
The Generation of Animated Sequencesfrom State Transition SystemsA.N.Clark and I.J.PalmerDepartment of Computing, University of BradfordBradford, West Yorkshire, BD7 1DP, UKe-mail: a.n.clark@comp.brad.ac.uk, i.j.palmer@comp.brad.ac.ukSeptember 18, 19971 AbstractWe address the issue of the construction of a computer animation system by com-posing together a collection of behaviours for the individual objects which are tobe animated. The behaviours are developed using a formal notation for state tran-sition systems. The notation is particularly
exible, allowing both a constructiveand constraining aproach to behaviour representation. The behaviour necessary foranimating Newton's Cradle for an arbitrary number of spheres is developed as anexample of the method.2 IntroductionThe use of computers to assist in the production of animation sequences is wellestablished. From simply being used to generate `in-betweened' 2-d images forkey-framed systems, to running complex simulations of particle systems, computersare used in every kind of animation today. Their use is, however, driven by theend result. The underlying method used for the animation is generally ignored infavour of assessing the aesthetic quality or the perceived `realism' of the �nishedanimation. This is, of course, the way in which all animations must ultimatelybe judged, but as animation systems and techniques become more complex, so itbecomes more important to analyse the methods and approaches used to generatethe animation to ensure that they are e�cient and relevant. In this paper we discussexisting techniques and propose a new more formal approach to the de�nition ofanimations.The structure of the paper is as follows. In the rest of this section we discussexisting animation techniques and identify the motivation for this work. Section3 gives an overview of the approach. Section 4 uses the approach to constructa behaviour for a simple example. Finally, Section 5 analyses the approach andidenti�es directions for future work.2.1 Traditional techniquesThe oldest way in which computers can be used to assist animation productionis the key-frame method. In this technique, the positions of objects are de�nedin certain `key-frames', and then suitable software can be used to generate theinterpolated frames in between those key-frames. Sophisticated techniques may beused to control the type of interpolation to give the desired motion [5, 12, 17, 18].This type of system is common in 2-d animation systems, but is less common in3-d systems. An extension of the technique, called parametric key-framing, is basedon de�ning the parameters of objects in the animation at key-frames (e.g. position,velocity and acceleration) [11, 13]. This is more suited to 3-d animation, sincetypically it allows closer control of the many degrees of freedom present in thesystem. This type of animation can be seen as o�ering explicit control, since exact1

Figure 1: Existing animation techniquescontrol can be exerted over all aspects of the objects in the animation, but limits
exibility and e�ciency since exact data needs to known/calculated in advance togenerate a given sequence.A relatively recent style of animation is that which uses simulation techniques[1, 4, 3, 6, 7, 14, 16, 20]. This operates by simulating the way in the objects inthe system behave (or are desired to behave) in the real world to produce theirbehaviour in the animation. Typical examples would be the simulation of Newton'slaws of motion to produce realistic acceleration of bodies in a system. This canproduce extremely convincing control of objects, but limits the exact knowledgeof their resulting behaviour. As such, these systems o�er implicit control, sincetheir behaviour is calculated from a set of rules or formulae that are prede�ned. Ifobjects do not behave as desired, these rules and formulae must be modi�ed andthe simulation repeated.Systems exist that o�er a hybrid of these two approaches in an attempt to o�erthe strengths of each, i.e. realistic behaviour through simulation and exact controlvia key-framing [10, 19]. It can also be argued, however, that they in fact incorporatethe weaknesses of each in that the simulation aspect can be unpredictable and thekey-framing limits
exibility. These three processes are shown diagrammatically inFigure 1.2.2 The need for a new approachBoth key-framed and simulation based animation systems use approaches that arenot derived from an analysis of the problem domain. Key-framed approaches arederived from traditional techniques, and as such the fundamental underlying conceptis one of achieving an exact behaviour without speci�c modelling of the entitiesinvolved. This means that the e�ectiveness of the �nal result depends primarilyon the skill of the animator. An example of this is shown in in work by Lasseterwhere by the motion of a `hopping' object is constrained from penetrating the
oorby adjusting its path, thus preventing the anomaly without an inherent model ofthe process [13]. The apparent realism of the �nal motion is entirely due to theexperience and knowledge of the creator.Simulation methods, in contrast, require accurate models to be created of real(or predicted) behaviour before anything can be de�ned. This behavioural model isthen either used to simulate/predict some object behaviour (in the case of scienti�cor engineering simulation), or is used as a tool to generate some pre-meditatedanimation. In the former case, the unde�ned nature of the output is the point ofthe process, i.e. it is designed to discover some unknown behaviour of the system.In the latter case, the unpredictability is an annoyance, since the desired outcomeis known and the simulation is being used to aid its production. For example,consider an animation of a `pool' table in which it is desired that a ball is `potted'.To generate this using simulation methods it is possible to create a model of thepool balls that obey Newton's laws of motion and then de�ne the balls positionsand initial velocities such that a ball is potted. This requires some pre-simulationcalculations, and possibly some iterative process to achieve the desired result, butthe required skill of the animator is reduced at the expense of the e�ort exerted inthe creation of the modelling process.The increase in complexity and required realism of animations means that moreand more time needs to be spent on the creation process. This is either spent duringthe speci�cation of the key-frame/interpolation information or on the development2

of the simulation model. A more e�cient approach would be to merely de�neexactly the behaviour of the objects to produce the desired animation. This is incontrast to the key-framed approach, where the de�nitions are not behavioural, andthe simulation approach where the de�nitions are behavioural but are not aimed atspecifying deterministic actions. The method that we introduce in this paper is sucha technique. It is a speci�cation method that converges on the desired animatedsequence from the initial set of all possible behaviours.2.3 The state transition approachTo develop a more e�cient method of producing animations, it is necessary to anal-yse the process from the beginning. Generally, the animation process begins with apre-meditated notion of what the �nal sequence will be like. This would typicallybe missing some of the details of the sequence, and would be primarily a conceptualmodel of the �nished animation. From this, some process must be used to generatewhat is ultimately a sequence of still images shown in quick succession. Each stillimage must be di�erent from the last in such a way that their rapid sequentialviewing produces the desired illusion of continuous changes in the sequence, e.g.motion of the objects in the scene.Because each still image di�ers from the last by some (usually small) �niteamount, it is logical and e�cient to exploit this in some way. The �rst way thatthis can be achieved is by maintaining the same scene model from one image to thenext. This would typically be in the form of a collection of objects linked togetherin a tree-type hierarchy [9], preserving geometric and visual appearance informationfrom one frame to the next. Using this approach, the de�nition of the initial frameinvolves the creation of the objects in the scene and placing them at their initialpositions. The generation of the rest of the sequence can then follow.From the �rst frame, there are an in�nite number of possible sequences thatcan follow, with only a �nite set (ideally with only one member) representing thedesired solution. The animation process must generate a member of the solutionset in the most e�cient way possible. The key-frame method works by knowing the�nal solution and working backwards to the initial frame. The simulation methodworks by generating the frames incrementally, with iteration to change the sequenceif the end product is not a member of the solution set. The method we describehere takes a di�erent approach, that of state restriction.Initially, each object in the system is de�ned as an individual state machinewith all possible inter-state transitions allowed, which formalises the in�nite set ofall possible sequences in such a way that restriction can follow. These separateobject state machines can then be restricted and combined repeatedly, with theresulting system converging on the desired animation machine. Further animationscan be produced by combining these complex machines to give new sequences. Withthis general outline in mind, we will now begin de�ning the process more formally.3 ApproachOur approach to the construction of animation systems views such a system as afunction:Behaviours �! Animation System �! Sequences of Sceneswhich accepts a behavioural description of a collection of objects which are to beanimated, and produces a sequence of scenes which are to be displayed. The de-scription of our approach is motivated by the following example: two perfect spheresare to be animated bouncing in two dimensions between two horizontal surfaces.3

If the spheres collide they will both reverse their directions. If the animation sys-tem is viewed as a function, the input will be a description of the spheres possiblebehaviours and starting positions, and the output will be a sequence of spherepositions.The animation system must produce a discrete sequence of scenes. This factpervades our approach and we have sought to provide mechanisms which allow thebehaviour of animated objects to be expressed as state transition systems. Further-more, the ability to construct an animation from modular units which describe thebehaviour of individual objects in the scene is highly desirable. Operations whichtransform and combine state transition systems meet this aim.The behaviour of an object is described as a state transition system, as anexpression in terms of transition system transformation and composition operationswhich build the object's behaviour from the behaviour of smaller sub-objects orpart-behaviours. There are two alternative ways to view the composition of such anexpression. Firstly, we might start with part-behaviours which are under-de�nedand tell only part of the story; the object is constructed by bolting the sub-partstogether. We refer to this as the constructive approach. Secondly, we might startwith part-behaviours which are over-de�ned, which contain the desired behaviourbut which contain more besides; the object is constructed by constraining andintersecting sub-parts. We refer to this as the constraining approach.Both of these approaches are useful in producing a behaviour description for anobject. For example, given a behaviour description of a single sphere, the descriptionof two spheres is constructed by merging two copies together so that the result is thesum of the parts. Alternatively, we could intersect two overlapping behaviours. The�rst is a description of a sphere which behaves correctly when it hits a horizontalsurface and is completely unconstrained everywhere else. The second is a descriptionof a sphere which behaves correctly unless it comes into contact with a horizontalsurface where its behaviour is unconstrained. The description of a well behavedsphere is formed by merging the two behaviours so that the result is the intersectionof the two parts.The choice of whether to use a constructive approach or a constraining approachdepends on the characteristics of the application. The constructive approach isuseful where general statements can be made which cover large classes of legalobject behaviour. The constraining approach is useful where general statementscan be made which cover large classes of illegal object behaviour. We propose thatin practice the speci�cation of an object's behaviour will require a mixture of theseapproaches and the system which we describe in this paper supports both.A bene�t of using the constraining approach in the initial stages of object be-haviour description is that in general we can start with the complete unconstrainedbehaviour for all object components. As such, the behaviour which we wish toexhibit is guaranteed to be present at the outset. This is not true of the construc-tive approach which starts with nothing and must �nd a way of constructing therequired behaviour. Alternatively, the constraining approach presents the problemof checking when to stop since although the initial description contains the desiredbehaviour, it also contains illegal behaviour which must be deleted through succes-sive constraints. The constructive approach does not su�er from this problem sinceit is exactly the sum of its parts and will not contain any rogue behaviours.The behaviour of an object is represented as a state transition system [2]. Forexample, the unconstrained behaviour of a bouncing sphere is de�ned as the totallyconnected state transition system where the states represent the position of thesphere and the transitions represent sphere movements for a given unit of time1.1We are assuming constant sphere velocity. This can be varied to describe accelerating anddecelerating spheres by increasing the complexity of the state transition system.4

Since the transition system is totally connected, a sphere can move from any positionto any other position in a single time unit. Starting with such a description hasthe advantage that the behaviour which we want to exhibit for a single sphereis complex: bouncing at walls and o� other spheres must be taken into account,every angle of trajectory must be taken into account, etc. By starting with anunconstrained behaviour, we guarantee that all the legal behaviours are present.Let S1 be the unconstrained behaviour of a single sphere. To animate this be-haviour, the behaviour is executed, from some starting position, as a non-deterministicstate transition system which produces the sequence of the states which are visited.Figure 2.1 shows part of the behaviour S1; given any starting position, a spheremay move to any other position in a single move. Notice that the sphere is not wellbehaved at the horizontal surfaces which are shown as dashed lines.The animation of S1 will, in general, produce a very unrealistic bouncing sphere.However, every once in a while, the animation will produce a correctly bouncingsphere. The behaviour S1 is represented as the following expression C(�) where �is a set containing all possible sphere positions.A behaviour description is restricted by throwing away certain illegal movements.For example, we only want to allow sphere moves between adjacent positions, sowe remove the possibility of the sphere jumping around at random. Notice thatthis leaves those moves which randomly change direction, because we will requirethese later when specifying the behaviour of spheres which collide and bounce ofhorizontal surfaces and other spheres. Such a restriction is represented as Snp whereS is a behaviour description and p is a statement describing legal sphere moves. Theresult is a behaviour description in which all transitions have been removed whichdo not satisfy p. Restrictions may be nested, e.g. Snpnp0.Let p1 describe sphere moves which travel a constant distance, p2 describe spheremoves which bounce correctly at the upper horizontal surface and p3 describe spheremoves which bounce correctly at the lower horzontal surface. Part of the behaviourS1np1 is shown in Figure 2.2 where a sphere may only move to a position whichis a constant distance away from its current position. The behaviour S1np1np2np3describes spheres which move without jumping and which bounce correctly. Partof this behaviour is shown in Figure 2.3, where it is impossible for a sphere to movethrough the horizontal surfaces.An alternative way of constraining a behaviour is to intersect it with anotherbehaviour. The behaviour S1np1np2, shown in Figure 2.4, is correct for sphereswhich bounce at the upper horizontal but is completely unconstrained at the lowerhorizontal. On the other hand, the behaviour S1np1np3, shown in Figure 2.5, iscorrect for spheres which bounce at the lower horizontal but is completely un-constrained at the upper horizontal. The intersection of these two behaviours,shown in Figure 2.3, is correct for spheres at both horizontals. This is expressedas S2 = (S1np1np2)&(S1np1np3). Notice that the behaviour shown in Figure 2.3can be expressed in more than one way. This suggests that there are some usefulequivalences between behaviour expressions, e.g. Snpnp0 = (Snp)&(Snp0), althoughit is beyond the scope of this paper to investigate these issues any further.The behaviour S2 allows spheres to randomly move sideways (zig-zag) whilstbouncing between horizontal surfaces. The complete behaviour description for asingle bouncing sphere is S2np4 where p4 is a statement describing non-zig-zaggingmoves. The single-sphere system describes behaviour in which a sphere continuesin the current direction until it hits a horizontal surface where it changes direction.Part of this behaviour is shown in Figure 2.6. The zig-zagging behaviour S2 comesin useful when constructing two spheres bouncing between the horizontals since asingle sphere will perform a zig-zag when it hits the second sphere.The behaviour of a two sphere system, S3, is described by duplicating S2 sothat each pair of sphere positions in S2 are contained in a state of S3. This is5

�g. 2.1 �g.2.2�g. 2.3 �g.2.4�g. 2.5 �g. 2.6Figure 2: The development of a single bouncing sphere�g. 3.1 3.2 3.3Figure 3: The development of two bouncing spheresrepresented as S3 = S2 � S2 and produces a behaviour description which is freelyconstructed by combining all the possible behaviours in S2 with itself. There is norestriction on the number of times a behaviour description can be duplicated in thisway, S2 � S2 � S2 is the basis of a three sphere behaviour and S2 � S2 � S2 � S2 isthe basis of a four sphere behaviour, etc.The sum of two behaviours adds together the moves from both and is representedas S + S0. Suppose that p5 is a statement describing two-sphere system moveswhich never collide, p6 is the opposite of p5, p7 is a statement describing two-spheresystem moves which never zig-zag and p8 is the opposite of p7. The behaviourS4 = S3np5np7 describes only those two-sphere systems which never collide, notethat there are some animations of S4 which will terminate prematurely since thespheres may head towards each other and must stop before colliding. Once the twospheres have stopped, they will hover there forever since they are not able to collideor change course. Figure 3.1 shows part of the behaviour S4.The behaviour S5 = S3np6np8 describes only those two-sphere systems whichbounce on collision. The restriction p6 removes all sphere movements which do notlead immediately to or from a collision. The behaviour S3np6 describes two spherecollisions which are completely unconstrained as to their outcome, for example theymay pass through each other. The constraint p8 forces all the collisions to zig-zag.Figure 3.2 shows part of the behaviour S5.The two behaviours are merged to produce the correct two-sphere behaviourdescription, S4 + S5. Figure 3.3 shows part of the two sphere behaviour when thespheres start at the upper horizontal, collide, bounce o� each other, hit the lowerhorizontal and �nally bounce o� in opposite directions.4 An example behaviourThis section describes a detailed worked example of using the approach described inx3. The example is Newton's Cradle in which several spheres of equivalent size andmass are suspended from a single rod by rigid string (a single example of which isshown in Figure 4). Initially, all of the spheres are at rest with their strings vertical.The system is initiated by lifting a number of spheres to the left or right and thenreleasing them. The system is frictionless and a number of possible behavioursare exibited depending upon how many spheres there are in total, how many arelifted at the start and how many are initially at rest. We assume that the reader isfamiliar with the behaviour of Newton's Cradle and that we can take the behavioural6

Figure 4: A single ball from Newton's CradleFigure 5: Possible positions of simpli�ed ballspeci�cation as given.The behaviour for the animation relies on the de�nitions which are given inappendix A. We also make a number of simplifying assumptions which are discussedin x5: the system is frictionless; the system does not support acceleration; thepositions which spheres may occur in are �1 which corresponds to a sphere lifted tothe left extreme, 0 which corresponds to a sphere at rest and 1 which corresponds toa sphere lifted to the right extreme (Figure 5); �nally, spheres may have the followingvelocities: �1 when moving to the left, 0 when at rest, and 1 when moving to theright. For example, if a sphere is at position �1 with velocity 0 then it is at rest onthe far left.The position graph of a single-sphere system, G1 = C(f0;�1; 1g), is totallyconnected as shown in Figure 6. It is impossible for the sphere to move from position�1 to position 1 without passing through position 0 so these transitions are removed,producing the graph G2 = G1np where p(�1; 1) = false and p(1;�1) = false andotherwise p is true. The new graph is shown in Figure 7, with the deleted transitionsshown as broken lines. The traces of G2 include the following: �1; 0; 1; 0;�1 and0; 1; 0; 1; 0; 1.The rate of change of position the sphere relates its current position to its nextposition, as shown in Figure 8. The rate of change graph of a single-sphere system,G3 = C(f0;�1; 1g), is totally connected, and is shown in Figure 9. The graph whichdescribes the free movement of a single-sphere system is G4 = G2�G3. The tracesof G4 include the following:(�1; 1); (0; 1); (1;�1); (0;�1); (�1; 1)and (0; 1); (1;�1); (1; 1); (1;�1); (0; 1); (1;�1)The behaviour described by the single-sphere system graph is now restrictedby analysing the desired behaviour of the sphere in each of the di�erent positions.The behaviour is speci�ed separately for each position, producing a collection ofbehaviour graphs. The graphs are then merged into a single graph which describedthe desired overall behaviour for a single-sphere system.Firstly, the behaviour which is common to all the positions is that a sphere maycontinue from its current position in the direction indicated by the rate of changecomponent. This produces the graph G5 = G4np1 where :p1((p1; v1); (p2; v2)) = equal(p2; p1 + v1)If the sphere is at position 0 and at rest then it may suddenly start moving dueto a collision. Alternatively, if the sphere is at position 0 and is moving then it maysuddenly stop or change direction due to a collision. Each of the individual possi-bilities is speci�ed as a graph and then these are merged to specify the behaviourFigure 6: Initial position graph of a single ball7

Figure 7: Graph of ball with disjoint motions deletedFigure 8: Relationship between position and rate of change of position for singleballof the sphere at 0: G6 = G4n(0; 0)) (0;)G7 = G4n(0;)) (0; 0)G8 = G4n(0; x)) (0;�x)G9 = G6 +G7 +G8G6 describes the behaviour of single-sphere systems where the sphere starts fromposition 0 at rest, G7 describes the situation where the sphere comes to rest at 0,G8 describes the situation where the sphere changes direction at 0 and G9 mergesthe graphs to produce G9 which describes legal behaviour at 0.If the sphere is at either extremity then it is either slowing down, at rest orreturning towards 0. This is expressed as a pair of graphs for each extremity whichare then merged: G10 = G4n(1; 1)) (1; 0)G11 = G4n(1; 0)) (1;�1)G12 = G10 +G12G13 = G4n(�1;�1)) (�1; 0)G14 = G4n(�1; 0)) (�1; 1)G15 = G13 +G14The graph G10 forces the sphere to slow down at position 1 and G11 causes a spherewhich is at rest in position 1 to fall towards 0. Graphs G13 and G14 force similarbehaviour at �1. The individual behaviours are merged to produce G12 and G15which correspond to behaviour at positions 1 and �1 respectively.The single-sphere behaviour, G1, is de�ned asG1 = G5&G9&G12&G15The traces of G1 incude the following:(�1; 0); (�1; 1); (0; 1); (1; 1); (1; 0); (1;�1); (0;�1)which represents a swinging sphere and(�1; 1); (0; 1); (0; 0); (0; 0); (0;�1); (�1;�1); (�1; 0); (�1; 1)which represents a sphere on the left which swings down to rest, stays at rest fortwo time units and then swings back up to the left.Figure 9: Graph for rate of change of position of a single ball8

Given the behaviour speci�cation, G1, for a single-sphere system, a behaviourspeci�cation for a two-sphere system is constructed by composing together twosingle-sphere systems and then imposing restrictions on the behaviour of the inter-actions between the spheres. The graph G16 = G1 �G1 has states((p1; v1); (p2; v2))containing pairs of position and change in position information. The pair (p1; v1) de-scribes the left hand sphere of the two-sphere system and the pair (p2; v2) describesthe right hand sphere.G16 must be restricted in two ways in order to describe legal two-sphere be-haviour. Firstly, the traces of G16 will contain sequences of the following form:((0; 1); (0;�1)); ((1; 1); (�1;�1)); : : :which describes two spheres passing through one another in order to get to theextreme positions. Secondly, the traces of G16 contains sequences where a spherewill spontaneously leap up from being at rest or will suddenly come to an abrupthalt without any force being involved.The �rst problem is solved by restricting G16 so that for each node (x1; x2) theinformation x1 describes a sphere which is never at a position to the right of thesphere described by x2. Since positions are integers, the restriction is performed interms of a predicate which forces the x1 position to be less than or equal to the x2position in all cases: G17 = G16n((p1;); (p2;))& p1 � p2The second problem involves forcing each action in the two-sphere system tooccur with respect to an equal and opposite action. For example, when a sphereon the left suddenly
ies up to the left from rest, this must be in response to asphere on the right
ying in from the right and coming to rest, i.e. a collisionoccurs. The problem is solved by restricting G16 so that collisions are the only wayin which a sphere may change direction. This is done in three stages: �rstly, forany transition there must be an equal number of direction changes left and right;secondly, for each direction change in the left sphere there must be an equal anopposite direction change in the right sphere; �nally, for each direction change inthe right sphere there must be an equal an opposite direction change in the leftsphere. In order to be useful later on, the constraint is generalised to multi-spheresystems.The predicate changeleft is de�ned to hold when a sphere at position 0 changesdirection to the left,changeleft((p; v); (p0; v0)) = equal(p; p0)& equal(p; 0)& v0 < vThe operator changesleft produces a list of transition pairs each of which changeleft. The arguments t1 and t2 are binary trees of the same shape and occur as graphnodes in multi-sphere systems. Each of the leaves of t1 and t2 are sphere states ofthe form (p; v): changesleft(t1; t2) = (# (t1 � t2))nchangeleftSimilarly, the predicate changeright and the operator changesright are de�ned asfollows: changeright((p; v); (p0; v0)) = equal(p; p0)& equal(p; 0)& v < v0changesright(t1; t2) = (# (t1 � t2))nchangeright9

The predicate samechanges forces the same number of changes to occur on the rightas on the leftsamechanges(t1; t2) = equal(#(changesleft(t1; t2));#(changesright(t1; t2)))The in�x predicate $ holds between two pairs of velocities (v1; v01) $ (v2; v02)when v1 is the same as v02 and v01 is the same as v2. The predicate represents therelationship between sphere velocities when a collision occurs at position 0.The in�x predicate - holds between a pair of velocities and a pair of spherestates when the sphere states are both at position 0 and the associated velocitiesrepresent a collision as de�ned by $:(v1; v01) - ((p; v2); (p0; v02)) = equal(p; p0)&equal(p0; 0)¬equal(v; v0)&(v1; v01)$ (v2; v02)The in�x predicate ,! holds between a pair of sphere states, ((p; v); (p0; v0)), and alist of sphere states l: ((p; v); (p0; v0)) ,! l when the left hand operand represents achange in a sphere state arising from a collision with one of the spheres in l:((p; v); (p0; v0)) ,! l = atzero) exists((v; v0) -)lwhere atzero = equal(p; p0)&equal(p0; 0)¬equal(v; v0)The following two predicates, causesleftright and causesrightleft, hold between pairsof binary trees of sphere states, being the node values of multi-sphere systems. The�rst predicate holds when every change in velocity at 0 and on the left is caused byan equal and opposite change on the right. The second predicate holds when everychange in velocity at 0 and on the right is caused by an equal and opposite changeon the left: causesleftright(t1; t2) = all(,!)(" (# (t1 � t2)))causesrightleft(t1; t2) = all(,!)(" (rev(# (t1 � t2))))The graph G2 describes the legal behaviour of two-sphere systems. It is constructedby starting with the unconstrained two-sphere system behaviour G16 and restrictingit so that all changes occur at position 0, the same number of changes always occurand each change occurs as the result of a collision:G2 = G17n(samechanges& causesleftright& causesrightleft)The graph G2 speci�es the behaviour of a two-sphere system and was constructedby composing a pair of single-sphere behaviour speci�cations and then imposingsome extra constraints. Consider two copies of G2 which are merged so that therightmost sphere of the �rst copy is overlaid on top of the leftmost sphere of thesecond copy. Such a merge will produce G3 which is the behaviour speci�cation ofa three-sphere system. The behaviour speci�cation of a four-sphere system can beconstructed in exactly the same way by merging G3 and G2 on a common sphere.Using this technique any multi-sphere system can be speci�ed.The operator
 will merge two graphs on a common element. We must becareful, however as to the order in which the restrictions are performed on themerged graphs, for example, G3 = G2
G2 would not produce the desired behaviourspeci�cation since the restrictions which enforce that each change in velocity occursdue to a collision apply only to the individual copies of G2 and will not apply acrossthe system, e.g. between the leftmost sphere and the rightmost sphere which occur10

Figure 10: Simple example animationFigure 11: A more complex examplein di�erent copies of G2. In order to achieve the desired a�ect, the restrictions areapplied after the merge:G3 = (G17
G17)n(samechanges& causesleftright& causesrightleft)and G4 = (G17
G17
G17)n(samechanges& causesleftright& causesrightleft)and in generalGn = (Oi=2:::n�1Gi17)n(samechanges& causesleftright& causesrightleft)Frames of some animations generated in this way are shown in Figures 10 and11. The �rst shows the most simple case, that of an animation starting with asingle displaced ball. The second's starting position has one displaced ball at oneend and two at the other. The spheres' positions were de�ned by the Haskellimplementation of the system described in this paper, with the �nal sequence ofimages being produced using the REALISM system [15].5 Conclusions, analysis and further workWe have identi�ed a number of shortfalls in the mechanisms currently used for thedevelopment of behaviour in computer animation systems. We have proposed a newmechanism based upon state transition systems whereby behaviours are constructedincrementally by composing and restricting state machines which describe di�erentelements of the overall behaviour. Behaviours can be built using a constructiveapproach and a constraining approach; this leads to a very
exible developmentmethod. A worked example of the approach has been given by developing a be-haviour description for Newtons' Cradle with an arbitrary number of spheres. Thissection draws conclusions from the work, analyses the method and proposes areasfor future development.We present a critical analysis of the methods used in this paper, most of thesepoints will be addressed in the following paragraphs on further work:� The examples which have been presented in this paper are small and ideal-istic. In order to propose the method as being able to address large classesof animation applications further evidence must be presented with respect tomore realistic scenarios.� Although the system described in this paper has been implemented, the be-haviour was initially rather slow due to the combinatorial nature of the rep-resentations. It must be shown that the methods which are proposed can bee�ciently implemented by seeking program abstractions which can be used ina wide variety of applications. 11

� The method which is proposed will not apply to all animation applications.It is particularly suited to those applications which have easily identi�ablecomponents each of which has a behaviour and to those applications wherethe developer knows the intended behaviour in advance.� The behavioural descriptions from existing animation systems, for examplea system which models Newton's Cradle using physical laws and constraints,may not be appropriate for reuse by the methods proposed in this paper.� As the complexity of applications grow, the method will su�er from the prob-lem of determining whether or not the desired behaviour has been achievedand whether or not any undersirable behaviour is present.The state transition notation which is described in this paper allows complexobject behaviour to be developed for use in animation systems. Although the be-haviours use a notation with a formally de�ned semantics, the speci�cation of thebehaviour and its veri�cation are performed informally. If these techniques are to beused with respect to complex animation applications then veri�cation will becomeincreasingly important. A number of related logics are proposed for the veri�cationof state transition systems (these are surveyed in [2]). An area for further work isto de�ne a logic for the state transition systems used for animation and to developa veri�cation method.Computer support of the development will be essential for complex animationapplications and support could take a number of di�erent forms. An automateddeduction system could be used to verify a behaviour against a speci�cation andto determine whether or not a modi�cation leads to an incomplete or inconsistentbehaviour. A program could be developed which allows behaviours to be exercisedin various ways, allowing the developer to check that changes have the desired result.A graphical user interface could be developed which allows a developer to build upa behaviour by manipulating a visual representation of the state transition systems.Complex animations will require far more sophisticated transition systems thanthose described in this paper. For example, all of the transitions which are per-formed in the Newton's Cradle example, assume a constant unit of time, and accel-eration is not taken into account in the state information. We believe that the statemachine formalism can accommodate variations which will support this type of be-haviour. For example, transitions could be annotated with a length of time which ittakes to move from the source state to the target state, or transition systems couldbe parameterised with respect to their granularity by annotating transitions withfunctions which generate intermediate states to any level of detail. An interestingvariation is to link a number of state transition systems together by guards, theguards would detect when a particular object's state has become well behaved insome sense and can be animated with respect to a simpler, and therefore more e�-cient, state machine. An area for further work is to construct a more sophisticatedanimation application and to construct the desired behaviour using state transitiontechnology. For example, a Newton's Cradle behaviour which deals with friction(possibly by extending the state components with extra decelerating components),with acceleration (possibly by extending the state components with extra accel-eration components) and with a variable number of sphere positions (possibly byextending the transitions with functions which compute the intermediate states toany level of detail).The example of Newton's Cradle has been implemented in the functional pro-gramming language Haskell [8] using the techniques which are described in thispaper. Haskell is ideally suited to this task since it is lazy, i.e. it evaluates onlythose program expressions which are required to produce the output and never eval-uates the same program expression twice. The results have been encouraging, since12

the programming facilities provided by Haskell allow the state transition constructsto be expressed very clearly, although some knowledge of program transformationwas required in order to translate the program to exhibit acceptable performance.References[1] B. Arnaldi, G. Dumont, and G. Hegron. Animation of physical systems fromgeometric, kinematic and dynamic models. InModelling in Computer Graphics.1991.[2] A. Arnold. Finite Transition Systems. Prentice Hall International Series inComputer Science, 1994.[3] D. Bara� and A. Witkin. Global methods for simulating contacting
exiblebodies. In Computer Animation '94, pages 1{12, Los Alamitos, CA, 1994.IEEE Computer Society Press.[4] David Bara�. Analytical methods for dynamic simulation of non-penetratingrigid bodies. Computer Graphics, 23(3):223{232, July 1989.[5] Richard H. Bartels and Ines Hardtke. Speed adjustement for key-frame inter-polation. In Proceedings of Graphics Interface '89, pages 14{19, June 1989.[6] R. Barzel and A.H. Barr. A modelling system based on dynamic constraints.Computer Graphics, 22(4):179{188, August 1988.[7] L. Dasheng, Y. Long, and L. Jiuchin. Robot graphics simulation based onkinematics and dynamics. In Proceedings of Beijing International Conferenceon System Simulation and Scienti�c Computing, pages 455{458, 1989.[8] P. Hudak et al. The Haskell report. ACM SIGPLAN Notices, 27(5), 1992.[9] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.Computer Graphics: Principles and Practice, second edition. Addison-Wesley,Reading, MA, 1990.[10] L. Forest, N. Magnenat-Thalmann, and D. Thalmann. Integrating key-frameanimation and algorithmic animation of articulated bodies. In Tsiyasu L. Kunii,editor, Advanced Computer Graphics (Proceedings of Computer Graphics Tokyo'86), pages 263{274. Springer-Verlag, 1986.[11] L. Forest, D. Rambaud, N. Magnenat-Thalmann, and D. Thalmann. Keyframe-based subactors. In M. Green, editor, Proceedings of Graphics Interface '86,pages 213{216, May 1986.[12] D. H. U. Kochanek and R. H. Bartels. Interpolating splines for keyframeanimation. In S. MacKay, editor, Graphics Interface '84 Proceedings, pages41{42, 1984.[13] J. Lasseter. Principles of traditional animation applied to 3d computer anima-tion. Computer Graphics, 21(4):35{44, July 1987.[14] G. Miller. A dynamics-based modeler for character animation. In ComputerAnimation '91, pages 149{168, Tokyo, 1991. Springer-Verlag.[15] I.J. Palmer and R.L. Grimsdale. REALISM: Resuable Elements for Animationusing Local Integrated Simulation Models. In Computer Animation '94, pages132{140, Los Alamitos, CA, 1994. IEEE Computer Society Press.13

[16] A. Pentland and J. Williams. Good vibrations: Modal dynamics for graphicsand animation. Computer Graphics, 23(3):215{222, July 1989.[17] W. T. Reeves. Inbetweening for computer animation utilizing moving pointconstraints. volume 15, pages 263{269, August 1981.[18] T.W. Sederberg and E. Greenwood. A phsyically based approach to 2-d shapeblending. Computer Graphics, 26(2):25{34, July 1992.[19] M. van de Panne, E. Fiume, and Z. Vranesic. Reusable motion synthesis usingstate-space controllers. Computer Graphics, 24(4), August 1990.[20] C.W.A.M. van Overweld. An interactive approach to dynamic simulation of3-d rigid body motions for real-time interactive computer animation. VisualComputer, 7(1):29{38, 1991.A De�nitionsLet f : S ! P be a function with a domain dom(f) � S and a range ran(f) �P which are both �nite sets. A function is represented as a �nite collection ofindividual mappings fs1 7! p1; s2 7! p2; : : :g and f(s) = p when s 7! p 2 f . Afunction is total when dom(f) = S. A function is restricted with respect to a setS0 � dom(f), written fnS0 to produce the function fs 7! pjs 7! p 2 f; s 2 S0g.A graph is a 4-tuple (N;E; s; t) where N is a set of nodes, E is a set of edges,and both s and t are total functions s : E ! N and t : E ! N . The functions maps an edge to its source node and the function t maps an edge to its targetnode. A graph is totally connected when, for any pair of nodes n1; n2 2 N thereexists an edge e 2 E such that s(e) = n1 and t(e) = n2. If (N1; E1; s1; t1) is asub-graph of (N2; E1; s2; t2) then each component of the �rst graph is a subset ofthe corresponding component of the second graph.A graph (N;E; s; t) is restricted with respect to a predicate p : N � N ! B,written (N;E; s; t)np. The restriction is applied between the source nodes and targetnodes of edges in the graph. The result is the largest sub-graph of the originalfor which the predicate holds between all source and target nodes of edges. Therestriction is de�ned as follows: (N;E; s; t)np = (N 0; E0; s0; t0) where E0 = feje 2E; p(s(e); t(e))g, s0 = snE0, t0 = tnE0 and N 0 = ran(s0) [ran(t0).The sum of two graphs (N1; E1; s1; t1) + (N2; E2; s2; t2) is the graph which con-tains all of the nodes and edges from both graphs. Where the two graphs havenodes in common these are merged. The result of the sum is the following graph(N1 [N2; E1 [E2; s1 [s2; t1 [t2).The intersection of two graphs (N1; E1; s1; t1)&(N2; E2; s2; t2) is the graph whichcontains all of the nodes and edges which the operand graphs have in common. Theresult of the intersection in the following graph (N1 \N2; E1 \ E2; s1 \ s2; t1 \ t2).Predicates p which are used to restrict graphs using the notation Gnp maybe composed using the in�x & and) operators2. The conjunction operator istranslated as follows: Gnp1& p2 is equivalent to (Gnp1)&(Gnp2). The implicationoperator ony makes sense when the graph contains nodes which are pairs: Gnp1)p2 is equivalent to Gnp where:p(x; y) = if p1(x) then p2(y) else truePredicates which are used to restrict graphs may be speci�ed as patterns, wherea pattern p is one of the following: an identi�er i, a constant k, a wildcard or a2Note that when not used in graph restriction predicates, these symbols have their usual mean-ing from positional calculus 14

pair of patterns (p1; p2). The pattern k is true only when it is applied to the valuek otherwise it is false. The pattern is true in all cases. The pattern (p1; p2) istrue when it is applied to pairs whose �rst component satis�es p2 and whose secondcomponent satis�es p2 otherwise it is false. Identi�ers in patterns allow componentsacross di�erent patterns to be equated, for example the predicate (1; x)) (x; 1) istrue when applied to values ((a; b); (c; d)) where either a is not the constant 1 orboth a and d are 1 and b and c are the same value.The product of two graphs (N1; E1; s1; t1)� (N2; E2; s2; t2) is the largest graphwhose nodes are pairs of nodes from N1 and N2, whose edges are pairs of edgesfrom E1 and E2 and whose edges are only de�ned between pairs of nodes whenthe original graphs had edges between the pairwise components. The product isthe graph (N1 �N2; E1 �E2; s; t) where s(e1; e2) = (s1(e1); s2(e2)) and t(e1; e2) =(t1(e1); t2(e2)) by which we mean that s is de�ned only in the case that both s1and s2 are de�ned for a given input pair and similarly for t.A graph homomorphism is a pair of functions:(f; g) : (N1; E1; s1; t1)! (N2; E2; s2; t2)which maps one graph to another graph. The signature of f is f : N1 ! N2 and thesignature of g is g : E1 ! E2. The homomorphism (f; g) maps a graph to anothergraph by transforming the nodes with f and the edges with g whilst preservingthe structure of the original graph. A homomorphism (f; g) is applied to a graph(N;E; s; t) to produce the following graph:(ff(n)jn 2 Ng; fg(e)je 2 Eg; fg(e) 7! f(n)je 7! n 2 sg; fg(e) 7! f(n)je 7! n 2 tg)Pairs of elements, (x; y), can be nested to produce binary trees((a; b); (x; (y; z))). By traversing the trees from left to right, the tree imposes a total ordering on thevalues at the leaves of the tree. The operator right extracts the rightmost leaf valueof a binary tree. The operator left extracts the leftmost leaf value of a binary tree.The operator merge is applied to two binary trees merge(t1; t2) and produces a newbinary tree by in which either the right most leaf value of t1 has been replaced byt2 or the leftmost leaf value of t2 has been replaced by t1. The outcome of merge isnon-deterministic since either outcome will do for the purposes of this work. Givena pair of binary trees t1 and t2, t1 � t2 is the binary tree which is constructed bypairing the leaves of t1 and t2 which occur at exactly the same position, for example((a; b); (c; d))� ((v; w); (x; y)) = (((a; v); (b; w)); ((c; x); (d; y)))If t1 and t2 do not have the same shape then t1 � t2 is not de�ned.A binary tree is
attened to produce a sequence of the values at its leaves usingthe operator #, for example # ((a; b); (c; d)) = abcd. A sequence s is reversed usingthe operator rev and is restricted with respect to the predicate p by snp. The lengthof a sequence is produced by the operator #. Given a sequence s, the operator "produces the sequence whose elements are pairs (x; s0) where x is an element of sand s0 is the su�x sequence of x in s, for example " (abcd) = (a; bcd)(b; cd)(c; d)(d; �)where � is the empty sequence. The operator all is applied to a predicate p, pro-ducing a new predicate which is applied to a sequence s and is true when p is truefor each element of s. The operator exists is applied to a predicate p and producesa predicate which is applied to a sequence s and is true when p is true for at leastone element of s.Two graphs G1 and G2 are merged on a common element G1
 G2. The out-come is a graph whose nodes are de�ned to be those of the product G1 �G2 where15

the rightmost component of the node originating in G1 is the same as the left-most component of the node originating in G2. The merge is de�ned to produce(merge; I)((G1�G2)np) where p is a predicate holding between pairs of binary treesand is de�ned p(t1; t2) = equal(right(t1); left(t2)). The symbol I is stands for theidentity operator and the operators equal, notequal, <, �, +, etc. are de�ned tohave the obvious meanings.The traces of a graph is a set of all possible sequences of nodes which areencountered by starting at a particular node and then traversing the graph, choosinga single edge to traverse at each point, until a decision is made to stop (or thedecision is forced because a terminal node is encountered).

16

