"tfm/

39

http://www.dcs.gla.ac

We have discussed many researchers using different approaches to combine dif­

ferent systems. Some of them, including those mentioned above, are used by the

external tools as an oracle to guarantee the results provided by the external tools

are theorems within the theory of the proof system. Ideally, if we could verify that

the external verification tools are correct and formally convert the corresponding

results into valid theorems in a current proof system, then the degree of trust of the

combining system will increase a lot.

In the work presented in this thesis, we shall use this idea to provide a formal

linkage between the M D G system and the HOL system. We are not using the M D G

system as an oracle to then prove results, already determined, by primitive inference

in HOL as M D G - H O L did, nor are we using H O L to improve the way M D G works.

Furthermore, we are not just farming out general lemmas (e.g., propositional tau­

tologies) that arise whilst verifying a particular hardware module and that can be

proved more easily elsewhere. We are doing theoretical research about how to pro­

vide a formal linkage between M D G and HOL. Our formalization is defined in terms,

of the specification of the M D G system and M D G - H O L system. We define deep

embedding formal semantics in HOL for two simplified versions of the M D G input

language, to verify the correctness of translators of the M D G system in the HOL

system. We also prove a series of importing theorems [80], which formally convert

the formalized M D G verification results into a form usable in a traditional HOL

hardware verification, i.e., the structural specification implements the behavioral

specification. By combining the translator's correctness theorems with the import­

ing theorem, the M D G verification results can be converted into HOL to form the

traditional HOL theorems in terms of the semantics of M D G - H D L .

Summary

In this chapter, we have given a literature review which relates to our research

including embedding an H D L in a proof system, previous work on verifying verifi-

40

cation Systems, an overview of compiler vérification work and technologies used in

the combination of the différent vérification Systems. We also summarize what we

did in corresponding related fields.

41

Chapter 3

Verifying the MD G Translators

for a Boolean Subset

In this chapter, we will verify the translation phase of the M D G system as shown

in step (1) (2) of Figure 1.5 for a boolean subset. Our aim is to prove the M D G

translators. A standard approach for proving a translator between two languages

will be used.

We will first define the syntax and the semantics of a subset M D G - H D L lan-

guage, a corresponding core M D G - H D L language and the M D G formula représen­

tation language. We then define a set of functions, which translates the program

from the subset M D G - H D L language to the core M D G - H D L language, and from the

core M D G - H D L language to the M D G formula représentation language. For each

program in M D G - H D L , the compilation Operators are defined as functions, which

return its core M D G - H D L code and M D G formula représentation code. The trans­

lation function TransProgMC is applied to each M D G - H D L program p so that the

corresponding core M D G - H D L program is established and the translation function

TransProgCF is applied to a core M D G - H D L program so that the M D G formula

représentation program is established. The two correctness theorems for two trans-

42

lation steps of this subset, which quantifies over the syntactic structure, are verified.

By combining thèse two correctness theorems, we obtain that the semantics of the

M D G - H D L program is équivalent to the semantics of the-MDG formula représenta­

tion program. The détail will be discussed in the following sections.

3.1 The Syntax of the MDG-HDL Language

In M D G - H D L programs, two kinds of information are provided. One is used in the

M D G algorithm, the other is used in specifying the hardware. We can ignore the

information which is used in the M D G algorithms when we write the syntax and

semantics of programs, since this part is passed directly to the M D G algorithms

and we do not consider the M D G algorithms in this thesis. Following the approach

utilized in other compiler correctness work, we abstract the useful information from

the M D G - H D L program and work with an abstract syntax rather than the concrete

syntax of the language. It would be straightforward to write a parser that translates

the M D G - H D L program into the abstract syntax.

For example, a part of the M D G - H D L file which is used to specify the hardware

of three NOT gâtes and one register connected in séries is given in Figure 3.1. The

information for the algorithms is omitted.

The abstract syntax of this file is

PROG (EXOUT ["op"]) (EXIN ["ip"]) (INV ["u";"v";"w"])

CJOIN (NOT "ip" "u")

(JOIN (NOT "u" "v")

(JOIN (NOT "v" "w") (REG "w" "op"))))

where PROG, EXOUT, EXIN, INV, JOIN, NOT and REG are syntactic constructors of the

subset of the M D G - H D L language. More détails will be given later.

43

signal(ip,bool).

signal(op,bool).

signal(u,bool).

signal(v,bool).

signal(w,bool).

component (u.comp, not (input (ip) , output (u))) .

component(v_comp,not(input(u),output(v))).

component(op_comp,not(input(v) ,output(w))) .

component (reg_comp,reg (input (w) ,output (op)))

outputs([op]).

Figure 3.1: The Circuit Description File of Three N O T Gates and One Register

The full abstract syntax of the subset of the M D G - H D L language is given in

Appendix A . The abstract syntax of the program is represented by constructor PROG

which is defìned in terms of four arguments - an external output wires list, an

external input wire list, an internai wire list and a component term.

Program ::= PROG of Exoutput => Exinput => Invariable => Mdg_Hdl

For example, the abstract syntax of a program of one NOT gate circuit is given

beìow:

PROG (EXOUT ["op"]) (EXIN ["ip"]) (INV []) (NOT "ip" "op")

where the first argument is a list of external outputs (["op"]), the second is a list

of external inputs (["ip"]) and the third is a list of internai wires (in a NOT gate

44

circuii, there is no internai wire), and the final argument is the combination of the

circuit components (a NOT gate).

In the syntax of the program, the first three arguments are variable lists. We

define new H O L types Exoutput, Exinput and Invar iàb le to represent the external

output list, external input list and internai list respectively.

Exoutput ::= EXOUT of string l i s t

Exinput ::= EXIN of string l i s t

I n v a r i à b l e ::= INV of string l i s t

The fourth argument (component term) describes how circuits are constructed

from subcircuits except the hiding opérations on internal wires. The hiding op­

érations on internal wires will be defined in the semantics of the program. The

component term could be either a predefined M D G - H D L component, an opération

to set the initial value of a variable, a next state variable command, or a compo­

sition opération that denotes a circuit built up by the opération of composition.

The syntax of the component term introduces a specially-defined recursive data type

Mdg_Hdl to provide an explicit représentation in logie of the M D G - H D L commands.

We define a recursive type Mdg_Hdl with 33 constructors. The first 27 constructors

are gâtes, flip-flops and registers. For example, the component term, 'NOT ip op',

represents a NOT gate with one input labeled ip and one output labeled op.

The constructor FORK represents the equality checker which is used to check the

equality of two or more variables. The constructor INIT represents the initial value

of a state variable. !INIT(v ,T) J déclares that the initial value of the variable v is

true. The SNXT constructor maps between a state variable and a next state variable.

'SNXT v nv' states that nv is the next state variable of the state variable v.

The JOIN constructor represents the composition opération. If c l and c2 are two

values of type Mdg_Hdl, then the term 'JOIN c l c2' represents the composition of the

two terms represented by c l and c2.

45

INPUT " OUTPUT

ELSE

ipt op t

TABLEJVAL F T

TABLE_VAL T F

ARB

Figure 3.2: The Syntax of a N O T Gate Table

Finally, the constructor TABLESYN represents the syntax of the table component.

It has fìve arguments. The first argument is a list of inputs, and the second is the

single output. The third argument is a list of table rows. Each row is a list itself,

giving one allocation of values to the inputs. The fourth argument is a list of output

values that correspond to the values in input rows. We called the third argument an

"if condition", which means if the value of input matches the corresponding row of

the table then the output value will be one of the éléments in the fourth argument's

list. The final argument is the default value, which is taken by the output if the input

values do not match any row of the third argument. We called those input values

as the "else condition". The "else condition" is not listed in the third argument of

constructor TABLESYN. For example, the abstract syntax of a NOT gate table is given

below:

TABLESYN ["ip"] (NOWV "op") [[TABLE.VAL F] ;

[TABLE.VAL T]]

[T; F] (DENORMAL ARB)

where "ARB" is the predefìned HOL term representing an arbitrary value of a given

type. Alternately, we can use a diagram to represent the abstract syntax of the NOT

gate table, such as the one shown in Figure 3.2.

46

T h e f i r s t a r g u m e n t o f t h e c o n s t r u c t o r T A B L E S Y N i s a l i s t o f i n p u t s . I n a NOT g a t e

t a b l e , i t h a s o n l y o n e i n p u t w h i c h is " i p " . T h e s e c o n d a r g u m e n t i s t h e s i n g l e o u t p u t

" o p " w h o s e v a l u e c o u l d b e e i t h e r a c u r r e n t s t a t e v a r i a b l e o r a n e x t s t a t e v a r i a b l e .

W e d e f i n e a n e w H O L t y p e O u t . T y p e t o r e p r e s e n t t h è s e o p t i o n s :

O u t _ T y p e : : = NOWV o f s t r i n g i

N E X T V o f s t r i n g

T h e o u t p u t i n t h e NOT g a t e t a b l e i s a c u r r e n t s t a t e v a r i a b l e NOWV " o p " . T h e t h i r d

a r g u m e n t l i s t s a l i t h e " i f c o n d i t i o n " . I n a NOT g a t e , t h e " i f c o n d i t i o n " is [[T A B L E _ V A L

F] , [T A B L E - V A L T]] . T h e e n t r i e s i n t h e l i s t c a n b e e i t h e r a c t u a l v a l u e s o r a s p e c i a l

d o n ' t c a r e m a r k e r . T h i s i s r e a l i z e d b y d e f i n i n g a n e w t y p e (as g i v e n i n [26]).

T a b l e . V a l : := T A B L E . V A L o f a I D O N ' T . C A R E

h d e / T a b l e V a l _ t o _ V a l (T A B L E . V A L (v : a)) = v

T h e f o u r t h a r g u m e n t i s a l i s t o f o u t p u t v a l u e s t h a t c o r r e s p o n d t o t h e v a l u e s i n i n p u t

r o w s (t h e " i f c o n d i t i o n ") . T h e final a r g u m e n t c o u l d b e a n a r b i t r a r y b o o l e a n v a l u e ,

a c u r r e n t s t a t e v a r i a b l e o r a n e x t s t a t e v a r i a b l e . A g a i n w e d e f i n e a n e w H O L t y p e

D e f a u l t J T y p e i n t e r m s o f t h e t y p e O u t . T y p e .

D e f a u l t . T y p e : : = DENORMAL o f b o o l I

DEOUT o f O u t . T y p e

C o r r e s p o n d i n g t o o u r NOT g a t e t a b l e , i f t h e v a l u e o f i n p u t i s f a l s e (T A B L E J / A L F

f r o m t h e t h i r d a r g u m e n t) t h e n t h e v a l u e o f t h e o u t p u t i s t r u e (T f r o m t h e f o u r t h

a r g u m e n t) , i f t h e v a l u e o f i n p u t is t r u e (T A B L E . V A L T) t h e n t h e v a l u e o f t h e o u t p u t

i s f a l s e (F) , o t h e r w i s e t h e v a l u e o f t h e o u t p u t c o u l d b e a n a r b i t r a r y v a l u e .

47

3.2 The Syntax of the Core MDG-HDL Language

T h e c o r e M D G - H D L l a n g u a g e t h a t w e t r a n s l a t e t o i s a s u b s e t o f t h e M D G - H D L

l a n g u a g e . T h e a b s t r a c t s y n t a x o f t h e p r o g r a m i s a l s o d e f ì n e d i n t e r m s o f f o u r

a r g u m e n t s - a n e x t e r n a l o u t p u t w i r e l i s t , a n e x t e r n a l i n p u t w i r e l i s t , a n i n t e r n a l

w i r e l i s t a n d a c o r e c o m p o n e n t t e r m . A c o r e c o m p o n e n t t e r r a o n l y c o n s i s t s o f f o u r

c o n s t r u c t o r s . i . e . I N I T C (i n i t i a l i s e) , S N X T C (s t a t e v a r i a b l e) , T A B L E S Y N C (t a b l e) a n d

J O I N C (c o m p o n e n t c o m p o s i t i o n) w h i c h c o r r e s p o n d t o t h e c o n s t r u c t o r s I N I T , S N X T ,

T A B L E S Y N a n d J O I N i n M D G - H D L .

Mdg-HdljCore : : =

I N I T C o f (s t r i n g # b o o l) |

SNXTC o f s t r i n g = > s t r i n g |

T A B L E S Y N C o f (s t r i n g l i s t) = > Out JType=> ((b o o l T a b l e . V a l l i s t) l i s t)

=> (b o o l l i s t) = > D e f a u l t _ T y p e I

J O I N C o f M d g _ H d l X o r e = > M d g J i d l . C o r e

T h e s y n t a x o f t h e c o r e M D G - H D L p r o g r a m is

P r o g r a m . C o r e : : =

PROGC o f E x o u t p u t => E x i n p u t => I n v a r i a b l e => M d g _ H d l _ C o r e

F o r e x a m p l e , t h e a b s t r a c t s y n t a x o f t h e c o r e M D G - H D L o f t h e t h r e e NOT g â t e s

a n d o n e R E G I S T E R i s g i v e n i n F i g u r e 3.3.

3.3 The Syntax of the MDG Formula Represen­

tation Program

T h e s t r u c t u r e o f t h e M D G f o r m u l a r e p r é s e n t a t i o n p r o g r a m is s i m i l a r t o t h e s t r u c t u r e

o f t h e c o r e M D G - H D L l a n g u a g e . I t c o n s i s t s o f f o u r c o n s t r u c t o r s . i . e . I N I T F , S N X T F ,

48

PROGC (EXOUT [" o p "]) (E X I N [" i p "]) (I N V [" u " ; " v " ; " w "])

J O I N C (T A B L E S Y N C [" i p "] (NOWV " u ") [[T A B L E _ V A L F] ;

[T A B L E _ V A L T]]

[T ; F] (DENORMAL A R B)

J O I N C (T A B L E S Y N C [" u "] (NOWV " v ") [[T A B L E . V A L F] ;

[T A B L E _ V A L T]]

[T ; F] (DENORMAL A R B)

J O I N C (T A B L E S Y N C [" v "] (NOWV " w ") [[T A B L E _ V A L F] ;

[T A B L E . V A L T]]

[T ; F] (DENORMAL A R B))))

(T A B L E S Y N C [" w "] (NOWV " o p ") [[T A B L E _ V A L T] ;

[T A B L E _ V A L F]]

[T ; F] (DENORMAL A R B))))

Figure 3.3: The Abstract Syntax of a Core M D G - H D L Program

T A B L E S Y N F a n d J O I N F w h i c h c o r r e s p o n d t o t h e c o n s t r u c t o r s I N I T , S N X T , T A B L E S Y N

a n d J O I N i n M D G - H D L . A d i f f é r e n c e is t h a t t h e c o n s t r u c t o r T A B L E S Y N F c o n s i s t s of

s i x a r g u m e n t s r a t h e r t h a n five a r g u m e n t s . It a d d s o n e m o r e a r g u m e n t w h i c h l i s t s

t h e i n p u t v a l u e s o f t h e "else c o n d i t i o n " . In o t h e r w o r d s , t h i s a r g u m e n t l i s t s a l i t h e

p o s s i b l e i n p u t v a l u e s w h o s e c o r r e s p o n d i n g o u t p u t v a l u e i s e q u a l t o t h e d e f a u l t v a l u e .

This i s v e r y i m p o r t a n t b e c a u s e t h e s y s t e m n e e d s t h i s i n f o r m a t i o n f o r b u i l d i n g u p

t h e MDGs.

M d g _ H d l - F o r m u l a : : =

I N I T F o f (s t r i n g # b o o l) I

S N X T F o f s t r i n g = > s t r i n g i

T A B L E S Y N F o f (s t r i n g l i s t) = > O u t _ T y p e = > ((b o o l T a b l e . V a l l i s t) l i s t)

=> (b o o l l i s t) = > ((b o o l T a b l e . V a l l i s t) l i s t) = > D e f a u l t . T y p e I

J O I N F o f M d g _ H d l _ F o r m u l a = > M d g _ H d l - F o r m u l a

49

For e x a m p l e , c o n s i d e r a n AND g a t e t a b l e . When i t r e p r e s e n t s M D G - H D L c o d e

a n d c o r e M D G - H D L c o d e , i t h a s five a r g u m e n t s . It d o e s n o t l i s t i n p u t v a l u e s f o r t h e

" e l s e c o n d i t i o n " (Figure 3.4 (a)) . However, w h e n i t r e p r e s e n t s t h e M D G f o r m u l a r e p ­

r é s e n t a t i o n , i t l i s t s a l i t h e i n p u t v a l u e s i n c l u d i n g t h o s e v a l u e s w h o s e c o r r e s p o n d i n g

o u t p u t v a l u e i s e q u a l t o t h e d e f a u l t v a l u e (t h e e l se c o n d i t i o n) (Figure 3.4 (b)) .

The a b s t r a c t s y n t a x f o r a n AND g a t e c o m p o n e n t i n t h e M D G f o r m u l a r e p r é s e n ­

t a t i o n p r o g r a m is s h o w n b e l o w :

T A B L E S Y N F [" i p l " ; "ip2"] (NDWV " o p ")

[[T A B L E . V A L F ; D O N T . C A R E] ;

[T A B L E _ V A L T ; T A B L E . V A L F]] [T]

[[T A B L E . V A L T ; T A B L E . V A L T]] (DENORMAL (BOOL F))

The s y n t a x of t h e M D G f o r m u l a r e p r é s e n t a t i o n p r o g r a m i s d e f ì n e d i n a v e r y

s i m i l a r w a y

P r o g r a m _ F o r m u l a : : =

PROGF o f E x o u t p u t => E x i n p u t => I n v a r i a b l e => M d g J i d l . F o r m u l a

3.4 Translating MDG-HDL into the Core MDG-

HDL Language

The f i r s t s t e p i n s p e c i f y i n g a t r a n s l a t o r f o r M D G - H D L i s t o d e f i n e a set o f f u n c t i o n s

t o t r a n s l a t e t h e M D G - H D L p r o g r a m i n t o t h e c o r e M D G - H D L l a n g u a g e . For e a c h

c o m p o n e n t i n M D G - H D L , a c o m p i l a t i o n o p e r a t o r i s d e f ì n e d as a set o f f u n c t i o n s ,

w h i c h r e t u r n s i t s c o r e M D G - H D L c o d e . For e x a m p l e , a NOT g a t e is c o m p i l e d as

f o l l o w s :

50

INPUTS OUTPUT

iplt ip2 t op t

IF
F * F

T F F

ELSE T

(a) AND gate table in MDG-HDL and core MDG-HDL

INPUTS OUTPUT

iplt ip2t op t

IF
F * F

T F F

E L S E T T T

(b) AND gate in the MDG formula représentation.

Figure 3.4: The Syntax of an A N D Gate Table

51

\~def T R A N S J J O T (i p : s t r i n g) o p =

T A B L E S Y N C [i p] (NOWV o p) [[T A B L E _ V A L F] ;

[T A B L E _ V A L T]] [T ; F] (DENORMAL A R B)

For the M D G - H D L c o m p o n e n t t e r m , we define a function T r a n s G T inductively

over the syntactic structure and this function translates the M D G - H D L c o m p o n e n t

t e r m into the équivalent c o r e M D G - H D L c o m p o n e n t t e r m .

\ - d e f (T r a n s G T (NOT i p o p) = T R A N S J I O T i p o p) A

(T r a n s G T (T A B L E S Y N y l y 2 y 3 y 4 y 5) = T R A N S _ T A B L E y l y 2 y 3 y 4 y 5) A

(T r a n s G T (J U I N (c o d e l : M d g _ H d l) c o d e 2) =

J O I N C (T r a n s G T c o d e l) (T r a n s G T c o d e 2))

For t h e M D G - H D L p r o g r a m , a f u n c t i o n T r a n s P r o g M C i s d e f i n e d i n t e r m s o f t h e

f u n c t i o n T r a n s G T

\~def T r a n s P r o g M C (PROG e x v e x i i n v c) = PROGC e x v e x i i n v (T r a n s G T c)

For e x a m p l e , t h e f o l l o w i n g t h e o r e m as s h o w n i n Figure 3.5, w h i c h is o b t a i n e d b y

r e w r i t i n g w i t h t h e d é f i n i t i o n s , i l l u s t r â t e s t h e t r a n s l a t i o n of t h e M D G - H D L p r o g r a m

o f t h r e e NOT g â t e s discussed above.

3.5 Translating the Core MDG-HDL Program into

the MDG Formula Représentation Program

For d o i n g s u c h t r a n s l a t i o n , w e n e e d t o s p e c i f y a t r a n s l a t o r w h i c h t r a n s l a t e s t h e c o r e

M D G - H D L l a n g u a g e i n t o t h e M D G f o r m u l a r e p r é s e n t a t i o n p r o g r a m . This t r a n s l a t o r

c o n s i s t s o f a s e t o f f u n c t i o n s .

52

file:///~def
file:///~def

\~thm T r a n s P r o g M C (P R 0 G [" o p "] [" i p "] C " v _ B " ; " u _ B "]

(J O I N (NOT " i p " " v _ B ") (SEQ (NOT " v _ B " " u _ B ")

(NOT " u _ B " " o p ")))) =

PROGC [" o p "] [" i p "] [" v _ B " ; " u _ B "]

(J O I N C (T A B L E S Y N C [i p] (NOWV u_B) [[T A B L E . V A L F] ;

[T A B L E . V A L T]]

[T ; F] (DENORMAL A R B)

J O I N C (T A B L E S Y N C [u_B] (NOWV v _ B) [[T A B L E . V A L F] ;

[T A B L E . V A L T]]

[T ; F] (DENORMAL A R B)

T A B L E S Y N C [v_B] (NOWV o p) [[T A B L E . V A L F] ;

[T A B L E . V A L T]]

[T ; F] (DENORMAL A R B))))

F i g u r e 3.5: T r a n s l a t i n g t h e M D G - H D L p r o g r a m i n t o t h e C o r e M D G - H D L p r o g r a m

A T A B L E i n M D G - H D L c a n b e u s e d t o s p e c i f y " i f - t h e n - e l s e " c o n d i t i o n s . I t o n l y

l i s t s t h e i n p u t v a l u e s f o r t h o s e " i f c o n d i t i o n " s t h a t a r e t r u e a n d t h e c o r r e s p o n d i n g

o u t p u t v a l u e o f e a c h i n p u t v a l u e i s g i v e n i n t h e c o r r e s p o n d i n g o u t p u t l i s t . F o r t h e

" e l s e c o n d i t i o n " , b e c a u s e t h e o u t p u t v a l u e i s t h e s a m e , a d e f a u l t v a l u e i s g i v e n as

t h e o u t p u t v a l u e . T h e s e m a n t i c s o f t h e T A B L E s t a t e s t h a t i f t h e i n p u t v a l u e is e q u a l

t o o n e o f t h e é l é m e n t s t h a t a r e l i s t e d i n t h e t a b l e , t h e c o r r e s p o n d i n g o u t p u t v a l u e i s

i n t h e o u t p u t l i s t , o t h e r w i s e t h e o u t p u t v a l u e i s e q u a l t o t h e d e f a u l t v a l u e . H o w e v e r ,

w h e n t h e M D G t o o l t r a n s l a t e s t h e c o r e M D G - H D L i n t o M D G , t h e r e i s a c o m p i l e r

w h i c h a u t o m a t i c a l l y finds a l i o t h e r p o s s i b l e i n p u t v a l u e s f o r t h e " e l s e c o n d i t i o n " .

I n o u r t r a n s l a t o r , w e h a v e t o f ì n d a l i t h e i n p u t v a l u e s f o r t h e " e l s e c o n d i t i o n " . F o r

t h è s e i n p u t v a l u e s , t h e o u t p u t v a l u e i s t h e d e f a u l t v a l u e .

F o r finding t h e i n p u t v a l u e f o r t h e " e l s e c o n d i t i o n " , w e n e e d t o f ì n d a l i t h e i n p u t

v a l u e s i n t e r m s o f t h e l e n g t h o f t h e i n p u t l i s t o r t h e l e n g t h o f e a c h é l é m e n t o f t h e

t a b l e first. T h e i n p u t v a l u e s f o r t h e " e l s e c o n d i t i o n " c a n b e o b t a i n e d i n t e r m s o f a l i

t h e p o s s i b l e i n p u t v a l u e s a n d t h e i n p u t v a l u e s f o r t h e " i f c o n d i t i o n " .

53

file:///~thm

First of ali, we begin to find out ali the possible input values. Because we consider

the boolean subset here, each input has two possible values (T /F) . AU the possible

input values are determined by the length of the list. We defìne a function n l i s t s

for generating the list of enumerations of a given length.

h d e / (n l i s t s 0 » [[]]) A

(n l i s t s (S U C n) = A P P E N D (MAP (CONS (T A B L E . V A L T)) (n l i s t s n))

(MAP (CONS (T A B L E . V A L F)) (n l i s t s n)))

For example, S I M P _ C 0 N V l i s t _ s s [n l i s t s - d e f] " n l i s t s (S U C (SUC (SUC 0))) " ;

lists the combination of three éléments list.

n l i s t s (SUC (S U C (S U C 0))) =

[[T A B L E . V A L T ; T A B L E . V A L T ; T A B L E _ V A L T] ;

[T A B L E - V A L T ; T A B L E _ V A L T ; T A B L E . V A L F] ;

[T A B L E . V A L T ; T A B L E . V A L F ; T A B L E . V A L T] ;

[T A B L E . V A L T ; T A B L E . V A L F ; T A B L E . V A L F] ;

[T A B L E . V A L F ; T A B L E . V A L T ; T A B L E . V A L T] ;

[T A B L E . V A L F ; T A B L E . V A L T ; T A B L E . V A L F] ;

[T A B L E . V A L F ; T A B L E . V A L F ; T A B L E . V A L T] ;

[T A B L E . V A L F ; T A B L E . V A L F ; T A B L E . V A L F]]

We then need to find out ali the input values which are not listed in the "if con­

dition". We use T a b l e . m a t c h to check the matching of input value to value listed in

the table of the "if condition". A match occurs if either the table value is don't-care,

or the value on the input is identical to the table value. If there is a match on a

given row, this input value has been listed in the table. Otherwise, we must check

the next row. If there is no match, this input value is not listed in the table. In

other words, this input value belongs to the "else condition" and the correspond-

ing output equals the default value. This is defined by a function T a b l e _ m a t c h _ L i s t s .

54

\-dej (T a b l e _ m a t c h _ L i s t s i n p u t s [] = F) A

(T a b l e _ m a t c h _ L i s t s i n p u t s (CONS v v s) =

(T a b l e . m a t c h i n p u t s v) V (T a b l e j n a t c h X i s t s i n p u t s v s))

W e n e e d t o c h e c k w h e t h e r a l i t h e p o s s i b l e i n p u t v a l u e s a r e i n t h e " i f c o n d i t i o n "

o r t h e " e l s e c o n d i t i o n " . T h i s i s i m p l e m e n t e d b y f u n c t i o n P a t h . C h e c k . I t o b t a i n s a l i

t h e i n p u t v a l u e l i s t s f o r t h e " e l s e c o n d i t i o n " .

\-dej (P a t h . C h e c k "[] V . o u t s = []) A

(P a t h _ C h e c k (CONS i p i p s) V . o u t s =

i f (~ (T a b l e _ m a t c h _ L i s t (MAP T a b l e V a l . t o . V a l i p) V . o u t s))

t h e n CONS i p (P a t h . C h e c k i p s V . o u t s)

e l s e (P a t h . C h e c k i p s V . o u t s))

A s w e m e n t i o n e d b e f o r e , a l i t h e c o m b i n a t i o n s o f a l i s t a r e d e t e r m i n e d b y t h e

l e n g t h o f t h e l i s t a n d t h e p o s s i b l e v a l u e s o f e a c h é l é m e n t i n t h e l i s t . S i n c e w e c o n s i d e r

a b o o l e a n s u b s e t h e r e , a l i t h e c o m b i n a t i o n s o f a l i s t a r e d e t e r m i n e d b y i t s l e n g t h

(t h e l e n g t h o f i n p u t l i s t) . T h e r e f o r e , t h e i n p u t v a l u e s f o r t h e " e l s e c o n d i t i o n " c a n

b e d e f i n e d i n t e r m o f t h e f u n c t i o n s P a t h . C h e c k , n l i s t s _ d e f w h i c h i s g i v e n b e l o w :

\~dej (E l s e . C o n d i t i o n s n (V _ o u t : b o o l T a b l e . V a l l i s t l i s t) =

((P a t h . C h e c k (n l i s t s n) V . o u t)))

w h e r e n i s t h e l e n g t h o f t h e i n p u t l i s t . N o w , w e c a n d e f ì n e a f u n c t i o n T R A N S . T A B L E C

w h i c h t r a n s l a t e s t h e T A B L E S Y N C c o m p o n e n t t o t h e c o r r e s p o n d i n g M D G f o r m u l a r e p ­

r é s e n t a t i o n .

\ - d e J T R A N S . T A B L E C i p o p y l y2 d =

T A B L E S Y N F i p o p y l y2 (E l s e . C o n d i t i o n s (L E N G T H i p) y l) d

55

file:///~dej

T h e f u n c t i o n T r a n s C F i s d e f i n e d f o r t r a n s l a t i n g t h e c o r e M D G - H D L c o m p o n e n t t e r n i

i n t o t h e MDG f o r m u l a r e p r e s e n t a t i o n t e r m .

\ - d e f (T r a n s C F (I N I T C p) = I N I T F p) A

(T r a n s C F (S N X T C s s O) = S N X T F s sO) A

(T r a n s C F (T A B L E S Y N C y l y 2 y 3 y 4 y 5) =

T R A N S . T A B L E C y l y 2 y 3 y 5 y 5 A

(T r a n s C F (J O I N C c o d e l c o d e 2) =

J G T N F (T r a n s C F c o d e l) (T r a n s C F c o d e 2))

F i n a l l y , t h e c o r e M D G - H D L p r o g r a m c a n b e t r a n s l a t e d i n t o t h e M D G f o r m u l a

r e p r e s e n t a t i o n p r o g r a m b y t h e f u n c t i o n T r a n s P r o g C F .

\~def T r a n s P r o g C F (PROGC e x v i n v s t a t e p) =

PRQGF e x v i n v s t a t e (T r a n s C F p)

3.6 The Semantics of the MDG-HDL Program

In t h i s s e c t i o n , w e w i l l s h o w h o w t o d e f i n e a r e l a t i o n a l s e m a n t i c s [36] o f t h e M D G -

H D L p r o g r a m f o r t h i s s u b s e t . F i r s t o f a l i , t h e s e m a n t i c s o f t h e M D G - H D L p r o g r a m

i s d e f i n e d i n t e r m s o f a n e n v i r o n m e n t [58] [57]. An e n v i r o n m e n t i s a f u n c t i o n t h a t

h a s t y p e : s t r i n g ->Ó. T h i s f u n c t i o n m a p s a v a r i a b l e n a m e (m o d e l e d b y s t r i n g s) t o t h e

v a l u e o f t h a t v a r i a b l e . In o u r l a n g u a g e , t h e e n v i r o n m e n t e n v i s f o r s t a t e v a r i a b l e s a n d

S i g n a l s . Its v a l u e i s a h i s t o r y f u n c t i o n a n d h a s a t y p e : n u m - + b o o l , w h i c h r e p r e s e n t s

f u n c t i o n s f r o m t i m e (n a t u r a i n u m b e r s) t o t h e v a l u e a t t h a t t i m e .

A s e m a n t i c f u n c t i o n S e m P r o g r a m f o r M D G - H D L p r o g r a m s i s d e f i n e d i n t e r m s o f

t h e s e m a n t i c s o f t h e M D G - H D L c o m p o n e n t t e r m (S e m M d g h d l) . F o r e a c h c o m p o n e n t

i n t h e M D G - H D L c o m p o n e n t l i b r a r y , w e d e f i n e a s p e c i f i c s e m a n t i c f u n c t i o n . T h e

s e m a n t i c s o f t h e M D G - H D L c o m p o n e n t t e r m (S e m M d g h d l) i s d e f i n e d b a s e d o n t h e

56

file:///~def

semantic functions of each component. In the rest of this section, we will first define

the semantic functions for each component in the M D G - H D L component library. We

then define the semantics of the M D G - H D L c o m p o n e n t t e r m (S e m M d g h d l) . Finalìy,

we will define the semantics of the M D G - H D L program (S e m P r o g r a m) .

We first define the semantic function for each component. The first 27 primitive

components of the M D G - H D L component are mainly logie gates and flip-flops. The

traditional hardware semantics can be given [35]. The semantics of these components

are relations between the input values and the output values. For example, the NOT

gate can be expressed by

\~def SEM_N0T i p op = (V t . op t = ~ (i p t))

The semantics of FORK represents the equality of two state variables. On each cycle,

the output value ' o p ' and input value ' i p ' are identical at that time.

\ - d e f SEM_F0RK i p o p = (V t . o p t = i p t)

The constructor I N I T has two arguments. They are represented as a pair whose first

component (F S T y) is a state variable and whose second component (SND y) is a

boolean value. The semantics of I N I T assigns an initiai value (at time zero) to the

value of the variable.

\ - d e f S E M _ I N I T (y : (n u m - > b o o l) # b o o l) = ((F S T y) 0 = SND y)

The semantics of SNXT represents a relation between a state variable y and a next

state variable n y . It déclares that the next state variable of y is n y . In other words,

the value of the variable y at the time t is equal to the value of the variable n y at

the following time.

57

file:///~def

H d e / SEM_SNXT ny y = (V t . ny (t+1) = y t)

T h e s e m a n t i c s o f t h e t a b l e w a s i n i t i a l l y g i v e n b y C u r z o n e t a l [26]. S i n c e w e

n e e d t o u s e t h e i n d u c t i o n t h e o r e m , w e a d a p t t h e i r t a b l e d é f i n i t i o n f o r a d d i n g o n e

m o r e b a s e c a s e . I n t h e i r d é f i n i t i o n , t h e y d e f i n e a p r e d i c a t e T a b l e _ m a t c h t o c h e c k i f

t h e i n p u t v a l u e s m a t c h t h e t a b l e v a l u e s .

h d e y (T a b l e - m a t c h i n p u t s [] t = T) A

(T a b l e - m a t c h i n p u t s (CONS v v s) t =

(((H D (i n p u t s) t) = T a b l e V a l _ t o _ V a l v) V (v = D O N ' T - C A R E)) A

(T a b l e _ m a t c h (T L i n p u t s) v s t))

T h e f u n c t i o n t a b l e i s d e f i n e d i n t e r m s o f T a b l e - m a t c h . I t h a s five a r g u m e n t s .

T h e first a r g u m e n t i s a l i s t o f t h e i n p u t s , t h e s e c o n d is t h e s i n g l e o u t p u t , t h e t h i r d

i s a l i s t o f t a b l e r o w s . E a c h r o w i s a l i s t i t s e l f , g i v i n g o n e a l l o c a t i o n o f v a l u e s t o

t h e i n p u t s . T h e f o u r t h a r g u m e n t i s a l i s t o f o u t p u t v a l u e s . E a c h is t h e v a l u e o n

t h e o u t p u t w h e n t h e i n p u t s h a v e t h e v a l u e s i n t h e c o r r e s p o n d i n g r o w . T h e final

a r g u m e n t i s t h e d e f a u l t v a l u e , t a k e n b y t h e o u t p u t i f t h e i n p u t v a l u e s d o n o t m a t c h

a n y r o w . I t c h e c k s i f t h e r e is a m a t c h o n e a c h r o w . I f t h e r e i s , t h e o u t p u t h a s t h e

c o r r e s p o n d i n g v a l u e . O t h e r w i s e , t h e o u t p u t e q u a l s t h e d e f a u l t v a l u e . S i n c e t h e t h i r d

a n d f o u r t h a r g u m e n t a r e l i s t s , t h e y m a y h a v e u n e q u a l l e n g t h s . W h e n e i t h e r l i s t i s

e m p t y , t h e o u t p u t v a l u e e q u a l s t h e d e f a u l t v a l u e .

\-dej (t a b l e i p o p [] V _ o u t d e f a u l t t = (o p t = d e f a u l t t)) A

(t a b l e i p o p v s [] d e f a u l t t = (o p t = d e f a u l t t)) A

(t a b l e i p o p (CONS v v s) V . o u t d e f a u l t t =

(i f (T a b l e _ m a t c h i p v t)

t h e n (o p t = (HD V _ o u t) t)

e l s e (t a b l e i p o p v s (T L V _ o u t) d e f a u l t t)))

58

T h e a b o v e d é f i n i t i o n r e f e r s t o t h e t i m e o f i n t e r e s t , t . F u n c t i o n T A B L E d e f i n e s a g i v e n

t a b l e w h i c h w i l l r e l a t e a g i v e n i n p u t t o a g i v e n o u t p u t i f t h e t a b l e r e l a t i o n i s t r u e

a t a l i t i m e .

\-def T A B L E i p o p V . o u t s V _ o u t d e f a u l t =

V t . t a b l e i p op V . o u t s V . o u t d e f a u l t t

A s w e m e n t i o n e d b e f o r e , t h e s e c o n d a r g u m e n t o f t h e t a b l e i s t h e s i n g l e o u t p u t .

I t s o u t p u t c o u l d b e e i t h e r a c u r r e n t s t a t e v a r i a b l e o r a n e x t s t a t e v a r i a b l e . We

d e f i n e a n e w HOL t y p e O u t _ T y p e t o r e p r e s e n t t h è s e o p t i o n s . T h e final a r g u m e n t i s

t h e d e f a u l t v a l u e , w h i c h i s t a k e n b y t h e o u t p u t i f t h e i n p u t v a l u e s d o n o t m a t c h

a n y r o w . T h e d e f a u l t v a l u e c o u l d b e a n a r b i t r a r y v a l u e , a c u r r e n t s t a t e v a r i a b l e o r

a n e x t s t a t e v a r i a b l e . We a l s o d e f i n e a n e w HOL t y p e D e f a u l t . T y p e i n t e r m s o f t h e

t y p e O u t . T y p e . We d e f i n e t w o f u n c t i o n s SEM.OUTVAR a n d S E M - D E F A U L T V A R , i n o r d e r t o

a c c e s s t h e c o r r e s p o n d i n g v a l u e s .

\~def (S e m _ O u t v a r (NOWV y) e n v = (e n v y)) A

(S e m . O u t v a r (N E X T V y) e n v = (e n v y) o N E X T)

\-dej (S e m _ D e f a u l t v a r (DENORMAL y) e n v = (A (t : n u m) . y)) A

(S e m _ D e f a u l t v a r (DEOUT x) e n v = (S e m . O u t v a r x e n v)) ,

T h e v a l u e s g i v e i n t h e l i s t o f t h e Outputs a r e s i g n a i s , w h i c h a r e f u n c t i o n s f r o m

t i m e t o a v a l u e . F u n c t i o n C 0 N S T _ T 0 _ F U N C T i s u s e d t o l i f t t h e c o n s t a n t l i s t t o a s i g n a l

l i s t .

\ - d e f (C 0 N S T _ T 0 _ F U N C T [c] = [A (t : n u m) . c]) A

(C 0 N S T _ T 0 _ F U N C T (CONS v v i) =

CONS (A (t : n u m) . v) (C O N S T . T O - F U N C T v i))

N o w , t h e s e m a n t i c s o f t h e M D G - H D L c o m p o n e n t t e r m (S e m M d g h d l) c a n b e d e f i n e d

i n t e r m s o f f u n c t i o n s t h a t w e d e f i n e d a b o v e a s s h o w n b e l o w .

59

file:///~def

\~def (S e m M d g h d l (NOT i p o p) e n v = SEM_N0T (e n v i p) (e n v o p)) A

(S e m M d g h d l (T A B L E S Y N y l y 2 y 3 y 4 y 5) e n v =

T A B L E (HAP e n v y l) (S E M . O U T V A R y 2 e n v) y 3

(C 0 N S T _ T 0 _ F U N C T y 4) (S E M _ D E F A U L T V A R y 5 e n v)) A

(S e m M d g h d l (J O I N c o d e l c o d e 2) e n v =

((S e m M d g h d l c o d e l e n v) A (S e r a M d g h d l c o d e 2 e n v)))

From t h e d e f i n i t i o n of S e m M d g h d l w e k n o w t h a t t h e s e m a n t i c s of T A B L E S Y N i s

d e f i n e d i n t e r m s o f t h e f u n c t i o n T A B L E :

h d e ; S e m M d g h d l (T A B L E S Y N i p (o p : o u t _ t y p e) y 3 y 4 y 5) e n v =

T A B L E (MAP e n v i p) (SEM_OUTVAR o p e n v) y 3

(C 0 N S T _ T 0 _ F U N C T y 4) (S E M _ D E F A U L T V A R y 5 e n v)

For e x a m p l e , t h e s e m a n t i c s o f t h e Table code o f t h e NOT gate i s

\ - t h m S e m M d g h d l (T A B L E S Y N [i p] (NOWV o p) [[T A B L E . V A L F] ; [T A B L E _ V A L T]]

[T ; F] (DENORMAL A R B)) e n v =

T A B L E (MAP e n v [i p]) (SEMJDUTVAR (NOWV o p) e n v)

[[T A B L E - V A L F] ; [T A B L E - V A L T]]

(C 0 N S T _ T 0 _ F U N C T [T ; F])

(S E M _ D E F A U L T V A R (DENORMAL A R B) e n v)

The s e m a n t i c s o f s e q u e n c i n g (J O I N) i s d e f i n e d i n d u c t i v e l y i n t e r m s o f t h e p r i m a r y

c o m p o n e n t c o m m a n d s . The s e m a n t i c s o f J O I N i s t h e c o n j u n c t i o n o f t h e c o r r e s p o n d ­

i n g s e m a n t i c s o f e a c h s u b - c o m m a n d .

60

file:///~def

)~def S e m M d g h d l (J O I N c l c2) e n v =

((S e r a M d g h d l c l e n v) A (S e m M d g h d l c2 e n v))

F i n a l l y , t h e s e m a n t i c s of a full p r o g r a m c a n b e d e f i n e d i n t e r m s o f s o m e a u x i l i a r y

f u n c t i o n s . F i r s t l y , t h e f u n c t i o n o f D s e m . I n t is d e f i n e d i n t e r m s o f t h e s e m a n t i c s o f

t h e c o m p o n e n t t e r r a (S e m M d g h d l) . I t u s e s e x i s t e n t i a l q u a n t i f i c a t i o n t o h i d e t h e l o c a l

v a r i a b l e f r o m t h e e n v i r o n m e n t o f t h e c i r c u i t . I t a d d s a n e x t r a e n t r y t o e n v i r o n m e n t

e n v f o r e a c h i n t e r n a l w i r e . T h i s e f f e c t i v e l y h i d e s t h e i n t e r n a l w i r e s i n a c o r a p o n e n t

t e r m (c o d e) .

\-def (D s e r a . I n t [] c o d e e n v = S e m M d g h d l c o d e e n v) A

(D s e m . I n t (CONS (w : s t r i n g) w s) c o d e (e n v : s t r i n g - > n u m - > b o o l) =

(3 v . (D s e m _ I n t ws c o d e (A w v . i f (wv = w) t h e n v e l s e (e n v w v)))))

T h e s e m a n t i c s o f a c i r c u i t i s a r e l a t i o n o n t h e e x t e r n a l i n p u t s a n d Outputs. I n

o r d e r t o e x p l i c i t l y r e p r e s e n t t h e r e l a t i o n w i t h t h e e x t e r n a l w i r e s , w e d e f ì n e a f u n c t i o n

D s e m J E x t . I t a d d s a n e x t r a e n t r y t o t h e e n v i r o n m e n t e n v f o r e a c h e x t e r n a ! w i r e (i n p u t

o r o u t p u t) . T h i s f u n c t i o n a s s i g n s a l i t h e v a l u e s o f e x t e r n a l i n p u t s o r a l i t h e v a l u e s o f

e x t e r n a l Outputs t o a l i s t (v a r : (n u m - + b o o l) l i s t) . I n o t h e r w o r d s , e a c h é l é m e n t i n

t h e l i s t v a r i n d i c a t e s a v a l u e o f a n e x t e r n a l i n p u t o r a v a l u e o f a n e x t e r n a l o u t p u t .

T h i s f u n c t i o n m a k e s i t p o s s i b l e t o r e p r e s e n t t h e s e m a n t i c s o f a c i r c u i t e x p l i c i t l y as

t h e r e l a t i o n b e t w e e n t h e e x t e r n a l i n p u t s a n d Outputs.

\~def (D s e m J E x t [] e n v (v a r : (n u m - > b o o l) l i s t) = e n v) A

(D s e m _ E x t (CONS (v : s t r i n g) v s) e n v v a r =

(D s e m _ E x t v s (A w v . i f (wv = v) t h e n (HD v a r)

e i s e (e n v w v)) (T L v a r)))

W e a l s o d e f i n e f u n c t i o n s S e m E x o u t p u t , S e m E x i n p u t a n d S e m l n v a r i a b l e t o a c c e s s

v a l u e s o f t h e e x t e r n a l o u t p u t a n d i n p u t w i r e s a n d i n t e r n a i w i r e s .

61

file:///~def

\-def S e r a E x o u t p u t (EXOUT x) = x

l~de/ S e m E x i n p u t (E X I N x) = x

\~dej S e m l n v a r i a b l e (I N V x) = x

Finally, t h e s e m a n t i c s of a p r o g r a m S e m P r o g r a m i s b a s e d o n t h e f u n c t i o n s w e

i n t r o d u c e d above. We f i r s t a p p l y f u n c t i o n D s e m _ E x t t o t h e e x t e r n a l i n p u t s , w h i c h

a d d s a n e n t r y t o t h e e n v i r o n m e n t f o r a l l e x t e r n a l i n p u t s a n d a s s i g n s t h e v a l u e o f

e a c h e x t e r n a l i n p u t t o a n e l e m e n t of a l i s t i p . We t h e n a p p l y t h e f u n c t i o n D s e m _ E x t

t o t h e e x t e r n a l o u t p u t s . Similarly, t h i s a d d s a n e n t r y t o t h e e n v i r o n m e n t f o r all

e x t e r n a l o u t p u t s a n d a s s i g n s t h e v a l u e o f e a c h e x t e r n a l o u t p u t t o a n e l e m e n t o f a

l i s t o p . Finally, t h e f u n c t i o n D s e m . I n t g i v e s t h e s e m a n t i c s o f t h e c i r c u i t i n t e r m s o f

t h e s e m a n t i c s o f t h e c o m p o n e n t t e r m (S e m M d g h d l) a n d u s e s e x i s t e n t i a l q u a n t i f i c a t i o n

t o h i d e t h e l o c a l v a r i a b l e f r o m t h e e n v i r o n m e n t o f t h e c i r c u i t .

\~def S e m P r o g r a m (PROG e x o u t p u t e x i n p u t i n v c o d e) i p o p =

l e t e n v l = D s e m J E x t (S e m E x i n p u t e x i n p u t) E m p t y E n v i p

i n

l e t e n v 2 = Dsera_Ext (S e m E x o u t p u t e x o u t p u t) e n v l o p

i n

D s e m . I n t (S e m l n v a r i a b l e i n v) c o d e e n v 2

w h e r e E m p t y E n v is t h e i n i t i a l v a l u e o f e n v i r o n m e n t e n v .

The s e m a n t i c s o f a p r o g r a m e x p l i c i t l y r e p r e s e n t s t h e r e l a t i o n b e t w e e n t h e e x t e r ­

n a l i n p u t s a n d o u t p u t s . Our s e m a n t i c s i s n o t o n l y u s e d t o v e r i f y t h e c o r r e c t n e s s o f

t h e t r a n s l a t i o n , b u t i s a l s o u s e d t o f o r m a l l y i m p o r t t h e M D G r e s u l t s i n t o HOL t o

f o r m t h e HOL t h e o r e m . During t h e i m p o r t a t i o n p r o c e s s , w e h a v e t o f o r m a l i z e t h e

d i f f e r e n t M D G a p p l i c a t i o n s (c o m b i n a t i o n a l v e r i f i c a t i o n , s e q u e n t i a l v e r i f i c a t i o n a n d

p r o p e r t y c h e c k i n g a n d s o o n) a n d a d d s o m e e x t r a a s s u m p t i o n s . A l l t h e s e f o r m a l i z a ­

t i o n s a r e e x p l i c i t l y c o n c e r n e d w i t h t h e e x t e r n a l i n p u t s a n d o u t p u t s . Our s e m a n t i c s

m a k e i t p o s s i b l e t o d o so.

62

file:///~dej
file:///~def

For example, the semantics of a circuit of three NOT gates and one R E G I S T E R can

be expressed as:

S e m P r o g r a m (PROG (EXOUT [" o p "]) (E X I N [" i p "]) (I N V [" u " ; " v " ; " w "])

(J O I N (NOT " i p " " u ")

(J O I N (NOT " u " " v ")

(J O I N (NOT " v " "w") (REG "w" " o p "))))) i p o p

By expanding the definitions, this circuit can actually be formalized as

3 u v w.

(V t . u t = ~ H D i p t) A (V t . v t = ~ u t) A

(V t . v t = ~ v t) A (V t . HD o p (t + 1) = w t)

It can be simplified further to

V t . HD o p (t+1) = " HD i p t

Obviously, the semantics o f this circuit explicitly represents the relation between the

external input list i p and output list o p in the circuit.

3.7 The Semantics of the Core MDG-HDL Pro­

gram

Similar t o t h e l a s t s e c t i o n , t h e s e m a n t i c s o f t h e c o r e M D G - H D L p r o g r a m

(S e m P r o g r a m _ C o r e) i s d e f i n e d i n t e r m s o f t h e s e m a n t i c s o f c o r e c o m p o n e n t t e r n i

(S e m M d g h d l . C o r e) a n d f u n c t i o n s D s e m _ E x t , D s e m _ I n t _ C o r e . Since t h e c o r e c o m p o n e n t

t e r a o n l y c o n s i s t s o f f o u r c o m p o n e n t s , t h e s e m a n t i c s o f i t i s d e t e r m i n e d i n t e r m s o f

i t s f o u r s e m a n t i c f u n c t i o n s .

63

hdef (S e m M d g h d l . C o r e (I N I T C i n i t) e n v =

S E M . I N I T ((e n v (F S T i n i t)) , (SND i n i t)) A

(S e m M d g h d l . C o r e (S N X T C o p s t) e n v = SEM-SNXT (e n v o p) (e n v s t)) A

(S e m M d g h d l _ C o r e (T A B L E S Y N C y l y 2 y 3 y 4 y 5) e n v =

T A B L E (MAP e n v y l) (S E M . O U T V A R y 2 e n v) y 3

(CDNST.TOJF'UNCT y 4) (S E M _ D E F A U L T V A R y 5 e n v)) A

(S e m M d g h d l . C o r e (J O I N C c o d e l c o d e 2) e n v =

((S e m M d g h d l . C o r e c o d e l e n v) A (S e m M d g h d l . C o r e c o d e 2 e n v)))

In the s e m a n t i c f u n c t i o n o f t h e p r o g r a m (S e m P r o g r a m _ C o r e) , f u n c t i o n D s e m J E x t

a d d s a n e n t r y t o the e n v i r o n m e n t for a l i e x t e r n a] i n p u t s a n d o u t p u t s , a n d a s s i g n s

the value of each e x t e r n a l i n p u t t o an element o f a l i s t i p a n d e a c h e x t e r n a l o u t p u t t o

a n e l e m e n t o f a l i s t o p . Function D s e m _ I n t _ C o r e g i v e s t h e s e m a n t i c s o f t h e c i r c u i t i n

t e r m s o f t h e s e m a n t i c s o f t h e c o m p o n e n t t e r m (S e m M d g h d l . C o r e) a n d u s e s e x i s t e n t i a l

q u a n t i f i c a t i o n t o h i d e t h e l o c a i v a r i a b l e f r o m the e n v i r o n m e n t o f t h e c i r c u i t .

J~<ie/ S e m P r o g r a m . C o r e (PROGC e x o u t p u t e x i n p u t i n v c o d e) i p op -

l e t e n v l = D s e m _ E x t (S e m E x i n p u t e x i n p u t) E m p t y E n v i p

i n

l e t e n v 2 = D s e m _ E x t (S e m E x o u t p u t e x o u t p u t) e n v l o p

i n

D s e r a . I n t - C o r e (S e m l n v a r i a b l e i n v) c o d e e n v 2

3.8 The Semantics of the MDG Formula Repre-

sentation Program

The s e m a n t i c s o f t h e M D G f o r m u l a r e p r e s e n t a t i o n p r o g r a m (S e m P r o g r a m _ F o r m u l a)

i s a l s o d e f ì n e d i n t e r m s o f t h e s e m a n t i c s o f i t s f o r m u l a c o m p o n e n t t e r m

(S e m M d g h d l _ F o r m u l a) a n d f u n c t i o n s D s e m J E x t , D s e m . I n t . F o r m u l a . The s e m a n t i c s o f

t h e f o r m u l a c o m p o n e n t t e r m (S e m M d g h d l _ F o r m u l a) i s d e f ì n e d b a s e d o n i t s c o m p o -

64

n e n t ' s s e m a n t i c f u n c t i o n s . Among t h o s e s e m a n t i c f u n c t i o n s , t h e s e m a n t i c f u n c t i o n

f o r t h e c o n s t r u c t o r T A B L E S Y N F i s d i f f é r e n t t o t h e s e m a n t i c f u n c t i o n f o r t h e c o n s t r u c t o r

T A B L E S Y N C (T A B L E) i n t h e l a s t s e c t i o n .

For d e f i n i n g t h e s e m a n t i c f u n c t i o n f o r t h e c o n s t r u c t o r T A B L E S Y N F , w e n e e d t o

define a f u n c t i o n T a b l e _ F o r m u l a first. This f u n c t i o n i s d e f i n e d i n t e r m s o f

T a b l e _ m a t c h _ L i s t a n d t a b l e . It c h e c k s i f t h e r e is a m a t c h o n t h e " i f c o n d i t i o n "

f o r a n y i n p u t . If t h e r e i s , t h e o u t p u t h a s t h e c o r r e s p o n d i n g v a l u e . Otherwise, t h e

T a b l e _ F o r m u l a i s t h e c o n j u n c t i o n o f t h e T a b l e _ m a t c h _ L i s t o n t h e " e l s e c o n d i t i o n "

a n d t h e output e q u a l s t h e d e f a u l t v a l u e .

\~def T a b l e _ F o r m u l a i n p s o u t i f t u e l t d e f a u l t t =

i f (T a b l e j n a t c h X i s t (M A P I i n p s t) i f t)

t h e n (t a b l e i n p s o u t i f t u d e f a u l t t)

e l s e ((T a b l e j n a t c h X i s t (M A P I i n p s t) e l t) A (o u t t = d e f a u l t t))

The a b o v e d é f i n i t i o n r e f e r s t o t h e t i m e o f i n t e r e s t , t . Function T A B L E _ F O R M U L A d e f i n e s

a g i v e n table w h i c h w i l l relate a g i v e n i n p u t t o a g i v e n o u t p u t i f t h e T a b l e J r o r m ù l a

r e l a t i o n i s t r u e a t a l i t i m e .

h d e / T A B L E J r O R M U L A i p o p i f t i f o u t e l t d e f a u l t =

V t . T a b l e _ F o r m u l a i p o p i f t i f o u t e l t d e f a u l t t

The s e m a n t i c f u n c t i o n s f o r t h e c o n s t r u c t o r s I N I T F a n d S N X T F a r e t h e s a m e as w e

d e f i n e d f o r the c o n s t r u c t o r s I N I T , I N I T C , SNXT a n d S N X T C i n t h e l a s t t w o s e c t i o n s .

The s e m a n t i c s o f t h e f o r m u l a c o m p o n e n t t e r m c a n be d e f i n e d i n t e r m s of t h e a b o v e

s e m a n t i c f u n c t i o n s .

65

file:///~def

\ - d e f (S e m M d g h d l _ F o r m u l a (T A B L E S Y N F y l y 2 y 3 y 4 y y 5) s =

(T A B L E J r O R M U L A (MAP s y l) (S e m _ O u t v a r y 2 s) y 3

(C 0 N S T . T 0 J 7 U N C T y 4) y (S e m _ D e f a u l t v a r y 5 s))) A

(S e m M d g h d l _ F o r m u l a (I N I T F i n i t) s =

S E M . I N I T (s (F S T i n i t) , S N D i n i t)) A

(S e i n M d g h d l - F o r m u l a (S N X T F o p s t) s = SEMJ3NXT (s o p) (s s t)) A

(S e m M d g h d l - F o r m u l a (J O I N F m l m2) s =

(S e m M d g h d l _ F o r m u l a m l s A S e m M d g h d l . F o r m u l a m2 s))

Finally, t h e s e m a n t i c s of t h e M D G f o r m u l a r e p r é s e n t a t i o n p r o g r a m c a n b e d e f i n e d

i n a v e r y s i m i l a r w a y .

\~def S e m P r o g r a m - F o r m u l a (PROGCF e x o u t p u t e x i n p u t i n v c o d e) i p o p =

l e t e n v i = D s e m _ E x t (S e m E x i n p u t e x i n p u t) E m p t y E n v i p

i n

l e t e n v 2 = D s e m _ E x t (S e m E x o u t p u t e x o u t p u t) e n v i o p

i n

D s e m _ I n t _ F o r m u l a (S e m l n v a r i a b l e i n v) c o d e e n v 2

3.9 Translator Correctness Theorems

To v e r i f y t h e c o r r e c t n e s s o f t r a n s l a t o r s as w e s u g g e s t e d a t t h e b e g i n n i n g o f t h i s

s e c t i o n , w e h a v e t o o b t a i n t w o t h e o r e m s t h a t q u a n t i f y o v e r t h e i r s y n t a c t i c s t r u c t u r e ,

w h i c h s t a t e t h a t t h e s e m a n t i c s o f t h e s o u r c e p r o g r a m i s é q u i v a l e n t t o t h e s e m a n t i c s

of i t s t r a n s l a t i o n f o r m .

For v e r i f y i n g the first t r a n s l a t o r o f t h i s s u b s e t l a n g u a g e , w e h a v e p r o v e d t h r e e

t h e o r e m s u s i n g HOL. The first t h e o r e m w e h a v e p r o v e d i s C o m p o n e n t J T e r m C . T H M ,

w h i c h s p é c i f i e s t h e s e m a n t i c s o f t h e c o m p o n e n t t e r m i s é q u i v a l e n t t o t h e s e m a n t i c s

o f i t s c o r e M D G - H D L c o m p o n e n t t e r m .

66

file:///~def

h / i m v c - S e m M d g h d l c e n v = S e m M d g h d l _ C o r e (T r a n s G T c) e n v

i n w h i c h c r e p r e s e n t s a n y M D G - H D L c o r a p o n e n t t e r m , T r a n s G T i s t h e f u n c t i o n w h i c h

t r a n s l a t e s t h e M D G - H D L c o m p o n e n t t e r m t o i t s c o r e M D G - H D L c o d e s a n d e n v is

t h e e n v i r o n m e n t f o r v a r i a b l e s . T h e c o r r e c t n e s s t h e o r e m i s p r o v e d b y s t r u c t u r a l

i n d u c t i o n o n t h e s y n t a x d o m a i n o f t h e M D G - H D L c o m p o n e n t t e r m .

T h e s e c o n d t h e o r e m w e h a v e p r o v e d i s C i r c u i t _ D s e m C _ T H M , w h i c h is o b t a i n e d i n

t e r m s o f t h e t h e o r e m C o m p o n e n t _ T e r m C J T H M . I t s t a t e s t h a t t h e s e m a n t i c s o f a c i r c u i t

i s é q u i v a l e n t t o t h e s e m a n t i c s o f i t s t r a n s l a t i o n f o r m .

ï~thm V i n v c e n v . D s e m . I n t i n v c e n v =

D s e m _ I n t - C o r e i n v (T r a n s G T c) e n v

w h e r e i n v r e p r e s e n t s t h e i n t e r n a i w i r e s o f t h e c i r c u i t a n d c i s a s é q u e n c e o f t h e

M D G - H D L c o m p o n e n t s .

T h e t h i r d t h e o r e m is t h e c o r r e c t n e s s t h e o r e m o f t h e p r o g r a m P r o g C . T H M , w h i c h is

p r o v e d i n t e r m s o f t h e t h e o r e m s C o m p o n e n t _ T e r m C _ T H M a n d C i r c u i t _ D s e m C _ T H M . T h e

m e a n i n g o f t h i s t h e o r e m i s s i m i l a r t o t h a t o f t h e t h e o r e m Dsem_THM, i . e . , t h e s e m a n t i c s

o f a c i r c u i t is é q u i v a l e n t t o t h e s e m a n t i c s o f i t s t r a n s l a t i o n f o r m . H o w e v e r , t h e

d i f f é r e n c e s a r e t h a t t h e e x t e r n a l i n p u t l i s t i p a n d o u t p u t l i s t o p o f t h e c i r c u i t a r e

e x p l i c i t l y r e p r e s e n t e d i n t h e s e m a n t i c s o f t h e p r o g r a m .

h [/ i m V e x v e x i i n v c.

S e m P r o g r a m (PROG e x v e x i i n v c) i p o p =

S e m P r o g r a m _ C o r e (T r a n s P r o g M C (PROG e x v e x i i n v c)) i p op (3.1)

F o r v e r i f y i n g t h e s e c o n d t r a n s l a t o r o f t h i s s u b s e t l a n g u a g e , W e n e e d t o p r o v e

a n o t h e r t h r e e t h e o r e m s i n a s i m i l a r w a y . T h e f i r s t t h e o r e m w e h a v e p r o v e d i s

C o m p o n e n t _ T e r m C F . T H M , w h i c h s p é c i f i e s t h a t t h e s e m a n t i c s o f t h e c o r e c o m p o n e n t

t e r m i s é q u i v a l e n t t o t h e s e m a n t i c s o f i t s HDG f o r m u l a c o m p o n e n t t e r m .

67

K / im V e s. S e m M d g h d l . C o r e c s =

S e m M d g h d l J r o r m u l a (T r a n s P r o g C F c) s

T h e s e c o n d t h e o r e m i s C i r c u i t JDsemCFJTHM, w h i c h s t a t e s t h a t t h e s e m a n t i c s o f a

c i r c u i t (c o r e M D G - H D L p r o g r a m) i s e q u i v a l e n t t o t h e s e m a n t i c s o f i t s t r a n s l a t i o n

f o r m (MDG f o r m u l a r e p r e s e n t a t i o n p r o g r a m) .

V i n v c e n v . D s e m _ I n t _ C o r e i n v c e n v =

D s e m . I n t . F o r m u l a i n v (T r a n s P r o g C F c) e n v

S i m i l a r l y , t h e l a s t t h e o r e m i s P r o g C F . T H M , w h i c h i s e x p l i c i t l y r e p r e s e n t e d as t h e

e x t e r n a l i n p u t l i s t a n d o u t p u t l i s t o f t h e c i r c u i t , s t a t e s t h a t t h e s e m a n t i c s o f a c i r c u i t

o f t h e c o r e M D G - H D L p r o g r a m i s e q u i v a l e n t t o t h e s e m a n t i c s o f i t s t r a n s l a t i o n f o r m

(MDG f o r m u l a r e p r e s e n t a t i o n p r o g r a m) .

h i / , m V e x v e x i i n v c.

S e m P r o g r a m . C o r e (PROGC e x v e x i i n v c) i p o p =

S e m P r o g r a m J r o r m u l a (T r a n s P r o g C F (PROGC e x v e x i i n v c)) i p o p (3.2)

W e h a v e p r o v e d t w o t r a n s l a t o r s a r e c o r r e c t a n d o b t a i n e d t w o c o r r e e t n e s s t h e -

o r e m s (3.1)(3.2). B y c o m b i n i n g t h e a b o v e t w o c o r r e e t n e s s t h e o r e m s , w e o b t a i n

a n e w c o r r e e t n e s s t h e o r e m (3.3), w h i c h s t a t e s t h a t t h e s e m a n t i c s o f a c i r c u i t o f a n

M D G - H D L p r o g r a m is e q u i v a l e n t t o t h e s e m a n t i c s o f a c o r r e s p o n d i n g M D G f o r m u l a

r e p r e s e n t a t i o n p r o g r a m .

h ^ „ , V e x v e x i i n v c.

S e m P r o g r a m (PROG e x v e x i i n v c) i p o p =

S e m P r o g r am - F o r m u l a

(T r a n s P r o g C F (T r a n s P r o g M C (PROG e x v e x i i n v c))) i p o p (3.3)

68

Summary

In this chapter, we have investigateti a way to verify the correctness of aspects

of a decision graph system (the M D G system) based on a theorem prover system

(the HOL System). We have defined a deep embedding formal semantics for a

boolean subset of M D G - H D L language, its core M D G - H D L codes and M D G formula

representation language. Functions for translating the M D G - H D L subset languages

to core M D G - H D L code and for translating the core M D G - H D L language to the

M D G formula representation language are given. Two correctness theorems for two

translators have been proved. By combining two translation correctness theorems,

we obtain a new theorem states that the semantics of the M D G - H D L program is

equivalent to the semantics of the M D G formula representation program. This

combination allows the low level representation (the M D G formula representation

language) to be converted to the high level language M D G - H D L . We will show,

in Chapter 6, how such a translator correctness theorem can be combined with

importing theorems.

69

Chapter 4

Verifying the M D G Translator for

the Extended Subset

In the last chapter, we defined the syntax and the semantics of the boolean subset

M D G - H D L language. We obtained a theorem (3.3), which states that the semantics

of the M D G - H D L program is equivalent to the semantics of the M D G formula

representation program used in the M D G implementation. However, this subset

could not cope with many M D G applications. As a matter of fact, the formal logic

used in M D G - H D L is a many-sorted first-order logic, which contains abstract sorts

and concrete sorts. The concrete sort of boolean values is treated separately as it

is predefined in M D G and used with most components. It is therefore treated as

a special case. The inputs and outputs of the component TABLE could be different

sorts. These sorts could be boolean sorts, concrete sorts and abstract sorts. In this

chapter, we will extend our formalization to accommodate a list of inputs (the first

argument of the table component) with boolean sorts and concrete sorts. We did

not consider the abstract sort because the Montreal M D G - H O L system can only

deal with the concrete sort and boolean sorts. Also the subset we consider is similar

to that of B D D systems so has wide application.

70

In this chapter, we will verify the translation phase of the M D G system as

shown in step (1) of Figure 1.5 for the extended subset. Similarly, the formal syntax

and semantics of the M D G - H D L language and core M D G - H D L language of this

subset will be defined. A set of functions for translating this subset language to

its core M D G - H D L equivalent will then be given. The correctness theorem about

the translation, which quantifies over its syntactic structure, will be proved. Before

we start proving the correctness of the translation, we will introduce an example.

It is a state transition diagram of the Timing block of the Fairisle A T M switch

fabric [66] [26]. This example will explain why it is necessary to embed the extended

subset into HOL.

4.1 State Transitions of the Fairisle Switch Fabric

Timing Block

The Fairisle Switch Fabric is a real switch fabric designed and in use at University

of Cambridge for multimedia applications. The Fairisle switch forms the heart of

the Fairisle network. Curzon (23] formally verified this Fairisle Switch Fabric using

HOL. Tahar et al [73] reverified it using M D G . The Fairisle Switch Fabric can be

split into 3 sub-modules namely Acknowledgement, Arbitration and Data Switch.

The Timing Block is a sub-module of the Arbitration. Pisini et al [67] verified the

Timing Block using a hybrid system (HOL and M D G) .

The Timing block controls the timing of the arbitration decision based on the

frame start signal and the time the routing bytes arrive. Figure 4.1 shows the finite

state machine of the behavior of this timing block, which is described using a state

transition function and output function. The specification of the Timing block in

M D G are as shown in Figure 4.2. An M D G table is used to represent the behavior

of the Timing block. This M D G table is taken from [67].

71

Figure 4.1: State Transitions of the Fairisle Switch Fabric Timing Block

t a b l e [[a n y A c t i v e , f r a m e S t a r t , t i m i n g _ s t a t e , n _ t i m i n g _ s t a t e] ,

[*, 1, R U N , W A I T] ,
[*, 0, R U N , R U N] ,
[1 , 0, W A I T , R O U T E] ,
[*, 1, R O U T E , W A I T] I W A I T]

INPUTS OUTPUT

anyActive frameStart timing_state n_timing_state

IF T RUN WAIT

* F RUN RUN

T F WAIT ROUTE

* T ROUTE WAIT

ELSE WAIT

Figure 4.2: The Behavior of the Fairisle Switch Fabric Timing Block

72

In t h e t a b l e , a n y A c t i v e a n d f r a m e S t a r t a r e o f b o o l e a n s o r t , t i m i n g - s t a t e a n d

n _ t i m i n g _ s t a t e a r e o f a c o n c r e t e s o r t w i t h t h e e n u m e r a t i o n : R U N , W A I T , R O U T E . In

O r d e r t o f o r m a l i z e t h e b e h a v i o r o f t h e Timing b l o c k , w e n e e d t o r e d e f i n e t h e d é f i n i t i o n

o f T A B L E t o a c c o m m o d a t e t h e d i f f é r e n t s o r t s , a s t h e v e r s i o n c o n s i d e r e d so f a r o n l y

a l l o w e d b o o l e a n v a l u e s i n t h e t a b l e . In t h e f o l l o w i n g s e c t i o n , w e w i l l r e d e f i n e t h e

s y n t a x a n d s e m a n t i c s o f t h e M D G - H D L l a n g u a g e a n d t h e c o r e M D G - H D L l a n g u a g e

t o m e e t t h o s e r e q u i r e m e n t s .

4.2 The Syntax of the MDG-HDL Language

In this section, we will defìne the syntax of the M D G - H D L language for the extended

subset. This subset allows the program to contain concrete sorts. A concrete sort is a

set of distinct constants of that sort. We use a s t r ing to represent them. However,

the inputs and Outputs of many basic components in the M D G - H D L library are

of boolean value. Therefore, we use the function Hol_datatype to define a new

type Mdg_Basic in HOL to meet this requirement. Since we use a boolean value

to represent the inputs and Outputs of some basic components and use a string to

represent each élément of a concrete sort (except the boolean type), this new type

Mdg_Basic can be either a boolean value or a string. In other words, for any term

with type M d g J 3 a s i c , it could be a BOOL bool term, a C O N C R E T E s t r ing term or a

base case UNBOUND term. In the rest of this thesis, if a variable x is a (BOOL bool)

term, we say x is of a bool sort. If a variable x is a (CONCRETE string) term, we say

x is of a concrete sort. If a variable x is a (UNBOUND) term, we say x unbound.

M d g _ B a s i c : : = UNBOUND I BOOL of bool | C O N C R E T E of s t r ing

Therefore, the common type for ali the input variables of the Timing block is

H d g J 3 a s i c . The anyActive and frameStart are of BOOL bool terms, the t i m i n g - s t a t e

and n_tiraing_state are of C O N C R E T E s t r ing terms.

73

T h e f u l l a b s t r a c t s y n t a x o f t h e e x t e n d e d s u b s e t i s g i v e n i n A p p e n d i x B , w h i c h

i s s i m i l a r t o t h a t w e g a v e b e f o r e . In t h i s v e r s i o n ' s s y n t a x , t h e t h i r d a r g u m e n t o f

t h e c o n s t r u c t o r T A B L E S Y N h a s t h e t y p e o f ((MdgJ3asic T a b l e . V a l l i s t) l i s t) r a t h e r

t h a n ((b o o l T a b l e . V a l l i s t) l i s t) . T h i s i s b e c a u s e e a c h e l e m e n t o f t h i s a r g u m e n t

g i v e s o n e a l l o c a t i o n o f v a l u e s t o t h e i n p u t s , w h i l e e a c h i n p u t is o f a n M d g _ B a s i c

t e r m . In o t h e r w o r d s , i t c o u l d b e a (BOOL b o o l) t e r m o r a (CONCRETE s t r i n g) t e r m .

S i m i l a r l y , t h e f o u r t h a r g u m e n t o f i t h a s t h e t y p e o f ((M d g _ B a s i c) l i s t) r a t h e r t h a n

(b o o l l i s t) . T h e final a r g u m e n t c o u l d b e a n a r b i t r a r y MdgJ3asic v a l u e , a c u r r e n t

s t a t e v a r i a b l e o r a n e x t s t a t e v a r i a b l e . T h e s y n t a x o f t h e t a b l e c a n t h e r e f o r e b e u s e d

t o f o r m a l i z e t h o s e d e s i g n s w h o s e M D G - H D L p r o g r a m c o n t a i n c o n c r e t e s o r t s u c h

as T i m i n g b l o c k as s h o w n b e l o w (T i m i n g . T A B L E S Y N) . H o w e v e r , t h e s y n t a x a n d t h e

s e m a n t i c s w i l l b e c o m p l i c a t e d .

T i m i n g . T A B L E S Y N =

(T A B L E S Y N

[" a n y A c t i v e " ; " f r a m e S t a r t " ; " t i m i n g _ s t a t e "]

(N E X T V (" n _ t i m i n g _ s t a t e "))

[[D O N T . C A R E ; T A B L E . V A L (BOOL T) ; T A B L E . V A L (C O N C R E T E " R U N ")] ;

[DONT _CARE ; T A B L E . V A L (BOOL F) ; T A B L E . V A L (C O N C R E T E " R U N ")] ;

[T A B L E . V A L (BOOL T) ; T A B L E . V A L (BOOL F) ; T A B L E . V A L (CONCRETE "WATT")] ;

[D O N T . C A R E ; T A B L E . V A L (BOOL F) ; T A B L E . V A L (C O N C R E T E " R O U T E ")] ;

[D O N T . C A R E ; T A B L E . V A L (BOOL F) ; T A B L E . V A L (C O N C R E T E " R O U T E ")]]

[(C O N C R E T E " W A I T ") ; (C O N C R E T E " R U N ") ; (C O N C R E T E " R O U T E ") ;

(C O N C R E T E " R U N ") ; (C O N C R E T E " W A I T ")]

(DENORMAL (C O N C R E T E " W A I T ")))

w h e r e w e u s e T i m i n g . T A B L E S Y N t o i n f o r m a l l y r e p r e s e n t t h e s y n t a x o f t h e F a i r i s l e

S w i t c h F a b r i c T i m i n g B l o c k . W e c a n n o t i c e t h a t t h e t h i r d a r g u m e n t i n t h e t a b l e o f

t h e T i m i n g B l o c k c o n t a i n s D O N T . C A R E , b o o l e a n v a l u e (e g . T A B L E . V A L (BOOL T)) a n d

c o n c r e t e s o r t v a l u e (e g . T A B L E . V A L (C O N C R E T E " R O U T E ")) .

74

T h e a b s t r a c t s y n t a x o f t h e p r o g r a m is g i v e n b y t h e c o n s t r u c t o r PROG. w h i c h i s

s i m i l a r t o t h e PROG i n t h e l a s t c h a p t e r . I t c o n s i s t s o f a n e x t e r n a l o u t p u t w i r e l i s t ,

a n e x t e r n a l i n p u t w i r e l i s t , a n i n t e r n a i w i r e l i s t a n d a c o m p o n e n t t e r m .

M d g _ P r o g r a m : : = PROG o f E x o u t p u t => E x i n p u t => I n v a r i a b l e => M d g _ H d l

F o r e x a m p l e , t h e s y n t a x o f t h e T i m i n g b l o c k i s

PROG (EXOUT [" n _ t i m i n g _ s t a t e n])

(E X I N [" a n y A c t i v e " ; " f r a m e S t a r t " ; " t i m i n g _ s t a t e "])

(I N V []) (T i r a i n g . T A B L E S Y N)

4.3 The Syntax of the Core MDG-HDL Language

The syntax of the core M D G - H D L language for the extended subset is similar to

the syntax of the core M D G - H D L language for the boolean subset. However, their

syntactic catégories are différent. The syntactic category for the extened subset

is wider than the boolean subset, because the syntax for the extended subset can

accommodate both concrete sort and boolean sort.

The abstract syntax of the program is also defined in terms of four arguments

- an external output wire list, an external input wire list, an internai wire list and

a core component term. A core component term only consists of four constructors.

i.e. INITC, SNXTC, TABLESYNC and JOINC.

Mdg_Hdl_Core : : =

INITC of (string#Mdg_Basic) I
SNXTC of string=> stringi

TABLESYNC of (string list)=> Out_Type=> ((Hdg_Basic Table.Val l i s t) l i s t)

=> (Mdg-Basic list)=> Def ault_Type |

JOINC of Mdg_Hdl_Core=>MdgJJdl_Core

75

T h e s y n t a x of t h e c o r e M D G - H D L p r o g r a m i s

M d g _ C o r e _ P r o g r a m : : =

PROGC o f E x o u t p u t => E x i n p u t => I n v a r i a b l e => M d g J i d l . C o r e

4.4 Compiling MDG-HDL into the Core MDG-

HDL Language

As w e m e n t i o n e d i n t h e l a s t c h a p t e r , w e specified a t r a n s l a t o r f o r M D G - H D L t o

t r a n s l a t e t h e M D G - H D L p r o g r a m i n t o t h e c o r e M D G - H D L l a n g u a g e . However, t h e

s y n t a c t i c c a t e g o r y i s d i f f é r e n t t o t h a t i n t h e l a s t c h a p t e r .

Similarly, w e first d e f i n e a s e t o f f u n c t i o n s f o r e a c h c o m p o n e n t . T h s e s f u n c t i o n s

a p p l y t o e a c h component a n d r e t u r n i t s c o r e M D G - H D L c o d e . F o r e x a m p l e , a NOT

g a t e i s c o m p i l e d i n t o

\ - d e f TRANS_N0T (x : s t r i n g) y =

T A B L E S Y N C [x] (NOWV y) [[T A B L E . V A L (BOOL T)] ;

[T A B L E . V A L (BOOL F)]]

[BOOL F ; BOOL T] (DENORMAL A R B)

We t h e n d e f i n e a f u n c t i o n T r a n s G T f o r t h e M D G - H D L c o m p o n e n t t e r m i n d u c t i v e l y

o v e r t h e s y n t a c t i c s t r u c t u r e . T h i s f u n c t i o n t r a n s l a t e s t h e M D G - H D L c o m p o n e n t

t e r m i n t o t h e é q u i v a l e n t c o r e M D G - H D L f o r m .

\-dej (T r a n s G T (NOT i p o p) = T R A N S J J O T i p o p) A

(T r a n s G T (T A B L E S Y N y l y 2 y 3 y 4 y 5) = T R A N S . T A B L E y l y 2 y 3 y 5 y 5 A

(T r a n s G T (J O I N (c o d e l : M d g _ H d l) c o d e 2) =

J O I N C (T r a n s G T c o d e l) (T r a n s G T c o d e 2))

76

F i n a l l y , a f u n c t i o n T r a n s P r o g M C is d e f i n e d i n t e r m s o f t h e f u n c t i o n T r a n s G T w h i c h

t r a n s l a t e s t h e M D G - H D L p r o g r a m i n t o i t s c o r e M D G - H D L p r o g r a m .

\~dej T r a n s P r o g M C (PROG e x v e x i i n v p) = PROGC e x v e x i i n v (T r a n s G T p)

4.5 The Semantics of the MDG-HDL Program

I n t h i s s e c t i o n , w e w i l l d e f i n e t h e s e m a n t i c s o f t h e M D G - H D L l a n g u a g e f o r t h e

e x t e n d e d s u b s e t . W e w i l l first d e f i n e t h e s e m a n t i c f u n c t i o n s f o r e a c h c o m p o n e n t

i n t h e M D G - H D L c o m p o n e n t l i b r a r y . W e t h e n d e f i n e t h e s e m a n t i c s o f t h e M D G -

H D L c o m p o n e n t t e r m (S e m M d g h d l) . W e n e x t d e f i n e s o m e p r e d i c a t e s t o c h e c k i f a i l

t h e e x t e r n a l w i r e s h a v e p r o p e r v a l u e s . F i n a l l y , w e w i l l d e f i n e t h e s e m a n t i c s o f t h e

M D G - H D L p r o g r a m (S e m P r o g r a m) .

F i r s t l y , w e b e g i n t o d e f i n e t h e s e m a n t i c s o f t h e M D G - H D L c o m p o n e n t s . T h e

p r i m i t i v e c o m p o n e n t s o f t h e M D G - H D L c o m p o n e n t t e r m a r e l o g i e g â t e s , f l i p - f l o p s ,

t a b l e , i n i t i a l v a l u e e t c . T h e s e m a n t i c s o f t h e l o g i e g â t e s a n d flip-flops a r e s i m i l a r t o

t h e s e m a n t i c s w e d e f i n e d f o r t h e b o o l e a n s u b s e t . H o w e v e r , t h e y a r e m o r e c o m p l e x

n o w b e c a u s e w e c o n s i d e r a d i f f é r e n t s u b s e t . T h e v a r i a b l e s i n t h i s s u b s e t h a v e d i f f é r e n t

s o r t s . W e h a v e t o d e f i n e s o m e p r e d i c a t e s t o e n s u r e e a c h v a r i a b l e d o e s n o t g e t s o r t

m i s m a t c h e d . F o r e x a m p l e , a NOT g a t e c a n o n l y h a v e b o o l e a n v a l u e s . I t i s m e a n i n g l e s s

t o h a v e n o n b o o l e a n i n p u t . I n o t h e r w o r d s , t h e t y p e o f i n p u t s a n d o u t p u t s o f t h e

c o m p o n e n t i n t h i s s u b s e t i s M d g _ B a s i c , w e n e e d t o c h e c k i f t h e i n p u t o r o u t p u t is

e i t h e r a BOOL b o o l t e r m , a C O N C R E T E s t r i n g t e r m o r a n UNBOUND t e r m f o r t h e d i f f é r e n t

c o m p o n e n t s a n d d i f f é r e n t a p p l i c a t i o n s . T h r e e p r e d i c a t e s I S . B 0 0 L , I S - C O N C R E T E a n d

I S - U N B O U N D a r e d e f i n e d t o find o u t w h a t k i n d o f s o r t a n M d g _ B a s i c t e r m h a s . .

J-rfe/ (I S . B 0 D L (BDDL v) = T) A

(I S _ B 0 0 L (C O N C R E T E u) = F) A

(I S _ B 0 0 L UNBOUND = F)

77

file:///~dej

\~def U S - C O N C R E T E (BOOL v) = F) A

(I S _ C O N C R E T E (C O N C R E T E u) = T) A

(I S _ C O N C R E T E ÜNBOUND = F)

\ - d e J (I S . U N B O U N D (BOOL v) = F) A

(IS_UNBOUND (C O N C R E T E u) = F) A

(IS_UNBOUND UNBOUND = T)

T h e s e m a n t i c s o f t h e l o g i e g â t e s a n d flip-flops a r e t h e n a c o n j u n c t i o n o f t h e s o r t

• j u d g m e n t o f i t s i n p u t s a n d O u t p u t s a n d a r e l a t i o n b e t w e e n t h e i n p u t v a l u e s a n d t h e

o u t p u t v a l u e s . F o r e x a m p l e , t h e NOT g a t e c a n b e e x p r e s s e d b y

\~def SEMJJOT i p o p =

(V t . I S - B O O L (x t) A (I S - B O O L (y t)) A

((M D G _ T 0 _ B 0 0 L (y t)) = (~ MDG_T0_B00L (x t))))

w h e r e p r e d i c a t e I S _ B 0 0 L is u s e d t o c h e c k i f a v a l u e o f M d g _ B a s i c t e r m i s BOOL T o r

BOOL F , a n d f u n c t i o n MDG_T0_B00L c o n v e r t s t h e M d g _ B a s i c t e r m s BOOL T a n d BOOL F

t o b o o l e a n v a l u e s T a n d F .

H d e / (MDG_T0_B00L (BOOL v) = v)

W e d e f ì n e t h e s e m a n t i c s o f t h e AND g a t e i n a s i m i l a r w a y .

h d e / SEM_AND x l x 2 y =

(V t . (I S . B 0 0 L (x l t) A I S _ B 0 0 L (x 2 t) A I S _ B 0 0 L (y t)) A

((M D G _ T 0 _ B 0 0 L (y t)) =

((M D G _ T 0 _ B 0 0 L (x l t)) A (MDG_T0_B00L (x 2 t))))

T h e s e m a n t i c s o f o t h e r l o g i e g â t e s a n d f l i p - f l o p s a r e a l s o d e f i n e d i n a s i m i l a r w a y .

T h e s e m a n t i c s o f t h e T A B L E S Y N i s e x t e n d e d t o d e a l w i t h t h e t y p e M d g _ B a s i c . I t is

78

file:///~def
file:///~def

a l s o d e f i n e d i n t e r m s o f t h e d é f i n i t i o n s o f T A B L E a n d t a b l e . T h e t a b l e f u n c t i o n f o r

t h e e x t e n d e d s u b s e t i s d e f i n e d i n a s i m i l a r w a y t o t h e f u n c t i o n w e d e f i n e d f o r t h e

b o o l e a n s u b s e t , e x c e p t t h a t t h e t y p e o f t h e i n p u t s a n d o u t p u t a r e n u m - M d g _ B a s i c

(see F i g u r e 4 . 2) . I n o t h e r w o r d s , f o r a n y i n p u t a n d o u t p u t o f a t a b l e , t h e i r v a l u e s

a r e h i s t o r y f u n c t i o n s f r o m t i m e , a n a t u r a i n u m b e r , t o t h e v a l u e a n M d g _ B a s i c t e r m

a t t h a t t i m e . A n M d g - B a s i c t e r m c o u l d b e e i t h e r a (BOOL b o o l) t e r m o r a (CONCRETE

s t r i n g) t e r m . W e d e f i n e p r e d i c a t e s t o c h e c k t h a t t h e v a l u e o f i n p u t s a n d o u t p u t i s

w h e t h e r (n u m - ^ BOOL b o o l) t e r m o r (num-> CONCRETE s t r i n g) t e r m .

T h e f u n c t i o n T A B L E f o r t h e e x t e n d e d s u b s e t i s s l i g h t l y d i f f é r e n t . I t s t a t e s t h a t a t

a l i t i m e e a c h i n p u t a n d e a c h o u t p u t o f t h e M D G t a b l e h a s a p r o p e r s o r t (b o o l s o r t ,

c o n c r e t e s o r t o r is u n b o u n d e d) a n d t h e r e l a t i o n o f t h e t a b l e is t r u e .

\-def T A B L E i n p s o u t V . o u t s V _ o u t d e f a u l t =

V t .

S o r t C h e c k - I n p u t i n p s V . o u t s t A

S o r t C h e c k - O u t p u t o u t (HD V _ o u t) t A

t a b l e i n p s o u t V _ o u t s V . o u t d e f a u l t t

w h e r e f u n c t i o n s S o r t C h e c k _ I n p u t a n d S o r t C h e c k _ 0 u t p u t a r e d e f i n e d t o c h e c k t h e s o r t

o f e a c h i n p u t a n d o u t p u t .

A s w e m e n t i o n e d i n s e c t i o n 3.6, t h e t h i r d a r g u m e n t o f a t a b l e i s a l i s t o f t a b l e

r o w s . E a c h r o w i s a l i s t i t s e l f , g i v i n g o n e a l l o c a t i o n o f v a l u e s t o t h e i n p u t s . T h e

v a l u e s i n e a c h c o l u m n o f t h e t a b l e d é t e r m i n e s t h e p o s s i b l e s o r t s o f o n e i n p u t (e i t h e r

(BOOL b o o l) t e r m , (CONCRETE s t r i n g) t e r m o r d o n ' t _ c a r e) . W e c a n c h e c k t h e s o r t o f

e a c h i n p u t i n t h e c o r r e s p o n d i n g é l é m e n t s i n t h e t a b l e . W e first c h e c k e a c h r o w b y

d e f i n i n g a r e c u r s i v e f u n c t i o n S o r t C h e c k _ I n p u t l .

79

\~def (S o r t C h e c k _ I n p u t l (i n s : (n u m - > M d g _ B a s i c) l i s t) [] (t : n u m) = T) A

(S o r t C h e c k _ I n p u t l i n s (CDNS v v s) t =

(i f (I S _ B 0 0 L (T a b l e V a l . t O - V a l v))

t h e n (I S 3 0 0 L ((H D i n s) t))

e l s e (i f (I S . C O N C R E T E (T a b i e V a l . t o . V a l v))

t h e n (I S . C O N C R E T E ((H D i n s) t)) e l s e T) A

(S o r t C h e c k _ I n p u t l (T L i n s) v s t)))

The p r e d i c a t e S o r t C h e c k _ I n p u t l c h e c k s w h e t h e r e a c h i n p u t i s a b o o l s o r t o r c o n ­

c r e t e s o r t i n t e r m s o f a t a b l e r o w . If f u n c t i o n T a b l e . t o . V a l a p p l i e s t o a n é l é m e n t

i n t h e t a b l e r o w a n d o b t a i n s a (BOOL b o o l) t e r m , t h i s i n p u t w i l l b e a (n u m - » B 0 0 L

b o o l) t e r m . If i t o b t a i n s (CONCRETE s t r i n g) t e r m , t h e c o r r e s p o n d i n g i n p u t w i l l be

a (num->CONCRETE s t r i n g) t e r m . If i t i s d o n ' t . c a r e , i t r e t u r n s T.

The p r e d i c a t e S o r t C h e c k _ I n p u t i s d e f i n e d i n t e r m s o f t h e p r e d i c a t e

S o r t C h e c k _ I n p u t l . It c h e c k s w h e t h e r a l i t h e i n p u t s a r e b o o l s o r t s o r c o n c r e t e s o r t s .

hdej (S o r t C h e c k _ I n p u t (i n s : (n u m - > M d g 3 a s i c) l i s t) [] (t : n u m) = T) A

(S o r t C h e c k _ I n p u t i n s (CONS v v s) t =

(S o r t C h e c k _ I n p u t l i n s v t) A (S o r t C h e c k _ I n p u t i n s v s t))

The f o u r t h a r g u m e n t o f a t a b l e i s a l i s t o f o u t p u t v a l u e s . The p r e d i c a t e

S o r t C h e c k _ O u t p u t i s d e f i n e d t o c h e c k w h e t h e r t h e o u t p u t is a b o o l s o r t o r a c o n c r e t e

s o r t .

\~def S o r t C h e c k J D u t p u t o u t o u t v a l (t : n u m) =

(i f I S . B 0 0 L (o u t v a l t) t h e n I S . B 0 0 L (o u t t)

e l s e I S . C O N C R E T E (o u t t))

T h e d é f i n i t i o n o f o t h e r c o m p o n e n t s s u c h as FORK a r e v e r y s i m i l a r t o t h e d é f i n i t i o n

w e g a v e f o r t h e b o o l e a n s u b s e t . The o n l y d i f f é r e n c e i s t h a t t h e t y p e o f i t s i n p u t s

80

file:///~def
file:///~def

a n d o u t p u t a r e (num-» BOOL b o o l) a n d (BOOL b o o l) t e r m s i n s t e a d o f (n u m - ^ b o o l)

a n d b o o l t e r m s .

S e c o n d l y , t h e s e m a n t i c s o f t h e M D G - H D L c o r a p o n e n t t e r n i (S e m M d g h d l) i s d e f i n e d

i n a v e r y s i m i l a r w a y e x c e p t t h a t t h e s y n t a c t i c c a t e g o r y i s d i f f e r e n t t o t h a t o f t h e

d e f i n i t i o n i n t h e b o o l e a n s u b s e t .

\-dej (S e m M d g h d l (NOT x y) e n v = SEMJJOT (e n v x) (e n v y)) A

(S e m M d g h d l (T A B L E S Y N y l y 2 y 3 y 4 y 5) e n v =

T A B L E ((M A P e n v y l)) ((S E M . O U T V A R y 2 e n v)) y 3

(C 0 N S T _ T 0 - F U N C T y 4) ((S E M _ D E F A U L T V A R y 5 e n v)) e n v s t b l) A

(S e m M d g h d l (J O I N (c o d e l : M d g _ H d l) c o d e 2) e n v =

S e m M d g h d l c o d e l e n v A S e m M d g h d l c o d e 2 e n v)

T h i r d l y , w e d e f i n e s o m e p r e d i c a t e s t o c h e c k t h a t e a c h e x t e r n a l w i r e h a s a p r o p e r

s o r t . T h e t y p e o f t h e i n p u t s a n d O u t p u t s o f a n y c o m p o n e n t i s (n u m - * M d g _ B a s i c) .

H o w e v e r , f o r a n y c o m p o n e n t s , t h e i r i n p u t s a n d Outputs m u s t b e e i t h e r (n u m - > B 0 0 L

b o o l) t e r m s , (n u m ^ - C O N C R E T E s t r i n g) t e r m s o r UNBOUND t e r m .

F o r e x a m p l e , t h e i n p u t a n d o u t p u t v a l u e o f t h e NOT g a t e m u s t b e num—^BOOL b o o l

t e r m s , w h i c h i s c o r r e s p o n d i n g t o t h e b o o l e a n v a l u e . H o w e v e r , t h e t y p e o f i n p u t a n d

o u t p u t a r e (n u m - M d g _ B a s i c) . T h e v a l u e o f t h e i n p u t a n d o u t p u t c o u l d t h e r e f o r e

b e (num-> C O N C R E T E s t r i n g) t e r m s . If o n e o f t h e i n p u t v a l u e o r o u t p u t v a l u e i s a n

e x t e r n a l w i r e a n d a (num-> C O N C R E T E s t r i n g) t e r m , t h e s e m a n t i c s o f t h e c i r c u i t w i l l

r e t u r n f a l s e , [f t h e s p e c i f i c a t i o n o f a d e s i g n r e t u r n s f a l s e , t h e c o r r e c t n e s s t h e o r e m o f

t h i s d e s i g n w i l l b e a l w a y s t r u e . T h i s i s b e c a u s e f a l s e i m p l i e s a n y t h i n g . In o t h e r

w o r d s , a n i n c o n s i s t e n t m o d e l w i l l b e p r o d u c e d . W h e n w e d e f i n e t h e s e m a n t i c s o f

t h e p r o g r a m f o r t h e e x t e n d e d s u b s e t , w e h a v e t o a d d a s s u m p t i o n s s o as t o a v o i d t h e

s o r t o f e a c h v a r i a b l e b e i n g m i s m a t c h e d a n d t h e i n c o n s i s t e n t m o d e l b e i n g p r o d u c e d .

T h e a s s u m p t i o n s a r e t o m a k e s u r e e a c h e x t e r n a l i n p u t a n d o u t p u t h a s p r o p e r s o r t

(e i t h e r (BOOL b o o l) t e r m o r (CONCRETE s t r i n g) t e r m) .

81

S i n c e w e o n l y n e e d t o j u d g e e x t e r n a l w i r e s , w e d e f i n e c h e c k t o c h e c k i f a v a r i a b l e

is a n e x t e r n a l w i r e o r n o t .

\ - d e f (c h e c k x [] = T) A

(c h e c k x (CONS 1 l s) = i f (x = 1) t h e n F e l s e (c h e c k x l s))

w h e r e CONS 1 l s l i s t s a l i t h e i n t e r n a i v a r i a b l e s .

P r e d i c a t e B 0 0 L _ N 0 T i s d e f i n e d t o m a k e s u r e t h a t i f t h e i n p u t o r o u t p u t o f a NOT

g a t e i s a n e x t e r n a l v a r i a b l e t h e n i t m u s t b e a (BOOL b o o l) t e r m .

\-def BOOLJJQT (x : s t r i n g) (y : s t r i n g) 1 s -

(V t . (i f (c h e c k x 1) t h e n I S _ B 0 0 L (s x t) e l s e T) A

(i f (c h e c k y 1) t h e n I S _ B 0 0 L (s y t) e l s e T))

P r e d i c a t e s f o r c h e c k i n g t h e s o r t o f e x t e r n a l i n p u t s a n d o u t p u t s f o r o t h e r l o g i e

g a t e s a n d flip-flops h a v e b e e n d e f i n e d i n a v e r y s i m i l a r w a y .

F o r c h e c k i n g t h e s o r t o f t h e e x t e r n a l i n p u t s a n d o u t p u t f o r a t a b l e , w e h a v e

t o d e f i n e s o m e a u x i l i a r y f u n c t i o n s (C h e c k _ I n p u t _ S o r t l , C h e c k _ I n p u t _ S o r t a n d

C h e c k _ O u t p u t _ S o r t) . T h e p r i n c i p l e o f t h e d é f i n i t i o n o f t h o s e p r e d i c a t e s is s i m i l a r

t o t h e p r e d i c a t e s S o r t C h e c k _ I n p u t l , S o r t C h e c k - I n p u t a n d S o r t C h e c k _ O u t p u t . H o w -

e v e r , a d i f f é r e n c e i s t h a t w e h a v e t o c h e c k e a c h v a r i a b l e t o e s t a b l i s h w h e t h e r i t i s

a n e x t e r n a l v a r i a b l e first. W e t h e n c h e c k t h e s o r t o f e a c h e x t e r n a l v a r i a b l e i n t h e

c o r r e s p o n d i n g é l é m e n t s i n t h e t a b l e .

T h e p r e d i c a t e C h e c k _ I n p u t . S o r t i first c h e c k s w h e t h e r a n i n p u t o f a t a b l e (t h e

first a r g u m e n t o f t h e t a b l e) is a n e x t e r n a l w i r e . If i t i s , i t finds o u t t h e s o r t o f i n p u t

i n t e r m s o f a t a b l e r o w (t h e t h i r d a r g u m e n t o f t h e t a b l e) . If a n é l é m e n t i n t h e t a b l e

r o w i s a (BOOL b o o l) t e r m , t h e v a l u e o f t h i s i n p u t w i l l b e a (n u m - > B 0 0 L b o o l) t e r m .

If i t is a (CONCRETE s t r i n g) t e r m , t h e c o r r e s p o n d i n g i n p u t w i l l b e a (num->CONCRETE

s t r i n g) t e r m . If i t i s d o n ' t _ c a r e , i t r e t u r n s T.

82

\~def (C h e c k _ I n p u t _ S o r t l (i n s : s t r i n g l i s t) [] s 1 = T) A

(C h e c k _ I n p u t _ S o r t l i n s (CONS v v s) s 1 =

(V t . (i f (c h e c k (HD i n s) 1))

t h e n (i f (v = D 0 N T _ C A R E) t h e n T

e l s e i f (I S _ B 0 0 L (T a b l e V a l . t o _ V a l v))

t h e n (I S _ B 0 0 L ((H D i n s) t))

e l s e i f (I S - C O N C R E T E (T a b l e V a l - t o . V a l v))

t h e n (I S _ C O N C R E T E ((H D i n s) t)) e l s e T)

e l s e T) A

(C h e c k . I n p u t _ S o r t l (T L i n s) y s s 1))

T h e p r e d i c a t e C h e c k _ I n p u t _ S o r t i s d e f i n e d i n t e r m s o f C h e c k _ I n p u t _ S o r t l . I t

c h e c k s t h e s o r t o f a l i t h e e x t e r n a l w i r e s i n t h e t a b l e .

hdef (C h e c k _ I n p u t - S o r t (i n p u t s : s t r i n g l i s t) [] s 1 = T) A

(C h e c k _ I n p u t _ S o r t i n p u t s (CONS v v s) s 1 =

(C h e c k _ I n p u t _ S o r t l i n p u t s v s 1) A

(C h e c k _ I n p u t - S o r t (i n p u t s) v s s 1))

T h e f o u r t h a r g u m e n t o f a t a b l e is a l i s t o f o u t p u t v a l u e s . S i m i l a r l y , t h e p r e d i c a t e

C h e c k _ O u t p u t _ S o r t first c h e c k s w h e t h e r t h e o u t p u t i s a n e x t e r n a l w i r e o r n o t . I f i t

i s , t h e s o r t o f t h e e x t e r n a l o u t p u t is d e t e r m i n e d i n t e r m s o f t h e o u t p u t v a l u e (t h e

f o u r t h a r g u m e n t o f t h e t a b l e) .

\~def C h e c k _ O u t p u t _ S o r t o u t o u t v a l s 1 =

V t . (i f (c h e c k (O u t v a r . V a l o u t))

t h e n (i f (I S . B 0 0 L (o u t v a l t))

t h e n I S _ B 0 0 L ((S e m . O u t v a r o u t s) t)

e l s e I S _ C O N C R E T E ((S e m _ O u t v a r o u t s) t))

e l s e T)

83

file:///~def

P r e d i c a t e B o o l _ C o n c r e t e _ T a b l e is d e f i n e d f o r c h e c k i n g t h e s o r t o f e x t e r n a l i n p u t s

a n d o u t p u t s f o r t h e T A B L E c o m p o n e n t . I t i s i n t e r m s o f t h e a b o v e p r e d i c a t e s .

B o o l _ C o n c r e t e _ T a b l e i n p s o u t V _ o u t s V _ o u t s 1 =

((C h e c k _ I n p u t J S o r t i n p s V _ o u t s s 1) A

C h e c k - O u t p u t _ S o r t o n t (HD V . o u t) s 1)

T h e p r e d i c a t e C h e c k _ E x t e r n a l _ S o r t i s d e f i n e d i n d u c t i v e l y o v e r t h e s y n t a c t i c s t r u c ­

t u r e f o r c h e c k i n g t h e s o r t o f t h e e x t e r n a l w i r e s o f a c i r c u i t . I t i s i n t e r m s o f t h o s e

p r e d i c a t e s f o r c h e c k i n g t h e s o r t o f e a c h c o m p o n e n t . T h e d é f i n i t i o n is g i v e n b e l o w .

hdej (C h e c k _ E x t e r n a l _ S o r t (NOT x y) s 1 = B 0 0 L J J 0 T x y s 1) A

(C h e c k - E x t e r n a l _ S o r t (T A B L E S Y N y l y 2 y 3 y 4 y 5) s 1 =

B o o l - C o n c r e t e . T a b l e y l y 2 y 3 (C 0 N S T _ T 0 _ F U N C T y 4) s 1) A

(C h e c k _ E x t e r n a l _ S o r t (SEQ (c o d e l : M d g _ H d l) c o d e 2) s 1 =

((C h e c k _ E x t e r n a l _ S o r t c o d e l s 1) A

(C h e c k _ E x t e r n a l _ S o r t c o d e 2 s i)))

F i n a l l y , w e d e f i n e t h e s e m a n t i c s f o r t h e M D G - H D L p r o g r a m o f t h i s e x t e n e d

s u b s e t . T h e s e m a n t i c s o f a p r o g r a m i s d e s c r i b e d b y S e m P r o g r a m , w h i c h i s d e f i n e d i n

t e r m s o f t h e p r e d i c a t e s D s e m _ E x t , D s e m _ I n t a n d C h e c k _ E x t e r n a l _ S o r t . T h e d é f i n i t i o n

o f t h e first t w o p r e d i c a t e s a r e s i m i l a r t o t h a t w e d e f i n e d b e f o r e e x c e p t t h a t t h e i r

s y n t a c t i c c a t é g o r i e s a r e w i d e r t h a n b e f o r e .

As w e m e n t i o n e d a t t h e b e g i n n i n g o f t h i s s e c t i o n , t h e s e m a n t i c s o f t h e p r o g r a m

i s d e f i n e d i n t e r m s o f t h e o n e e n v i r o n m e n t . T h e e n v i r o n m e n t m a p s a s y n t a c t i c

o b j e c t t o a h i s t o r y f u n c t i o n (n u m - > M d g _ B a s i c) . W e u s e f u n c t i o n D s e m _ E x t a d d i n g a n

e x t r a e n t r y t o t h i s e n v i r o n m e n t f o r e a c h e x t e r n a l w i r e (i n p u t a n d o u t p u t) . A l i s t

i p i s u s e d t o r e p r e s e n t a l i t h e v a l u e s o f t h e e x t e r n a l i n p u t s a n d a l i s t o p is u s e d

t o r e p r e s e n t a l i t h e v a l u e s o f t h e e x t e r n a l o u t p u t s . T h e r e f o r e , t h e s e m a n t i c s o f t h e

84

p r o g r a m cari b e r e p r é s e n t é e ! e x p l i c i t l y w i t h t h e e x t e r n a l i n p u t s i p a n d O u t p u t s o p .

T h e f u n c t i o n D s e m _ I n t u s e s e x i s t e n t i a l q u a n t i f i c a t i o n t o h i d e t h e l o c a l v a r i a b l e f r o m

t h e e n v i r o n r n e n t . T h e e n t r i e s f o r i n t e r n a l v a r i a b l e s a r e a d d e d t o t h e e n v i r o n m e n t .

T h e f u n c t i o n C h e c k _ E x t e r n a l J 3 o r t m a k e s u r e t h a t t h e e x t e r n a l w i r e s d o n o t g e t s o r t

m i s m a t c h e d . T h e s e m a n t i c s o f t h e M D G - H D L p r o g r a m i s d e f i n e d i n t e r m s o f t h o s e

f u n c t i o n s .

\~dej S e m P r o g r a r a (PROG e x o u t p u t e x i n p u t i n v c) i p o p =

l e t e n v l = (D s e m _ E x t (S e m E x i n p u t e x i n p u t) E m p t y E n v i p)

i n

l e t e n v 2 = D s e m _ E x t (S e m E x o u t p u t e x o u t p u t) e n v l o p

i n

((C h e c k _ E x t e r n a l - S o r t c e n v 2 (S e r a l n v a r i a b l e i n v)) D

D s e m _ I n t (S e m l n v a r i a b l e i n v) c e n v 2)

C o m p a r i n g t h i s w i t h t h e s e m a n t i c s o f t h e M D G - H D L p r o g r a m f o r t h e b o o l e a n

s u b s e t (s e c t i o n 3.6), w e n o t i c e t h a t t h e s e m a n t i c s o f t h e M D G - H D L p r o g r a m f o r

e x t e n d e d s u b s e t h a s a d d e d a n a d d i t i o n a l a s s u m p t i o n (C h e c k - E x t e r n a l - S o r t) . T h i s

i s b e c a u s e t h e v a r i a b l e i n t h i s s u b s e t c a n b e e i t h e r a b o o l e a n s o r t o r a c o n c r e t e s o r t .

T h e a s s u m p t i o n m a k e s s u r e t h a t a l i t h e e x t e r n a l v a r i a b l e s h a v e p r o p e r s o r t s .

4.6 The Semantics of the Core MDG-HDL lan-

guage

F o r d e f i n i n g t h e s e m a n t i c s o f t h e c o r e M D G - H D L l a n g u a g e , w e n e e d t o d e f i n e t h e

s e m a n t i c s o f t h e c o r e c o m p o n e n t t e r m first (S e m M d g h d l _ C o r e) . It i s d e f i n e d i n t e r m s

o f t h e s e m a n t i c f u n c t i o n f o r e a c h c o m p o n e n t .

85

file:///~dej

\~dej (S e m M d g h d l . C o r e (I N I T C i n i t) e n v =

S E M . I N I T ((e n v (F S T i n i t)) , (SND i n i t))) A

(S e m M d g h d l . C o r e (S N X T C op s t) e n v = SEMJ3NXT (e n v o p) (e n v s t)) A

(S e m M d g h d l . C o r e (T A B L E S Y N C y l y 2 y 3 y 4 y 5) e n v =

T A B L E (MAP e n v y l) (S E M . O U T V A R y 2 e n v) y 3

(C O N S T . T 0 . F U N C T y 4) (S E M J) E F A U L T V A R y 5 e n v)) A

(S e m M d g h d l . C o r e (J O I N C c o d e l c o d e 2) e n v =

((S e m M d g h d l . C o r e c o d e l e n v) A (S e m M d g h d l . C o r e c o d e 2 e n v)))

where f u n c t i o n s S E M . I N I T , S E M . S N X T a n d T A B L E a r e s e m a n t i c f u n c t i o n s f o r c o m p o -

n e n t s as we d e f i n e d i n t h e l a s t s e c t i o n .

The p r e d i c a t e C h e c k _ E x t e r n a l _ S o r t - C o r e i s d e f i n e d i n a s i m i l a r w a y t o t h e p r e d ­

i c a t e C h e c k _ E x t e r n a l _ S o r t we d e f i n e d i n t h e l a s t s e c t i o n . It i s d e f i n e d i n d u c t i v e l y

o v e r t h e s y n t a c t i c s t r u c t u r e for c h e c k i n g t h e s o r t o f the external w i r e s o f a c i r c u i t . It

i s i n t e r m s o f t h e s o r t c h e c k i n g p r e d i c a t e s defined i n t h e l a s t s e c t i o n . The d é f i n i t i o n .

i s g i v e n b e l o w .

\~dej (C h e c k . E x t e r n a l - S o r t _ C o r e (I N I T C i n i t) s 1 = B O O L . I N I T i n i t s 1) A

(C h e c k _ E x t e m a l _ S o r t _ C o r e (S N X T o p s t) s 1 = B 0 0 L . S N X T o p s t s 1) A

(C h e c k . E x t e r n a l _ S o r t _ C o r e (T A B L E S Y N C y l y 2 y 3 y 4 y 5) s 1 =

B o o l . C o n c r e t e . T a b l e y l y 2 y 3 (C 0 N S T _ T 0 _ F U N C T y 4) s 1) A

(C h e c k - E x t e r n a l _ S o r t _ C o r e (SEQ c o d e l c o d e 2) s 1 =

((C h e c k _ E x t e r n a l _ S o r t _ C o r e c o d e l s 1) A

(C h e c k . E x t e r n a l _ S o r t _ C o r e c o d e 2 s 1)))

As i n t h e l a s t s e c t i o n , f o r d e f i n i n g t h e s e m a n t i c s o f t h e p r o g r a m , we n e e d f u n c ­

t i o n s D s e m _ E x t , D s e m _ I n t _ C o r e a n d C h e c k _ E x t e r n a l _ S o r t _ C o r e . Function D s e m _ E x t

a d d s a n e n t r y t o t h e e n v i r o n m e n t f o r a i l e x t e r n a l i n p u t s a n d o u t p u t s , a n d a s s i g n s

t h e v a l u e o f e a c h e x t e r n a l i n p u t t o a n é l é m e n t o f a l i s t i p a n d e a c h e x t e r n a l o u t p u t

t o a n é l é m e n t o f a l i s t o p . Function D s e m _ I n t _ C o r e g i v e s t h e s e m a n t i c s o f t h e c i r c u i t

i n t e r m s o f t h e s e m a n t i c s o f t h e c o r e c o m p o n e n t t e r m (S e m M d g h d l . C o r e) a n d u s e s

86

file:///~dej
file:///~dej

e x i s t e n t i a l q u a n t i f i c a t i o n t o h i d e t h e l o c a l v a r i a b l e s f r o m t h e e n v i r o n m e n t o f t h e

c i r c u i t . The f u n c t i o n C h e c k _ E x t e r n a l _ S o r t _ C o r e find t h e p r o p e r s o r t f o r t h e e x t e r n a l

w i r e s o f t h e c i r c u i t . The s e m a n t i c s o f t h e c o r e M D G - H D L l a n g u a g e i s d e f i n e d i n

t e r m s o f t h e a b o v e f u n c t i o n s .

\~def S e m P r o g r a m . C o r e (PROGC e x o u t p u t e x i n p u t i n v c o d e) i p op =

l e t e n v i = D s e m _ E x t (S e m E x i n p u t e x i n p u t) E m p t y E n v i p

i n

l e t e n v 2 = D s e m _ E x t (S e m E x o u t p u t e x o u t p u t) e n v i o p

i n

((C h e c k _ E x t e r n a l _ S o r t _ C o r e c e n v 2 (S e r a l n v a r i a b l e i n v)) D

D s e m _ I n t _ C o r e (S e m l n v a r i a b l e i n v) c o d e e n v 2

4.7 Translator Correctness Theorem

We a l s o p r o v e t h e c o r r e c t n e s s t h e o r e m f o r t h i s t r a n s l a t o r . We h a v e p r o v e d a t h e -

o r e m w h i c h q u a n t i f i e s o v e r its s y n t a c t i c s t r u c t u r e a n d s t a t e s t h a t t h e s e m a n t i c s

o f t h e M D G - H D L p r o g r a m is é q u i v a l e n t t o t h e s e m a n t i c s o f t h e c o r e M D G - H D L

p r o g r a m u s e d i n t h e M D G i m p l e m e n t a t i o n . For p r o v i n g t h e c o r r e c t n e s s t h e o r e m

PR0G_THM, w e h a v e p r o v e d t h r e e t h e o r e m s C o m p o n e n t - T e r r a C T H M , C i r c u i t J) s e m C T H M

a n d C h e c k _ E x t e r n a l _ S o r t _ T H M u s i n g HOL. The first t w o t h e o r e m s a r e s i m i l a r t o t h e

t h e o r e m s w e p r o v e d f o r t h e b o o l e a n s u b s e t e x c e p t t h a t t h e i r s y n t a c t i c c a t e g o r y i s

d i f f é r e n t . In t h i s s u b s e t , t h e t a b l e c a n b e u s e d t o f o r m a l i z e d the d e s i g n w h o s e v a r i ­

a b l e s a r e c o n c r e t e s o r t a n d b o o l e a n s o r t r a t h e r t h a n j u s t b o o l e a n s o r t . The t h i r d

t h e o r e m s t a t e s t h a t t h e s o r t o f e a c h e x t e r n a l w i r e o f a c i r c u i t c i s é q u i v a l e n t t o t h e

s o r t o f t h e c o r r e s p o n d i n g e x t e r n a l w i r e i n i t s t r a n s l a t i o n f o r m T r a n s G T c. This i s

b e c a u s e t h e s o r t s o f t h e e x t e r n a l v a r i a b l e s d o n o t c h a n g e a f t e r t h e t r a n s l a t i o n .

V c s 1 . C h e c k _ E x t e r n a l _ S o r t c s 1 =

C h e c k _ E x t e r n a l _ S o r t _ C o r e (T r a n s G T c) s 1

87

file:///~def

The correctness theorem of the program PR0G_THM is proved in terms of the above

three theorems.

\~thm V e x v e x i i - n v c •

SemProgram (PROG exv exi inv c) ip op =

SemProgram_Core (TransProgMC (PROG exv exi inv c)) ip op (4.1)

Summary

In this chapter, we have extended our formalization to accommodate a list of inputs

of the component table with boolean sorts and concrete sorts. This allows our

formalization to cope with many M D G applications. We have defined the syntax

and the semantics for this extended subset of the M D G - H D L language and its core

M D G - H D L code. Functions for translating the M D G - H D L subset languages to core

M D G - H D L codes are given. The correctness theorem of the translation for this

subset which quantifies over the syntactic structure is verified. Our semantics of the

program is represented explicitly with the external inputs ip and outputs op. The

semantic function can be used to combine the translator correctness theorem with

the importing theorems in Chapter 5.

88

file:///~thm

Chapter 5

Importing Theorems

Each formal hardware verification system has its own advantages and disadvantages.

Many hybrid tools have been developed to reap the benefits of the different verifi­

cation systems presented in Chapter 2. Normally, the verification results from one

system need to be translated to another system. In other words, there is a linkage

between the two systems. How can we ensure that this linkage is trusted?

Many different technologies have been used to link two different systems in a

trusted way, such as the work presented in [39] & [49]. We provide another way

to make the linkage more natural and trustworthy. The linkage between the two

systems is based on a series of importing theorems [80], which formally convert

the formalized automated verification results to a form usable in a traditional HOL

hardware verification, i.e., the structural specification implements the behavioral

specification.

Formalized ve r i f i ca t ion result D

(implementation D specification) (5-1)

The importing theorems are based on the M D G verification applications. The for­

malizations have different forms for the different verification applications, i.e., com­

binational verification gives a theorem of one form, sequential verification gives a

89

A2 Al

Bl B2

Figure 5.1: The Hierarchy of Module A

different form and so on.

To illustrate why we need a particular form of result in H O L consider the H O L

verification of a system A. A theorem that the implementation satisfies its specifi­

cation needs to be proved, i.e. semi formally

A-imp 3 A.spec (5-2)

where A.imp and A.spec express the implementation and specification of system A ,

respectively. Suppose system A consists of two subsystems A l and A2 and A l is

further subdivided as shown in Figure 5.1. The structural specification of A will be

defined by the equation:

A . i m p = A l _ i m p A A 2 _ i m p (5-3)

where Al_imp is defined in a similar way. Thus (5.2) can be rewritten to

Al_imp A A2_imp Z> A.spec (5-4)

The correctness theorem of the system A can be proved using the correctness state­

ments about its subsystems. In other words, we independently prove the correctness

theorems:

Al_imp D Al . spec (5-5)

A2_imp D A2_spec (5.6)

90

As thèse are implications, to prove (5.4) it is then sufficient to prove

A l _ s p e c A A 2 _ s p e c D A _ s p e c (5.7)

Thus we verify A by independently verifying its submodules, then treating them as

blackboxes using the more abstract spécification of A l and A2 to verify A.

Suppose now that A l is verified using M D G instead of HOL, but that we stili

wish to use the resuit in the vérification of A. To make use of the resuit, we need

M D G to also prove results of the form

so that the implementation can be substituted for a spécification. However, results

from M D G are not of this form 1. For example, with sequential vérification M D G

proves a resuit about "reachable states" of a product machine. We need to show

how such a resuit can be expressed as an implication about the actual hardware

under considération as above. If A1_MDG_RESULT is such a statement about a product

machine, then we need to prove

Theorems such as this convert M D G results to the appropriate form to make the

step between (5.4) and (5.7).

Ideaìly, we want a general theorem of this form that applies to any hardware

verified using MDG's sequential vérification tool. We also want similar results for

the other M D G vérification applications. In this chapter, we will consider each of

the vérification applications of the M D G system in turn, describing the conversion

theorem required to convert results to a form useful within a H O L proof. Each of

thèse theorems has been proved within the H O L system.
1 We give détails of the form of theorems that MDG does prove in the next section.

A l _ i m p D A l . s p e c (5.8)

A1_MDG_RESULT D (A l . i m p D A l _ s p e c) (5.9)

91

5.1 Combinational Verification

The simplest verification application of M D G is the checking of equivalence of input-

output for two combinational circuits. A combinational circuit is a digital circuit

without state-holding elements or feedback loops, so the output is a function of

the current input. Combinational verification can also be used to compare two

sequential circuits when a one-to-one correspondence between their registers exists

and is known. In this situation, the output is also a function of the current input.

The MDGs representing the input-output relation of each circuit are computed by

a relational product algorithm to form the MDGs of the components of the circuit.

Because an M D G is a canonical representation, we can check whether the two MDGs

are isomorphic and so the circuits are equivalent. It is simple to formalize this

in HOL. We use M ip op and M ' i p op to represent the circuits (machines) being

compared. M is a relation on input traces (given by ip) and output traces (given by

op). The relation is true if op represents a possible output trace for the given input

trace ip and is false otherwise. M ' is a similar relation on inputs (ip) and outputs

(op). An M D G combinational verification result can be formalized as:

V ip op. M ip op = M ' ip op (5.10)

It verifies that the two circuits are identical in behavior for all inputs and outputs.

If ip and op are possible input and output traces for M, then they are also possible

traces for M ' , and vice versa. This is not in the form of an implication as described

above. However, the M D G result does not need to be converted to a different form

for it to be useful in a HOL hardware verification, since an equality can be used just

as well as an implication.

5.2 Sequential Verification

The behavioral equivalence of two abstract state machines (Figure 5.2) is verified

by checking that the machines produce the same sequence of outputs for every

92

PSEQ
i

ip.

M

M'

op

EQ

op

flag (T / F)

Figure 5.2: The Product Machine used in M D G Sequential Verification

sequence of inputs. The sanie inputs are fed to the two machines M and M * and

then reachability analysis is performed on their product machine using an invariant

asserting the equality of the corresponding outputs in ali reachable S t a t e s . This

effectively introduces new "hardware" (see Figure 5.2) which we refer to here as

P S E Q (the Product machine for SEQuential verification). P S E Q has the sanie inputs

as M and M ' , but has as output a single Boolean signal (flag). The outputs op and

op3 of M and M ' are input into an equality checker. On each cycle, PSEQ outputs true

if op and op' are identical at that time, and false otherwise. PSEQ can be formalized

as

PSEQ i p f l a g o p o p ' M M J =

H i p o p A M 1 i p o p * A EQ o p o p * f l a g (5.11)

Because the number of inputs and outputs of different P S E Q is different, we use a list

to represent input ip, output op. Where EQ is the equality checker defined as:

\ - d e f EQ o p o p ' f l a g =

(V t . f l a g t = ((M A P I o p t) = (M A P I o p ' t))) (5.12)

M A P I is a function that applies every element of a list to the variable t , returning

a list of the function's results:

h d e / (M A P I ([] : (<* ->/?) l i s t) (t : a) = ([] : £ l i s t)) A

(M A P I ((x:a->0) : : 1) t = (x t) : : M A P I 1 t)

93

The resuit that M D G proves about P S E Q is that the fiag output is always true, i.e.,

the outputs are equal for ali inputs. This can be formalized as

V ip op op ' .

P S E Q ip f lag op op' H M ' D (V t . f lag t = T) (5.13)

Note that this is not of the forni P-imp D P.spec, (i.e., implementation implies

spécification) for M and M ' but is of that forni for the fictitious hardware P S E Q . To

make use of such a resuit in a HOL hardware vérification, we need to convert it to

that forni for M and M * . This can be done in a séries of steps starting from (5.13).

Expanding the définitions and rewriting with the value of flag, we obtain

V ip op op 5 .

H ip op A H 1 ip op' D (V t . M A P I op t = M A P I op> t) (5.14)

i.e., we have proved a lemma:

V M M ' .

(V ip op op' f lag .

P S E Q ip f lag op op' M M ' D V t . f l ag t = T) D

(V ip op op' . M ip op A M ' ip op' D

(Vt. M A P I op t = M A P I op' t)) (5.15)

This is stili not in an appropriate form. The theorem should also be in the form of

(1.1). The machine M can be considered as the structural spécification (implemen­

tation) and machine M ' the behavioral spécification (spécification). Based on this

considération, the theorem that HOL needs is as follows:

V ip op. M ip op D M ' ip op (5.16)

i.e., for ali input and output traces if the relation M ip op is true, then the relation

M ' ip op must be true. As mentioned above, the converting theorem from M D G

to H O L should be in the form of (5.1). For sequential vérification the conversion

theorem should be

(5.13) D (5.16).

94

To prove this, given (5.15) it is sufficient to prove

(5.14) D (5.16).

However, this can only be proved with an additional assumption. Namely, for all

possible input traces, the behavior specification M' can be satisfied for some output

(i.e., there exists at least one output for which the relation is true):

V ip. 3 op'. M' ip op' (5.17)

This means that the machine must be able to respond to whatever inputs are given.

This should always be true for reasonable hardware. You should not be able to give

inputs which break it. For any input sequence given to this machine, at least one

output will correspond. Therefore, we can actually only prove \~thm (5.13) A (5.17)

D (5.16),

\~thm V M M ' .

((V ip op op' flag.

PSEQ ip flag op op' MM' D V t. flag t = T) A

(V ip . 3 op'. M' ip op')) D

(V ip op. M ip op D M' ip op) (5.18)

With the same reasoning, the machine M' could have been considered as the struc­

tural specification and machine M could have been considered as the behavioral

specification. We would then need the assumption

V ip. 3 op. M ip op (5.19)

We would obtain the alternative conversion theorem (5.20)

hhm V M M ' .

((V ip op op' flag.

PSEQ ip flag op op' MM' D V t. flag t = T) A

(V ip. 3 op. M ip op)) D

(V ip op. M> ip op D M ip op) (5.20)

95

file:///~thm
file:///~thm

M
op

'P

TESTPRO
(PROPERTY)

flag (T/F)

Figure 5.3: The Machine Verified in Invariant Checking

Both thèse theorems have been verified in HOL. As with combinational vérification,

the universal quantification of M and M ' means the theorems can be instantiated for

any hardware under considération. The symmetry in thèse équations is as might be

expected given the symmetry of P S E Q .

5.3 Invariant Checking.

Systems such as M D G also provide property/invariant checking. Invariant checking

is used for verifying that a design satisfies some spécifie requirements. This is useful

since i t gives the designer confidence at low vérification cost. In M D G , reachability

analysis is used to explore and check that a given invariant (property) holds in ail

the reachable states of the sequential circuit under considération, M. We consider

one gênerai form of property checking here.

As was the case for sequential vérification, we introduce new "hardware" (see

Figure 5.3) which we refer to as P I N V (Product machine for INVariant checking). It

consists of the original hardware and hardware representing the test property2 wired

together so that the property circuit has access to both the inputs and outputs of

the circuit under test. P I N V checks whether the outputs of the machine M satisfy the
2Invariants in MDG must be wrïtten in or converted to the same hardware description language

as the actual hardware.

96

specific property or not. It is formalized as follows:

P I N V ip f lag op M P R O P E R T Y =

M ip op A T E S T P R O ip op f lag P R O P E R T Y (5.21)

where

h d e / T E S T P R O ip op f lag P R O P E R T Y =

(V t . f lag t = P R O P E R T Y (M A P I ip t) (M A P I op t)) (5.22)

i.e., T E S T P R O is a piece of hardware which tests if its inputs and outputs satisfy

some specific requirements given at each time instance by P R O P E R T Y . P R O P E R T Y is a

relation on input and output values. Again in discussing correctness it is actually

a result about this different hardware that we obtain from the property checking.

The result that the property checking proves about P I N V can be stated as:

V ip f lag op.

P I N V ip f lag op M P R O P E R T Y D V t . f lag t = T (5.23)

i.e., its specification is that the f lag output should always be true. Note that this

is not of the form (1.1) (i.e., implementation implies specification) for M but in

that form for the fictitious hardware P I N V . To make use of such a result in a HOL

hardware verification we need to convert it to the form:

V ip op. H ip op D V t . P R O P E R T Y (ip t) (op t) (5.24)

i.e., for all input and output sequences, if the relation M ip op is true then the

relation P R O P E R T Y must be true for the input and output values at all times. In other

words, the machine M satisfies the specific requirement V t . P R O P E R T Y (ip t)

(op t) . Hence the conversion theorem for invariant checking is:

\ - t h m V M P R O P E R T Y .

(V ip f lag op.

(P I N V ip f lag op M P R O P E R T Y D V t . f lag t = T)) D

(V ip op. M ip op D

V t . P R O P E R T Y (M A P I ip t) (M A P I op t)) (5.25)

97

We have proved this general conversion theorem in HOL. Once more the theorems

can be instantiated for any hardware and property under considération.

We have looked explicitly at the M D G and HOL Systems. However, the general

approach could be applied to the results importation between other Systems. The

results could also be extended to other vérification applications. Furthermore, our

treatment is very general. The theorems proved do not explicitly deal with the

M D G - H D L semantics or multiway décision graphs. Rather they are given in terms

of general relations on inputs and Outputs. Thus they are applicable to other vérifi­

cation Systems with a similar architecture based on reachability analysis, équivalence

checking and/or invariant checking. This could include a pure B D D based system.

Summary

In this chapter, we introduced how to formally specify the correctness results pro-

duced by three différent hardware vérification applications using HOL. We have in

each case proved a gênerai theorem that translates them into a form usable in a tra-

ditional HOL hardware vérification, i.e., that the structural spécification implements

the behavioral spécification. The first application considered was combinational vér­

ification. The next application considered was sequential vérification, which checks

that two abstract state machines produce the same séquence of outputs for every

séquence of inputs. Finally, we considered a gênerai form of the checking of invariant

properties of a circuit.

98

Chapter 6

Combining the Compiler

Correctness Theorems with the

Importing Theorems

As we mentioned in the last chapter, the main idea of the importing theorem can

be represented as below.

Formalized MDG resuit D

(implementation D s p é c i f i c a t i o n)

M D G vérification results are obtained by applying the M D G algorithms to M D G

décision graphs. The M D G algorithms really prove properties of the low level data

structures (MDGs). However, spécifications and implementations are not described

directly as décision graphs. A high level language, M D G - H D L , is used to specify

spécifications and implementations, which are translated into the multiway décision

graphs (MDGs) via intermediate languages. If the M D G algorithms are correct,

M D G results can be formalized in terms of the semantics of the M D G décision

graphs. If the translations are correct, the semantics of the M D G décision graphs

99

M D G - H D L - M D G formula representation

The HOL theorems in

terms of M D G - H D L convert

Formalize the M D G results
in terms of the M D G formula
representations

importing theorems

Figure 6.1: Combining the Translator Correctness Theorems with Importing Theo­

rems for a Boolean Subset

is equal to the semantics of M D G - H D L . By combining the translator correctness

theorems with the importing theorem, the M D G results can be imported into HO L

to form the H O L theorems in terms of the semantics of the high level language

M D G - H D L rather than in terms of the semantics of the low level language MDGs.

We have partly proved the translators for two different subsets. For the boolean

subset, we have proved two translators which are correct. We have obtained a theo­

rem which states that the semantics of the M D G - H D L program is equivalent to the

semantics of the M D G formula representation program (3.3). In order to demon­

strate the combination of the translator correctness theorems and the importing

theorems, the formalization of the M D G results for the boolean subset will be in

terms of the M D G formula representation (see Figure 6.1). In fact, the principle is

the same. Similar conversion can be done for further translators if we prove corre­

sponding translator correctness theorems. In other words, the formalization of the

M D G verification results we consider in this chapter is based on the semantics of the

low level M D G formula representation. However, by using the translator correct­

ness theorems, the additional assumption can be proved in terms of the semantics

of M D G - H D L and the HO L theorem we imported is in terms of the semantics of

100

M D G - H D L core M D G - H D L

translator correctness theorems

The HOL
theorems
in terms of
MDG-HDL

•a
T3

convert

importing theorems

Formalize the
MDG results in
terms of core
MDG-HDL

Figure 6.2: Combining the Translator Correctness Theorems with Importing Theo­

rems for an Extended Subset

M D G - H D L .

With the same reasoning, for the extended subset, we have obtained a theorem

(4.1) which states that the semantics of the M D G - H D L program is equivalent to

the semantics of the core M D G - H D L program. Therefore, the formalization of the

M D G results for the extended subset will be in terms of the core M D G - H D L (see

Figure 6.2). By using the translator correctness theorem, the verification of the

additional assumption and importation theorem are based on the semantics of the

M D G input language (MDG-HDL) .

The reason we are doing such a conversion is that the syntax and the semantics

of a low level program are more complex and unreadable than those of a program

in a high level language such as M D G - H D L . It will be more convenient, readable

and direct if we prove theorems in terms of the semantics of M D G - H D L and obtain

the HOL theorems in terms of the semantics of M D G - H D L . We do not take it for

granted. We formally convert it from the semantics of a low level language to the

semantics of a high level language in terms of the translator correctness theorems.

101

In this chapter, we will focus on combining the importing theorems with the

translator correctness theorems. We will first instantiate the importing theorems

with the syntax and semantics of a low level program for two subsets (the M D G

formula représentation program for the boolean subset and the core M D G - H D L

program for the extended subset). We then combine the importing theorem with

the translator correctness theorems and obtain the new importing theorems. The

importation turns the M D G vérification results based on the semantics of the low

level program into HOL to form HOL theorems based on the semantics of the high

level language (MDG-HDL) .

6.1 Combining the Translator Correctness The­

orems with the Importing Theorems for a

Boolean Subset

In this section, we will firstly instantiate importing theorems with the semantics of

the M D G formula représentation for the combinational vérification and sequential

vérification. By combining the translator correctness theorems, we can obtain the

new importing theorems which convert the M D G vérification results into HOL to

form the HOL theorems in terms of M D G - H D L .

6.1.1 Combinational Vérification

In combinational vérification, the M D G resuit does not need to be converted to a

différent form for it to be useful in a HOL hardware vérification, since an equality

can be used just as well as an implication. In this situation, we just need to formalize

the M D G result in terms of the semantics of the M D G formula représentation. We

use Cl and C2 to represent the abstract syntax of the circuits in M D G - H D L being

compared.

102

T h e a b s t r a c t s y n t a x i n t h e M D G f o r m u l a r e p r e s e n t a t i o n w i l l b e (T r a n s P r o g C F

(T r a n s P r o g M C C I)) a n d (T r a n s P r o g C F (T r a n s P r o g M C C 2)) . T h i s i s b e c a u s e t h e M D G

s y s t e m u s e s f u n c t i o n s (T r a n s P r o g M C) a n d (T r a n s P r o g C F) w h i c h t r a n s l a t e t h e M D G -

H D L p r o g r a m t o t h e M D G f o r m u l a r e p r e s e n t a t i o n p r o g r a m . T h e s e m a n t i c s o f

t h e c o r r e s p o n d i n g c i r c u i t s i s r e p r e s e n t e d a s (S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F

(T r a n s P r o g M C C I)) i p o p) a n d (S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C

C 2)) i p o p) . T h e r e f o r e , b y i n s t a n t i a t i n g (S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F

(T r a n s P r o g M C C I))) a n d (S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C C 2)))

f o r t h e m a c h i n e M a n d M ' i n t h e c o m b i n a t i o n a l v e r i f i c a t i o n , t h e M D G v e r i f i c a t i o n

r e s u l t c a n b e s t a t e d as s h o w n b e l o w :

V i p o p .

S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C C I)) i p o p =

S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C C 2)) i p o p (6.1)

w h e r e t h e f o r m a l i z a t i o n i s i n t e r m s o f t h e l o w l e v e l l a n g u a g e (t h e M D G f o r m u l a

r e p r e s e n t a t i o n) . H o w e v e r , a s l o n g as t h e M D G s y s t e m r e t u r n s t r u e , t h i s t h e o r e m c a n

b e t a g g e d i n t o HOL. W i t h t h e h e l p o f t h e t r a n s l a t o r c o r r e c t n e s s t h e o r e m (3.3), w e

h a v e p r o v e d a t h e o r e m F o r m a l i z e . E q c b . T h m (6.2) w h i c h s t a t e s t h a t t h e f o r m a l i z a t i o n

o f t h e M D G r e s u l t b a s e d o n a l o w l e v e l l a n g u a g e i s e q u i v a l e n t t o t h e f o r m a l i z a t i o n

o f t h e M D G r e s u l t b a s e d o n t h e h i g h l e v e l l a n g u a g e (M D G - H D L) . T h e r e f o r e , t h e

M D G v e r i f i c a t i o n r e s u l t s c a n b e c o n v e r t e d i n t o H O L t o f o r m t h e HOL t h e o r e m s i n

t e r m s o f t h e s e m a n t i c s o f M D G - H D L .

hhm (V i p o p .

S e m P r o g r a n u F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C C I)) i p o p =

S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C C 2)) i p o p) =

V i p o p . S e m P r o g r a m C I i p o p = S e r a P r o g r a m C2 i p o p (6-2)

Example 1. C o n s i d e r t h e t w o c i r c u i t s s h o w n i n F i g u r e 6.3. A s s u m e t h e y h a v e

b e e n v e r i f i e d t o b e e q u i v a l e n t u s i n g M D G c o m b i n a t i o n a l e q u i v a l e n c e c h e c k i n g . W e

w i l l s h o w i n t h e f o l l o w i n g h o w t o c o n v e r t a M D G r e s u l t t o a u s e f u l HOL t h e o r e m .

103

Figure 6.3: Two Equivalent Combinational Circuits

The first circuit is a single N O T gate. Its abstract syntax can be specified as:

NDT1 = PROG (EXOUT [" o p "]) (E X I N [" i p "]) (I N V [])

(NOT " i p " " o p ")

where N 0 T 1 is an informal abbreviation for representing the abstract syntax of this

circuit. The second circuit consists of three N O T gates in series and its abstract

syntax can be formalized as:

N 0 T 3 = PROG (EXOUT [" o p "]) (E X I N [" i p "]) (I N V [" u " ; " v " ; " w "])

(J O I N (NOT " i p " " u ")

(J O I N (NOT " u " " v ")

(J O I N (NOT " v " " v ") (REG " w " " o p "))))

where N 0 T 3 is an informal abbreviation for representing the abstract syntax of this

circuit. The M D G verification result can be stated as

V i p o p . S e m P r o g r a m (T r a n s P r o g C F (T r a n s P r o g M C N 0 T 3)) i p op =

S e m P r o g r a m (T r a n s P r o g C F (T r a n s P r o g M C N 0 T 1)) i p o p

The formalization can be directly tagged into HOL to form a HOL theorem. Rewrit­

ing with the theorem F o r m a l i z e _ E q c b _ T h m (6.2), we obtain a new importing theorem

which is in terms of the semantics of M D G - H D L .

\~thm V i p o p - S e m P r o g r a m N0T1 i p o p = S e m P r o g r a m N 0 T 3 i p o p

104

file:///~thm

6.1.2 Sequential Verification

F o r s e q u e n t i a l v e r i f i c a t i o n , w e h a v e o b t a i n e d a g e n e r a l i m p o r t i n g t h e o r e m a s s h o w n

i n (5.18) o r (5.20). I f w e u s e I M P t o r e p r e s e n t a n i n f o r m a i a b b r e v i a t i o n o f t h e a b ­

s t r a c t s y n t a x o f t h e i m p l e m e n t a t i o n file i n M D G - H D L a n d u s e S P E C t o r e p r e s e n t

a n i n f o r m a i a b b r e v i a t i o n o f t h e a b s t r a c t s y n t a x o f t h e s p e c i f i c a t i o n file i n M D G -

HDL, t h e c o r r e s p o n d i n g i n f o r m a i s y n t a x t o t h e i r M D G f o r m u l a r e p r e s e n t a t i o n w i l l

b e (T r a n s P r o g C F (T r a n s P r o g M C I M P)) a n d (T r a n s P r o g C F (T r a n s P r o g M C S P E C)) . T h e

s e m a n t i c s o f t h e c o r r e s p o n d i n g m a c h i n e c a n b e r e p r e s e n t e d as S e m P r o g r a m f o r m u l a

(T r a n s P r o g C F (T r a n s P r o g M C I M P)) i p o p a n d S e r a P r o g r a m - F orimi l a (T r a n s P r o g C F

(T r a n s P r o g M C S P E C)) i p o p . T h e r e f o r e , (S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F

(T r a n s P r o g M C I M P))) a n d (S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C S P E C)))

c a n b e i n s t a n t i a t e d f o r t h e m a c h i n e M a n d M* i n t h e c o n v e r s i o n t h e o r e m (5.18) o r

(5.20). T h e r e f o r e , w e o b t a i n t h e i m p o r t i n g t h e o r e m b a s e d o n t h e s e m a n t i c s o f t h e

M D G f o r m u l a r e p r e s e n t a t i o n as s h o w n b e l o w :

hthm V I M P S P E C .

(V i p f l a g o p o p ' .

PSEQ i p o p o p ' f l a g

(S e m P r o g r a r a _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C I M P)))

(S e m P r o g r a m J o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C S P E C)))

D (V t . (f l a g t = T))) A

(V i p . 3 o p ' .

S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C S P E C)) i p o p ;) 3

(V i p o p .

(S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C I M P)) i p o p) D

(S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C S P E C)) i p o p)) (6.3)

W h e n w e f o r m a l l y i m p o r t t h e M D G r e s u l t i n t o HOL t o f o r m t h e HOL t h e o r e m , w e

first n e e d t o f o r m a l i z e t h e M D G r e s u l t i n t e r m s o f t h e M D G f o r m u l a r e p r e s e n t a t i o n

a n d t a g i t i n t o HOL.

105

W e t h e n n e e d t o p r o v e a n a d d i t i o n a l a s s u m p t i o n . N a m e l y , f o r a l i p o s s i b l e i n p u t

t r a c e s , t h e b e h a v i o r s p e c i f i c a t i o n c a n b e s a t i s f i e d f o r s o m e o u t p u t a n d s t a t e t r a c e s :

(V i p . 3 op ' .

S e m P r o g r a m _ F o r r a u l a (T r a n s P r o g C F (T r a n s P r o g M C S P E C)) i p o p ') (6.4)

B y u s i n g t h e t r a n s l a t o r c o r r e c t n e s s t h e o r e m (3.3), w e h a v e p r o v e d a t h e o r e m

E x i s t _ E q _ T h m (6.5) w h i c h s t a t e s t h a t t h e a d d i t i o n a l a s s u m p t i o n b a s e d o n t h e s e m a n -

t i c s o f a l o w l e v e l l a n g u a g e i s e q u i v a l e n t t o t h a t b a s e d o n t h e s e m a n t i c s o f a h i g h

l e v e l l a n g u a g e (MDG-HDL) . T h e r e f o r e , t h e a d d i t i o n a l a s s u m p t i o n c a n b e p r o v e d i n

t e r m s o f t h e s e m a n t i c s o f M D G - H D L .

r-thm (V i p - 3 0 P ' .

(S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C S P E C))) i p o p ') =

(V i p . 3 o p ' . S e m P r o g r a m S P E C i p o p ') (6.5)

S i m i l a r l y , w e h a v e a l s o p r o v e d a t h e o r e m Imp_Eq_Thm, w h i c h c o n v e r t s t h e t r a n d i -

t i o n a l HOL t h e o r e m (i m p l e m e n t a t i o n D s p e c i f i c a t i o n) b a s e d o n t h e s e m a n t i c s o f

t h e l o w l e v e l l a n g u a g e t o t h a t b a s e d o n t h e s e m a n t i c s o f M D G - H D L .

h / i m (V i p o p .

(S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C I M P))) i p o p D

(S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C S P E C))) i p op) =

(V i p o p . (S e m P r o g r a m I M P) i p o p D (S e m P r o g r a m S P E C) i p o p) (6.6)

R e w r i t i n g t h e o r e m (6.3) w i t h t h e t h e o r e m s (6.5) a n d (6.6), w e o b t a i n a n e w

i m p o r t i n g t h e o r e m (6.7). T h i s t h e o r e m s t a t e s t h a t t h e f o r m a l i z a t i o n o f t h e M D G

r e s u l t s b a s e d o n t h e s e m a n t i c s o f t h e M D G f o r m u l a r e p r e s e n t a t i o n c a n b e i m p o r t e d

i n t o t h e HOL t o f o r m a HOL t h e o r e m b a s e d o n t h e s e m a n t i c s o f M D G - H D L .

106

\-thm V IMP SPEC.

V ip flag op op* .

PSEQ ip op op' flag

(SemProgram_Formula (TransProgCF (TransProgMC SPEC)))

(SemProgram_Formula (TransProgCF (TransProgMC IMP)))

D (V t. (flag t = T)) A

V ip. 3 op'. SemProgram SPEC ip op' D

(V ip op. SemProgram IMP ip op D SemProgram SPEC ip op) (6.7)

Therefore, the additional assumption for the design can be proved in terms of the

semantics of M D G - H D L

V ip . 3 op 1 . SemProgram SPEC ip op' (6.8)

The converted theorem which we obtain in HOL is in terms of the semantics of

M D G - H D L too.

(V ip op. SemProgram IMP ip op D SemProgram SPEC ip op) (6.9)

Working with the semantics of a high level language (such as M D G - H D L) makes

verifìcation easier and more readable. Combining the importing theorem (5.18) or

(5.20) with the translator correctness theorem (3.3) allows our additional assumption

to be proved in terms of the semantics of M D G - H D L and the theorem we obtain

in HOL to be imported in terms of the semantics of M D G - H D L . Therefore, the low

level M D G verifìcation results can be converted into HO L in terms of the semantics

of a high level language (MDG-HDL) .

In the rest of this section, we give a simple example to illustrate the technical

detail about how to formally import the verifìcation results proved in the M D G

systems to results about circuits in a form that can be reasoned about in the H O L

system.

107

file:///-thm

PSEQ
i

REGN0T3M
op

ip. EQ flag (T/F)

REGNOTM op

Figure 6.4: The Machine used for Sequential Vérification of the R E G N 0 T 3 M Circuit

Example 2. Consider verifying the sequential circuits in Figure 6.4 using sequential

vérification. We check that three not gâtes and a register are équivalent to a single

not gate and register. We first prove that the two circuits are équivalent in the M D G

system. We next prove the additional assumption in HOL based on the M D G input

language - M D G - H D L . Finally, we convert the M D G results into HOL to form the

HOL theorem.

Firstly, we prove the circuits using the M D G system. When we use the M D G

system to prove the équivalence of thèse two circuits, we need to specify the circuit

description files. The main part of the circuit description file for one N O T gate and

one register is

s i g n a l (i p , b o o l) .

s i g n a l (o p , b o o l) .

s i g n a l (x , b o o l) .

c o m p o n e n t (n o t _ A , n o t (i n p u t (i p) , o u t p u t (x))) .

c o m p o n e n t (r e g _ A , r e g (i n p u t (x) , o u t p u t (o p))) .

i n i t _ v a l (o p , 0) .

o u t p u t s ([o p]) .

s t _ n x s t (o p , x) .

108

The main part of the circuit description file for three N O T gâtes and one register is

signal(ip.bool).

signal(op fbool).

signal(u,bool).

signal(v,bool).

signaKw.bool).

component (u_comp,not(input(ip) ,output (u))).

component (v.comp ,not (input (u), output (v))).

component (op_comp,not(input (v) ,output(w))) .

component (reg_comp, reg(input (w) , output (op))) .

outputs([op]).

st_nxst(op,x).

We also need to provide the algebraic specification file, the symbol order file and

the invariant specification file. We input these five files into the M D G system. The

M D G verification tool will take the M D G - H D L programs and translate them into

two M D G representations. A set of M D G algorithms will be applied to them to

obtain their canonical M D G representations. The M D G system will check whether

two canonical M D G representations are identical or not and return true or false

respectively. In our example, the M D G verification tool returns true so that the two

circuits have been successfully proved.

We then defìne the syntax of the two circuits. The abstract syntax of the first

circuii REGN0T3M is:

IMP = PROG (EXOUT ["op"]) (EXIN ["ip"]) (INV [V j " v " ; V])

(SEQ (NOT "ip" "u")

(SEQ (NOT "u" "v")

(SEQ (NOT "v" "w") (REG "w" "op"))))

109

The abstract syntax of the second circuit REGN0T1M is

S P E C V = PROG (EXOUT [" o p " ']) (E X I N [" i p "]) (I N V ["x"])

(SEQ (NOT " i p " "x") (REG " v " " o p "))

Since t h e M D G t o o l r e t u r n s t u r e , w e c a n f o r m a l i z e M D G r e s u l t i n t o HOL i n

t e r m s o f s e m a n t i c s o f t h e M D G f o r m u l a r e p r é s e n t a t i o n : t h e r e s u l t t h a t M D G p r o v e s

a b o u t P S E Q i s t h a t t h e e q u a l i t y c h e c k e r i s a l w a y s t r ù e . The f o r m a l i z a t i o n c a n b e

t a g g e d i n t o H O L t o f o r m a H O L t h e o r e m as s h o w n b e l o w :

h/im v ip f l a g °P °P' •

PSEQ i p o p o p ' f l a g

(S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g H C S P E C)))

(S e m P r o g r a m _ F o r m u l a (T r a n s P r o g C F (T r a n s P r o g M C I M P)))

D (V t. (f l a g t = T)) (6.10)

The n e x t s t e p i s t o p r o v e t h e a d d i t i o n a l a s s u m p t i o n b a s e d o n t h e s e m a n t i c s o f

M D G - H D L . Namely, f o r a l l p o s s i b l e i n p u t t r a c e s , t h e b e h a v i o r s p é c i f i c a t i o n REG NOTI

c a n b e s a t i s f ì e d f o r s o m e o u t p u t a n d s t a t e t r a c e s :

h/im V i p . 3 o p ' . S e m P r o g r a m S P E C i p o p ' (6.11)

By i n s t a n t i a t i n g t h e s y n t a x o f t h e t w o c i r c u i t s i n t o t h e i m p o r t i n g t h e o r e m f o r se-

q u e n t i a l v é r i f i c a t i o n (6.7), w e o b t a i n a t h e o r e m .

h/im (V ip op op' flag.

PSEQ ip op op' flag

(SemProgram-Formula (TransProgCF (TransProgMC SPEC)))

(SemProgram-Formula (TransProgCF (TransProgMC IMP))) D

(Vt. flag t = T)) A

(V ip. 3 op'. SemProgram SPEC ip op1) D

(V ip op. SemProgram IMP ip op D SemProgram SPEC ip op)

110

Finally, we o b t a i n t h e c o n v e r s i o n t h e o r e m b y d i s c h a r g i n g t h e t h e o r e m o f f o r m a l ­

i z i n g t h e M D G r e s u l t (6.10) a n d t h e e x i s t e n t i a l t h e o r e m (6.11). This t h e o r e m s t a t e s

t h a t t h e i m p l e m e n t a t i o n i m p l i e s t h e s p e c i f i c a t i o n .

K/tm V i p o p . S e m P r o g r a r a IMP i p o p 3 S e m P r o g r a m S P E C i p op

6.2 Combining the Translator Correctness Theo­

rem with the Importing Theorems for an Ex­

tended Subset

The m a i n i d e a o f t h i s s e c t i o n i s s i m i l a r t o t h a t o f t h e l a s t s e c t i o n . However, t h e

s y n t a x a n d t h e s e m a n t i c s a r e d i f f e r e n t , b e c a u s e w e c o n s i d e r a n e x t e n d e d s u b s e t .

Since w e o n l y p r o v e d t h e first t r a n s l a t o r f o r t h i s s u b s e t , t h e f o r m a l i z a t i o n o f t h e

M D G r e s u l t i s b a s e d o n t h e c o r e M D G - H D L l a n g u a g e r a t h e r t h a n t h e M D G f o r m u l a

r e p r e s e n t a t i o n (Figure 6.2).

6.2.1 Combinational Verification

As w e m e n t i o n e d i n s e c t i o n 6.1.1, f o r c o m b i n a t i o n a l v e r i f i c a t i o n , w e o n l y n e e d t o

f o r m a l i z e M D G v e r i f i c a t i o n r e s u l t a n d t a g i t i n t o HOL. The t a g g e d t h e o r e m i s i n t h e

f o r m t h e HOL s y s t e m n e e d e d . The f o r m a l i z a t i o n o f M D G v e r i f i c a t i o n r e s u l t b a s e d

o n t h e s e m a n t i c s o f t h e c o r e M D G - H D L c a n b e g i v e n as b e l o w :

V i p o p .

S e m P r o g r a m _ C o r e (T r a n s P r o g M C C I) i p o p =

S e m P r o g r a m _ C o r e (T r a n s P r o g M C C2) i p o p (6.12)

By u s i n g t h e t r a n s l a t o r c o r r e c t n e s s t h e o r e m (4.1), w e h a v e p r o v e d a t h e o r e m

F o r m a l i z e _ E q c e _ T h m (6.13) w h i c h s t a t e s t h a t t h e f o r m a l i z a t i o n o f t h e M D G r e s u l t

111

based on the core M D G - H D L language is equivalent to the formalization of the

M D G result based on M D G - H D L .

h/im (V i p o p .

S e m P r o g r a m X o r e (T r a n s P r o g M C C I) i p o p =

S e m P r o g r a m _ C o r e (T r a n s P r o g M C C 2) i p o p) =

V i p o p . S e m P r o g r a m C I i p o p = S e m P r o g r a r a C 2 i p o p (6.13)

Therefore, the M D G vérification results can be converted into HOL to form the

HOL theorems in terms of the semantics of M D G - H D L .

6.2.2 Sequential Verification

Similar to the section 6.1.2, we first instantiate the two machines in terms of the

semantics of the core M D G - H D L language in the importing theorem (5.18) or (5.20).

Therefore, we obtain the importing theorem based on the semantics of the core

M D G - H D L language as shown below:

h h m V I M P S P E C .

(V i p o p o p ' f l a g .

PSEQ i p o p o p ' f l a g

(S e m P r o g r a m _ C o r e (T r a n s P r o g M C S P E C))

(S e m P r o g r a m . C o r e (T r a n s P r o g M C I M P))

D (V t . (f l a g t = T))) A

(V i p . 3 o p ' . S e m P r o g r a m . C o r e (T r a n s P r o g M C S P E C) i p o p ') D

(V i p o p . (S e m P r o g r a m _ C o r e (T r a n s P r o g M C I M P) i p o p) D

(S e r a P r o g r a r a . C o r e (T r a n s P r o g M C S P E C) i p o p)) (6.14)

Secondly, we need to prove an additional assumption.

l~t/im (V i p . 3 o p ' . S e m P r o g r a m . C o r e (T r a n s P r o g M C S P E C) i p o p ') (6.15)

112

B y u s i n g t h e t r a n s l a t o r c o r r e c t n e s s t h e o r e m (4.1), w e p r o v e a t h e o r e m E x i s t _ E q e _ T h m

(6.16). T h i s t h e o r e m s t a t e s t h a t t h e a d d i t i o n a l a s s u m p t i o n b a s e d o n t h e s e m a n t i c s

o f t h e c o r e M D G - H D L l a n g u a g e i s e q u i v a l e n t t o t h a t b a s e d o n t h e s e m a n t i c s o f

M D G - H D L . I n o t h e r w o r d s , w e c a n p r o v e t h e a d d i t i o n a l a s s u m p t i o n i n t e r m s o f t h e

s e m a n t i c s o f M D G - H D L .

I~i/im (V i p . 3 o p ' . (S e m P r o g r a m _ C o r e (T r a n s P r o g M C S P E C))) i p o p ') =

(V i p . 3 o p ' . S e m P r o g r a r a S P E C i p o p ') (6.16)

T h i r d l y , w e p r o v e t h e t h e o r e m Imp_Eqe_Thm, w h i c h s t a t e s t h a t t h e t r a n d i t i o n a l HOL

t h e o r e m b a s e d o n t h e s e m a n t i c s o f t h e c o r e M D G - H D L l a n g u a g e is e q u i v a l e n t t o

t h a t b a s e d o n t h e s e m a n t i c s o f M D G - H D L .

h/im (V i p o p .

(S e m P r o g r a m . C o r e (T r a n s P r o g M C I M P)) i p o p D

(S e m P r o g r a m . C o r e (T r a n s P r o g M C S P E C)) i p op) =

(V i p o p . (S e m P r o g r a m I M P) i p o p D

(S e m P r o g r a m S P E C) i p o p) (6-17)

F i n a l l y , t h e n e w i m p o r t i n g t h e o r e m I m p o r t J 4 d g h d l _ T h m i s o b t a i n e d b y r e w r i t i n g t h e -

o r e m s (6.14) w i t h t h e t h e o r e m (6.16) a n d (6.17).

\-thm V IMP S P E C .

(V i p o p o p * f l a g .

PSEQ i p o p o p ' f l a g

(S e m P r o g r a m _ C o r e (T r a n s P r o g M C S P E C))

(S e m P r o g r a m . C o r e (T r a n s P r o g M C I M P))

D (V t . (f l a g t = T))) A

(V i p . 3 o p ' . S e m P r o g r a m S P E C i p o p ') D

(V i p o p . S e m P r o g r a m IMP i p o p D

S e m P r o g r a m S P E C i p o p) (6.18)

113

file:///-thm

As a resuit, combination of the translater correetness theorem and importing

theorems allows M D G vérification resuit to be imported into H O L in terms of se-

mantics of M D G - H D L . An example for importing M D G vérification resuit into HO L

for the extended subset will be given in Chapter 8.

Summary

We have combined the compiler correetness theorems with the importing theorems

based on the deep embedding semantics. This combination allows the M D G results

to be reasoned about in HOL in terms of the M D G input language (M D G - H D L) .

The two différent M D G vérification applications for two subsets have been formalized

in terms of the low level language and imported in a way that corresponds to the

semantics of M D G - H D L .

114

Chapter 7

Existential Theorems

As we stated in Chapter 5, the importing theorem for sequential vérification has the

form:

^thm F o r m a l i z e d MDG r e s u i t A

V i p . 3 o p . S P E C i p o p D

(V i p o p . (I M P L i p o p D S P E C i p o p))

where S P E C represents the behavioral spécification and I M P L represents the structural

spécification. The first assumption is discharged by the M D G vérification. However,

for importing the sequential vérification results into HOL, a user of the hybrid system

strictly needs to prove an additional assumption (an existential theorem) to ensure

the correct H O L theorem can be made. This theorem states that for ail possible

input traces, the behavioral spécification S P E C can be satisfied for some outputs (Le.,

there exists at least one output for which the relation is true):

V i p . 3 o p . S P E C i p o p (7.1)

When we convert the M D G results into H O L to form the H O L theorems, the

theorems actually state that the implementation of the design implements its spec-

115

ification as shown in (7.2).

V i p o p . (I M P L i p o p D S P E C i p o p) (7.2)

This représentation might meet an inconsistent model that trivially satisfles any

spécification. We need to verify a stronger consistency theorem against the imple-

mentation as suggested in [58], which has the form:

This means that for any set of input values ip there is a set of output values op

which is consistent with it. This shows that the model does not satisfy a spécification

merely because it is inconsistent.

In this chapter, we investigate a way of proving the additional assumption and

the stronger consistency theorem based on the syntax and semantics of the M D G

input language [82]. As we mentioned above, we prove the additional assumption

because we want to make the linking process easier and remove the burden from the

user of the hybrid system. We prove the stronger consistency theorem because we

want to avoid an inconsistent model occurring. The above two theorems actually

have the same form. In the rest of this thesis, we cali them ex i s t en t i a l theorems.

If we use C to represent any spécification or implementation of a circuit, ip and op

to represent the external inputs and outputs, the ex i s t en t i a l theorem should have

the form:

For example, if we consider a circuit consisting of two NOT gates in séries, the exis­

tential theorem for this circuit should be:

i-thm V i p . 3 op. (3 op l . SEMJJOT ip opl A SEM_N0T opl op)

In fact, the stronger consistency theorem (7.3) is an ex i s t en t i a l theorem for the

structural spécification, whereas the additional assumption (7.1) for the importing

theorem is an ex i s t en t i a l theorem for the behavioral spécification.

V i p . 3 o p . I M P L i p o p (7.3)

V i p . 3 o p . C i p o p (7.4)

116

The goal of the ex i s t en t i a l theorem is existentially quantified. We can remove

hidden lines in goals of this forni using E X I S T S J T A C , which strips away the leading

existentially quantified variable and substitutes term for each free occurrence in the

body. This terra is called the ex i s ten t ia l term. An ex i s t en t i a l term of a vari­

able is determined by one or several output representations of the corresponding

M D G - H D L components. An output representation of a component represents an

output function of this component, which depends on its input value and output

value at the current time or an earlier time instance. There is a HOL tactic, E X -

ISTS-ELIM_TAC [6], which is used to eliminate existentially quantified variables in

a goal. This tactic corresponds to a theorem E X I S T S - E L I M given below.

\~thm (3 x. (x = t) A (A x)) = A t (7.5)

In other words, if the existentially quantified variable (x) is explicitly represented by

its value as in (7.5) with (x = t) in the goal, the tactic E X I S T S _ E L I M _ T A C can be used

to remove the hidden lines. The general purpose simplification tactic, S I M P J T A C can

similarly be used to eliminate existentially quantified variables. However, for dealing

with those existentially quantified variables such as (x) which are not represented

as (x = t), we need to find their output representations.

In this chapter, we concentrate on proving the existential theorems based on

the syntax and semantics of M D G - H D L [82] [26]. However, a similar method can

be used to solve other existentially quantified goals. This is because we provide

the output representation for each component (mainly logie gates and flip-flops).

The ex i s t en t i a l term of a design, which reduces the goal 3 x. t to t [u /x] , is

determined in terms of the corresponding output representations. We also pro­

vide tactics for expanding the semantics of the circuit and proving the ex i s t en t i a l

theorem.

We have defined semantic functions for two subsets M D G - H D L . For giving a

corresponding importing theorem for sequential verification, we need to prove the

existential theorem for the implementation of the design in term of the semantics.

We need to provide the general output representation for each component of the

117

file:///~thm

two subsets of the M D G - H D L library. Because the main ideas of defining the output

representation for each component of the two subsets are same, we will only give

the detail about how to define the output representation for the extended subset.

In other words, we will talk about how to prove the existential theorem for the

extended subset.

7.1 Existential Theorem for the Extended Subset

In this section, we provide the general output representation for each component

in the M D G - H D L library. Because the ex i s ten t ia l term for a design is determined

in terms of the output representation of its components, these provide a toolkit for

then proving the ex i s t en t i a l theorem of the design. We also provide three tactics

E X P A N D _ S E M A N T I C S _ T A C , P R O V E _ E X I S T _ T A C and P R O V E _ T A B L E _ E X I S T _ T A C which automat-

ically expand the semantics of the program and prove the goal. The first tactic is

used for expanding the semantics of the program (design) and obtaining a goal of the

form3 a l . . . an. body. The tactics P R D V E _ E X I S T _ T A C and P R O V E _ T A B L E _ E X I S T J T A C

are used for verifying goals.

The proof process for proving an existential theorem is divided into three steps.

We first expand its semantics and rewrite away the abstract syntax, and obtain the

existentially quantified goal. We then strip away the existential quantified variable.

Finally, we prove the goal.

E x a m p l e 1. Consider a circuit that only consists of one NOT gate. The abstract

syntax of this circuit is represented as:

(PROG (EXOUT [" o p "]) (E X I N ["ip"]) (I N V []) (NOT " ip" "op"))

The existential theorem for this circuit is

118

h/im V i p . 3 O p .

S e m P r o g r a m (PROG (EXOUT [" o p "]) (E X I N [" i p " 3)

(I N V []) (N 0 T " i p " " o p ")) i p o p

Expanding t h e s e m a n t i c s o f t h e p r o g r a m u s i n g t h e t a c t i c E X P A N D _ S E M A N T I C S _ T A C ,

w e o b t a i n a s u b g o a l w h i c h h a s t h e form 3 a l . . . a n . b o d y . Here:

3 o p . V t . ' I S - B D O L (HD i p t) A I S _ B 0 0 L (HD o p t) D

Vt. MDG_T0_B00L (HD op t) = ~ MDG_T0_B00L (HD ip t)

The e x i s t e n t i a l t h e o r e m o f t h i s c i r c u i t is e x i s t e n t i a l l y q u a n t i f i e d b y i t s e x t e r n a l

o u t p u t op. More d e t a i l w i l l b e g i v e n l a t e r .

In t h e rest o f t h i s c h a p t e r , w e first d e f ì n e t h e o u t p u t r e p r é s e n t a t i o n f o r e a c h

c o m p o n e n t i n t h e M D G - H D L l i b r a r y a p a r t f r o m t h e T A B L E . We t h e n p r o v i d e a

m e t h o d t o find t h e o u t p u t r e p r é s e n t a t i o n f o r t h e T A B L E c o m p o n e n t . We n e x t d e a l

w i t h t h e e x i s t e n t i a l l y q u a n t i f i e d i n t e r n a i v a r i a b l e . Finally, w e g i v e a n e x a m p l e t h a t

d e m o n s t r a t e s h o w t o a p p l y o u r a p p r o a c h t o p r o v e t h e e x i s t e n t i a l t h e o r e m o f a

w h o l e c i r c u i t .

7.2 The Output Representation for the Basic MDG-

HDL Components

In t h e M D G - H D L l i b r a r y , t h e r e a r e t w o c l a s s e s o f n o n - t a b l e c o m p o n e n t . In o n e t h e

o u t p u t o f t h e c o m p o n e n t is a s i g n a l v a r i a b l e (ie n o n s t a t e h o l d i n g) , i n t h e o t h e r t h e

o u t p u t o f t h e c o m p o n e n t is a s t a t e v a r i a b l e . The e x i s t e n t i a l t e r m s f o r t h e t w o

c l a s s e s a r e s l i g h t l y d i f f é r e n t .

(1) The output of a component is signal variable.

119

Most components in the M D G - H D L library belong to this class having no state

componenti their output is a signal variable. For stripping away the existentially

quantified variable, we have defined the output representation for each component.

For example, the general output representation for the NOT gate is defined as

\~def existnot (i p : M d g _ B a s i c) =

(B o o l l _ M d g ~ (A w v . (i f wv = BOOL T then T e l s e F)) ip)

where B o o l l _ M d g is an auxiliary function, which converts a boolean value to a

M d g _ B a s i c value. This definition states that the function is related to the input

ip. We use this term as the basis of the witness term for existential quantification

eìimination (E X I S T S _ T A C in HOL).

In Example 1 above, both external inputs and external outputs are one element

lists. The input of the circuit is therefore (HD ip) (taking the first element of list ip);

we therefore use (HD ip) to represent our input variable in the existential term rather

than ip. The output op is a (num ->Mdg.Basic) l i s t . We use [A(t:num). existnot

(HD ip (t:num))] to represent the ex i s t en t i a l term of the circuit. It is used to

strip away the existentially quantified goal. The second tactic P R O V E _ E X I S T _ T A C can

then be used to prove the goal. The output representation for other components

in this class can be defined in a very similar way.

(2) The output of a component is a state variable.

In this class, the output value of a component refers to values at an earlier time

instance. When we strip away the existentially quantified variable o p , the time value

in the existential term must be one instance earlier.

E x a m p l e 2. Consider proving an existential theorem for a one register circuit.

The output representation for a register existreg is given below:

120

file:///~def

\-dej existreg (i p : M d g _ B a s i c) =

(B o o l l _ M d g (A w v . (i f wv = BOOL T then T e l s e F)) i p)

We first use the tactic E X P A N D _ S E M A N T I C S _ T A C [SEM_REG] which expands the se-

mantics of the circuit. The existential quantifier elimination tactic E X I S T S _ T A C is

then used to strip away the existentially quantifìed variable op. However, the exis­

tential terni C(A(t :num). existreg (HD ip ((t-1):num)))] is different to the one

we described above. Because the output value of the register refers to values at

an earlier time instance, the Urne in function existreg is (t - l) rather than t.

Finally, the ex i s ten t ia l theorem for one register can be proved by using tactic

P R O V E - E X I S T _ T A C .

7.3 The Output Representation for TABLE Com-

ponents

The p r e d e f i n e d T A B L E c o m p o n e n t m u s t b e d e a l t w i t h s e p a r a t e l y . There exist t h r e e

d i f f e r e n t s i t u a t i o n s . In e a c h of t h e s e s i t u a t i o n s , t h e o u t p u t r e p r e s e n t a t i o n of t h e

T A B L E i s b a s e d o n t h e o u t p u t f u n c t i o n e x i s t t a b l e w h o s e d e f i n i t i o n i s g i v e n b e l o w :

t~de/ (e x i s t t a b l e i n p u t [] u _ o u t d e f a u l t t = d e f a u l t t) A

(e x i s t t a b l e i n p u t v s [] d e f a u l t t = d e f a u l t t) A

(e x i s t t a b l e i n p u t (CONS v v s) (CONS u u . o u t) d e f a u l t t =

(i f (T a b l e j n a t c h i n p u t v t) t h e n (u t)

e l s e (e x i s t t a b l e i n p u t v s u _ o u t d e f a u l t t)))

This d e f i n i t i o n r e p r e s e n t s t h e o u t p u t v a l u e of t h e t a b l e . In t h e d e f i n i t i o n , t h e

i n p u t of t h e t a b l e i n p u t is a l i s t . Each e l e m e n t i n t h e l i s t c o u l d be u s e d t o r e p -

r e s e n t t h e o u t p u t v a l u e a t a n e a r l i e r t i m e i n s t a n c e . From t h i s d e f i n i t i o n , w e h a v e

p r o v e d a t h e o r e m w h i c h s t a t e s t h e r e l a t i o n b e t w e e n t h e p r e d i c a t e t a b l e a n d p r e d i -

121

c a t e e x i s t t a b l e . A t a b l e ' s o u t p u t v a l u e a t t i m e t i s e q u a l t o t h e v a l u e of p r e d i c a t e

e x i s t t a b l e a t t i m e t .

^~thm V U . O U t S U . O U t t .

t a b l e i n p u t o p u . o u t s u . o u t d e f a u l t t =

(o p t = (e x i s t t a b l e i n p u t u . o u t s u . o u t d e f a u l t t))

Now, w e w i l l c o n s i d e r h o w t o u s e e x i s t t a b l e t o g i v e t h e o u t p u t r e p r é s e n t a t i o n

f o r t h e t h r e e d i f f é r e n t t a b l e s i t u a t i o n s i n t u r n .

(1) The output of a T A B L E is a signal variable.

In t h i s s i t u a t i o n , t h e o u t p u t is a r e l a t i o n o f t h e i n p u t a n d t h e o t h e r t h r e e t a ­

b l e a r g u m e n t s . The o u t p u t r e p r é s e n t a t i o n f o r T A B L E i s e x i s t t a b l e i p v s u . o u t

d e f a u l t . In o t h e r w o r d s , t h e f u n c t i o n e x i s t t a b l e r e p r e s e n t s t h e o u t p u t r e l a t i o n .

For e x a m p l e , i f w e w a n t t o p r o v e a n e x i s t e n t i a l t h e o r e m f o r t h e T A B L E o f a NOT

g a t e c i r c u i t , t h e e x i s t e n t i a l t e r m f o r t h e t a b l e s p e c i f y i n g a NOT g a t e i s

[e x i s t t a b l e [(H D i p) : (n u m -> M d g _ B a s i c)]

[[T A B L E _ V A L (BOOL T)] ; [T A B L E . V A L (BOOL F)]]

[(At. BOOL F) ; (At. BOOL T)] (At. A R B)]

(2) The output of a T A B L E is a state variable and the input of the T A B L E

does not contain the output variable.

In t h i s c a s e , t h e o u t p u t o f t h e T A B L E a t t h e c u r r e n t t i m e d o e s n o t d é p e n d o n i t s e l f

a t a n e a r l i e r t i m e i n s t a n c e . The e x i s t e n t i a l t e r m r e f e r s t o t h e v a l u e s a t a n e a r l i e r

t i m e i n s t a n c e , w h i c h is At . e x i s t t a b l e i p v s u . o u t d e f a u l t (t - 1) . The t i m e i n

f u n c t i o n e x i s t t a b l e i s (t - 1) r a t h e r t h a n t . For e x a m p l e , i f w e w a n t t o p r o v e a n

e x i s t e n t i a l t h e o r e m f o r t h e T A B L E o f a R e g i s t e r c i r c u i t , t h e e x i s t e n t i a l t e r m w h i c h

r e f e r s t o v a l u e s a t a n e a r l i e r t i m e i n s t a n c e f o r t h i s c i r c u i t i s

122

[At. e x i s t t a b l e C(HD i p) : (n u m -> M d g _ B a s i c)]

[[T A B L E . V A L (BOOL T)] ; [T A B L E _ V A L (BOOL F)]]

[(At. BOOL T) ; (At. BOOL F)] (At. A R B) (t-1)]

(3) The output of a T A B L E is a state variable and the input of the T A B L E

contains the output variable.

In this situation, the output value of the T A B L E not only depends on inputs

but also depends on its own value at an earlier time instance. We cannot give

the general o u t p u t r e p r e s e n t a t i o n for this kind of T A B L E . However, we provide a

method through an example to explain how to obtain an o u t p u t r e p r e s e n t a t i o n

for the T A B L E .

Example 3. We consider the following goal for a program containing a table

in which the table output value not only depends on inputs but also depends on its

own value at an earlier time instance (see Figure 7.1).

After using the tactic E X P A N D _ S E M A N T I C S _ T A C to expand the semantics of the syn-

tax, we obtain:

3 o p . (V t . (I S _ B 0 0 L (HD i p t) A I S . B 0 0 L (HD o p t)) A

I S - B O O L ((H D o p o N E X T) t)) D

T A B L E [HD (i p : (n u m -> M d g _ B a s i c) l i s t) ; HD o p] (HD o p (t + 1))

[[T A B L E . V A L (BOOL F) ; T A B L E . V A L (BOOL F)] ;

[T A B L E . V A L (BOOL F) ; T A B L E . V A L (BOOL T)] ;

[T A B L E . V A L (BOOL T) ; T A B L E . V A L (BOOL F)] ;

[T A B L E . V A L (BOOL T) ; T A B L E . V A L (BOOL T)]]

[(A(t : n u m) . BOOL F) ; (A (t : n u m) . BOOL T) ; (A(t : n u m) . BOOL T) ;

(A(t : n u m) . BOOL T)3 (A (t r n u m) . A R B)

We notice that the output value at the time t+1 depends on the output value at

the time t . For stripping away the existentially quantified variable o p , we have to

123

. V i p .

3 o p . S e m P r o g r a m (PROG (EXOUT [" o p "]) (E X I N [" i p "]) (I N V [])

(T A B L E S Y N [" i p " ; " o p "] (N E X T V " o p ")

[[T A B L E _ V A L (BOOL F) ; T A B L E - V A L (BOOL F)] ;

[T A B L E _ V A L (BOOL F) ; T A B L E - V A L (BOOL T)] ;

[T A B L E _ V A L (BOOL T) ; T A B L E . V A L (BOOL F)] ;

[T A B L E _ V A L (BOOL T) ; T A B L E . V A L (BOOL T)]]

[BOOL F ; B O O L T ; B O O L T ; B O O L T] (DENORMAL A R B))) i p o p

INPUT OUTPUT

i p t 1 o p t o p (t+1)

IF BOOL F 1 BOOL F BOOL F

BOOL F 1 BOOLT BOOLT

BOOL T \ BOOLT BOOL F

BOOLT 1 BOOLT BOOLT

ELSE ARB

Figure 7.1: The Output of a T A B L E is a State Variable and Contains in the Input list

124

d e f i n e a n e w c o n s t a n t e x i s t t a b l e _ n e x t o f t h e f o r m :

e x i s t t a b l e _ n e x t i p (S U C t) =

e x i s t t a b l e [HD i p ; (Aa. e x i s t t a b l e _ n e x t i p a)]

[[T A B L E . V A L (BOOL F) ; T A B L E . V A L (BOOL F)] ;

[T A B L E . V A L (BOOL F) ; T A B L E - V A L (BOOL T)] ;

[T A B L E . V A L (BOOL T) ; T A B L E . V A L (BOOL F) 3 ;

[T A B L E . V A L (BOOL T) ; T A B L E . V A L (BOOL T)]]

[(A(t : n u i n) . BOOL F) ; (A(t : n u m) . BOOL T) ; (A(t : n u m) . BOOL T) ;

(A(t : n u m) . BOOL T)] (A(t : n u m) . A R B) t

w h e r e ((S U C t) = t+1). However, w e c a n n o t d e f i n e t h i s f u n c t i o n d i r e c t l y i n HOL

b y u s i n g t h e D e f i n e f u n c t i o n b e c a u s e i t i s n o t w e l l - d e f i n e d . I n p a r t i c u l a r , i t i s o f t h e

f o r n i

f (S U C t) = g f

where f is e x i s t t a b l e _ n e x t a p p l i e d t o a r g u m e n t s , a n d g i s e x i s t t a b l e a p p l i e d t o

a r g u m e n t s . The f u n c t i o n i s p a s s i n g f (a f u n c t i o n a l v a l u e o f t y p e : n u m - > M d g _ B a s i c)

t o a n o t h e r f u n c t i o n . I n o r d e r t o m a k e t h i s v a l i d , w e h a v e t o s h o w t h a t t h e f u n c t i o n s

c a l l e d b y g a r e o n l y c a l l e d i n w a y s t h a t d e c r e a s e s o m e m e a s u r e f u n c t i o n . Therefore,

w e e x p a n d t h e d é f i n i t i o n first a n d o b t a i n a w e l l - d e f i n e d f u n c t i o n so as t o u s e D e f i n e

t o d e f i n e t h i s f u n c t i o n .

We first e x p a n d t h e d é f i n i t i o n o f t h e e x i s t t a b l e , T a b l e j n a t c h , H D , T L a n d

T a b l e V a l _ t o _ V a l i n o r d e r t o d e f i n e e x i s t t a b l e j i e x t b y u s i n g REWRITE_CONV. We

c a n t h e n o b t a i n a w e l l - d e f i n e d f u n c t i o n a n d u s e D e f i n e t o d e f i n e t h e f u n c t i o n

e x i s t t a b l e _ n e x t . We n e x t o b t a i n t h e e x i s t e n t i a l t e r m w h i c h is

[((e x i s t t a b l e _ n e x t (i p : (n u m - > M d g _ B a s i c) l i s t)) : n u m - > M d g _ B a s i c)]

F i n a l l y , t h e e x i s t e n t i a l g o a l c a n b e p r o v e d b y u s i n g P R O V E _ T A B L E _ E X I S T _ T A C . There­

f o r e , w e c a n p r o v e t h e e x i s t e n t i a l t h e o r e m of t h e a b o v e c i r c u i t b y u s i n g t h e a b o v e

125

t h r e e s t e p s as l o n g as we f i n d i t s O u t p u t r e p r e s e n t a t i o n s .

7.4 Dealing with the Existential Quantified Inter­

nal Variables

When we p r o v e t h e e x i s t e n t i a l t h e o r e m f o r a c i r c u i t , i f t h e c i r c u i t c o n t a i n s i n t e r n a l

w i r e s , w e a l s o n e e d t o s t r i p a w a y t h e s e w i r e s . The e x i s t e n t i a l t e r m s f o r t h e s e w i r e s

a r e n e a r l y t h e s a m e as w e d e s c r i b e d a b o v e . A d i f f e r e n c e i s t h a t t h e t y p e o f t h e s e

w i r e s i s : n u m -> M d g _ B a s i c r a t h e r t h a n : (num -> M d g _ B a s i c) l i s t . This i s b e c a u s e

w e d o n o t u s e a l i s t t o r e p r e s e n t a n i n t e r n a l w i r e .

E x a m p l e 4 . We c o n s i d e r t h e p r o o f o f t h e e x i s t e n t i a l t h e o r e m f o r a c i r c u i t

c o n s i s t i n g o f o n e AND g a t e a n d o n e R E G I S T E R . The s e m a n t i c s o f t h i s c i r c u i t i s

V i p . 3 o p .

S e m P r o g r a m (PROG (EXOUT [" o p "]) (E X I N [" i p l " ; " i p 2 "]) (I N V [" u "])

(J O I N (AND " i p l " " i p 2 " " u ") (R E G " u " " o p "))) i p o p

By e x p a n d i n g t h e s e m a n t i c s u s i n g E X P A N D _ S E M A N T I C S _ T A C [S E M J I N D , S E M J t E G] , w e

o b t a i n

3. x l o p .

(V t . I S _ B 0 0 L (HD i p t) A I S _ B 0 0 L (HD (T L i p) t)) A

I S _ B 0 0 L (HD o p (t + 1))) D

(V t .

I S - B 0 0 L (x l t) A

(MDG_T0_BU0L (x l t) =

MDG_TÜ_B00L (HD i p t) A MDG_T0_B00L (HD (T L i p) t))) A

I S _ B 0 0 L (x l t) A (MDG_T0J300L (HD o p (t + 1)) = MDG_T0_B00L (x l t))

126

NOT OR AND NOT

Figure 7.2: A Circuit

where x l is ari internai wire which is the output of the AND gate and the input of the

R E G I S T E R . It is a (num -> Mdg_Basic) terni. The existential terni of x l (xl .exist)

depends on the output representation of the AND gate (existand).

x l -ex is t = (A(t:num). existand (HD ip (t:num)) (HD (T L ip) t))

op represents an external output, it is a (num -> Mdg_Basic) l i s t term. The output

of the R E G I S T E R is the only élément of this list. Thus the corresponding existential

term depends on the output representation of the R E G I S T E R .

[(A(t:num). (existreg (xl_exist (t-1))))]

The tactic E X I S T S . T A C can then be used to strip away the existentially quantified

external variable op and internai variable x l . Finally, the theorem can be proved by

using tactic P R O V E _ E X I S T _ T A C .

7.5 An Example

E x a m p l e 5. Consider the circuit shown in Figure 7.2. We will prove the existential

theorem of this circuit to illustrate how our approach is deployed with a circuit

containing a combination of the situations considered: internai wires, a table, a

127

register and combinational components. The existential theorem for this circuit is

represented as:

h/tm V ip.

3 op.

SemProgram(PROG (EXOUT ["opl"]) (EXIN ["ipl"; "ip2"; "ip3"])

(INV ["xl"; "x2"; "x3])

(JOIN (TABLESYN ["ip"] (NOWV "op")

[[TABLE.VAL (BOOL T)] ; [TABLE.VAL (BOOL F)]]

[BOOL F; BOOL T] (DENORMAL ARB))

(JOIN (OR "xl" nip2" "x2")

(JOIN (AND "x2" "ip3" "x3")

(NOT "x3" "opl")))) ip op

The proof process can be divided into three steps. We first use the tactic

EXPAND_SEMANTICS_TAC to expand the semantics of the syntax. We obtain:

3 xl x2 x3 op.

(Vt. IS-BOOL (HD ip t) A IS_B00L (HD (TL ip) t) A

IS.B00L (HD (TL (TL ip)) t) A IS-BOOL (HD op t)) D

TABLE [HD ip] xl [[TABLE.VAL (BOOL T)] ; [TABLE.VAL (BOOL F)]]

[(At. BOOL F); (At. BOOL T)3 (At. ARB) A

(Vt. (IS.B0OL (xl t) A IS_BOOL (x2 t) A

(MDG_TO_BOOL (x2 t) =

HDG_T0_B00L (xl t) V MDG_T0_B00L (HD (TL ip) t))) A

(ISJ300L (x2 t) A IS_B00L (x3 t) A

(MDG_TO_BOOL (x3 t) =

MDG_T0_B00L (x2 t) A MDG.T0.B00L (HD (TL (TL ip)) t))) A

IS_B00L (x3 t) A (MDG_T0_B00L (HD op t) = - MDG_T0_B00L (x3 t)))

where x l , x2, x3 are internai wires, op is an external wire list which is one element

list [opl], ip is an external input list, which contains three elements [ipl; ip2;

ip3].

128

We then strip away the existential quantified goal. The internai variable x l is

the output of the NOT gate (T A B L E representation) and the input of the OR gate.

The output representation for stripping away this variable is determined by the

NOT T A B L E , which is represented as xl_exist.

x l . ex i s t = exist table [(HD ip)] [[TABLE_VAL (BOOL T)] ;

[TABLE_VAL (BOOL F)]]

[(At. BOOL F); (At. BOOL T)] (At. ARB)

The internai variable x2 is the output of the OR gate and the input of the AND

gate. The ex i s ten t ia l term is determined by the output representation of the OR

gate, which is represented as x2_exist.

x2_exist = (A (t:num). existor (x l .exis t t) (HD (TL ip) t))

where x l . ex i s t is the input of the OR gate. The output representation is in terms

of its input. Similarìy, the internai variable x3 is the output of the AND gate and

the input of the NOT gate. The ex i s t en t i a l term is determined by the output

representation of the AND gate, which is represented as x3_exist.

x3_exist = (A (t:num). existand (x2_exist t) (HD (TL (TL ip)) t))

Finally, the external output is the output of a NOT gate; the ex i s ten t ia l term is

determined by output representation of the NOT gate.

op_exist - (A (t:num). existnot (x3_exist t)

After stripping away the existentially quantified variables using the above terms,

we can finally prove the goal using tactic PROVE_EXIST_TAC.

129

This example demonstrates that knowing the output representation for each

component in the M D G - H D L component library is practically useful when finding

a proper ex i s ten t ia l term of the whole circuit. For any circuit in M D G - H D L , as

long as we find the corresponding ex i s ten t ia l term of the circuit, the ex i s t en t i a l

theorem of this circuit can be proved.

Although we concentrate on proving the existential theorem for the specification

and implementation of a design based on the syntax and semantics of M D G - H D L

in this thesis, our methods can be used to solve other H O L goals which are ex-

istentially quantified. In fact, we have developed a library for giving the output

representation of each component in a boolean subset. It can be used to construct

the ex i s t en t i a l term, which strips away the existentially quantified variable in the

HOL goal. In other words, our ex i s ten t ia l terms and output representations

can be used to solve some existential quantified HOL goal in other applications.

Summary

In this chapter, we investigate existential theorems based on the syntax and seman­

tics of the M D G input language (MDG-HDL) in HOL. We define an output repre­

sentation for each component in the M D G - H D L component library. We summarize

a general method which is used to prove the existential theorem for any M D G - H D L

program. The method can also be used to solve other existentially quantified goals.

130

Chapter 8

Case Study: Vérification of the

Correctness and Usability

Theorems of a Vending Machine

Up to now, we have proved some translator correctness theorems and some importing

theorems. We have combined the translator correctness theorems with the importing

theorems. The combination allows the M D G vérification results to be imported into

HOL in terms of the semantics of M D G - H D L . However, how can we ensure this

method is feasible in practice? In other words, how can we ensure the low level

M D G vérification results can be imported into HOL to form the traditional H O L

theorems? Moreover, can the importing theorems be used in HOL?

In this chapter, we will use a simple example, the vérification of a correctness

theorem and a usability theorem of a vending machine (chocolaté machine), to an-

swer the above questions. This example was originally used to verify the absence of

post-completion errors within the framework of a traditional hardware vérification

by Curzon and Blandford [25] [24]. In this work, the correctness of the vending ma­

chine was verified, ie it was proved that the implementation of the vending machine

131

meets its specification. A usability property based on its specif icat ion was then

proved. By combining the above two theorems, the usability theorem based on its

implementation was proved. A l l the formalization and verification were implemented

in HOL.

In our case study, we follow their steps. However, we use the M D G system to

verify the correctness of the chocolate machine and formally import the M D G veri­

fication result into HOL to form the HOL theorem based on the deep embedding se­

mantics of the M D G input language (MDG-HDL) . We then prove the specif icat ion

based usability theorem in the HOL system. By combining those two theorems, one

the correctness theorem of the chocolate machine which is verified in M D G (the

importing theorem), the other the specif icat ion based usability theorem which is

proved in H O L , we obtain the implementation based usability theorem. Therefore,

the importing theorem (the correctness theorem) can not only be imported into

HOL but also can be used in HOL.

When we use the M D G system to verify the chocolate machine, we give a hard­

ware implementation of the machine and verify it against the specification of a

finite state machine. Both are described in the M D G input language (MDG-HDL)

and verified in the M D G system. After we verify the correctness of the chocolate

machine in the M D G system, the theorem about the formalization of the M D G

verification result can be tagged into HOL in terms of the syntax and semantics of

the core M D G - H D L language. The importing theorem for the chocolate machine

can be obtained by instatiating the theorem (6.18) with the syntax (MDG-HDL)

of the implementation and specification of the chocolate machine. We also prove

the existential theorem based on semantics of M D G - H D L for the implementation

of the chocolate machine using the method we proposed in Chapter 7. Finally, a

correctness theorem based on the semantics of M D G - H D L of the chocolate machine,

which states that the specification implies the implementation, is obtained.

When we prove the usability theorem based on its specif icat ion in HOL, we

follow the idea of Curzon & Blandford [24]. However, the specification of the choco-

132

late machine is différent to theirs. This is because the spécification in M D G must

be in the form of a finite state machine or table description. Another différence is

that we have to add some reasonable assumptions to cope with the différent sorts of

inputs of the T A B L E . By combining the correctness theorem and the spéc i f i ca t i on

based usability theorem, we can obtain the implementation based usability theorem.

More détail will be discussed in section 8.3.

During this case study, we will show the détail about how to define the syntax

and the semantics of the spécification and implementation, how to use a new type

M d g _ B a s i c to accommodate the différent sorts of the inputs for the T A B L E , how to

prove the existential theorem and how to formally import the M D G vérification

results into HOL to form the HOL theorems and make use of the theorems. We

will also explain why the assumptions of the usability theorem are reasonable. In

other words, we will go though the methods proposed in Chapter 4, Chapter 5,

Chapter 6 and Chapter 7. We will use this example to prove the feasibility of the

methodology of our research. This is very important. Since we formally import the

M D G vérification results into HOL on the trusted M D G system, the degree of trust

of the linkage between the M D G and HOL system is high. If our methodology is

feasible, it can be used in deveìoping a hybrid system. This will greatly increase the

trustworthiness of the hybrid system.

In the rest of this chapter, we will first briefly introduce the chocolaté machine in

section 8.1. We then verify the machine using the M D G system in section 8.2. We

next consider the importation process which formally imports the M D G vérification

results into H O L to form the HOL theorems in section 8.3. In section 8.4, we prove

the s p é c i f i c a t i o n based usability theorem in HO L and prove the implementation

based usability theorem by making use of the above two proved theorems.

133

8.1 Chocolate Machine

The chocolate machine is used to sell chocolate as shown in Figure 8.1. It takes

pound coins only, returning 20p change. To get the change a button must be pressed.

Similarly a further button must be pressed to get the chocolate. The machine has

lights next to the coin slot and 2 buttons to indicate the order things should be

done. The lights light up to indicate the next action the user should perform. The

order of opération is that a coin is inserted, the change button is pressed and the

change removed, and then finally the chocolate button is pressed and the chocolate

removed. If the user does not press the appropriate button the machine does nothing

until the correct button is pressed.

The chocolate machine has three inputs which correspond to the buttons being

pressed and a coin inserted. It has five outputs which correspond to three lights and

a signal each to reléase change and chocolate.

8.2 Proving the Chocolate Machine using the

MDG System

In this section, we will use the sequential vérification of the M D G system to prove

the correctness of the chocolate machine. For sequential vérification, we need to

provide five kinds of input files: the circuit description files (the implementation file

and the spécification file), the algebraic spécification file, the symbol order file and

the invariant spécification file. The implementation file and the spécification file

have the same inputs (InsertCoin, PushChange, PushChoc) but différent outputs.

We use (CoinLight_a, ChocLight_a, ChangeLight_a, GivenChoca, GivenChange.a)

to represent the outputs in the implementation file and (CoinLight, ChocLight,

ChangeLight, GiveChoc, GiveChange) to represent the outputs in the spécification

file. We will explain the four différent files in turn in the following subsections.

134

CHOCOLATE - 80p

1 Insert Coin
£1 ONLY

2. Push for Change

3. Push for Chocolate

Figure 8.1: The Chocolate Machine

135

8.2.1 The Implementation

The chocolaté machine is implemented in hardware as shown in Figure 8.2. We

can use the predefined components in the M D G - H D L library to represent the cor-

responding circuit as described in [25]. In the circuit, two registers (X and Y) are

needed to store the 4 internai states of the chocolaté machine (reset, coin, choc,

change). The inputs are connected to wire x in and y in and their Outputs to wires

x and y, respectively. In M D G - H D L , we use command comportent to specify their

spécifications.

component (reg_x, r e g (input (xin) , output (x))) .

component (r e g . y , reg (input (yin) , output (y))) .

The following représentation of abstract states is used:

X Y

reset 0 0

coin 0 1

change 1 1

choc 1 0

The output side of the circuit involves using NOT gate and AND gate to turn the x

and the y values into 4 signais representing thèse states.

component (out J.nv_x,not (input (x) ,output (xbar))) .

component (out_inv_y,not (input (y) » O u t p u t (ybar))) .

component(out_and_xy, and(input(x,y) .output(change))) .

component(out_and_xybar, and(input(x,ybar) »Output(choc))) .

component(out_and_xbary, and(input(xbar ,y) .output (coin))) .

component (out _and_xbarybar, and(input (xbar, ybar) , output (r eset))) .

136

InsertCoin PushChange PushChoc

yin

reset

AND AND NOT

12 change 13

OR OR AND

14 xin
15

OR REG

REG NOT

xbar

NOT AND AND

ybar reset
change

AND

choc

AND

coin

FORK FORK FORK FORK FORK

GiveChoc CoinLight ChangeLight ChocLight GiveChange

Figure 8.2: The Circuit of the Chocolate Machine

137

Thèse signais are then wired to the appropriate outputs. The coin light is wired

to the r e s e t signal, the change light to the c o i n signal, the chocolaté light and the

mechanism to release the change to the c h a n g e signal.

c o m p o n e n t (w i r e _ c h o c _ g i v e n c h o c , f o r k (i n p u t (c h o c) . o u t p u t (G i v e n C h o c _ a))) .

c o m p o n e n t (w i r e _ c h o c _ c h a n g l i g h t , f o r k (i n p u t (c h a n g e) . o u t p u t (C h o c L i g h t ^ a))) .

c o m p o n e n t (w i r e _ c h a n g e _ g i v e c h a n g e , f o r k (i n p u t (c h a n g e) . o u t p u t (G i v e n C h a n g e _ a))) .

c o m p o n e n t (u i r e _ c o i n _ c h o c l i g h t , f o r k (i n p u t (c o i n) . o u t p u t (C h a n g e L i g h t _ a))) .

c o m p o n e n t (w i r e _ r e s e t _ c o i n l i g h t , f o r k (i n p u t (r e s e t) . o u t p u t (C o i n L i g h t _ a))) .

The input s i d e o f t h e c i r c u i t c o m b i n e s t h e i n p u t s w i t h t h e signals r e p r e s e n t i n g

t h e states. Signal x i s 1 i n t h e next state if

(1) we are in the coin state AND the change button is pressed OR

(2) we are i n t h e c h a n g e state.

This is given as:

c o m p o n e n t (x _ a n d , a n d (i n p u t (c o i n , P u s h C h a n g e) , o u t p u t (1 1))) .

c o m p o n e n t (x _ o r , o r (i n p u t (c h a n g e , 1 1) , o u t p u t (x i n))) .

Signal y is 1 in the next state if

(1) we a r e i n t h e c o i n s t a t e OR

(2) we a r e i n t h e c h a n g e s t a t e AND t h e c h o c o l a t e b u t t o n i s NOT p r e s s e d OR

(3) we a r e i n t h e r e s e t state AND a c o i n i s inserted.

c o m p o n e n t (y _ a n d _ r e i n , a n d (i n p u t (r e s e t , I n s e r t C o i n) , o u t p u t (1 2))) .

c o m p o n e n t (y _ o r _ c o l 2 , o r (i n p u t (c o i n , 1 2) , o u t p u t (1 4))) .

138

T

PushChange

CoinLight ChangeLîght ChocLight GiveChange GiveChoc

Figure 8.3: The State Transition Diagram of the Chocolate Machine

component(y_inv, not(input(PushChoc).output(13))).

component(y_and_chl3, and(input(change,13) .output(15))).

component (y_orJL415, or (input (14,15), output (y in))) .

We thus obtain the hardware implementation.

The M D G spécification description is given by a tabular représentation of the tran-

sition/output relation T A B L E . We formally specify the chocolate machine as a finite

state machine with 4 states - (R E S E T , C O I N , C H A N G E , CHOC) (see Figure 8.3).

The R E S E T state is the initial state. Each of the other states represent the cor-

responding action having been done: in the C O I N state a coin has been accepted;

in the CHOC state the chocolate is dispensed and in the CHANGE state the change is

dispensed.

We first defìne a table which spécifies the relations among the current state,

inputs and next state. If the machine is in the R E S E T state with the insert coin light

lit, the next state is C O I N . If the machine is in the C O I N state without the insert light

Ut, the next state is R E S E T . If the machine is in the C O I N state with the push change

light lit, the next state is CHANGE. If the machine is in the C O I N state without the

8.2.2 The Specifìcation

139

p u s h c h a n g e l i g h t l i t , t h e n e x t s t a t e is C O I N . If t h e m a c h i n e i s i n t h e CHANGE s t a t e

w i t h t h e p u s h c h o c o l a t é l i g h t l i t , t h e n e x t s t a t e i s CHOC. O t h e r w i s e t h e n e x t s t a t e i s

R E S E T . T h e " * " i s u s e d t o r e p r e s e n t d o n ' t c a r e

c o m p o n e n t (c h o c _ m a c h i n e ,

t a b l e ([[C h o c S t , I n s e r t C o i n , P u s h C h a n g e , P u s h C h o c , r u C h o c S t] ,

[R E S E T , 1 , * , * , C O I N] , [R E S E T , 0 , * , * , R E S E T] ,

[C O I N , * , 1 , * , C H A N G E] , [C O I N , * , 0 , * , C O I N] ,

[C H A N G E , * , * , 1 , C H O C] , [C H A N G E , * , * , 0 , C H A N G E] ,

[C H O C , * , * , * , R E S E T]])) .

F o r e a c h s t a t e w e d e f i n e a t a b l e t o r e p r e s e n t t h e r e l a t i o n b e t w e e n t h e s t a t e s a n d

t h e o u t p u t s . If t h e m a c h i n e i s i n t h e R E S E T s t a t e t h e n t h e c o i n l i g h t s h o u l d b e o n ,

o t h e r w i s e t h e c o i n l i g h t s h o u l d b e of f .

c o m p o n e n t (c o i n J L i g h t , t a b l e ([[C h o c S t , C o i n L i g h t] , [R E S E T , 1] | 0])) .

If t h e m a c h i n e i s i n t h e C O I N s t a t e t h e n t h e c h a n g e l i g h t s h o u l d b e o n , o t h e r w i s e

t h e c h a n g e l i g h t s h o u l d b e o f f .

c o m p o n e n t (c h a n g e . l i g h t , t a b l e ([[C h o c S t , C h a n g e L i g h t] , [C O I N , 1] I 0])) .

If t h e m a c h i n e i s i n t h e CHANGE s t a t e , t h e c h o c o l a t é l i g h t s h o u l d b e o n a n d t h e

c h a n g e s h o u l d b e g i v e n . O t h e r w i s e , t h e c h o c o l a t é l i g h t s h o u l d b e o f f a n d t h e c h a n g e

s h o u l d n o t b e g i v e n .

c o m p o n e n t (g i v e _ c h a n g e , t a b l e ([[C h o c S t , G i v e C h a n g e] , [C H A N G E , 1] I 0])) .

c o m p o n e n t (c h o c J L i g h t , t a b l e ([[C h o c S t , C h o c L i g h t] , [C H A N G E , 1] I 0])) .

If t h e m a c h i n e i s i n t h e CHOC s t a t e t h e n t h e c h o c o l a t é s h o u l d b e g i v e n , o t h e r w i s e

t h e c h o c o l a t é s h o u l d n o t b e g i v e n .

140

component (give_choc, table([[ChocSt.GiveChoc], [CHOC, 1] I 0])) .

8.2.3 Three Other Specification Files

We have provided the specification file and the implementation file of the chocolate

machine. We also need to provide the algebraic specification file, the symbol order

file and the invariant specification file. The algebraic specification file declares sorts,

function types and generic constants.The algebraic specification file of the chocolate

machine specifies the new concrete sort ChocStates which has four different states.

conc_sort(ChocStates, [RESET, COIN, CHOC, CHANGE]).

The symbol order file provides the custom (user-defined) symbol order for all the

variables and cross-operators which would be used in the M D G algorithms. The

invariant specification file specifies the invariant condition to be checked during

reachability analysis. The full M D G - H D L programs are given in Appendix C.

We input these five files into the M D G system. The M D G verification tool begins

to check whether the outputs of the specification file are identical to those of the

implementation file or not and returns true or false respectively. In our verification,

the M D G system returns true. In other words, the correctness of the chocolate

machine has been successfully proved by using the M D G system.

8.3 The Importation Process of the Verification

Results

In the last section, the chocolate machine was verified by using the M D G system.

In this section, we will show how to import the M D G result into HOL to form the

HOL theorems. As we described in Chapter 6, the M D G verification result can be

141

f o r m a t i z e d a n d t a g g e d i n t o HOL i n t e r n i s of t h e s e m a n t i c s of t h e c o r e M D G - H D L . In

o r d e r t o d o s o , w e n e e d t o d e f i n e t h e s y n t a x a n d s e m a n t i c s of t h e s p é c i f i c a t i o n a n d

i m p l e m e n t a t i o n o f t h e c h o c o l a t é m a c h i n e i n HOL. We m a k e u s e o f t h e i m p o r t i n g

t h e o r e m f o r s e q u e n t i a l v é r i f i c a t i o n (6.18) a n d p r o v e t h e e x i s t e n t i a l t h e o r e m f o r t h e

i m p l e m e n t a t i o n of t h e c h o c o l a t é m a c h i n e . The c o r r e c t n e s s t h e o r e m i n t h e t r a d i t i o n a l

HOL f o r m c a n b e o b t a i n e d . This t h e o r e m s t a t e s t h a t t h e i m p l e m e n t a t i o n i m p l i e s

t h e s p é c i f i c a t i o n .

8.3.1 The Syntax and the Semantics of the Chocolaté Ma­

chine

The a b s t r a c t s y n t a x o f M D G - H D L f o r t h e s p é c i f i c a t i o n a n d i m p l e m e n t a t i o n o f t h e

c h o c o l a t é m a c h i n e c a n b e g i v e n as w e m e n t i o n e d i n Chapter 4 i n t e r m s o f t h e M D G

i n p u t files - t h e a l g e b r a i c s p é c i f i c a t i o n file, t h e s p é c i f i c a t i o n file a n d t h e i m p l e m e n ­

t a t i o n file. As w e m e n t i o n e d b e f o r e , t h e a l g e b r a i c s p é c i f i c a t i o n file d é c l a r e s s o r t s ,

f u n c t i o n t y p e s a n d g e n e r i c c o n s t a n t s u s e d i n t h e h a r d w a r e d e s c r i p t i o n . When w e

d e f i n e t h e a b s t r a c t s y n t a x f o r t h e s p é c i f i c a t i o n a n d i m p l e m e n t a t i o n files, t h i s p a r t

of i n f o r m a t i o n s h o u l d b e p r o v i d e d i n t h e d é c l a r a t i o n o f t h e s p é c i f i c a t i o n a n d i m p l e ­

m e n t a t i o n files r e s p e c t i v e l y . However, s i n c e w e o n l y c o n s i d e r d e c l a r i n g a s é q u e n c e

o f c o n c r e t e s o r t s a t p r é s e n t , t h e r e is n o n e e d t o d é c l a r e i t i n t h e d é c l a r a t i o n . We

c a n u s e a n y s t r i n g t o r e p r e s e n t o n e c o n c r e t e s o r t a s w e d i s c u s s e d f o r t h e e x t e n d e d

s u b s e t .

The a b s t r a c t s y n t a x o f t h e M D G - H D L p r o g r a m c o n s i s t s o f a n e x t e r n a l o u t p u t

s t r i n g l i s t , a n e x t e r n a l i n p u t s t r i n g l i s t , a n i n t e r n a i s t r i n g l i s t a n d a c o m p o n e n t t e r m .

In b o t h t h e s p é c i f i c a t i o n a n d i m p l e m e n t a t i o n files o f t h e c h o c o l a t é m a c h i n e , w e

u s e a t h r e e é l é m e n t l i s t [" I n s e r t C o i n " ; " P u s h C h a n g e " ; " P u s h C h o c "] t o r e p r e s e n t

t h e a b s t r a c t s y n t a x o f t h e e x t e r n a l i n p u t s a n d a five é l é m e n t l i s t [" C o i n L i g h t " ;

" C h o c L i g h t " ; " C h a n g e L i g h t " ; " G i v e C h o c " ; " G i v e C h a n g e "] t o r e p r e s e n t t h e e x t e r ­

n a l o u t p u t s . The i n t e r n a i w i r e s l i s t a n d t h e c o m p o n e n t t e r m o f b o t h files a r e d i f f é r e n t

1 4 2

as described below.

In the specification file, a one element list ChocSt is used to represent the internal

variable, whose value could be one of the four states. Its component term consists of

six TABLESYN constructors that are composed by constructor JOIN. The full syntax

of the specification file of the chocolate machine is given in Figure 8.4. For conve­

nience, in the rest of this section we will use Choc_Spe_Syn to informally represent

the abstract syntax of the specification.

In the implementation file, there are 15 internal variables. They are repre­

sented by a string list [" 1 1 " ; " 1 2 " ; " 1 3 " ; " 1 4 " ; " 1 5 " ; "xin"; "yin"; "x"; "y";

"xbar"; "ybar"; "choc"; "change"; "coin"; "reset"]. The component term con­

sists of some basic logic gates (AND, NOT, OR gate), FORK and REGISTER which are

composed by constructor JOIN. The full syntax of the implementation file of the

chocolate machine is given in Figure 8.5. In the rest of this section we will use

Choc_Imp_Syn to informally represent the syntax of the implementation

As we mentioned in Chapter 3 and 4, the semantics of any circuit is described

by SemProgram, which explicitly represents the relation between the external inputs

and the external outputs. In the semantic function, we use a list ip to represent

external inputs and a list op to represent external outputs. In this case, all the

formalizations can be represented explicitly with the external inputs ip and outputs

op. The semantics of the specification and implementation files are given below:

V ip op. CHOC_MACHINE_SPEC ip op = SemProgram Choc_Spe_Syn ip op

\-def V ip op. CHOC_MACHINE_IMPL ip op = SemProgram Choc_Imp_Syn ip op

By expanding the semantics of the program in HOL, we obtain the specification

and implementation of the chocolate machine which represent the relation between

the external inputs and external outputs.

As we mentioned in Chapter 4, when we define the semantics of the program

143

(PROG
(EXDUT ["CoinLight"; "ChocLight"; "ChangeLight"; "GiveChoc"; "GiveChange"])
(EXIN ["InsertCoin"; "PushChange"; "PushChoc"])
(INV ["ChocSt"])
(JOIN (TABLESYN ["ChocSt"; "InsertCoin"; "PushChange"; "PushChoc"]

(NEXTV("ChocSt"))
[[TABLE.VAL (CONCRETE "RESET"); TABLE-VAL (BOOL T) ; DONT.CARE; DONT.CARE];
[TABLE_VAL (CONCRETE "RESET") ; TABLE.VAL (BOOL F); DONT.CARE ; D0NT_CARE] ;
[TABLE.VAL (CONCRETE "COIN") ; DONT.CARE; TABLE.VAL (BOOL T) ; DONT.CARE] ;
[TABLE.VAL (CONCRETE "COIN") ; DONT.CARE; TABLE-VAL (BOOL F); DONT.CARE];
[TABLE.VAL (CONCRETE "CHANGE"); DONT.CARE ; DONT.CARE; TABLE.VAL (BOOL T)] ;
[TABLE.VAL (CONCRETE "CHANGE") ; DONT.CARE; DONT.CARE; TABLE.VAL (BOOL F)];
[TABLE.VAL (CONCRETE "CHOC") ; DONT.CARE; DONT.CARE ; DONT.CARE]]
[(CONCRETE "COIN"); (CONCRETE "RESET"); (CONCRETE "CHANGE");
(CONCRETE "COIN"); (CONCRETE "CHOC"); (CONCRETE "CHANGE");
(CONCRETE "RESET")]
(DENORMAL (CONCRETE "RESET")))

(JOIN (TABLESYN ["ChocSt"] (NOWV ("CoinLight"))
[[TABLE.VAL (CONCRETE "RESET")]] [BOOL T] (DENORMAL (BOOL F)))

(JOIN (TABLESYN ["ChocSt"] (NOWV ("ChangeLight"))
[[TABLE.VAL (CONCRETE "COIN")]] [BOOL T] (DENORMAL (BOOL F)))

(JOIN (TABLESYN ["ChocSt"] (NOWV ("GiveChange"))
[[TABLE.VAL (CONCRETE "CHANGE")]] [BOOL T] (DENORMAL (BOOL F)))

(JOIN (TABLESYN ["ChocSt"] (NOWV ("ChocLight"))
[[TABLE.VAL (CONCRETE "CHANGE")]] [BOOL T] (DENORMAL (BOOL F)))

(TABLESYN ["ChocSt"] (NOWV ("GiveChoc")) [[TABLE.VAL (CONCRETE "CHOC")]]
[[TABLE.VAL (CONCRETE "CHOC")]] [BOOL T] (DENORMAL (BOOL F)))))))))

Figure 8.4: The Abstract Syntax of the Spécification File

144

(PRDG (EXOUT ["CoinLight"; "ChocLight"; "ChaDgeLight"; "GiveChoc"; "GiveChange"])
(EXIN ["InsertCoin"; "PushChange"; "PushChoc"])
(INV C"H"; "12"; "13"; "14"; "15"; "xin"; "yin" ; "x"; "y";

"xbar"; "ybar"; "choc"; "change"; "coin"; "reset"])
(JOIN (AND "coin" "PushChange" "11")
(JOIN (OR "change" "11" "xin")
(JOIN (AND "reset" "InsertCoin" "12")
(JOIN (OR "coin" "12" "14")
(JOIN (NOT "PushChoc" "13")
(JOIN (AND "change" "13" "15")
(JOIN (OR "14" "15" "yin")
(JOIN (REG "xin" "x")
(JOIN (REG "yin" "y")
(JOIN (NOT "x" "xbar")
(JOIN (NOT "y" "ybar")
(JOIN (AND "x" "y" "change")
(JDIN (AND "x" "ybar" "choc")
(JOIN (AND "xbar" "y" "coin")
(JOIN (AND "xbar" "ybar" "reset")
(JOIN (FORK "choc" "GiveChoc")
(JOIN (FORK "change" "ChocLight")
(JOIN (FORK "change" "GiveChange")
(JOIN (FORK "coin" "ChangeLight")

(FORK "reset" "CoinLight")

Figure 8.5: The Abstract Syntax of the Implementation File

145

f o r t h e e x t e n d e d s u b s e t , w e h a v e t o a d d a s s u m p t i o n s s o as t o a v o i d t h e s o r t o f e a c h

v a r i a b l e b e i n g m i s m a t c h e d a n d i n c o n s i s t e n t m o d e l b e i n g p r o d u c e d . T h e a s s u m p t i o n s

a r e t o m a k e s u r e e a c h o f t h e e x t e r n a l i n p u t s a n d Outputs h a s p r o p e r s o r t (e i t h e r

(BOOL b o o l) t e r m s o r (CONCRETE s t r i n g) t e r m s) . F o r e x a m p l e , t h e s e m a n t i c s o f t h e

s p é c i f i c a t i o n o f t h e c h o c o l a t é m a c h i n e (F i g u r e 8.6) S t a t e s t h a t i f t h e e x t e r n a l i n p u t s

a n d Outputs a r e b o o l e a n v a l u e s t h e n t h e s e m a n t i c s o f t h e p r o g r a m w i l l b e s i x T A B L E s

c o n n e c t e d t o g e t h e r . I n F i g u r e 8.6, o n e o f t h e i n p u t s o f t h e first T A B L E is C h o c S t . T h e

v a l u e C h o c S t c a n o n l y b e o n e o f t h e f o u r s t a t e s , b u t t h e v a l u e o f t h e e x t e r n a l i n p u t s

c a n ö n l y b e a b o o l e a n v a l u e . T h e n e w t y p e M d g _ B a s i c i s d e f i n e d t o d e a l w i t h t h i s

s i t u a t i o n . S i m i l a r l y , t h e i m p l e m e n t a t i o n o f t h e c h o c o l a t é m a c h i n e c a n b e o b t a i n e d .

8.3.2 Importing the MDG Results into HOL

A s w e s t a t e d i n C h a p t e r 6, t h e i m p o r t i n g t h e o r e m f o r t h e c h o c o l a t é m a c h i n e c a n b e

o b t a i n e d b y i n s t a n t i a t i n g t h e o r e m (6.18) w i t h t h e s y n t a x o f i t s i m p l e m e n t a t i o n a n d

s p é c i f i c a t i o n (C h o c _ S p e _ S y n a n d C h o c _ I m p _ S y n) .

v a l I m p o r t - C h o c . T h m =

(S P E C L C — (C h o c _ S p e _ S y n (— , — ' C h o c _ I m p _ S y n ' — 3 I m p o r t J l d g h d l . T h m) ;

W e o b t a i n t h e t h e o r e m I m p o r t _ C h o c _ T h m

h f t m (v i P f l a S ° P ° P ' •

P S E Q i p f l a g o p o p *

(S e m P r o g r a m _ C o r e (T r a n s P r o g M C C h o c l m p _ S y n))

(S e m P r o g r a m . C o r e (T r a n s P r o g M C C h o c , S p e _ S y n))

D (V t . (f l a g t = T)) A

V i p . 3 o p ' . S e m P r o g r a m C h o c _ S p e _ S y n i p o p ' D

(V i p o p . S e m P r o g r a m C h o c _ I m p _ S y n i p o p D

S e m P r o g r a m Choc_SpeJ3yn i p op) (81)

146

(V t. IS-J300L (HD ip t) A IS_BDOL (HD (TL ip) t) A
IS_BOOL (HD (TL (TL ip)) t) A IS-BÛOL (HD op t) A
IS-BOOL (HD (TL op) t) A IS_B0DL (HD (TL (TL op)) t) A

IS_BD0L (HD (TL (TL (TL op))) t) A

IS_B00L (HD (TL (TL (TL (TL op)))) t)) D

(3 ChocSt.

(TABLE [ChocSt; (HD ip); (HD (TL ip)); (HD (TL(TL ip)))] ((ChocSt) o NEXT)
[[TABLE.VAL (CONCRETE "RESET"); TABLE.VAL (BOOL T) ; D0NT_CARE; DONT.CARE] ;
[TABLE-VAL (CONCRETE "RESET"); TABLE.VAL (BOOL F); DONT.CARE ; DONT.CARE];
[TABLE.VAL (CONCRETE "COIN") ; DONT.CARE; TABLE-VAL (BOOL T) ; DONT.CARE] ;
[TABLE-VAL (CONCRETE "COIN"); DONT-CARE; TABLE.VAL (BOOL F); DONT.CARE];
[TABLE.VAL (CONCRETE "CHANGE"); DONT.CARE; DONT.CARE; TABLE.VAL (BOOL T)] ;
[TABLE.VAL (CONCRETE "CHANGE"); DONT.CARE; DONT-CARE ; TABLE.VAL (BOOL F)];
[TABLE.VAL (CONCRETE "CHOC"); DONT.CARE; DONT.CARE; D0NT_CARE]]
[(At. CONCRETE "COIN"); (At. CONCRETE "RESET");
(At. CONCRETE "CHANGE"); (At. CONCRETE "COIN");
(At. CONCRETE "CHOC"); (At. CONCRETE "CHANGE");
(At. CONCRETE "RESET")] (At. (CONCRETE "RESET")) t) A

(TABLE [ChocSt] (HD op) [[TABLE.VAL (CONCRETE "RESET")]] [TSIG1] (FSIG1)) A
(TABLE [ChocSt] (HD(TL(TL op))) [[TABLE.VAL (CONCRETE "COIN")]]

[TSIG1] (FSIG1)) A

(TABLE [ChocSt] (HD(TL(TL(TL(TL op))))) [[TABLE.VAL (CONCRETE "CHANGE")]]
[TSIG1] (FSIG1)) A

(TABLE [ChocSt] (HD (TL op)) [[TABLE.VAL (CONCRETE "CHANGE")]]

[TSIG1] (FSIG1)) A
(TABLE [ChocSt] (HD(TL(TL(TL op)))) [[TABLE.VAL (CONCRETE "CHOC")]]

[(TSIG1)] (FSIG1)

Figure 8.6: The Semantics of the Spécification File

147

S i n c e t h e M D G t o o l h a v e v e r i f i e d t h e c o r r e c t n e s s o f t h e c h o c o l a t e m a c h i n e , t h e

t h e o r e m a b o u t t h e f o r m a l i z a t i o n o f t h e M D G v e r i f i c a t i o n r e s u l t c a n b e t a g g e d i n t o

HOL i n t e r m s o f t h e s e m a n t i c s o f c o r e M D G - H D L .

h/im (V i p f l a g o p o p ' .

P S E Q i p f l a g op o p '

(S e m P r o g r a m . C o r e (T r a n s P r o g M C C h o c _ I m p _ S y n))

(S e m P r o g r a m X o r e (T r a n s P r o g M C C h o c _ S p e _ S y n))

D (V t . (f l a g t - T))) (8.2)

We t h e n p r o v e t h e a d d i t i o n a l a s s u m p t i o n b y u s i n g t h e m e t h o d w e p r o p o s e d i n

C h a p t e r 7. T h i s t h e o r e m s t a t e s t h a t f o r a l l p o s s i b l e i n p u t t r a c e s , t h e b e h a v i o r

s p e c i f i c a t i o n (S e m P r o g r a m C h o c _ S p e _ S y n i p o p ') c a n b e s a t i s f i e d f o r s o m e o u t p u t

a n d s t a t e t r a c e s (i . e . , t h e r e e x i s t s a t l e a s t o n e o u t p u t a n d s t a t e t r a c e f o r w h i c h t h e

r e l a t i o n i s t r u e) :

V i p . 3 o p ' . (S e m P r o g r a m C h o c _ S p e _ S y n i p o p ') (8-3)

A f t e r e x p a n d i n g t h e s e m a n t i c s b y u s i n g E X P A N D _ S E M A N T I C S _ T A C [] , w e o b t a i n a s u b -

g o a l as s h o w n i n F i g u r e 8.7. I t i s e x i s t e n t i a l l y q u a n t i f i e d b y t w o v a r i a b l e s x l , o p .

V a r i a b l e x l i s a n i n t e r n a l w i r e v a r i a b l e w i t h t y p e : (num -> M d g _ B a s i c) , b u t v a r i a b l e

o p i s a n e x t e r n a l o u t p u t w i t h t y p e : ((n u m -> M d g _ B a s i c) l i s t) .

F i r s t l y , w e n e e d t o find t h e e x i s t e n t i a l t e r m f o r i n t e r n a l v a r i a b l e x l . T h e v a r i ­

a b l e x l i s a s t a t e v a r i a b l e ; i t i s a n o u t p u t o f a T A B L E a n d t h e i n p u t o f t h e o t h e r T A B L E S .

A s w e m e n t i o n e d i n s e c t i o n 7.2, t h e o u t p u t v a l u e o f t h e T A B L E n o t o n l y d e p e n d s o n

i n p u t s b u t a l s o d e p e n d s o n i t s o w n v a l u e a t a n e a r l i e r t i m e i n s t a n c e . I n t h i s s i t u a t i o n ,

t h e e x i s t e n t i a l t e r m f o r t h e v a r i a b l e x l c a n b e o b t a i n e d as w e i n t r o d u c e d i n C h a p ­

t e r 7. We u s e REWRITE.CONV t o e x p a n d t h e s e m a n t i c s o f e x i s t t a b l e , T a b l e j n a t c h ,

H D , T L , T a b l e V a l _ t o _ V a l s o as t o o b t a i n a w e l l - d e f i n e d f u n c t i o n a n d u s e t h e D e f i n e

t o d e f i n e t h e f u n c t i o n e x i s t t a b l e _ n e x t . T h e r e f o r e , t h e e x i s t e n t i a l t e r m f o r t h e

T A B L E i s d e t e r m i n e d b y t h e f u n c t i o n e x i s t t a b l e j i e x t , i . e . e x i s t t a b l e _ n e x t i p .

148

3 x l op. (V t .
(IS_B00L (HD ip t) A IS_B00L (HD ip t) A IS_B00L (HD (TL ip) t) A

IS_B00L (HD (TL ip) t) A IS_B00L (HD (TL (TL ip)) t)) A

IS_B00L (HD op t) A IS-BOOL (HD (TL (TL op)) t) A

ISJ300L (HD (TL (TL (TL (TL op)))) t) A IS_B00L (HD (TL op) t) A

IS.B00L (HD (TL (TL (TL op))) t)) D
TABLE [x l ; HD ip; HD (TL i p) ; HD (TL (TL ip))] (x l o NEXT)

[[TABLE.VAL (CONCRETE "RESET"); TABLE.VAL (BOOL T) ; DONT.CARE;
DONT .CARE] ;
[TABLE.VAL (CONCRETE "RESET"); TABLE.VAL (BOOL F); DONT.CARE;
DONT.CARE] ;
[TABLE.VAL (CONCRETE "COIN"); DONT.CARE; TABLE.VAL (BOOL T) ;
DONT.CARE] ;
[TABLE.VAL (CONCRETE "COIN"); DONT.CARE; TABLE.VAL (BOOL F);
DONT.CARE] ;
[TABLE.VAL (CONCRETE "CHANGE"); DONT.CARE; DONT.CARE;
TABLE.VAL (BOOL T)] ;
[TABLE.VAL (CONCRETE "CHANGE"); DONT.CARE; DONT.CARE;
TABLE.VAL (BOOL F)] ;
[TABLE.VAL (CONCRETE "CHOC"); DONT.CARE; DONT.CARE; DONT.CARE]]
[(At. CONCRETE "COIN"); (At. CONCRETE "RESET")
(At. CONCRETE "CHANGE"); (At. CONCRETE "COIN")
(At. CONCRETE "CHOC"); (At. CONCRETE "CHANGE")
(At. CONCRETE "RESET")] (At. CONCRETE "RESET") A

TABLE [xl] (HD op) [[TABLE.VAL (CONCRETE "RESET")]] [(At. BOOL T)]
(At. BOOL F) A

TABLE [xl] (HD (TL (TL op))) [[TABLE.VAL (CONCRETE "COIN")]]
[(At. BOOL T)] (At. BOOL F) A

TABLE [xl] (HD (TL (TL (TL (TL op))))) [[TABLE.VAL (CONCRETE "CHANGE")]]
[(At. BOOL T)] (At. BOOL F) A

TABLE [xl] (HD (TL op)) [[TABLE.VAL (CONCRETE "CHANGE")]] [(At. BOOL T)]
(At. BOOL F) A

TABLE [xl] (HD (TL (TL (TL op)))) [[TABLE.VAL (CONCRETE "CHOC")]]
[(At. BOOL T)] (At. BOOL F)

Figure 8.7: The Existential Theorem of the Spécification of the Chocolaté Machine

149

Secondly, we need to fìnd the ex i s ten t ia l terni for the output op. The connected

five T A B L E s are quantified b y external output op. Bach output of a T A B L E décides

one élément of the output list. Because ali the outputs of the T A B L E are signais,

the ex i s t en t i a l term for the T A B L E s is determined b y the function existtable. For

example, the first élément of the ex i s t en t i a l term is defined in terms of the T A B L E

whose output is (HD op) and is defined b y the function exist table, which is given

below:

(existtable [(existtable_next ip)] [[T A B L E . V A L (C O N C R E T E " R E S E T ")]]

[(At. BOOL T)] (At. BOOL F))

Other éléments i n t h e ex i s t en t i a l term list can b e obtained i n a very similar

way. They are also d e f i n e d i n t e r m s of corresponding T A B L E and function existtable.

Therefore, the ex i s ten t ia l term for the output op can b e given below:

[existtable [(existtablejiext ip)] [[T A B L E . V A L (C O N C R E T E " R E S E T ")]]

[(At. BOOL T)] (At. BOOL F) ;

exist table [(existtablejnext i p)] [[T A B L E _ V A L (C O N C R E T E " C H A N G E ")]]

[(At. BOOL T)] (At. BOOL F) ;

existtable [(existtable_next i p)] [[T A B L E _ V A L (C O N C R E T E " C O I N ")]]

[(At. BOOL T)3 (At. BOOL F) ;

existtable [(existtablejiext ip)] [[T A B L E _ V A L (C O N C R E T E " C H O C ")]]

[(At. BOOL T)] (At. BOOL F) ;

existtable [(existtableJiext i p)] [[T A B L E _ V A L (C O N C R E T E " C H A N G E ")]]

[(At. BOOL T)] (At. BOOL F)]

After stripping away the leading existentially quantified variable x l , op using

the above t e r m s , the existential theorem for the spécification of the chocolaté m a ­

chine (8.3) has been proved using tactic P R O V E _ E X I S T _ T A B L E _ T A C .

Finally, the conversion theorem can b e obtained b y discharging the formalization

theorem (8.2) and the existential theorem (8.3) from the importing theorem (8.1).

150

This theorem states that the impìementation implies the spécification.

\~thm V i p o p . S e m P r o g r a m C h o c . I m p _ S y n i p o p D

S e m P r o g r a m C h o c _ S p e _ S y n i p o p (8-4)

We have translatée! the M D G vérification resuit into HOL to form a traditional

HOL theorem. The translation process is based on the importing theorem. In other

words, the linkage between the M D G system and the H O L system is the importing

theorem.

8.4 Vérification of the Usability Theorems

In the previous section, we imported the M D G vérification resuit into HOL and

formed the HOL theorem. How can we ensure this theorem is usable in HOL?

In this section, we will use this theorem with other HOL theorems to prove the

impìementation based usability theorem to demonstrate the use of the importing

theorem.

As we mentioned at the beginning of this chapter, this example was originally

used by Curzon Se Blandford [24], to prove the absence of post-completion errors

within the framework of a traditional hardware vérification. In their work, they

define a formai general user model which describes the behavior of a rational user.

It spécifies concrete types for the machine and user state, a list of pairs of lights and

the actions associated with them, history functions that represent the possessions

of the user, functions that extract the part of the user state that indicates when the

user has finished and has achieved their main goal and an invariant that indicates

the part of the state that the user intends to be preserved after the interaction. More

détails can be found in [25] [24]. The general user model for a chocolaté machine

is defined as CHOC_MACHINE_USER u s t a t e o p i p which spécifies the relation between

the arguments discussed above.

151

file:///~thm

\ - d e J C H O C J 1 A C H I N E . U S E R u s t a t e o p i p =

U S E R

[(C o i n L i g h t , I n s e r t C o i n) ; (C h o c L i g h t , P u s h C h o c) ;

(C h a n g e L i g h t , P u s h C h a n g e)]

(C H 0 C _ P 0 S S E S S I 0 N S U s e r H a s C h o c G i v e C h o c C o u n t C h o c U s e r H a s C h a n g e

G i v e C h a n g e C o u n t C h a n g e U s e r H a s C o i n I n s e r t C o i n C o u n t C o i n)

U s e r F i n i s h e d

U s e r H a s C h o c

(V A L U E . I N V A R I A N T (C H O C _ P D S S E S S I O N S U s e r H a s C h o c G i v e C h o c C o u n t C h o c

U s e r H a s C h a n g e G i v e C h a n g e C o u n t C h a n g e

U s e r H a s C o i n I n s e r t C o i n C o u n t C o i n))

u s t a t e o p i p

The u s a b i i i t y o f a c h o c o l a t é m a c h i n e is d e f i n e d as C H O C M A C H I N E . U S A B L E u s t a t e o p

i p i n t e r m s o f a u s e r - c e n t r i c p r o p e r t y . I t s t a t e s t h a t i f a t a n y t i m e , t , a u s e r

a p p r o a c h e s t h e m a c h i n e w h e n i t s c o i n l i g h t i s o n , t h e n t h e y w i l l a t s o m e t i m e , t l ,

h a v e b o t h c h o c o l a t é a n d c h a n g e .

\-def C H O C _ M A C H I N E _ U S A B L E u s t a t e o p i p =

V t . ~ (U s e r H a s C h o c u s t a t e t) A

~ (U s e r H a s C h a n g e u s t a t e t) A

(U s e r H a s C o i n u s t a t e t) A

(V A L U E _ I N V A R I A N T (C H 0 C . P O S S E S S I O N S U s e r H a s C h o c G i v e C h o c

C o u n t C h o c U s e r H a s C h a n g e G i v e C h a n g e C o u n t C h a n g e

U s e r H a s C o i n I n s e r t C o i n C o u n t C o i n) u s t a t e t) A

((C o i n L i g h t o p t) = BOOL T) 3

3 t l . (U s e r H a s C h o c u s t a t e t l) A

(U s e r H a s C h a n g e u s t a t e t l)

The s p é c i f i c a t i o n b a s e d u s a b i i i t y t h e o r e m s t a t e s t h a t i f a u s e r a c t s r e a c t i v e l y a n d

t h e m a c h i n e b e h a v e s a c c o r d i n g t o i t s s p é c i f i c a t i o n , t h e n t h e u s a b i i i t y p r o p e r t y w i l l

152

hold. As a matter of fact, this theorem has been proved in [25]. However, we

can not make use of the usability theorem directly because the specification of the

chocolate machine is different and the new type has to be defined to accommodate

the different sorts. In M D G , the specifications must be in the form of a finite state

machine or table description. However, the advantage of it is its speed. In HOL,

the formalization is more flexible and reasonable. It need not deal with extra stuff

although it might slow hardware verification.

Using our method, we have to prove a slightly different usability theorem in HOL.

In the syntax of the M D G - H D L program, we use a new type M d g _ B a s i c , defined in

Chapter 4, to represent the concrete type and boolean value. This is because the

inputs of a T A B L E could be either a concrete type variable or a boolean value variable.

Since all the inputs and outputs of the chocolate machine are boolean values, we

add additional conditions in thé usability theorem to specify this fact. Hence, the

usability theorem asserts the usability of an abstract specification of a chocolate

machine as proved below.

t~thm V u s t a t e o p i p .

(V t . I S - B O O L ((H D o p) t) A

IS_B00L ((H D (T L o p)) t) A

IS_B00L ((H D (T L (T L o p))) t) A

I S _ B 0 0 L ((H D (T L (T L (T L o p)))) t) A

I S _ B 0 0 L ((H D (T L (T L (T L (T L o p))))) t) A

I S _ B 0 0 L ((H D i p) t) A IS_B00L ((H D (T L i p)) t) A

I S _ B 0 0 L ((H D (T L (T L i p))) t)) A

CHOC_MACHINE_USER u s t a t e o p i p A

C H O C _ M A C H I N E _ S P E C i p o p D

CHfJC_MACHINE_USABLE u s t a t e o p i p (8.5)

Therefore, the main differences are that we need to add assumptions so as to

153

avoid the sort of each external variable being mismatched and to ensure the spec­

ifications are in the form of a finite state machine. In practice, we can formalize

the design according to this requirement at the very beginning. Although the for­

malization of a design is a little bit harder than the formalization of it directly in

HOL, the M D G proof is quicker than HOL proof. In other words, we have to pay

the price for the speed.

In the last section, we proved the correctness of the chocolate machine by using

the M D G system, and formally imported it into HOL to form a HOL theorem. This

theorem states that the implementation meets its specification (8.4). We also prove

the specif icat ion based usability theorem (8.5) in HOL. The implementation based

usability theorem can be proved in terms of the above two theorems (8.4) (8.5). This

theorem (8.6) states that if the inputs and outputs are boolean value, a user acts

rationally according to the user model and the machine behaves according to its

implementation, then the usability property will hold.

\~thm V ustate op i p .

(V t . I S _ B 0 0 L ((H D op) t) A

I S _ B 0 0 L ((H D (T L op)) t) A

I S - B O O L ((H D (T L (T L op))) t) A

I S _ B 0 0 L ((H D (T L (T L (T L op)))) t) A

I S - B O O L ((H D (T L (T L (T L (T L op))))) t) A

I S _ B 0 0 L ((H D ip) t) A

I S _ B 0 0 L ((H D (T L ip)) t) A

I S _ B 0 0 L ((H D (T L (T L ip))) t)) A

CHOC_MACHINE_USER ustate op ip A

C H O C J I A C H I N E . I M P L ip op D

C H O C _ M A C H I N E _ U S A B L E ustate op ip (8.6)

From this example, we have shown that a system can be verified in two parts. One

154

file:///~thm

part of proof can be done in M D G , the other part of the proof can be done in HOL.

The division allows M D G to be used when it woutd be easier than obtaining the

resuit directly in HOL. We have provided a formai linkage between the M D G system

and the HO L system, which allows the M D G vérification results to be formally

imported into H O L to form the HOL theorem. We do not simply assume that

the results proved by M D G are directly équivalent to the resuit that would have

been proved in HOL. The linkage is based on the importing theorems being given

a greater degree of trust. We have made use of the importing theorem. In other

words, the M D G vérification resuit not only can be imported into HOL to form the

HOL theorem, it also can be used as part of hierarchical hardware vérification proof

in HOL. We have also shown that two différent applications (hardware vérification

and usability vérification) suited to two différent tools can be combined together.

However, for importing the M D G vérification resuit into HOL, we need to prove

the ex i s t en t i a l theorem for the spécification of the design. The behaviour spécifi­

cations must be in the form of a finite state machine or table description.

Summary

In this chapter, we have proved the usability theorem of a chocolaté machine to

demonstrate the feasibility of our methodoìogy. We have verified the correctness of

the chocolaté machine in M D G , and this resuit has been imported into H O L to form

the HOL theorem. We have proved the spéc i f i ca t i on based usability theorem in

HOL. By using the importing theorem and s p é c i f i c a t i o n based usability theorem,

we obtain the implementation based usability theorem.

155

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, we have produced a methodology which can provide a formai linkage

between the symbolic state enumeration system and the theorem proving system

based on a verified symbolic state enumeration system. The methodology involves

the following three steps.

First, we verify aspects of correctness of the symbolic state enumeration system

in an interactive theorem proving system. In fact, some symbolic state enumeration

based Systems, such as M D G , consist of a séries of translators and a set of algorithms.

We need to verify the translators and algorithms to ensure the correctness of the

whole system. For verifying the translators, we need to define the deep embedding

semantics and translation functions. We have to make certain that the semantics

of a program is preserved in its translated form. This work greatly increases the

degree of trust of the symbolic state enumeration system.

Secondly, we prove importing theorems in the theorem proving system about

the results from the symbolic state enumeration system. We need to formalize the

156

correctness results produced by different hardware verification applications using

the theorem proving system. The formalization is based on the semantics of the

low level language (decision graph). We need to prove a theorem in each case that

translates them into a form usable in the theorem proving system. In other words,

we have to provide the theoretical justification for linking two systems.

Thirdly, we combine the translator correctness theorems with importing theo­

rems. This combination-allows the verification results from the state enumeration

system to be formalized in terms of the semantics of a low level language (decision

graph) and imported in terms of the semantics of a high level language (HDL).

Therefore, we are able to import the result into the theorem proving system based

on the semantics of the input language of a verified symbolic state enumeration

system. This makes formalization, importation and verification easier, more direct

and trustworthy.

We have also summarized a general method to prove the ex i s t en t i a l theorem

of the design, which is needed for importing the sequential verification results into

the theorem proving system. This work makes the linking process easier and remove

the burden from the user of the hybrid system.

We have partly implemented this methodology in two simplified versions of the

M D G system (the boolean subset and the extended subset) and the HOL system,

and provide a formal linkage by using the above mentioned steps.

The standard approach of proving a translator has been used to prove the aspects

of correctness of the M D G system using the HOL system. For the boolean subset, we

have proved that two translators are correct (Figure 1.5). The syntax of the M D G -

H D L language, the core M D G - H D L language and the M D G formula representation

language have been defined in higher order logic. The semantic functions are defined

by structural induction over their syntactic structure. The translation functions that

translate the syntax of an M D G - H D L program to the syntax of the core M D G - H D L

language and translate the syntax of the core M D G - H D L program to the syntax

157

of the M D G formula representation language have been defined. The correctness

theorem ((3.1)(3.2)) for each translator, which quantifies over its syntactic structure,

has been verified. By combining these two correctness theorems we obtain a new

theorem (3.3). This theorem states that the semantics of the original M D G - H D L

program is equivalent to the semantics of the M D G formula representation program

used in the M D G implementation.

For the extended subset, we have extended our formalization to accommodate

a list of inputs of the T A B L E component with boolean sorts and concrete sorts. We

have proved that the first translator is correct (Figure 1.5). Similarly, the formal

syntax and semantics of the M D G - H D L language and core M D G - H D L language of

this subset has been defined. A set of functions for translating this subset language

to their core M D G - H D L equivalence has then been given. The correctness theorem

about the translation, which quantifies over its syntactic structure, has be proved.

In doing such a translator verification, we do more than just to prove the correct­

ness of the system, but also build a solid foundation to formally import the M D G

verification results into HOL to form the HOL theorem in terms of M D G - H D L .

Our semantics of the program is represented explicitly with the external inputs and

outputs, which allows the semantic function to be used in the importing theorems.

We have formally proved the general importing theorems for three different hard­

ware verification applications using HOL. We have in each case proved a theorem

that translates them into a form usable in a traditional H O L hardware verification,

i.e., that the structural specification implements the behavioral specification. The

first applications considered were the checking of input-output equivalence of two

combinational circuits. The next application considered was sequential verification,

which checks that two abstract state machines produce the same sequence of outputs

for every sequence of inputs. Finally, we considered a general form of the checking

of invariant properties of a circuit. These theorems are very general because they

do not explicitly deal with the M D G - H D L semantics or multiway decision graph.

They are given in terms of general relations on inputs and outputs. Thus they are

158

applicable to other verification systems with a similar architecture based on reach­

ability analysis, equivalence checking and/or invariant checking. This could include

a pure B D D based system.

The two general importing theorems for each subset, combinational verification

and sequential verification, have been instantiated for the semantics of the low level

language. In theory, the formalization of the M D G verification result should be in

terms of the M D G decision graph. However, we just proved some translators. In

order to demonstrate the combination of the translator correctness theorems and

the importing theorems, the formalization of the M D G results we considered here

is in terms of the M D G formula representation (see Figure 6.1) for the boolean

and the core M D G - H D L for the extended subset. We have combined the translator

correctness theorems with the importing theorems. The combination allows the

low level formalization of the M D G verification results to be imported into HO L to

form the HOL theorems in terms of the semantics of M D G - H D L and the existential

theorem for sequential verification to be proved in terms of the semantics of M D G -

HDL. In other words, we have obtained the different theorems for two different

M D G applications which explicitly deal with the M D G - H D L semantics. We thus

obtain theorems that convert the low level results, which actually proved in the

M D G system, to results about circuits in the high level languages in a form that

can be reasoned about in HOL.

For ease of importing of M D G results into HOL for sequential verification and

also for avoiding an inconsistent model, we summarize a general way to prove the ex­

istential theorem for the implementation or specification of designs based on the syn­

tax and the semantics of M D G - H D L . We have defined the output representation

for each component in the M D G component library. The existential term of a de­

sign, which strips away the leading existentially quantified variable and substitutes

term for each free occurrence in the body, is determined in terms of those output

representations. Since we directly deal with the syntax and semantics of the M D G -

H D L program, we use a tactic EXPAND_SEMANTICS_TAC to expand the semantics of the

159

program (design) and obtain a HOL goal of the form 3 a l . . . an. b o d y . The

ex i s t en t i a l term can then be used to strip away the existentially quantified vari­

able and substitute term for each free occurrence in the body. Two further tactics

P R O V E _ E X I S T _ T A C and P R O V E _ T A B L E - E X I S T _ T A C are used to solve the goal which strips

away the existentially quantified variables. Although we concentrate on proving the

existential theorem for the specification and implementation of a design based on the

syntax and semantics of M D G - H D L , our methods can be used to solve other HOL

goals which are existentially quantified. In other words, our ex i s ten t ia l terras and

output representations can be used to solve existentially quantified HOL goals in

other applications.

An example, the verification of correctness and usability theorems of a vend­

ing machine, has demonstrated the feasibility of our method. We have verified the

correctness of the chocolate machine in M D G . The verification result has been im­

ported into HOL to form the HOL theorem. We have proved the specification based

usability theorem in HOL. By using the importing theorem and specification based 1

usability theorem, we obtain the implementation based usability theorem.

From this example, we have shown that our method supports the hierarchical

hardware verification approach as we mentioned in section 1.3.2. The M D G verifi­

cation results can be fitted naturally within the H O L framework with great security

using the importing theorem. We have used the importing theorem in verifying a

property of a system. In other words, the M D G verification result not only can be

imported into H O L to form the HOL theorem, it also can be used as part of hier­

archical hardware verification proof in HOL. Furthermore, we have shown that two

different applications (hardware verification and usability verification) suited to two

different tools can be combined together. However, for importing the M D G verifica­

tion result into H O L , we need to prove the ex i s t en t i a l theorem for the specification

of the design.

The main difficulty we encountered is the formalization of the T A B L E . This is

because the inputs could be of different types. As a result, the formalization of a

160

d e s i g n i s m o r e c o m p l e x t h a n t h e f o r m a l i z a t i o n o f i t d i r e c t i n HOL. This e x p e r i e n c e

t e l l s u s w h e n w e d e s i g n a n e w t o o l , t h e d e s i g n e r s s h o u l d t r y t h e i r b e s t t o m a k e t h e

t o o l e a s y t o b e p r o v e d a t t h e v e r y b e g i n n i n g .

9.2 Future work

We h a v e p r o v i d e d a f o r m a l l i n k a g e b e t w e e n M D G a n d HOL b a s e d o n a t r u s t e d M D G

s y s t e m . There a r e m a n y o p p o r t u n i t i e s f o r f u r t h e r w o r k o n v e r i f y i n g t h e c o r r e c t n e s s

o f t h e M D G s y s t e m a n d b u i l d i n g a v e r i f i e d l i n k a g e b e t w e e n M D G a n d HOL.

• V e r i f y the MDG a l g o r i t h m s . In M D G , a set o f t h e M D G a l g o r i t h m s i s u s e d

t o m a n i p u l a t e t h e MDGs. If t h e c o r r e c t n e s s t h e o r e m s o f t h e a l g o r i t h m s h a v e

b e e n p r o v e d , t h e d e g r e e o f t r u s t o f t h e s y s t e m w i l l i n c r e a s e c o n s i d e r a b l y a n d

t h e i m p o r t i n g t h e o r e m s w h i c h i s b a s e d o n t h e h i g h l e v e l l a n g u a g e (M D G -

HDL) w i l l b e m o r e r e l i a b l e . Chou a n d Peled [17] h a v e v e r i f i e d a p a r t i a l - o r d e r

r e d u c t i o n t e c h n i q u e f o r m o d e l c h e c k i n g . Similar m e t h o d s c a n b e u s e d t o v e r i f y

t h e M D G a l g o r i t h m s .

• V e r i f y t h e t r a n s l a t o r s . We h a v e p r o v e d t h e t r a n s l a t o r s f r o m t h e M D G - H D L

l a n g u a g e t o t h e M D G f o r m u l a r e p r e s e n t a t i o n l a n g u a g e f o r t h e b o o l e a n s u b s e t

a n d h a v e p r o v e d t h e t r a n s l a t o r f r o m t h e M D G - H D L l a n g u a g e to t h e c o r e

M D G - H D L l a n g u a g e f o r t h e e x t e n d e d s u b s e t . Similar v e r i f i c a t i o n s c a n a l s o b e

d o n e f o r o t h e r t r a n s l a t i o n , s u c h as f r o m t h e M D G f o r m u l a r e p r e s e n t a t i o n t o

M D G f o r t h e b o o l e a n s u b s e t a n d f r o m t h e c o r e M D G - H D L t o M D G f o r t h e

e x t e n d e d s u b s e t . The m o r e t r a n s l a t o r s h a v e b e e n p r o v e d , t h e h i g h e r t h e d e g r e e

of t r u s t t h e s y s t e m w i l l h a v e . Of c o u r s e we n e e d to u s e t h e d e e p e m b e d d i n g

s e m a n t i c s of t h e c o r r e s p o n d i n g l a n g u a g e in HOL a n d t o d e f i n e t h e t r a n s l a t i o n

f u n c t i o n s b e t w e e n t h e l a n g u a g e s .

• V e r i f y i n g the MDG i m p l e m e n t a t i o n . We s p l i t t h e p r o b l e m of v e r i f y i n g t h e

t r a n s l a t o r i n t o t w o p r o b l e m s of v e r i f y i n g t h a t t h e i m p l e m e n t a t i o n m e e t s a

161

functional specification, and that the functional specification meets the re­

quirement of preserving semantics. This split was advocated by Chirica and

Martin [16] with respect to compiler correctness. We are concerned with the

latter step here. We are not verifying the actual M D G implementation. Our

formalization of the translator is a specification of it. Once combined with

the translators from the core M D G - H D L to MDGs or from the M D G formula

representation to MDGs, it would be specifying the output required from the

implementation. It is possible to verify the M D G implementation based on

the compiler specification theorems.

Expanding the subset language to the whole language. The subset language

we considered here did not consider three M D G predefined components (Mul­

tiplexer, Drivers and Constant) and the Transform construct used to apply

functions. These components are omitted from our subset as they have non-

boolean inputs or outputs. Furthermore, the subset considered does not in­

clude abstract sorts. It is possible to extend the subset to the whole language.

Making a linkage between two different specifications. In M D G , the spec­

ifications must be in the form of a finite state machine or table description.

This is not very abstract. The advantage of HOL is that it allows much more

abstract specification. The complex M D G specification might lead to difficulty

in the H O L proof. Since two different specifications formalize the same de­

sign, it may be possible to investigate the feasibility of proving the equivalent

of two specifications. Or it is possible to write the tactics to simplify the M D G

specification.

The importing theorems for model checking. We have formally proved the

general importing theorems for three different hardware verification applica­

tions using HOL. These were the original M D G tools. More recently a model

checking tool was added [84]. The importing theorems for model checking can

be obtained using the similar method.

162

• M a k i n g u s e o f o u r i m p o r t i n g t h e o r e m s w i t h M D G - H O L . Our i m p o r t i n g t h e o -

r e m s h a v e b u i l t a s o l i d t h e o r e t i c a l u n d e r p i n n i n g f o r t h e l i n k a g e o f H O L a n d

M D G . It c a n b e u s e d i n M D G - H O L o r a n o t h e r c o m b i n e d s y s t e m . Indeed, t h e

M D G - H O L s y s t e m s h a l l o w l y e m b e d s t h e s e m a n t i c s o f M D G - H D L i n t o HOL.

It is p o s s i b l e t o u s e o u r d e e p e m b e d d i n g s e m a n t i c s i n s t e a d o f t h e s h a l l o w

e m b e d d i n g s e m a n t i c s s o as t o m a k e u s e o f o u r i m p o r t i n g t h e o r e m s .

• A p p l y i n g t h e m e t h o d o l o g y t o a BDD b a s e d t o o l a n d t h e o r e m p r o v e r . Our

m e t h o d o l o g y w o r k s f o r t h e M D G s y s t e m a n d t h e H O L s y s t e m w h i c h g r e a t l y

i n c r e a s e t h e d e g r e e o f t r u s t o f t h e l i n k a g e b e t w e e n t h e t w o S y s t e m s . Similar

w o r k c a n b e a p p l i e d t o o t h e r s i m i l a r a u t o m a t e d v é r i f i c a t i o n t o o l s a n d t h e o r e m

p r o v i n g S y s t e m s .

Summary

The c o n t r i b u t i o n o f this t h e s i s i s t h a t w e h a v e p r o d u c e d a m e t h o d o l o g y w h i c h c a n

p r o v i d e a f o r m a i l i n k a g e b e t w e e n a s y m b o l i c s t a t e e n u m e r a t i o n s y s t e m a n d a t h e ­

o r e m p r o v i n g s y s t e m b a s e d o n a v e r i f i e d s y m b o l i c s t a t e e n u m e r a t i o n S y s t e m . The

m e t h o d o l o g y h a s b e e n p a r t l y r e a l i z e d i n t w o s i m p l i f i e d v e r s i o n s o f the M D G S y s t e m

a n d t h e HOL s y s t e m . We h a v e v e r i f i e d a s p e c t s o f c o r r e c t n e s s o f t w o s i m p l i f i e d v e r ­

s i o n s o f the M D G S y s t e m . We h a v e p r o v i d e d a f o r m a i l i n k a g e b e t w e e n the M D G

s y s t e m a n d t h e HOL s y s t e m based o n i m p o r t i n g t h e o r e m s . We h a v e c o m b i n e d the

t r a n s l a t o r c o r r e c t n e s s t h e o r e m s w i t h t h e i m p o r t i n g t h e o r e m s . This c o m b i n a t i o n a l -

l o w s t h e l o w l e v e l M D G v é r i f i c a t i o n r e s u l t s t o b e i m p o r t e d i n t o H O L i n t e r m s o f t h e

s e m a n t i c s o f a h i g h l e v e l l a n g u a g e (MDG-HDL) . We h a v e a l s o s u m m a r i z e d a g ê n e r a i

m e t h o d w h i c h i s u s e d t o p r o v e the e x i s t e n t i a l t h e o r e m f o r t h e s p é c i f i c a t i o n a n d

i m p l e m e n t a t i o n o f t h e d e s i g n . The f e a s i b i l i t y o f t h i s a p p r o a c h h a s b e e n d e m o n -

s t r a t e d i n a c a s e s t u d y : the v é r i f i c a t i o n o f t h e c o r r e c t n e s s a n d u s a b i l i t y t h e o r e m s o f

a v e n d i n g m a c h i n e .

163

Bibliography

[1] M . D. Aagaard, R. B. Jones, R. Kaivola, and C. J. H . Seger. Formai vérification

of iterative algorithms in microprocessors. DAC, June 2000.

[2] M . D. Aagaard, R. B. Jones, and C. H. Seger. Lifted-FL: A pragmatic im-

plementation of combined model checking and theorem proving. In Theorem

Proving in Higher Order Logics, number 1690 in Lecture Notes in Computer

Science, pages 323-340. Springer-Verlag, September 1999.

[3] M . D. Aagaard and C. J . H. Seger. The formai vérification of a pipelined

doubleprecision IEEE floating-point multiplier. ICCAD, IEEE Comp. Soc,

pages 7-10, November 1995.

[4] S. B. Akers. Binary décision diagrams. IEEE Transactions on Computers,

c-27(6):509-516, June 1978.

[5] P. Argon and K . McMillan. Deriving a special-purpose prover for compositional

model checking in Coq. In TPHOLs 2000 Supplemental Proceedings, pages 1-5.

Oregon Graduate Institute, 2000.

[6] G. Birtwistle, S. Chin, and B. Graham. nemJheory 'HOL';; An Introduc­

tion io Hardware Vérification in Higher Order Logic. Unpublished, 1994.

http://www.comp.leeds.ac.uk/graham/research/hv/hvbooks.html.

[7] R. Boulton, A . Gordon, M . Gordon, J . Harrison, J. Herbert, and J. Van-Tassel.

Expérience with embedding hardware description language in HOL. In T. F.

164

http://www.comp.leeds.ac.uk/graham/research/hv/hvbooks.html

Melham and R. T. Boute, editors, Theorem Provers in Circuit Design, pages

129-156. North-Holland, 1992.

[8] R. S. Boyer and G. Dowek. Towards checking proof checkers. In Workshop on

Types for Proofs and Programs (Type'93), 1993.

[9] R. S. Boyer and J. Moore. A Computational Logic Handbook. Académie Press,

London, 1997.

[10] B. C. Brock and W. A . Hunt. The formalization of a simple hardware descrip­

tion language. In Luc Claesen, editor, Applied Formai Methods for Correct VLSI

Design, pages 778-792, Amsterdam, November 1989. IMEC-IFIP International

Workshop, Elsevier Science Publishers.

[11] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions in Computers, 35(8):677-691, August 1986.

[12] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Computer Surveys, 24(3), September 1992.

[13] R. S. Burstall and P. J. Landin. Programs and their proofs: an algebraic ap-

proach. In B . Meltzer and D. Mitchie, editors, Machine Intelligence, number 4,

pages 17-43. Edinburgh University Press, 1969.

[14] A. Camilleri, M . Gordon, and T. Melham. Hardware vérification using Higher-

Order Logic. In D. Borrione, editor, From HDL Descriptions to Guaranteed

Correct Circuit Designs: Proceedings ofthe IFIP WG 10.2 Working Conférence,

pages 43-67, Grenoble, September 1986.

[15] L. M . Chirica. Contributions to Compiler Correctness. Number Report U C L A -

ENG-7697. Computer Science Department, University of California, Los Ange­

les, October 1976. Ph.D. thesis.

[16] L . M . Chirica and D. F. Martin. Toward compiler implementation correctness

proofs. ACM Transactions on Programming Languages and Systems, 8(2): 185-

214, April 1986.

[17] C. T. Chou and D. Peled. Formal verification of a partial-order reduction

technique for model checking. In T. Margaria and B . Steffen, editors, Tools

and Algoritkms for the Construction and Analysis of Systems, number 1055 in

Lecture Notes in Computer Science, pages 241-257, 1996.

[18] A . Cohn and R. Milner. On using Edinburgh L C F to prove the correctness of

a parsing algorithm. Technical Report 20, University of Edinburgh Computer

Science, 1982.

[19] P. A. Collier. Simple Compiler correctness - a tutorial on the algebraic approach.

The Australian Computer Journal, 18(3), August 1986.

[20] F. Corella, Z. Zhou, X . Song, M . Langevin, and E. Cerny. Multiway decision

graphs for automated hardware verification. Formal Methods in System Design,

10(l):7-46, 1997.

[21] J. Crow, S. Owre, J. Rushby, N . Shankar, and M . Srivas. A tutorial introduction

to PVS. http://wvvw.dcs.gla.ac.uk/prosper/papers.html, 1999.

[22] P. Curzon. A verified Vista implementation. Technical Report 311, University

of Cambridge, Computer Laboratory, September 1993.

[23] P. Curzon. The formal verification of the Fairisle A T M switching element.

Technical Report 329, University of Cambridge, Computer Laboratory, March

1994.

[24] P. Curzon and A. Blandford. Using a verification System to reason about post-

completion errors. In Participants Proceedings of DSV-IS 2000: 7th Interna­

tional Workshop on Design, Specification and Verification of Interactive Sys­

tems, at the 22nd International Conference on Software Engineering.

[25] P. Curzon and A. Blandford. Reasoning about Order errors in interaction. In

TPHOLs 2000 Supplemental Proceedings, Technical Reprot CSE-00-009, pages

33-48. Oregon Graduate Institute, August 2000.

166

http://wvvw.dcs.gla.ac.uk/prosper/papers.html

[26] P. Curzon, S. Tahar, and 0 . Ai't-Mohamed. Verification of the M D G compo-

nents library in HOL. In Jim Grundy and Malcolm Newey, editors, Theorem

Proving in Bigher-Order Logics: Emerging Trends, pages 31-46. Department

of Computer Science, The Australian National University, 1998.

[27] L. A. Dennis, G. Collins, M . Norrish, R. Boulton, K. Slind,

G. Robinson, M . Gordon, and T. Melham. The P R O S P E R toolkit.

http://www.dcs.gla.ac.uk/prosper/papers.html, 1999.

[28] Computer General Electronic Design. The ELLE Language Reference Manual,

Issue 4-0. Greenways Business Park, Bellinger Close, Chippenham, Wiltshire,

SN15 1BN, England, 1989.

[29] D. I. Good, R. L. Akers, and L. M . Smith. Report on Gypsy 2.05. Technical

Report CLI-1, Computational Logic, Inc., 1986.

[30] K . Goossens. Embedding Hardware Description Languages in Proof Systems.

Laboratory for Foundations of Computer Science, Department of Computing

Science , University of Edinburgh, December 1992. Ph.D. thesis.

[31] M . J. Gordon. Synthesizable verilog syntax and semantics. Techni­

cal report, University of Cambridge, Computer Laboratory, January 1997.

www.cl.cam.ac.uk/users/mjcg/V/V.html.

[32] M . J . Gordon. Notes on the representation of state machines in higher Or­

der logic. Technical report, University of Cambridge, Computer Laboratory,

January 1999.

[33] M . J . Gordon, T. Kropf, and D. Hoffmann. P R O S P E R ESPRIT L T R project

26241, semantics of the intermediate language IL. Technical report, University

of Cambridge, Computer Laboratory, February 1999.

[34] M . J . Gordon, R. Milner, and C. P. Wadsworth. Edinburgh L C F : A mechanised

logic of computation. Number 78 in Lecture Notes in Computer Science, 1979.

167

http://www.dcs.gla.ac.uk/prosper/papers.html
http://www.cl.cam

[35] M . J . C. Gordon. Why higher-order logic is a good formalism for specifying and

verifying hardware. In G. J . Milne and P. A. Subrahmanyam, editors, Formal

Aspects of VLSI Design: the 1985 Edinburgh Workshop on VLSI, pages 153-

177. North-Holland, 1986.

[36] M . J . C. Gordon. HOL: A proof generating System for higher-order logic. In

G. Birtwistle and P. A . Subrahmanyam, editors, VLSI Specification, Verifica-

tion and Synthesis, pages 73-128. Kluwer Academic, 1988.

[37] M . J. C. Gordon. Mechanizing programming logics in higher order logic. In

P. A . Subrahmanyam and G. Birtwistle, editors, Current Trends in Hardware

Verification and Automated Theorem Proving, number 7, pages 387-489, New

York, 1989. Springer-Verlag.

[38] M . J. C. Gordon. Combining deductive theorem proving with sym-

bolic state enumeration. Presented at 21 Years of Hardware Ver­

ification, Royal Society Workshop to mark 21 years of BCS FACS,

http://www.cl.cam.ac.uk/users/mjcg/BDD, December 1998.

[39] M . J. C. Gordon. Reachability programming in HOL98 using BDDs. In Mark

Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics,

number 1869 in Lecture Notes in Computing Science, pages 179-196. Springer-

Verlag, Aug. 2000.

[40] M . J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving

Environment for Higher-order Logic. Cambridge University Press, 1993.

[41] E. L . Gunter and D. Obradovic. Towards the Integration of model checking and

theorem proving: Embedding a subset of Promela into HOL. In TPHOLs 2000

Supplemental Proceedings, Technical Reprot CSE-00-009, pages 75-85. Oregon

Graduate Institute, August 2000.

[42] J. Harrison and L. Thery. A skeptic's approach to combining HOL and Maple.

Journal of Automated Reasoning, 21:279-294, 1998.

168

http://www.cl.cam.ac.uk/users/mjcg/BDD

[43] S. Hazelhurst and C. J . H . Seger. A simple theorem prover based on symbolic

trajectory evaluation and BDDs. IEEE Trans, on CAD, Apr i l 1995.

(44] S. Hazelhurst and C. J. H. Seger. Symbolic trajectory evaluation. Springer

Verlag. New York, 1997.

[45] G. J . Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1990.

[46] P. V . Homeier and D. F. Martin. A verified verification condition generator.

The Computer Journal, 38(2):131-141, July 1995.

[47] A. Hu. Formal hardware verification with BDDs: An introduction. In IEEE

Pacific Rim Conference on Communications, Computers, and Signal Processing

(PACRIM), pages 667-682, 1997.

[48] G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq proof assistant - a tutorial,

version 6.1. Technical Report 204, INRIA, August 1997.

[49] J. Hurd. Integrating G A N D A L F and HOL. Technical Report 461, University

of Cambridge, Computer Laboratory, Apri l 1999.

[50] J. Joyce. A verified Compiler for a verified microprocessor. Technical Report

167, University of Cambridge, Computer Laboratory, March 1989.

[51] J . Joyce and C. Seger. Linking BDD-based symbolic evaluation to interactive

theorem-proving. In the 30th Design Automation Conference, 1993.

[52] R. Kaivola and M . D. Aagaard. Divider circuit verification with model checking

and theorem proving. In Mark Aagaard and John Harrison, editors, Theorem

Proving in Higher Order Logics, number 1869 in Lecture Notes in Computer

Science, 13 International Conference, T P H O L s 2000, Portland, OR, USA, Au­

gust 2000. Springer-Verlag.

[53] S. Kort, S. Tahar, and P. Curzon. Hierarchical hardware verification using a

hybrid tool. Technical report, Dept. of Electrical and Computer Engineering,

169

Concordia University, 1455 De Maisonncuve West, Montreal, Quebee - H3G

LM8, Canada, 2000.

[54] S. Kort, S. Tahar, and P. Curzon. Hierarchical verification using an M D G -

HOL hybrid tool. In T. Margaria and T. Melham, editors, llth IFIP WG

10.5 Advanced Research Working Conference (CHARME'2001), number 2144

in Lecture Notes in Computer Science, pages 244-258, Livingston, Scotland,

U K , September 2001. Springer-Verlag.

[55] T. Kropf and R. Reetz. Simplifying deep embedding: A formalised code gen-

erator. In J. Camilleri and T. Melham, editors, Higher Order Logic Theorem

Proving and its Applications, number 859 in Lecture Notes in Computer Sci­

ence. Springer-Verlag, September 1995.

[56] J . McCarthy and J . Painter. Correctness of a Compiler for arithmetic expres-

sions. In J. Schwartz, editor, A Symposium on Applied Mathematics, pages

33-41, 1967.

[57] T. F. Melham. Automating recursive type deflnitions in Higher Order Logic.

In Current Trends in Hardware Verification and Automated Theorem Proving,

pages 341-386. Springer Verlag, 1989.

[58] T. F. Melham. Higher Order Logic and Hardware Verification. Cambridge

Tracts in Theoretical Computer Science 31. Cambridge University Press, 1993.

[59] R. Milner and R. Weyhrauch. Proving Compiler correctness in a mechanized

logic. In B. Meitzer and D. Mitchie, editors, Machine Intelligence, number 7,

pages 51-70, Edinburgh, Scotland, 1972. Edinburgh University Press.

[60] J . Moore. A mechanically verified language implementation. Journal of Auto­

mated Reasoning, (5):461-492, 1989.

[61] J. S. Moore. A mechanically verified language implementation. Technical Re­

port CLI-22, Computational Logic, Inc., 1988.

170

[62] F. L . Morris. Correctness of Translations of Programming Languages. Report

STAN-CS-72-303. Computer Science Department, Stanford University, August

1972. Ph.D. thesis.

[63] F. L. Morris. Advice on structure Compilers and proving theorem correct. In

The ACM Symposium on Principles of Programming Languages, pages 144-152,

Boston, October 1973.

[64] Institute of Electrical and Electronics Engineers. IEEE Standard VHDL lan-

guage Reference Manual. IEEE press. New York, 1988.

[65] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,

1991.

[66] V . K . Pisini and S. Tahar. Integration of HOL and M D G for hardware verifi-

cation. Technical report, Dept. of Electrical and Computer Engineering, Con-

cordia University, 1455 De Maisonncuve West, Montreal, Quebee - H3G LM8,

Canada, March 1999.

[67] V. K . Pisini, S. Tahar, P. Curzon, and 0 . Ait-Mohamed. A hybrid approach to

formal verification using HOL and M D G . Technical report, Dept. of Electrical

and Computer Engineering, Concordia University, 1455 De Maisonncuve West,

Montreal, Quebee - H3G LM8, Canada, November 1999.

[68] G. Pottinger. Completeness for the H O L logic: Preliminary report. In Posted

to info-hol mail list on 28th Jan 1992., 1992. Available in the info-hol archive

by anonymous F T P from ftp.cl.cam.ac.uk in directory hvg/info-hol-archive.

[69] S. Rajan, N . Shankar, and M . K . Srivas. An Integration of model-checking

with automated proof checking. In Pierre Wolper, editor, Computer-Aided

Verification, number 939 in Lecture Notes in Computer Science, pages 84-97.

Springer-Verlag, 1995.

[70] K . Schneider and T. Kropf. Verifying hardware correctness by combining theo­

rem proving and model checking. Technical Report SBF 358-C2-5/95, Univer­

sity of Karlsruhe, Department of Computer Science, 1995.

171

ftp://ftp.cl.cam.ac.uk

[71] K . Schneider and T. Kropf. Unified approach for combining different formalisms

for hardware verification. Technical Report SBF 358-C2-6/96, University of

Karlsruhe, Department of Computer Science, January 1996.

[72] C.-J . H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of

partially-ordered trajectories. Formal Methods in System Design, 6(2):147-190,

March 1995.

[73] S. Tahar, X . Song, E. Cerny, Z. Zhou, M . Langevin, and 0 . A'it-Mohamed.

Modeling and automatic formal verification of the Fairisle A T M switch fabric

using MDGs. To appear in IEEE Transactions on CAD of Integrated Circuits

and Systems.

[74] J. von Wright. Program refinement by theorem prover. In Proc. 6th Refinement

Workshop, London, January 1994. Springer-Verlag.

[75] J. von Wright. Representing higher-order logic proofs in HOL. The Computer

Journal, 38(2):171-179, July 1995.

[76] J. von Wright. The formal verification of a proof checker. SRI internal report,

November 1998.

[77] W. Wong. Validation of HOL proofs by proof checking. Formal Methods in

System Design, 14(2):193-212, March 1999.

[78] H . Xiong and P. Curzon. The verification of a translator for MDG's components

in HOL. In MUCORT98, Third Middlesex University Conference on Research

in Technology, pages 55-59, April 1998.

[79] H. Xiong, P. Curzon, and A. Blandford. Combining verification Systems in a

trusted way to reap the benefits of both. In Automated Reasoning-Bridging the

Gap between Theory and Practice The 6th Workshop, pages 71-73, April 1999.

[80] H. Xiong, P. Curzon, and S. Tahar. Importing M D G verification results into

HOL. In Theorem Proving in Higher Order Logics, number 1690 in Lecture

Notes in Computer Science, pages 293-310. Springer-Verlag, September 1999.

172

[81] H . Xiong, P. Curzon, S. Tahar, and A . Blandford. Verification of a translator for

MDG's library in HOL. In 15th British Colloquium for Theoretical Computer

Science, Apri l 1999.

[82] H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Embedding and verification

of an M D G - H D L translator in HOL. In TPHOLs 2000 Supplemental Proceed-

ings, Technical Reprot CSE-00-009, pages 237-248. Oregon Graduate Institute,

August 2000.

[83] H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Proving existential theorems

when importing results from M D G to HOL. In Richard J. Boulton and Paul B.

Jackson, editors, TPHOLs 2001 Supplemental Proceedings, Informatic Research

Report EDI-INF-RR-0046, pages 384-399. Division of Informatics, University

of Edinburgh, Edinburgh, U K , September 2001.

[84] Y . X u . Model Checking for a Forst-order Temporal Logic Using Multiway De-

cision Graphs. 1455 De Maisonncuve West, Montreal, Quebee - H3G LM8,

Canada, 1999. Ph.D. thesis.

[85] W. D. Young. A mechanically verified code generator. Journal of Automated

Reasoning, (5):493-519, 1989.

[86] Z. Zhou and N . Boulerice. MDG Tools (V1.0) User Manual. University of

Montreal, Dept. D'IRO, 1996.

[87] Z. Zhu, J. Joyce, and C. Seger. Verification of the Tamarack-3 microprocessor

in a hybrid verification environment. In Higher-Order Logic theorem proving

and Its Applications, The 6th International Workshop, number 780 in Lecture

Notes in Computer Science, pages 252-266. B. C , Canada, August 1993.

173

Appendix A

The Abstract Syntax of a Boolean

Subset

The full abstract syntax of the boolean subset of the M D G - H D L language is given

below:

out_type ::= NOWV of string |

NEXTV of string

default_type ::= DENORMAL of num->bool I

DEOUT of out.type I

DECONST of string

Table.Val : := TABLE.VAL of a I DON'T_CARE

mdgJidl ::= NOT of string=>string I

AND of string=>string=>string l

OR of string=>string=>string I

NAND of string=>string=>string |

XOR of string=>string=>string I

174

NOR of string=>string=>string |

AND3 of string=>string=>string=>string |

0R3 of string=>string=>string=>string I

NAND3 of string=>string=>string=>string I

N0R3 of string=>string=>string=>string I

AND4 of string=>string=>string=>string=>string |

0R4 of string=>string=>string=>string=>string |

NAND4 of string=>string=>string=>string=>string I

N0R4 of string=>string=>string=>string=>string |

AND5 of string=>string=>string=>string=>string=>string I

0R5 of string=>string=>string=>string=>string=>string I

NAND5 of string=>string=>string=>string=>string=>string |

N0R5 of string=>string=>string=>string=>string=>string I

AND6 of string=>string=>string=>string=>string=>string=>string |

0R6 of string=>string=>string=>string=>string=>string=>string I

NAND6 of string=>string=>string=>string=>string=>string=>string I

N0R6 of string=>string=>string=>string==>string=>string=>string |

JKFF of string=>string=>string |

RSFF of string=>string=>string |

JKFFE of string=>string=>string=>string |

AO of string=>string=>string=>string=>string |

REGCON of string=>string=>string I

REG of string=>string |

FORK of string=>string |

INIT of (string#bool) I

SNXT of string=>string I

TABLESYN of (string list)=>out-type=> ((bool Table_Val l i s t) l i s t)

=>((num->bool) list)=>default_type |

JOIN of mdg_hdl=>mdgJidl

Exoutput ::= EXOUT of string l i s t

Exinput ::= EXIN of string l i s t

Invariable ::= INV of string l i s t

175

1

program ::= PROG of PROG of Exoutput=>Exinput=>Invariable=>Mdg_Hdl

176

Appendix B

The Abstract Syntax of an

Extended Subset

The full abstract syntax of the extended subset of the M D G - H D L language is given

below:

O u t . T y p e : : = NOWV o f s t r i n g I

N E X T V o f s t r i n g

D e f a u l t . T y p e : : = DENORMAL o f n u m - > b o o l I

DEQUT o f o u t . t y p e I

DECONST o f s t r i n g

T a b l e . V a l : : = T A B L E . V A L o f a | D 0 N ' T _ C A R E

M d g _ B a s i c : : = UNBOUND | BOOL o f b o o l I CONCRETE o f s t r i n g

M d g _ H d l : : = NOT o f s t r i n g = > s t r i n g |

AND o f s t r i n g = > s t r i n g = > s t r i n g |

OR o f s t r i n g = > s t r i n g = > s t r i n g I

177

NAND o f s t r i n g = > s t r i n g = > s t r i n g |

XOR o f s t r i n g = > s t r i n = > s t r i n g |

NOR o f s t r i n g = > s t r i n g = > s t r i n g |

AND3 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

0 R 3 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

NAND3 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

N 0 R 3 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

AND4 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

0R4 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

NAND4 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g |

N0R4 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g |

AND5 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

0 R 5 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g |

NAND5 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

N0R5 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

AND6 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

0 R 6 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

NAND6 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g I

N0R6 o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g |

J K F F o f s t r i n g = > s t r i n g = > s t r i n g t

R S F F o f s t r i n g = > s t r i n g = > s t r i n g |

J K F F E o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g |

AO o f s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g = > s t r i n g |

REGCON o f s t r i n g = > s t r i n g = > s t r i n g |

REG o f s t r i n g = > s t r i n g |

FORK o f s t r i n g = > s t r i n g I

I N I T o f (s t r i n g # M d g _ B a s i c) I

SNXT o f s t r i n g = > s t r i n g I

T A B L E S Y N o f (s t r i n g l i s t) = > O u t _ T y p e = > ((M d g _ B a s i c T a b l e . V a l l i s t) l i s t)

= > ((n u m - > b o o l) l i s t) = > D e f a u l t _ T y p e I

SEQ o f M d g - H d l = > M d g _ H d l I

I N T E R N A L o f s t r i n g => M d g _ H d l

178

Exoutput ::= EXOUT of string l i s t

Exinput ::= EXIN of string l i s t

Invariable ::= INV of string l i s t

Mdg_Program ::= PROG of Exoutput =>Exinput => Invariable => Mdg-Hdl

179

Appendix C

The MDG-HDL programs of the

verification of the Chocolate

Machine

When we verify the correctness of the chocolate machine in M D G , we need to provide

four M D G - H D L files. Those files are given below:

(1) . The Circuit Specification File.

7, M u l t i f i l e declaration required by Prolog system.'/,

: - mu l t i f i l e s i gna l /2 .

: - mu l t i f i l e component/2.

: - mu l t i f i l e st_nxst/2.

: - mu l t i f i l e next_state_partition/l.

: - m u l t i f i l e output_part i t ion/l .

: - mu l t i f i l e outputs/1.

: - m u l t i f i l e i n i t _ v a l / 2 .

: - mu l t i f i l e in i t_va r /2 .

: - mu l t i f i l e par_strategy/2.

180

7. Common s i g n a i s 7.

s i g n a l (i n s e r t C o i n , b o o l) .

s i g n a l (p u s h C h o c , b o o l) .

s i g n a l (c h o c S t , c h o c S t a t e s) .

s i g n a l (g i v e C h a n g e , b o o l) .

s i g n a l (p u s h C h a n g e , b o o l) .

s i g n a l (c h o c L i g h t , b o o l) .

s i g n a l (c o i n L i g h t , b o o l) .

s i g n a l (g i v e C h o c , b o o l) .

S i g n a l (c h a n g e L i g h t , b o o l) .

7. C o m p o n e n t s o f X 7.

c o m p o n e n t (c h o c _ m a c h i n e ,

t a b l e ([[c h o c S t , i n s e r t C o i n , p u s h C h a n g e , p u s h C h o c , n . c h o c S t] ,

[r e s e t , 1 , * , * , c o i n] , [r e s e t , 0 , * , * , r e s e t] ,

[c o i n , * , 1 , * , c h a n g e] , [c o i n , * , 0 , * , c o i n] ,

[c h a n g e , * , * , 1 , c h o c] , [c h a n g e , * , * , 0 , c h a n g e] ,

[c h o c , * , * , * , r e s e t]])) .

c o m p o n e n t (c o i n _ l i g h t , t a b l e ([[c h o c S t , c o i n L i g h t] , [r e s e t , 1] I 0])) .

c o m p o n e n t (c h a n g e _ l i g h t , t a b l e ([[c h o c S t , c h a n g e L i g h t] , [c o i n , 1] I 0]))

c o m p o n e n t (g i v e _ c h a n g e , t a b l e ([[c h o c S t , g i v e C h a n g e] , [c h a n g e , 1] I 0]))

c o m p o n e n t (c h o c J . i g h t , t a b l e ([[c h o c S t , c h o c L i g h t] , [c h a n g e , 1] I 0])) .

c o m p o n e n t (g i v e _ c h o c , t a b l e ([[c h o c S t , g i v e C h o c] , [c h o c , 1] I 0])) .

'/, I n i t i a l s t a t e 7.

i n i t - v a l (c h o c S t , r e s e t) .

O u t p u t s ([c o i n L i g h t , c h o c L i g h t , c h a n g e L i g h t , g i v e C h o c , g i v e C h a n g e]) .

7. P a r t i t i o n s 7.

o u t p u t _ p a r t i t i o n ([[[c o i n L i g h t]] , [[c h o c L i g h t]] , [[c h a n g e L i g h t]] ,

[[g i v e C h o c]] , [[g i v e C h a n g e]]]) .

n e x t - S t a t e _ p a r t i t i o n ([[[n . c h o c S t]]]) .

7. S t a t e v a r i a b l e s t o n e x t s t a t e v a r i a b l e s m a p p i n g 7.

s t _ n x s t (c h o c S t , n . c h o c S t) .

'/. P a r t i t i o n s t r a t e g y 7.

p a r _ s t r a t e g y (a u t o , a u t o) .

181

(2). The C i r c u i t Implementat ion F i l e

/. Multif i le declaration required by Prolog system./,

: - multifi le signal/2.

: - multifi le component/2.

: - multifi le st_nxst/2.

: - multifi le next_state_partition/l.

multifi le output_partition/l.

: - multifi le outputs/1.

: - multifi le init_val/2.

: - multifi le init_var/2.

: - multifi le par_strategy/2.

'/, Common signals '/,

signal(insertCoin,bool).

signal(pushChange,bool).

signal(pushChoc,bool).

signal(11,bool).

signal(choc_a,bool).

signal(xin,bool).

signal(coin_a, bool).

signal(reset_a,bool).

signal(12,bool).

signal(14,bool).

signal(13,bool).

signal(15,bool).

signal(yin.bool).

signal(x.bool).

signal(givenChoc_a,bool).

signal(y,bool).

signal(xbar,bool).

signaKybar ,bool) .

signal(change_a,bool).

signal(givenChange_a,bool).

182

signaKchocLight_a,bool) .

signal(changeLight_a,bool) .

signal(coinLight_a,bool).

7, Components of X 7.

component (x_and, and (input (coin_a,pushChange), output (11))) .

component (x_or,or (input (change_a, 11).output (xin))) .

7. Components of Y */,

component(y_and_rein, and(input(reset_a,insertCoin), output(12))) .

component (y_or_col2, or (input (coin _a,12) ,output (14))) .

component(y_inv, not(input(pushChoc),output(13))).

component (y_and_chl3, and(input(change_a, 13) .output(15))) .

component (y_or_1415, or (input (14,15), output (y in))).

7. Component of Register—7.

component(reg_x,reg(input(xin),output(x))).

component(reg_y,reg(input(yin),output(y))).

'/. Component of Output from the register—7.

component (outreg_Lnv_x,not (input (x) ,output(xbar))) .

component (outreg_inv_y,not (input (y) ,output (ybar))) .

component (outreg^and_xy, and(input (x,y) ,output (change^a))) .

component (outreg_and_xybar, and(input (x,ybar) .output (choc_a))).

component(outreg_and_xbary, and(input(xbar,y) .output(coin^a))).

component(outreg_and_xbarybar, and(input(xbar ,ybar), output (reset^a))) .

7. Wire output 7.

component (wire_choc_givenchoc , f ork(input (choc_a) .output (givenChoc_a))).

component (wire_choc_changlight,f ork(input (change_a) .output (chocLight_a))) .

component (wire_change_givechange ,f ork (input (change_a) .output (givenChange_a)

component (wire_coin_choclight , f ork (input (coin_a) .output (changeLight^a))).

component (wire_reset_coinlight ,f ork (input (reset _a) .output (coinLight .a))) .

7. In i t ia l state 7.

init_val(x, 0).

in i t . vaKy , 0) .

outputs ([coinLight_a, chocLight_a, changeLight _a,givenChoc_a,givenChange_a])

7. Partitions 7.

183

o u t p u t _ p a r t i t i o n ([[[c o i n L i g h t _ a]] , [[c h o c L i g h t _ a]] , [[c h a n g e L i g h t ^ a]] ,

[[g i v e n C h o c _ a]] , [[g i v e n C h a n g e _ a] J]) .

n e x t _ s t a t e _ p a r t i t i o n ([[[x ì n]] , [[y i n]]]) .

7. S t a t e v a r i a b l e s t o n e x t s t a t e v a r i a b l e s m a p p i n g 7.

s t _ n x s t (x , x i n) .

s t _ n x s t (y , y i n) .

7. P a r t i t i o n s t r a t e g y %

p a r . s t r a t e g y (a u t o , a u t o) .

(3).The Algebra ic Specification F i l e

'/. M u l t i f i l e d e f i n i t i o n f o r P r o l o g p r e d i c a t e s . 7 , : - m u l t i f i l e a b s _ s o r t / l .

: - m u l t i f i l e c o n c _ s o r t / 2 .

m u l t i f i l e f u n c t i o n / 3 .

: - m u l t i f i l e g e n _ c o n s t / 2 .

: - m u l t i f i l e r r / 3 .

: - m u l t i f i l e u c r r / 2 .

7, A l g e b r a i c s p e c i f ication7, c o n c _ s o r t (c h o c S t a t e s , [r e s e t , c o i n , c h o c , c h a n g e]) .

(4). T h e Symbol Order F i l e

o r d e r _ m a i n ([

i n s e r t C o i n ,

p u s h C h o c ,

p u s h C h a n g e ,

7. i n t e r n a i 7.

c h o c S t ,

n _ c h o c S t ,

c o i n _ a ,

1 1 ,

c h o c a ,

r e s e t _ a ,

184

12,

14,

13,

15,

xin,

X ,

yin,

y>

xbar,

ybar,

change _a,

7. outputs 7.

giveChange,

givenChange_a,

chocLight,

chocLight_a,

coinLight,

coinLight_a,

giveChoc,

givenChoc_a,

changeLight,

changeLight_a

]).

(5). The Invariant Specification F i l e

signal(insertCoin,bool).

signal(pushChoc,bool).

signal(pushChange,bool).

signal(coinLight,bool).

signaKcoinLight^a.bool).

signal(u_CoinLight,bool) .

signal(chocLight,bool).

185

signal(chocLight_a,bool).

signal (u-ChocLight,bool) .

signal(changeLight,bool).

signaMchangeLight ^a.bool).

signal (u.ChangeLight,bool).

signal(giveChoc,bool).

signal(givenChoc_a,bool) .

signal(u_GivenChoc,bool).

signal(giveChange.bool).

signal(givenChange_a,bool) .

signal(u_GivenChange,bool) .

'/, Components */.

component (coinLight _f orkl , f ork (input (u.CoinLight) .output (coinLight))) .

component (coinLight_fork2 ,f ork(input (u_CoinLight) .output(coinLight â))) .

component (chocLight_f orkl , f ork (input (u.ChocLight) .output (chocLight))).

component (chocLight_f ork2 ,f ork (input (u.ChocLight) .output (chocLight_a))) .

component (changeLight_f orkl , f ork (input (u-ChangeLight) , output (changeLight))) .

component (changeLight _f ork2 ,f ork (input (u_ChangeLight) .output (changeLight _a))) .

component (givenChoc_f orkl , f ork (input (u_GivenChoc) .output (giveChoc))) .

component (givenChoc-f ork2, f ork (input (u_Gi venChoc), output (gi venChoc_a))).

component (givenChangejf orkl ,f ork (input (u_GivenChange) .output (giveChange))).

component (gi venChange_fork2, f ork (input (u_GivenChange) , output (givenChange_a))).

y,— output s —y.

outputs([coinLight,coinLight_a, chocLight, chocLight_a, changeLight,

changeLight_a, giveChoc,givenChoc_a, giveChange, givenChange_a]).

*/. Order of condition signais */.

order_cond([

insertCoin,

pushChoc,

pushChange,

u_CoinLight,

coinLight,

coinLight1,

186

u.ChocLight,

chocLight,

chocLight_a,

u.ChangeLight,

changeLight,

changeLight-a,

u.GivenChoc,

giveChoc,

givenChoc.a,

u.GivenChange,

giveChange,

givenChange.a])

