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Abstract. This paper describes a set of experiments in which a ho-
mogeneous group of real e-puck robots is required to coordinate their
actions in order to transport cuboid objects that are too heavy to be
moved by single robots. The agents controllers are dynamic neural net-
works synthesised through evolutionary computation techniques. To run
these experiments, we designed, built, and mounted on the robots a new
sensor that returns the agent displacement on the x/y plane. In this
object transport scenario, this sensor generates useful feedback on the
consequences of the robot actions, helping the robots to perceive whether
their pushing forces are aligned with the object movement. The results
of our experiments indicated that the best evolved controller can effec-
tively operate on real robots. The group transport strategies turned out
to be robust and scalable to effectively operate in a variety of conditions
in which we vary physical characteristics of the object and group cardi-
nality. From a biological perspective, the results of this study indicate
that the perception of the object movement could explain how natural
organisms manage to coordinate their actions to transport heavy items.
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1 Introduction

Collective object transport in a robot swarm is the ability of the robots to collect
and transport objects that can not be transported by a single agent [5]. Cooper-
ative transport is relatively ubiquitous in social insects, being known in at least
40 genera of ants [9]. It is primarily used to retrieve objects (e.g., food items)
that are too heavy or too large to be moved by a single individual. For those
ants species that live in environments in which the source of proteins are gener-
ally large carcass of insects, objects transport can be a solution to retrieve these
precious food items reducing the time the food is exposed to competition [13]. It
seems that a variety of parameters including the item’s resistance to movement,
the speed of transport, as well as the item size, shape, and mass play a significant
role for the recruitment and for the active engagement of individuals into the
transport [8]. However, cooperative transport in ants remains a poorly under-
stood process, with various hypothesis concerning the mechanisms for alignment
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and coordination of forces. There is not much empirical evidence to shed light
on the proximate mechanisms underpinning this important cooperative process.
In particular, it is still not clear what mechanisms are used to assess consensus
or quorum information about directional movement [8]. Hypotheses vary from
parsimonious explanations based on the perception of the object movement, to
theories that require more complex structures for the perception of the forces
exerted on the object, or for direct communication between the agents involved
into the transport [11].

In recent years, the attempt of swarm roboticists to engineer groups of robots
that generate interesting collective responses through self-organisation has pro-
vided biologists with an alternative method to investigate phenomena in social
insects. The pioneering work of [7] on box-pushing by a multi-robot system has
the merit of having formally represented in “hardware” the dynamics of collec-
tive object transport, pointing to issues of absolute relevance for a principled
understanding of this form of cooperation. In the last 15 years, quite a few re-
search works have tried to mimic the ants’ cooperative behaviour with the double
aim of engineering robust and scalable multi-robot systems and understanding
nature. In [3], the authors carefully observed under experimental conditions the
behaviour of a colony of ants (Aphaenogaster cockerelli) engaged in a coopera-
tive transport task. They created a detailed model based on qualitative analysis
of the role and contribution of single ants during transport of food items to
the nest. The collected data has been used to create a model of the ants’ be-
havioural rules during transport. The model has been validated by comparing
the behaviour of simulated and real ants. In [12], the authors focus on the prob-
lem of alignment during transport showing that a robot leader that knows the
direction of transport can induce the group to execute the desired cooperative
manoeuvre by interacting with the group mates (i.e., followers) through forces
exerted on the object. The swarm robotic model described in [6] demonstrated
that communication between robots involved into the collective transport need
not to be direct. Stigmergic forms of communication suffice to achieve coordina-
tion of forces and alignment in a group of robots retrieving heavy objects.

In this study, we describe a further swarm robotic model targeting coopera-
tive transport. Real e-puck robots are required to push a cuboid object which,
due to its mass/size, requires the cooperative effort of all the members of the
group to be transported. The robots have to agree on a common direction of
transport, to align their movements, and to push the object for an extended
period of time. The distinctive feature of our model is the minimalist sensory
apparatus provided to the robots. Contrary to the majority of previous similar
studies, our robots have no means to feel forces. The objective of this study is
to look at what the robots can collectively achieve with a sensory apparatus
that allows them to indirectly perceive the movement of the object to transport.
To run this study, we designed, built, and mounted a new sensor on the real
e-pucks. This new sensor (hereafter, referred to as “optic-flow” sensor) is an op-
tical camera positioned underneath the robot chassis, which returns the robot
displacement on a x/y plane. In this collective transport scenario, the optic-flow
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sensor, in combination with the distance sensors, generates a sensory stimulation
that effectively informs the robot on the direction of movement of the object. The
results of our study show that this simple feedback suffices to allow the robots
to agree on a common direction of transport and to sustain the transport for an
extended period of time. A significant contribution of our study is in showing
the robustness of the transport strategies evaluated in different scenarios (i.e.,
with objects of different mass and length, and with groups of different cardi-
nality), and in the analysis of the behavioural mechanisms used by the robots
to coordinate their actions. Our results point to a rather parsimonious explana-
tion of the mechanisms required by real ants to transport object. In particular,
our results suggest that feedback on the movement of the object modulates the
frequency with which a robot changes the point of application of its pushing
forces. This modulation is sufficient for a robot to sense a quorum with respect
to the direction of travel, and to break “deadlocks” in which the robots cancel
each others’ forces. We also illustrate how the robots’ shape influences the group
performances. Interesting future lines of investigation dictated by our results are
also discussed in Section 6.

2 The Task and the Simulation Model

In this study, neuro-controllers are synthesised using artificial evolution to allow
a homogeneous group of four autonomous robots to push an elongated cuboid
object (30 cm length, 6 cm width and height, 600 g mass) as far as possible
from its initial position. Our study is run with groups of e-puck robots [10].
The parameters of the neuro-controllers are set in a simulation environment
which model kinematic and dynamic features of the experimental conditions in
which the simulated e-pucks are required to operate. The robot sensory appara-
tus includes infra-red sensors, the camera mounted on the robot chassis, and the
optic-flow sensor appositely designed, built, and integrated into the e-puck struc-
ture for this task (see Fig. 1a). In simulation, the robots are initially positioned
in a boundless arena with flat terrain, at 50 cm from the object. The objective
of the robots is to move the object 2 m away from its initial position. The object
mass is set so that the coordinated effort of all four robots is required to move
the object. The best evolved controller is ported onto real e-puck robots, and
extensively tested in various experimental conditions. This paper mainly focuses
on the results of the evaluations on real robots1.

In the remaining of this Section, we illustrate the characteristics of the new
optic-flow sensor, which is an optical camera mounted underneath the robot chas-
sis and located inside the slot originally hosting the robot battery (see Fig. 1a).
This sensor captures a sequence of low resolution images (i.e., 18x18 pixels) of
the ground at 1500 frames per second. The images are sent to the on board
DSP which, by comparing them, calculates the magnitude and the direction of

1 A detailed description of the simulation environment, of the robot model, including
noise applied to sensors and motors, as well as results of all re-evaluation tests, and
movies can be found at http://users.aber.ac.uk/elt7/ANTS2016/.
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Fig. 1. (a) The e-puck robot with optic-flow sensor. (b) The robot’s controller. The
continuous line arrows indicate the efferent connections for only one neuron of each
layer. Hidden neurons receive an afferent connection from each input neuron and from
each hidden neuron, including a self-connection. Output neurons receive an afferent
connection from each hidden neuron. Sensors to sensor neurons correspondence is in-
dicated underneath the input layer.

movement of the robot. This information is subsequently communicated to the
robot controller in the form of four normalized real values in [0, 1]: +X and -X
representing the displacement on the positive and negative direction of the x
axis, respectively; +Y and -Y representing the displacement on the positive and
negative direction of the y axis, respectively. To improve portability of solutions
to real hardware, in simulation, +X, -X, +Y, and -Y are subjected to uniformly
distributed random noise in [−0.025, 0.025]. The optic-flow sensor generates a
sensory stimulus which is a direct feedback on the consequences of the signals
sent to the motors. In a collective object transport scenario multiple contingen-
cies can result in a robot failing to execute its desired action. For example, a
forward movement command may not produce the desired action if the robot is
pushing a stationary object, or an object that is moving in the opposite direction
due to forces exerted by other robots. The optic-flow sensor generates readings
that can be used by the agents to recognize these circumstances and to respond
accordingly. The results of this study shows that this simple feedback, generated
by the optic-flow sensor, is sufficient to allow a group of robots to coordinate
their effort in order to collectively transport in an arbitrary direction an object
that can not be moved by a single robot.

3 The Controller and the Evolutionary Algorithm

The robot controller is composed of a continuous time recurrent neural network
(CTRNN) of 15 sensor neurons, 6 internal neurons, and 4 motor neurons (see [2]
and also Fig. 1b which illustrates structure and connectivity of the network).
The states of the motor neurons are used to control the speed of the left and
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right wheels. The values of sensory, internal, and motor neurons are updated
using equations 1, 2, and 3.

yi = gIi; i ∈ {1, ..., N}; with N = 15; (1)

τiẏi = −yi +

j=N+6∑
j=1

ωjiσ(yi + βj); i ∈ {N+1, ..., N+6}; (2)

yi =

j=N+6∑
j=N+1

ωjiσ(yj + βj); i ∈ {N + 7, ..., N + 10}; (3)

with σ(x) = (1 + e−x)−1 . In these equations, using terms derived from an
analogy with real neurons, yi represents the cell potential, τi the decay constant,
g is a gain factor, Ii with i = 1, .., N is the activation of the ith sensor neuron
(see Fig. 1b for the correspondence between robots sensors and sensor neurons),
ωij the strength of the synaptic connection from neuron j to neuron i, βj the
bias term, σ(yj + βj) the firing rate fi. All sensory neurons share the same bias
(βI), and the same holds for all motor neurons (βO). τi and βi of the internal
neurons, βI , βO , all the network connection weights ωij , and g are genetically
specified networks’ parameters. At each time step, the output of the left motor is
ML = fN+7−fN+8, and the right motor is MR = fN+9−fN+10, with ML , MR ∈
[−1, 1]. Cell potentials are set to 0 when the network is initialised or reset, and
equation 2 is integrated using the forward Euler method with an integration time
step T = 0.13. A simple evolutionary algorithm using roulette wheel selection is
employed to set the parameters of the networks [4]. The population contains 100
genotypes. Generations following the first one are produced by a combination of
selection with elitism, recombination, and mutation. For each new generation,
the eight highest scoring individuals (the elite) from the previous generation
are retained unchanged. The remainder of the new population is generated by
fitness proportional selection from the 60 best individuals of the old population.
A detailed description of the evolutionary algorithm can be found in [1].

4 The Fitness Function

During evolution each group undergoes a set of E = 12 evaluations or trials. A
trial lasts 900 simulation steps (i.e., 117 s, with 1 stimulation step corresponding
to 0.13 s). A trial is terminated earlier if the group manages to displace the
object 2 meters away from its initial position. At the beginning of each trial
the controllers are reset, and the robots are positioned in the arena. Each trial
differs from the others in the initialisation of the random number generator,
which influences all the randomly defined features of the environment, such as
the noise added to sensors and the robots initial position and orientation. The
robots initial relative position with respect to the object is an important aspect
which bears upon the complexity of this task. This is because the robots initial
position contributes to determine the orientation with which they approach the
object and consequently the nature of the manoeuvres required by the agents to
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coordinate and synchronise their actions. During evolution, the robots starting
positions correspond to randomly chosen points on a circle’s circumference of 50
cm radius that has the object in it’s centre. This circle is divided in four equals
parts. Each robot is randomly placed in one part of this circle with random
orientation in a way that the object can be within an angular distance of ±60◦

from its facing direction. These criteria should generate the required variability
to develop solutions that are not sensitive to the robots initial positions.

In each trial (e), an evaluation function Fe rewards groups in which the robots
remain close to the object, and transport the object as far as possible from its
initial position. Fe is computed in the following:

Fe = f1 + f2 − f3 (4)

f1 =

R∑
r=1

(1− dr); f2 = ∆Opos; f3 = t/T ; with T = 900;R = 4; (5)

dr is the Euclidean distance between the centroid of robot r and the centroid of
the object. dr is set to zero if the robot gets closer than 20 cm to the object.
∆Opos is the Euclidean distance between the position of the object’s centroid at
the beginning and the end of the trial. t is the trial duration in simulation steps.
f1 rewards groups in which the robots approach the object. f2 rewards groups
that transport the object as far as possible. f3 rewards groups that performs
the task faster (i.e., required less number of simulation steps). The fitness of
a genotype (F̄ ) is the average team evaluation score after it has been assessed

E = 12 times: F̄ = 1
E

∑E
e=1 Fe.

5 Results

The primary aim of this study is to design control systems for homogeneous
groups of real e-pucks required to transport objects in a cooperative way. Our
objective is to generate solutions that are robust with respect to the object
mass and length, and scalable with respect to the group cardinality. To de-
sign the controllers, we run 20 differently seeded evolutionary simulations, each
simulation lasting 3000 generations. In order to choose the controller to be
ported onto the real robots, we re-evaluated, in simulation, the best genotypes
from generation 1000 to generation 3000 for every run. During re-evaluations,
groups of simulated robots are tested with objects of different length and mass.
Moreover, the group cardinality and the robots initial positions and orienta-
tions are systematically varied (see description and results of re-evaluation tests
at http://users.aber.ac.uk/elt7/ANTS2016/).

The solution (i.e., the genotype coding for the controller) with the very best
re-evaluation score has been selected to be ported onto the real e-pucks for fur-
ther evaluations. In the next Section, we describe the results of the first test with
real robots, and we compare these results with those of simulated robots con-
trolled by the same controller, and evaluated in similar operational conditions.
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5.1 First evaluation test with real e-pucks

The first evaluation test with real e-pucks has been designed to investigate the
scalability of the controllers with respect to the number of robots in the group, as
well as the robustness with respect to objects of different length and mass, and
with respect to varying initial conditions. Recall that during evolution, we used
only groups of 4 robots, and only one type of elongated cuboid object (30 cm
length, 6 cm width and height, 600 g mass). During the test with real robots, we
evaluated homogeneous groups of 3, 4, 5 and 6 real e-pucks, for their capability
to collectively transport cuboid objects of 30 cm and 40 cm lengths. Objects of
each length were tried with two different masses. Object width and height are
not changed with respect to evolutionary conditions. The total number of re-
evaluation trials (160) with real e-pucks is given by all the possible combinations
of the above mentioned parameters (i.e., 2 lengths, 2 masses, and 4 different
values for group cardinality), each combination repeated 10 times, 5 trials with
all the robots positioned in front of the long sides of the objects, and 5 trials
with all the robots positioned in front of the short sides of the cuboid objects.
In each trial, half of the group faces one side and the other half faces the other
side of the object. In order to enforce the requirement of collective transport, the
masses of the object vary with respect to the cardinality of the group in a way
that in each of the 160 evaluation trials, the object is heavy enough to require
the combined effort of all robots of the group to be successfully transported.
The object masses are indicated in Fig. 2a. In each evaluation trial, the object is
placed in the centre of 220 cm bounded square arena, and the robots are placed
at about 50 cm from the object. Each evaluation trial can last 180 s (i.e. 1384
simulation steps), and it is terminated earlier if the group manages to transport
the object at least 1 m away from its initial position. Only in this later case, the
trial is considered successful.

The results of the first evaluation test are shown in Fig. 2a, where the bars
indicate the success rate (%) of homogeneous groups controlled by the best
evolved neural network in 16 different evaluation conditions. Black bars refer to
the performance of groups of real e-pucks; white bars refer to the performances
of groups of simulated e-pucks evaluated in similar experimental conditions (i.e.,
same object length, same mass, same group cardinality, and approximately same
robots initial positions). The comparison between real and simulated robots is
meant to capture differences in performance when moving from simulation to
reality. We notice that the performance of both real and simulated robots is
close to or largely above 80% success rate in almost all evaluation conditions,
demonstrating that the robots controller can successfully operate with larger
groups than those used during the design phase, and with heavier and/or longer
objects. At http://users.aber.ac.uk/elt7/ANTS2016/ the reader can find the
results of further tests in simulations with groups of up to 16 robots. These tests
could not be run on real e-pucks because in our Lab we only have 6 real e-pucks.

Results in Fig. 2a tell us that performances drop for the group of 6 e-pucks,
transporting an object of 30 cm length, and of 980 g mass. This drop in per-
formance can be explained with reference to two elements: the length of the
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Fig. 2. (a) Graph showing the success rate (%) of homogeneous groups controlled
by the best evolved neural network. Black bars refer to the performance of groups
of real e-pucks; white bars refer to the performances of groups of simulated e-pucks.
The x-axis shows mass and length of the object, and group cardinality. A trial is
considered successful if the group manages to transport the object 1 m away from its
initial position. Each bar refers to performances over 10 trials. (b) Graphs showing the
results of evaluation tests with a single real robot. In test L, we use 30 cm length, and
150 g mass object. In test H, we use 30 cm length, and 600 g mass object. In test R,
we use 400 g mass, and 40 cm length object.

longest size of the cuboid object (hereafter, referred to as L̄), and the sum of the
diameter of the robots in the group (hereafter, referred to as D̄). The number
of robots that are forced to indirectly push the object through physical contact
with other robots progressively increases when L̄ becomes smaller than D̄. The
higher the number of robots pushing other robots, the higher the frequency of
“detachment events” during transport. A detachment event refers to the case in
which a robot loses physical contact with the element that it is currently push-
ing. Thus, it needs to relocate itself in a new position in order to keep on actively
contributing to the collective transport. Detachment events have a negative im-
pact on the group performance, since during such an event the group loses the
contribution of one robot. Detachment events are more frequent when robots
are required to push other robots than when robots directly push the object.
This is because the e-pucks have a cylindrical shape which makes it relatively
difficult for a robot to push another non-stationary robot. Generally speaking,
we could say that the smaller the L̄ compared to D̄, the higher the frequency
of detachment events, the poorer the group performance. However, there are
exceptions. As shown in Fig. 2a, the L̄ smaller than D̄ condition only minimally
affects the performance of groups of 6 real e-pucks transporting a slightly lighter
object (see Fig. 2a, 6 robots, 30 cm length, 900 g object, black bar). This is
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Table 1. Table showing the number of repositioning events during each trial of the
evaluation test in which a single robot pushes either a static object, or a non-static
object intentionally moved in the opposite direction of the robot heading.

trial 1 2 3 4 5 6 7 8 9 10

static object 6 6 5 6 5 6 5 6 5 6

non-static object 0 0 0 0 0 0 0 0 0 0

because, as long as the group manages to exert a sufficient force to move the
object, the smaller linear momentum due to the object’s lighter mass makes the
detachment events less disruptive for the group performance. In other words,
with a progressively lighter object, even if all the group members are required
to initiate the transport, not all the robots are required to push a moving object
to sustain the transport. Therefore, in this condition, detachment events are less
disruptive with respect to the group performance.

Although, the results shown in Fig. 2a indicate that our simulation envi-
ronment is a sufficiently accurate model of the “reality”, modifications can be
certainly made to improve the robustness of group strategies. For example, the
performances of groups of 6 simulated robots transporting 30 cm length, and
980 g object drop with respect to the performances of simulated groups in the
other experimental conditions (see Fig. 2a, white bars). However, this perfor-
mance drop is less evident for other groups of real e-pucks. Moreover, this is
the evaluation condition in which we observe the largest difference between the
performances of real and simulated robots. This suggests that our simulation
does not accurately capture the effect of the L̄ smaller than D̄ condition. If
we could model the effects of this phenomenon, we could perhaps improve the
performances and robustness of the transport strategies.

The result of the first set of evaluations tell us that we succeeded in designing
a controller to allow a swarm of real e-pucks to effectively transport heavy objects
in a cooperative way. Performances are scalable and robust to deal with varying
operating conditions. The results also demonstrate that group coordination of
actions and alignment of pushing forces can be reached with a simple sensory ap-
paratus made of distance sensors and the optic-flow sensor to indirectly perceive
the object movement. The cylindrical shape of the robots negatively impacts the
group performance when the length of the object is shorter than the sum of the
robots radius. This negative effect tends to disappear when the transport can
be sustained by less robots than those required to initially move the object.

5.2 Behavioural analysis

How do the robots manage to coordinate their actions to cooperatively transport
the object? To answer this question, we describe the results of a further series of
evaluation tests on a single real robot. In these tests, the robot undertakes multi-
ple trials where it is required to push an object with varying characteristics (e.g.,
a light, a heavy, and a long object). During these tests, we record the number of
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repositioning events. That is the number of times the robot changes the point of
exerting forces on the object. A repositioning event happens anytime the robot
stops pushing the object and immediately after starts pushing the object again
in a slightly different position. In the biological literature, repositioning events
are considered to be direct evidence of “persistence”: that is, the individual
tendency to perseverate with a given behavioural strategy. As discussed in [8],
persistence is an individual-level parameter that modulates transport efficiency.

Our objective is to use the concept of persistence as a tool to move a step for-
ward in the understanding of the operational mechanisms underlying the align-
ment of forces required for group transport. In particular, we are looking for
relationships between characteristics of the object (i.e., its mass, and its direc-
tion of movement with respect to the robot heading) and persistence.

In the first series of tests, a real robot is positioned in front of a cuboid
object, facing the object at 20 cm from it. In each trial, the robot is given 60 s to
push the object. All tests are repeated for 10 trials. In test L, the object length
is set to 30 cm, and the object mass is 150 g. The robot can easily transport
the object. In test H, the object length is set to 30 cm, and the object mass is
600 g. The object is too heavy to be moved by the robot. In test R, the object
length is set to 40 cm, and the object mass is 400 g. The robot can rotate the
object by exerting pushing forces on either end of the longest side, but it can not
transport it. Fig. 2b shows the number of repositioning events counted during
each trial of each test. The results clearly show that the number of repositioning
events change with respect to whether or not the object can be moved or simply
rotated. When the object is so heavy that it can not be moved or rotated by
the robot, we observe a very high number of repositioning events. This indicates
that the agent persistence is low (see Fig. 2b, box H). When the object is light
enough to be moved or to be rotated by the robot, we observe a very low number
of repositioning events. This indicates that the agent persistence is very high (see
Fig. 2b, box L, and box R). We conclude that, the agent perception of the object
linear or rotational movement, through the optic-flow sensor, increases the agent
persistence. In other words, the robot keeps on looking for new points on which
to exert pushing forces if the object does not move. The robot does not change
the point of contact with the object if the object moves while it is pushing it.

We also run a further test in which we looked at relationship between per-
sistence and object movement. In this test, the object length is set to 30 cm,
its mass to 600 g. This object is too heavy to be moved by the robot. We run
10 trials without interfering with the robot actions, and 10 trials in which we
intentionally moved the object in the opposite direction of the robot heading
while the robot is pushing the object. We refer to the trials with no experi-
menter interference as static object trials, and the trials with the intervention of
the experimenter as non-static object trials. In each of the static and non-static
trials, we counted the repositioning events with pushing forces exerted on the
first touched long side of the object. We stopped counting as soon as the robot
touches the other long side of the cuboid object. The aim of this test is to esti-
mate how long it takes (in terms of repositioning events) the robot to invert the
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direction of its pushing forces when the object does not move (static), and when
the object moves against its heading. The results of this test, shown in Table 1,
clearly indicate that no repositioning events are observed when the robot per-
ceives the object moving against its heading. In other words, the robot quickly
changes direction of pushing forces if it perceives the object moving against its
heading. The response of the robot is to move away from the object with a circu-
lar trajectory that rather quickly takes it to the opposite side of the object. As
shown in Table 1 for the static object, when no object movement is perceived,
the robot keeps on looking for new points on which to exert pushing forces on
the same side of the object.

By visually inspecting the robots’ strategies during group transport, keeping
in mind the results of our single robot evaluation tests, we noticed that robots
heavily rely on the perception of the object (rotational) movement as a mean to
align their forces. Robots exerting forces on the direction of the object rotation
tend to have high persistence, while the robots exerting forces on the opposite
direction of the object rotational movement tend to swap sides. When all the
robots are on a single side, the force exerted on the object causes the object to
switch from rotational to translation movement, and the transport begins. In the
absence of rotational movements (e.g., with very heavy objects), the alignment
certainly becomes more difficult, and it definitely takes longer for the robots to
coordinate their efforts. Nevertheless, the robots eventually manage to position
themselves on the same side of the object and to exert the required forces to move
it. In these circumstances, we think that alignment is favoured by correlation
between robot-robot interactions and individual persistence. However, further
investigations are required to better understand this process.

6 Conclusions

As shown in [8], cooperative transport in ants is a poorly understood process,
with not much empirical evidence to shed light on the proximate mechanisms
underpinning this important cooperative process. The results of this study sug-
gest that a rather parsimonious explanation based on the perception of the
object movement could account for the alignment and the coordination of forces
observed in natural organisms. We showed that groups of robots capable of per-
ceiving whether their pushing forces are aligned with the object movement can
use this cue to arrange themselves on the same side of an elongated cuboid
object to exert a sufficient force to transport objects that are too heavy to be
moved by single robots. We also provided a basic description of how this sensory
information influences individual strategies. In particular, we showed that the
object movement correlates with the agent persistence. In other words, agents
that perceive their pushing forces aligned with the object movement tend to
keep on exerting forces on the same point on the object. Perception of no object
movement induces the robot to change the point of contact with the object. Per-
ception of object movement against the robot heading induces the robot to exert
forces on the opposite side of the object. We also showed that the robot con-



12 M.H.M. Alkilabi, A. Narayan, E. Tuci

trollers synthesised using evolutionary computation techniques generate group
strategies that are robust to deal with some variability in object length and mass,
as well as scalable to successfully operate with groups of different cardinality.
Future work will focus on the transport of objects with irregular shape and no
symmetries, as well as on the analysis of the effects of robot-robot interactions
on the development of successful group strategies.
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