The Generation of Animated Sequences
from State Transition Systems

A .N.Clark and I.J.Palmer
Department of Computing, University of Bradford
Bradford, West Yorkshire, BD7 1DP, UK
e-mail: a.n.clark@comp.brad.ac.uk, i.j.palmer@comp.brad.ac.uk
September 18, 1997

1 Abstract

We address the issue of the construction of a computer animation system by com-
posing together a collection of behaviours for the individual objects which are to
be animated. The behaviours are developed using a formal notation for state tran-
sition systems. The notation is particularly flexible, allowing both a constructive
and constraining aproach to behaviour representation. The behaviour necessary for
animating Newton’s Cradle for an arbitrary number of spheres is developed as an
example of the method.

2 Introduction

The use of computers to assist in the production of animation sequences is well
established. From simply being used to generate ‘in-betweened’ 2-d images for
key-framed systems, to running complex simulations of particle systems, computers
are used in every kind of animation today. Their use is, however, driven by the
end result. The underlying method used for the animation is generally ignored in
favour of assessing the aesthetic quality or the perceived ‘realism’ of the finished
animation. This is, of course, the way in which all animations must ultimately
be judged, but as animation systems and techniques become more complex, so it
becomes more important, to analyse the methods and approaches used to generate
the animation to ensure that they are efficient and relevant. In this paper we discuss
existing techniques and propose a new more formal approach to the definition of
animations.

The structure of the paper is as follows. In the rest of this section we discuss
existing animation techniques and identify the motivation for this work. Section
3 gives an overview of the approach. Section 4 uses the approach to construct
a behaviour for a simple example. Finally, Section 5 analyses the approach and
identifies directions for future work.

2.1 Traditional techniques

The oldest way in which computers can be used to assist animation production
is the key-frame method. In this technique, the positions of objects are defined
in certain ‘key-frames’, and then suitable software can be used to generate the
interpolated frames in between those key-frames. Sophisticated techniques may be
used to control the type of interpolation to give the desired motion [5, 12, 17, 18].
This type of system is common in 2-d animation systems, but is less common in
3-d systems. An extension of the technique, called parametric key-framing, is based
on defining the parameters of objects in the animation at key-frames (e.g. position,
velocity and acceleration) [11, 13]. This is more suited to 3-d animation, since
typically it allows closer control of the many degrees of freedom present in the
system. This type of animation can be seen as offering explicit control, since exact

Figure 1: Existing animation techniques

control can be exerted over all aspects of the objects in the animation, but limits
flexibility and efficiency since exact data needs to known/calculated in advance to
generate a given sequence.

A relatively recent style of animation is that which uses simulation techniques
[1, 4, 3, 6, 7, 14, 16, 20]. This operates by simulating the way in the objects in
the system behave (or are desired to behave) in the real world to produce their
behaviour in the animation. Typical examples would be the simulation of Newton’s
laws of motion to produce realistic acceleration of bodies in a system. This can
produce extremely convincing control of objects, but limits the exact knowledge
of their resulting behaviour. As such, these systems offer implicit control, since
their behaviour is calculated from a set of rules or formulae that are predefined. If
objects do not behave as desired, these rules and formulae must be modified and
the simulation repeated.

Systems exist that offer a hybrid of these two approaches in an attempt to offer
the strengths of each, i.e. realistic behaviour through simulation and exact control
via key-framing [10, 19]. It can also be argued, however, that they in fact incorporate
the weaknesses of each in that the simulation aspect can be unpredictable and the
key-framing limits flexibility. These three processes are shown diagrammatically in
Figure 1.

2.2 The need for a new approach

Both key-framed and simulation based animation systems use approaches that are
not derived from an analysis of the problem domain. Key-framed approaches are
derived from traditional techniques, and as such the fundamental underlying concept
is one of achieving an exact behaviour without specific modelling of the entities
involved. This means that the effectiveness of the final result depends primarily
on the skill of the animator. An example of this is shown in in work by Lasseter
where by the motion of a ‘hopping’ object is constrained from penetrating the floor
by adjusting its path, thus preventing the anomaly without an inherent model of
the process [13]. The apparent realism of the final motion is entirely due to the
experience and knowledge of the creator.

Simulation methods, in contrast, require accurate models to be created of real
(or predicted) behaviour before anything can be defined. This behavioural model is
then either used to simulate/predict some object behaviour (in the case of scientific
or engineering simulation), or is used as a tool to generate some pre-meditated
animation. In the former case, the undefined nature of the output is the point of
the process, i.e. it is designed to discover some unknown behaviour of the system.
In the latter case, the unpredictability is an annoyance, since the desired outcome
is known and the simulation is being used to aid its production. For example,
consider an animation of a ‘pool’ table in which it is desired that a ball is ‘potted’.
To generate this using simulation methods it is possible to create a model of the
pool balls that obey Newton’s laws of motion and then define the balls positions
and initial velocities such that a ball is potted. This requires some pre-simulation
calculations, and possibly some iterative process to achieve the desired result, but
the required skill of the animator is reduced at the expense of the effort exerted in
the creation of the modelling process.

The increase in complexity and required realism of animations means that more
and more time needs to be spent on the creation process. This is either spent during
the specification of the key-frame/interpolation information or on the development

of the simulation model. A more efficient approach would be to merely define
exactly the behaviour of the objects to produce the desired animation. This is in
contrast to the key-framed approach, where the definitions are not behavioural, and
the simulation approach where the definitions are behavioural but are not aimed at
specifying deterministic actions. The method that we introduce in this paper is such
a technique. It is a specification method that converges on the desired animated
sequence from the initial set of all possible behaviours.

2.3 The state transition approach

To develop a more efficient method of producing animations, it is necessary to anal-
yse the process from the beginning. Generally, the animation process begins with a
pre-meditated notion of what the final sequence will be like. This would typically
be missing some of the details of the sequence, and would be primarily a conceptual
model of the finished animation. From this, some process must be used to generate
what is ultimately a sequence of still images shown in quick succession. Each still
image must be different from the last in such a way that their rapid sequential
viewing produces the desired illusion of continuous changes in the sequence, e.g.
motion of the objects in the scene.

Because each still image differs from the last by some (usually small) finite
amount, it is logical and efficient to exploit this in some way. The first way that
this can be achieved is by maintaining the same scene model from one image to the
next. This would typically be in the form of a collection of objects linked together
in a tree-type hierarchy [9], preserving geometric and visual appearance information
from one frame to the next. Using this approach, the definition of the initial frame
involves the creation of the objects in the scene and placing them at their initial
positions. The generation of the rest of the sequence can then follow.

From the first frame, there are an infinite number of possible sequences that
can follow, with only a finite set (ideally with only one member) representing the
desired solution. The animation process must generate a member of the solution
set in the most efficient way possible. The key-frame method works by knowing the
final solution and working backwards to the initial frame. The simulation method
works by generating the frames incrementally, with iteration to change the sequence
if the end product is not a member of the solution set. The method we describe
here takes a different approach, that of state restriction.

Initially, each object in the system is defined as an individual state machine
with all possible inter-state transitions allowed, which formalises the infinite set of
all possible sequences in such a way that restriction can follow. These separate
object state machines can then be restricted and combined repeatedly, with the
resulting system converging on the desired animation machine. Further animations
can be produced by combining these complex machines to give new sequences. With
this general outline in mind, we will now begin defining the process more formally.

3 Approach

Our approach to the construction of animation systems views such a system as a
function:

Behaviours — Animation System — Sequences of Scenes

which accepts a behavioural description of a collection of objects which are to be
animated, and produces a sequence of scenes which are to be displayed. The de-
scription of our approach is motivated by the following example: two perfect spheres
are to be animated bouncing in two dimensions between two horizontal surfaces.

If the spheres collide they will both reverse their directions. If the animation sys-
tem is viewed as a function, the input will be a description of the spheres possible
behaviours and starting positions, and the output will be a sequence of sphere
positions.

The animation system must produce a discrete sequence of scenes. This fact
pervades our approach and we have sought to provide mechanisms which allow the
behaviour of animated objects to be expressed as state transition systems. Further-
more, the ability to construct an animation from modular units which describe the
behaviour of individual objects in the scene is highly desirable. Operations which
transform and combine state transition systems meet this aim.

The behaviour of an object is described as a state transition system, as an
expression in terms of transition system transformation and composition operations
which build the object’s behaviour from the behaviour of smaller sub-objects or
part-behaviours. There are two alternative ways to view the composition of such an
expression. Firstly, we might start with part-behaviours which are under-defined
and tell only part of the story; the object is constructed by bolting the sub-parts
together. We refer to this as the constructive approach. Secondly, we might start
with part-behaviours which are over-defined, which contain the desired behaviour
but which contain more besides; the object is constructed by constraining and
intersecting sub-parts. We refer to this as the constraining approach.

Both of these approaches are useful in producing a behaviour description for an
object. For example, given a behaviour description of a single sphere, the description
of two spheres is constructed by merging two copies together so that the result is the
sum of the parts. Alternatively, we could intersect two overlapping behaviours. The
first is a description of a sphere which behaves correctly when it hits a horizontal
surface and is completely unconstrained everywhere else. The second is a description
of a sphere which behaves correctly unless it comes into contact with a horizontal
surface where its behaviour is unconstrained. The description of a well behaved
sphere is formed by merging the two behaviours so that the result is the intersection
of the two parts.

The choice of whether to use a constructive approach or a constraining approach
depends on the characteristics of the application. The constructive approach is
useful where general statements can be made which cover large classes of legal
object behaviour. The constraining approach is useful where general statements
can be made which cover large classes of illegal object behaviour. We propose that
in practice the specification of an object’s behaviour will require a mixture of these
approaches and the system which we describe in this paper supports both.

A benefit of using the constraining approach in the initial stages of object be-
haviour description is that in general we can start with the complete unconstrained
behaviour for all object components. As such, the behaviour which we wish to
exhibit is guaranteed to be present at the outset. This is not true of the construc-
tive approach which starts with nothing and must find a way of constructing the
required behaviour. Alternatively, the constraining approach presents the problem
of checking when to stop since although the initial description contains the desired
behaviour, it also contains illegal behaviour which must be deleted through succes-
sive constraints. The constructive approach does not suffer from this problem since
it is exactly the sum of its parts and will not contain any rogue behaviours.

The behaviour of an object is represented as a state transition system [2]. For
example, the unconstrained behaviour of a bouncing sphere is defined as the totally
connected state transition system where the states represent the position of the
sphere and the transitions represent sphere movements for a given unit of time!.

IWe are assuming constant sphere velocity. This can be varied to describe accelerating and
decelerating spheres by increasing the complexity of the state transition system.

Since the transition system is totally connected, a sphere can move from any position
to any other position in a single time unit. Starting with such a description has
the advantage that the behaviour which we want to exhibit for a single sphere
is complex: bouncing at walls and off other spheres must be taken into account,
every angle of trajectory must be taken into account, etc. By starting with an
unconstrained behaviour, we guarantee that all the legal behaviours are present.

Let S; be the unconstrained behaviour of a single sphere. To animate this be-
haviour, the behaviour is ezecuted, from some starting position, as a non-deterministic
state transition system which produces the sequence of the states which are visited.
Figure 2.1 shows part of the behaviour Si; given any starting position, a sphere
may move to any other position in a single move. Notice that the sphere is not well
behaved at the horizontal surfaces which are shown as dashed lines.

The animation of S; will, in general, produce a very unrealistic bouncing sphere.
However, every once in a while, the animation will produce a correctly bouncing
sphere. The behaviour S; is represented as the following expression C(X) where ¥
is a set containing all possible sphere positions.

A behaviour description is restricted by throwing away certain illegal movements.
For example, we only want to allow sphere moves between adjacent positions, so
we remove the possibility of the sphere jumping around at random. Notice that
this leaves those moves which randomly change direction, because we will require
these later when specifying the behaviour of spheres which collide and bounce of
horizontal surfaces and other spheres. Such a restriction is represented as S\p where
S is a behaviour description and p is a statement describing legal sphere moves. The
result is a behaviour description in which all transitions have been removed which
do not satisfy p. Restrictions may be nested, e.g. S\p\p'.

Let p; describe sphere moves which travel a constant distance, p, describe sphere
moves which bounce correctly at the upper horizontal surface and p3 describe sphere
moves which bounce correctly at the lower horzontal surface. Part of the behaviour
S1\p1 is shown in Figure 2.2 where a sphere may only move to a position which
is a constant distance away from its current position. The behaviour S \p1\p2\ps3
describes spheres which move without jumping and which bounce correctly. Part
of this behaviour is shown in Figure 2.3, where it is impossible for a sphere to move
through the horizontal surfaces.

An alternative way of constraining a behaviour is to intersect it with another
behaviour. The behaviour S;\pi\p2, shown in Figure 2.4, is correct for spheres
which bounce at the upper horizontal but is completely unconstrained at the lower
horizontal. On the other hand, the behaviour S;\p;\ps, shown in Figure 2.5, is
correct for spheres which bounce at the lower horizontal but is completely un-
constrained at the upper horizontal. The intersection of these two behaviours,
shown in Figure 2.3, is correct for spheres at both horizontals. This is expressed
as So = (S1\p1\p2) &(S1\p1\p3). Notice that the behaviour shown in Figure 2.3
can be expressed in more than one way. This suggests that there are some useful
equivalences between behaviour expressions, e.g. S\p\p’' = (S\p) &(S\p'), although
it is beyond the scope of this paper to investigate these issues any further.

The behaviour Sy allows spheres to randomly move sideways (zig-zag) whilst
bouncing between horizontal surfaces. The complete behaviour description for a
single bouncing sphere is So\ps where p, is a statement describing non-zig-zagging
moves. The single-sphere system describes behaviour in which a sphere continues
in the current direction until it hits a horizontal surface where it changes direction.
Part of this behaviour is shown in Figure 2.6. The zig-zagging behaviour Sy comes
in useful when constructing two spheres bouncing between the horizontals since a
single sphere will perform a zig-zag when it hits the second sphere.

The behaviour of a two sphere system, Ss, is described by duplicating Sy so
that each pair of sphere positions in S, are contained in a state of S3. This is

fig. 2.1 fig.2.2
fig. 2.3 fig.2.4

fig. 2.5 fig. 2.6

Figure 2: The development of a single bouncing sphere

fig. 3.1 3.2 3.3
Figure 3: The development of two bouncing spheres

represented as S3 = Sy X Sy and produces a behaviour description which is freely
constructed by combining all the possible behaviours in Sy with itself. There is no
restriction on the number of times a behaviour description can be duplicated in this
way, S X Sy X Sy is the basis of a three sphere behaviour and Sy x Sy X So x S is
the basis of a four sphere behaviour, etc.

The sum of two behaviours adds together the moves from both and is represented
as S + S'. Suppose that ps is a statement describing two-sphere system moves
which never collide, pg is the opposite of ps, p7 is a statement describing two-sphere
system moves which never zig-zag and pg is the opposite of p;. The behaviour
S4 = S3\ps\pr describes only those two-sphere systems which never collide, note
that there are some animations of S; which will terminate prematurely since the
spheres may head towards each other and must stop before colliding. Once the two
spheres have stopped, they will hover there forever since they are not able to collide
or change course. Figure 3.1 shows part of the behaviour Sy.

The behaviour S5 = S3\ps\ps describes only those two-sphere systems which
bounce on collision. The restriction pg removes all sphere movements which do not
lead immediately to or from a collision. The behaviour S3\ps describes two sphere
collisions which are completely unconstrained as to their outcome, for example they
may pass through each other. The constraint pg forces all the collisions to zig-zag.
Figure 3.2 shows part of the behaviour S;.

The two behaviours are merged to produce the correct two-sphere behaviour
description, Sy + S;. Figure 3.3 shows part of the two sphere behaviour when the
spheres start at the upper horizontal, collide, bounce off each other, hit the lower
horizontal and finally bounce off in opposite directions.

4 An example behaviour

This section describes a detailed worked example of using the approach described in
§3. The example is Newton’s Cradle in which several spheres of equivalent size and
mass are suspended from a single rod by rigid string (a single example of which is
shown in Figure 4). Initially, all of the spheres are at rest with their strings vertical.
The system is initiated by lifting a number of spheres to the left or right and then
releasing them. The system is frictionless and a number of possible behaviours
are exibited depending upon how many spheres there are in total, how many are
lifted at the start and how many are initially at rest. We assume that the reader is
familiar with the behaviour of Newton’s Cradle and that we can take the behavioural

Figure 4: A single ball from Newton’s Cradle

Figure 5: Possible positions of simplified ball

specification as given.

The behaviour for the animation relies on the definitions which are given in
appendix A. We also make a number of simplifying assumptions which are discussed
in §5: the system is frictionless; the system does not support acceleration; the
positions which spheres may occur in are —1 which corresponds to a sphere lifted to
the left extreme, 0 which corresponds to a sphere at rest and 1 which corresponds to
a sphere lifted to the right extreme (Figure 5); finally, spheres may have the following
velocities: —1 when moving to the left, 0 when at rest, and 1 when moving to the
right. For example, if a sphere is at position —1 with velocity 0 then it is at rest on
the far left.

The position graph of a single-sphere system, G; = C({0,—1,1}), is totally
connected as shown in Figure 6. It is impossible for the sphere to move from position
—1 to position 1 without passing through position 0 so these transitions are removed,
producing the graph Go = G1\p where p(—1,1) = false and p(1,—1) = false and
otherwise p is true. The new graph is shown in Figure 7, with the deleted transitions
shown as broken lines. The traces of G2 include the following: —1,0,1,0,—1 and
0,1,0,1,0,1.

The rate of change of position the sphere relates its current position to its next
position, as shown in Figure 8. The rate of change graph of a single-sphere system,
G3 = C({0, —1,1}), is totally connected, and is shown in Figure 9. The graph which
describes the free movement of a single-sphere system is G4 = G x G'3. The traces
of G4 include the following:

(-1,1),(0,1),(1,-1),(0,-1),(—-1,1)

and
(0,1),(1,-1),(1,1),(1,-1),(0,1),(1,-1)

The behaviour described by the single-sphere system graph is now restricted
by analysing the desired behaviour of the sphere in each of the different positions.
The behaviour is specified separately for each position, producing a collection of
behaviour graphs. The graphs are then merged into a single graph which described
the desired overall behaviour for a single-sphere system.

Firstly, the behaviour which is common to all the positions is that a sphere may
continue from its current position in the direction indicated by the rate of change
component. This produces the graph G5 = G4\p; where :

pl((p1:7)1): (p2,712)) = 9‘17“11(1)27111 + m)

If the sphere is at position 0 and at rest then it may suddenly start moving due
to a collision. Alternatively, if the sphere is at position 0 and is moving then it may
suddenly stop or change direction due to a collision. Each of the individual possi-
bilities is specified as a graph and then these are merged to specify the behaviour

Figure 6: Initial position graph of a single ball

Figure 7: Graph of ball with disjoint motions deleted

Figure 8: Relationship between position and rate of change of position for single
ball

of the sphere at 0:
Ge = G4\(0/O) = (07—)

G7 = G4\(0,) = (0,0)
Gs = G4\(0,z) = (0, —x)

Gy = Gg + G7 + Gy

G describes the behaviour of single-sphere systems where the sphere starts from
position 0 at rest, G'7 describes the situation where the sphere comes to rest at 0,
Gy describes the situation where the sphere changes direction at 0 and Gy merges
the graphs to produce Gy which describes legal behaviour at 0.

If the sphere is at either extremity then it is either slowing down, at rest or
returning towards 0. This is expressed as a pair of graphs for each extremity which

are then merged:
G10 = G4\(1,].) = (1,0)

G = G4\(1,0) = (1,-1)
Gy = Gig + G1»

Gz = Gi\(~1,-1) = (—1,0)
Gia = Ga\(=1,0) = (—1,1)

Gi5 =Gi13+Gis

The graph G forces the sphere to slow down at position 1 and G, causes a sphere
which is at rest in position 1 to fall towards 0. Graphs G153 and G4 force similar
behaviour at —1. The individual behaviours are merged to produce G12 and G5
which correspond to behaviour at positions 1 and —1 respectively.

The single-sphere behaviour, G, is defined as

G' =G5 &Gy & G2 & G5
The traces of G incude the following:
(=1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1)
which represents a swinging sphere and
(—-1,1),(0,1),(0,0),(0,0),(0,=1),(=1,-1),(=1,0),(=1,1)

which represents a sphere on the left which swings down to rest, stays at rest for
two time units and then swings back up to the left.

Figure 9: Graph for rate of change of position of a single ball

Given the behaviour specification, G', for a single-sphere system, a behaviour
specification for a two-sphere system is constructed by composing together two
single-sphere systems and then imposing restrictions on the behaviour of the inter-
actions between the spheres. The graph G1s = G' x G! has states

((p1,01), (P2, 02))

containing pairs of position and change in position information. The pair (p1,v;1) de-
scribes the left hand sphere of the two-sphere system and the pair (p2,v2) describes
the right hand sphere.

G116 must be restricted in two ways in order to describe legal two-sphere be-
haviour. Firstly, the traces of G4 will contain sequences of the following form:

((07 1)7 (07 71))7 ((1/ 1)7 (717 71))7 s

which describes two spheres passing through one another in order to get to the
extreme positions. Secondly, the traces of G14 contains sequences where a sphere
will spontaneously leap up from being at rest or will suddenly come to an abrupt
halt without any force being involved.

The first problem is solved by restricting G1¢ so that for each node (x1,z2) the
information z; describes a sphere which is never at a position to the right of the
sphere described by zs. Since positions are integers, the restriction is performed in
terms of a predicate which forces the z; position to be less than or equal to the x5
position in all cases:

Gir = Gi6\((p1,-), (p2,-)) &p1 < p2

The second problem involves forcing each action in the two-sphere system to
occur with respect to an equal and opposite action. For example, when a sphere
on the left suddenly flies up to the left from rest, this must be in response to a
sphere on the right flying in from the right and coming to rest, i.e. a collision
occurs. The problem is solved by restricting G4 so that collisions are the only way
in which a sphere may change direction. This is done in three stages: firstly, for
any transition there must be an equal number of direction changes left and right;
secondly, for each direction change in the left sphere there must be an equal an
opposite direction change in the right sphere; finally, for each direction change in
the right sphere there must be an equal an opposite direction change in the left
sphere. In order to be useful later on, the constraint is generalised to multi-sphere
systems.

The predicate changeleft is defined to hold when a sphere at position 0 changes
direction to the left,

changeleft((p,v), (p',v")) = equal(p, p') & equal(p,0) &v' < v

The operator changesleft produces a list of transition pairs each of which change
left. The arguments ¢; and ¢y are binary trees of the same shape and occur as graph
nodes in multi-sphere systems. Each of the leaves of ¢; and t5 are sphere states of
the form (p, v):

changesleft(ti,t2) = (I (t1 X t2))\changeleft

Similarly, the predicate changeright and the operator changesright are defined as
follows:

changeright((p,v), (p',v")) = equal(p, p') & equal(p,0) & v < v’

changesright(t;,ta) = (I (t1 X t2))\ changeright

The predicate samechanges forces the same number of changes to occur on the right
as on the left

samechanges(ty, ta) = equal(#(changesleft(ty,t2)), #(changesright(t,,t2)))

The infix predicate + holds between two pairs of velocities (vy,v]) < (v2,v})
when v; is the same as vy and v} is the same as vy. The predicate represents the
relationship between sphere velocities when a collision occurs at position 0.

The infix predicate <= holds between a pair of velocities and a pair of sphere
states when the sphere states are both at position 0 and the associated velocities
represent a collision as defined by <:

(v1,01) > ((p,v2), (P, 05)) = equal(p,p') &
equal(p', 0) &
notequal(v,v') &
(v1,v]) < (va,vh)

The infix predicate — holds between a pair of sphere states, ((p,v), (p',v')), and a
list of sphere states I: ((p,v), (p',v")) — I when the left hand operand represents a
change in a sphere state arising from a collision with one of the spheres in I:

((p,v), (p',0")) <= 1l = atzero = ezxists((v,v") <)l
where atzero = equal(p,p') &
equal(p’,0) &
notequal(v,v")

The following two predicates, causesleftright and causesrightleft, hold between pairs
of binary trees of sphere states, being the node values of multi-sphere systems. The
first predicate holds when every change in velocity at 0 and on the left is caused by
an equal and opposite change on the right. The second predicate holds when every
change in velocity at 0 and on the right is caused by an equal and opposite change
on the left:

causesleftright(ty, t2) = all(—=)(1 ((t1 % t2)))

causesrightleft(ti, t2) = all(—)(1 (rev({ (t1 X t2))))

The graph G? describes the legal behaviour of two-sphere systems. It is constructed
by starting with the unconstrained two-sphere system behaviour (G1¢ and restricting
it so that all changes occur at position 0, the same number of changes always occur
and each change occurs as the result of a collision:

G? = G17\(samechanges & causesleftright & causesrightleft)

The graph G? specifies the behaviour of a two-sphere system and was constructed
by composing a pair of single-sphere behaviour specifications and then imposing
some extra constraints. Consider two copies of G? which are merged so that the
rightmost sphere of the first copy is overlaid on top of the leftmost sphere of the
second copy. Such a merge will produce G® which is the behaviour specification of
a three-sphere system. The behaviour specification of a four-sphere system can be
constructed in exactly the same way by merging G3 and GGy on a common sphere.
Using this technique any multi-sphere system can be specified.

The operator ® will merge two graphs on a common element. We must be
careful, however as to the order in which the restrictions are performed on the
merged graphs, for example, G® = G? ®G? would not produce the desired behaviour
specification since the restrictions which enforce that each change in velocity occurs
due to a collision apply only to the individual copies of G? and will not apply across
the system, e.g. between the leftmost sphere and the rightmost sphere which occur

10

Figure 10: Simple example animation

Figure 11: A more complex example

in different copies of G2. In order to achieve the desired affect, the restrictions are
applied after the merge:

G? = (G117 ® G17)\(samechanges & causesleftright & causesrightleft)
and
G* = (Gh17 ® Gh7 ® Gi7)\(samechanges & causesleftright & causesrightleft)
and in general

G" = (® G'i2)\(samechanges & causesleftright & causesrightleft)

i=2..n—1

Frames of some animations generated in this way are shown in Figures 10 and
11. The first shows the most simple case, that of an animation starting with a
single displaced ball. The second’s starting position has one displaced ball at one
end and two at the other. The spheres’ positions were defined by the Haskell
implementation of the system described in this paper, with the final sequence of
images being produced using the REALISM system [15].

5 Conclusions, analysis and further work

We have identified a number of shortfalls in the mechanisms currently used for the
development, of behaviour in computer animation systems. We have proposed a new
mechanism based upon state transition systems whereby behaviours are constructed
incrementally by composing and restricting state machines which describe different
elements of the overall behaviour. Behaviours can be built using a constructive
approach and a constraining approach; this leads to a very flexible development
method. A worked example of the approach has been given by developing a be-
haviour description for Newtons’ Cradle with an arbitrary number of spheres. This
section draws conclusions from the work, analyses the method and proposes areas
for future development.

We present a critical analysis of the methods used in this paper, most of these
points will be addressed in the following paragraphs on further work:

e The examples which have been presented in this paper are small and ideal-
istic. In order to propose the method as being able to address large classes
of animation applications further evidence must be presented with respect to
more realistic scenarios.

e Although the system described in this paper has been implemented, the be-
haviour was initially rather slow due to the combinatorial nature of the rep-
resentations. It must be shown that the methods which are proposed can be
efficiently implemented by seeking program abstractions which can be used in
a wide variety of applications.

11

e The method which is proposed will not apply to all animation applications.
It is particularly suited to those applications which have easily identifiable
components each of which has a behaviour and to those applications where
the developer knows the intended behaviour in advance.

e The behavioural descriptions from existing animation systems, for example
a system which models Newton’s Cradle using physical laws and constraints,
may not be appropriate for reuse by the methods proposed in this paper.

e As the complexity of applications grow, the method will suffer from the prob-
lem of determining whether or not the desired behaviour has been achieved
and whether or not any undersirable behaviour is present.

The state transition notation which is described in this paper allows complex
object behaviour to be developed for use in animation systems. Although the be-
haviours use a notation with a formally defined semantics, the specification of the
behaviour and its verification are performed informally. If these techniques are to be
used with respect to complex animation applications then verification will become
increasingly important. A number of related logics are proposed for the verification
of state transition systems (these are surveyed in [2]). An area for further work is
to define a logic for the state transition systems used for animation and to develop
a verification method.

Computer support of the development will be essential for complex animation
applications and support could take a number of different forms. An automated
deduction system could be used to verify a behaviour against a specification and
to determine whether or not a modification leads to an incomplete or inconsistent
behaviour. A program could be developed which allows behaviours to be ezercised
in various ways, allowing the developer to check that changes have the desired result.
A graphical user interface could be developed which allows a developer to build up
a behaviour by manipulating a visual representation of the state transition systems.

Complex animations will require far more sophisticated transition systems than
those described in this paper. For example, all of the transitions which are per-
formed in the Newton’s Cradle example, assume a constant unit of time, and accel-
eration is not taken into account in the state information. We believe that the state
machine formalism can accommodate variations which will support this type of be-
haviour. For example, transitions could be annotated with a length of time which it
takes to move from the source state to the target state, or transition systems could
be parameterised with respect to their granularity by annotating transitions with
functions which generate intermediate states to any level of detail. An interesting
variation is to link a number of state transition systems together by guards, the
guards would detect when a particular object’s state has become well behaved in
some sense and can be animated with respect to a simpler, and therefore more effi-
cient, state machine. An area for further work is to construct a more sophisticated
animation application and to construct the desired behaviour using state transition
technology. For example, a Newton’s Cradle behaviour which deals with friction
(possibly by extending the state components with extra decelerating components),
with acceleration (possibly by extending the state components with extra accel-
eration components) and with a variable number of sphere positions (possibly by
extending the transitions with functions which compute the intermediate states to
any level of detail).

The example of Newton’s Cradle has been implemented in the functional pro-
gramming language Haskell [8] using the techniques which are described in this
paper. Haskell is ideally suited to this task since it is lazy, i.e. it evaluates only
those program expressions which are required to produce the output and never eval-
uates the same program expression twice. The results have been encouraging, since

12

the programming facilities provided by Haskell allow the state transition constructs
to be expressed very clearly, although some knowledge of program transformation
was required in order to translate the program to exhibit acceptable performance.

References

[1]

B. Arnaldi, G. Dumont, and G. Hegron. Animation of physical systems from
geometric, kinematic and dynamic models. In Modelling in Computer Graphics.
1991.

A. Arnold. Finite Transition Systems. Prentice Hall International Series in
Computer Science, 1994.

D. Baraff and A. Witkin. Global methods for simulating contacting flexible
bodies. In Computer Animation °94, pages 1 12, Los Alamitos, CA, 1994.
IEEE Computer Society Press.

David Baraff. Analytical methods for dynamic simulation of non-penetrating
rigid bodies. Computer Graphics, 23(3):223 232, July 1989.

Richard H. Bartels and Ines Hardtke. Speed adjustement for key-frame inter-
polation. In Proceedings of Graphics Interface 89, pages 14-19, June 1989.

R. Barzel and A.H. Barr. A modelling system based on dynamic constraints.
Computer Graphics, 22(4):179-188, August 1988.

L. Dasheng, Y. Long, and L. Jiuchin. Robot graphics simulation based on
kinematics and dynamics. In Proceedings of Beijing International Conference
on System Simulation and Scientific Computing, pages 455 458, 1989.

P. Hudak et al. The Haskell report. ACM SIGPLAN Notices, 27(5), 1992.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics: Principles and Practice, second edition. Addison-Wesley,
Reading, MA, 1990.

L. Forest, N. Magnenat-Thalmann, and D. Thalmann. Integrating key-frame
animation and algorithmic animation of articulated bodies. In Tsiyasu L. Kunii,
editor, Advanced Computer Graphics (Proceedings of Computer Graphics Tokyo
’86), pages 263-274. Springer-Verlag, 1986.

L. Forest, D. Rambaud, N. Magnenat-Thalmann, and D. Thalmann. Keyframe-
based subactors. In M. Green, editor, Proceedings of Graphics Interface '86,
pages 213 216, May 1986.

D. H. U. Kochanek and R. H. Bartels. Interpolating splines for keyframe
animation. In S. MacKay, editor, Graphics Interface '84 Proceedings, pages
41-42, 1984.

J. Lasseter. Principles of traditional animation applied to 3d computer anima-
tion. Computer Graphics, 21(4):35-44, July 1987.

G. Miller. A dynamics-based modeler for character animation. In Computer
Animation ’91, pages 149-168, Tokyo, 1991. Springer-Verlag.

I.J. Palmer and R.L. Grimsdale. REALISM: Resuable Elements for Animation
using Local Integrated Simulation Models. In Computer Animation 9/, pages
132 140, Los Alamitos, CA, 1994. IEEE Computer Society Press.

13

[16] A. Pentland and J. Williams. Good vibrations: Modal dynamics for graphics
and animation. Computer Graphics, 23(3):215 222, July 1989.

[17] W. T. Reeves. Inbetweening for computer animation utilizing moving point
constraints. volume 15, pages 263 269, August 1981.

[18] T.W. Sederberg and E. Greenwood. A phsyically based approach to 2-d shape
blending. Computer Graphics, 26(2):25 34, July 1992.

[19] M. van de Panne, E. Fiume, and Z. Vranesic. Reusable motion synthesis using
state-space controllers. Computer Graphics, 24(4), August 1990.

[20] C.W.A.M. van Overweld. An interactive approach to dynamic simulation of
3-d rigid body motions for real-time interactive computer animation. Visual
Computer, 7(1):29-38, 1991.

A Definitions

Let f : S — P be a function with a domain dom(f) C S and a range ran(f) C
P which are both finite sets. A function is represented as a finite collection of
individual mappings {s1 — pi,s2 — pa,...} and f(s) = p when s —» p € f. A
function is total when dom(f) = S. A function is restricted with respect to a set
S' C dom(f), written f\S' to produce the function {s — pls —»p € f,s € S'}.

A graph is a 4-tuple (N, E, s,t) where N is a set of nodes, F is a set of edges,
and both s and ¢ are total functions s : ¥ — N and t : E — N. The function
s maps an edge to its source node and the function ¢ maps an edge to its target
node. A graph is totally connected when, for any pair of nodes ny,ns € N there
exists an edge e € E such that s(e) = ny and t(e) = na. If (N1, Eq,s1,11) is a
sub-graph of (Na, E1, s2,t2) then each component of the first graph is a subset of
the corresponding component of the second graph.

A graph (N, E,s,t) is restricted with respect to a predicate p : N x N — B,
written (N, E, s,t)\p. The restriction is applied between the source nodes and target
nodes of edges in the graph. The result is the largest sub-graph of the original
for which the predicate holds between all source and target nodes of edges. The
restriction is defined as follows: (N, E,s,t)\p = (N', E',s',t') where E' = {ele €
E.p(s(e),t(e))}, s' =s\E', t' =t\E' and N' = ran(s') U ran(t').

The sum of two graphs (N1, E1, s1,t1) + (Na, Ea, s2,t9) is the graph which con-
tains all of the nodes and edges from both graphs. Where the two graphs have
nodes in common these are merged. The result of the sum is the following graph
(N] U NQ,E] U E27S] U Sg,t] U tg).

The intersection of two graphs (N1, E1, s1,t1) & (N2, E2, $2,t2) is the graph which
contains all of the nodes and edges which the operand graphs have in common. The
result of the intersection in the following graph (Ny N Na, E; N Es, 81 N sa,t1 Nta).

Predicates p which are used to restrict graphs using the notation G\p may
be composed using the infix & and = operators?. The conjunction operator is
translated as follows: G\py & p2 is equivalent to (G\p1) &(G\p2). The implication
operator ony makes sense when the graph contains nodes which are pairs: G\p; =
p2 is equivalent to G'\p where:

p(z,y) = if pr(z) then p2(y) else true

Predicates which are used to restrict graphs may be specified as patterns, where
a pattern p is one of the following: an identifier i, a constant k, a wildcard _ or a

2Note that when not used in graph restriction predicates, these symbols have their usual mean-
ing from positional calculus

14

pair of patterns (p;,p2). The pattern k is true only when it is applied to the value
k otherwise it is false. The pattern _ is true in all cases. The pattern (pi,p2) is
true when it is applied to pairs whose first component satisfies p» and whose second
component satisfies po otherwise it is false. Identifiers in patterns allow components
across different patterns to be equated, for example the predicate (1,z) = (z,1) is
true when applied to values ((a,b), (¢,d)) where either a is not the constant 1 or
both a and d are 1 and b and ¢ are the same value.

The product of two graphs (Ny, Ey, s1,t1) X (Na, B9, s9,t2) is the largest graph
whose nodes are pairs of nodes from N; and N,, whose edges are pairs of edges
from E; and Es and whose edges are only defined between pairs of nodes when
the original graphs had edges between the pairwise components. The product is
the graph (N1 x No, Ey X Eo,s,t) where s(e1,ea) = (s1(e1), s2(e2)) and t(eq, ea) =
(t1(e1),ta(e2)) by which we mean that s is defined only in the case that both s;
and sy are defined for a given input pair and similarly for ¢.

A graph homomorphism is a pair of functions:

(fig): (N1, Ey,81,t1) = (Ny, Ey, 89,12)

which maps one graph to another graph. The signature of f is f : N; — N, and the
signature of g is g : E4 — E,. The homomorphism (f, g) maps a graph to another
graph by transforming the nodes with f and the edges with g whilst preserving
the structure of the original graph. A homomorphism (f,g) is applied to a graph
(N, E, s,t) to produce the following graph:

({f(n)ln € N}, {g(e)le € E},{g(e) = f(n)le = n € s}, {g(e) = f(n)le = n € t})

Pairs of elements, (z,y), can be nested to produce binary trees

((a,0), (x, (y, 2)))

. By traversing the trees from left to right, the tree imposes a total ordering on the
values at the leaves of the tree. The operator right extracts the rightmost leaf value
of a binary tree. The operator left extracts the leftmost leaf value of a binary tree.
The operator merge is applied to two binary trees merge(t1,t2) and produces a new
binary tree by in which either the right most leaf value of ¢; has been replaced by
to or the leftmost leaf value of 5 has been replaced by ¢;. The outcome of merge is
non-deterministic since either outcome will do for the purposes of this work. Given
a pair of binary trees t; and ty, t; X o is the binary tree which is constructed by
pairing the leaves of ¢; and ¢, which occur at exactly the same position, for example

((a,0), (¢, d)) x ((v,w), (x,9)) = (((a,v), (b,w)), (¢,), (d,y)))

If t; and t5 do not have the same shape then t; X 5 is not defined.

A binary tree is flattened to produce a sequence of the values at its leaves using
the operator |, for example | ((a,b), (c,d)) = abed. A sequence s is reversed using
the operator rev and is restricted with respect to the predicate p by s\p. The length
of a sequence is produced by the operator #. Given a sequence s, the operator 1
produces the sequence whose elements are pairs (z,s’) where x is an element of s
and s’ is the suffix sequence of z in s, for example 1 (abed) = (a, bed) (b, c¢d)(c, d)(d, €)
where € is the empty sequence. The operator all is applied to a predicate p, pro-
ducing a new predicate which is applied to a sequence s and is true when p is true
for each element of s. The operator ezists is applied to a predicate p and produces
a predicate which is applied to a sequence s and is true when p is true for at least
one element of s.

Two graphs G; and (G5 are merged on a common element G; ® Gy. The out-
come is a graph whose nodes are defined to be those of the product G; x G5 where

15

the rightmost component of the node originating in G; is the same as the left-
most component of the node originating in G3. The merge is defined to produce
(merge, I)((G1 x G2)\p) where p is a predicate holding between pairs of binary trees
and is defined p(t1,t2) = equal(right(t1), left(t2)). The symbol I is stands for the
identity operator and the operators equal, notequal, <, <, 4+, etc. are defined to
have the obvious meanings.

The traces of a graph is a set of all possible sequences of nodes which are
encountered by starting at a particular node and then traversing the graph, choosing
a single edge to traverse at each point, until a decision is made to stop (or the
decision is forced because a terminal node is encountered).

16

