
A User Study on Curved Edges in Graph Visualization

Kai Xu, Chris Rooney, Peter Passmore, Dong-Han Ham, and Phong H. Nguyen

(a) Straight edge (b) Lombardi layout (c) Slightly curved edge (d) Heavily curved edge

Fig. 1. Examples of edge types used in the cured edge study.

Abstract—Recently there has been increasing research interest in displaying graphs with curved edges to produce more readable
visualizations. While there are several automatic techniques, little has been done to evaluate their effectiveness empirically. In
this paper we present two experiments studying the impact of edge curvature on graph readability. The goal is to understand the
advantages and disadvantages of using curved edges for common graph tasks compared to straight line segments, which are the
conventional choice for showing edges in node-link diagrams. We included several edge variations: straight edges, edges with
different curvature levels, and mixed straight and curved edges. During the experiments, participants were asked to complete network
tasks including determination of connectivity, shortest path, node degree, and common neighbors. We also asked the participants to
provide subjective ratings of the aesthetics of different edge types. The results show significant performance differences between the
straight and curved edges and clear distinctions between variations of curved edges.

Index Terms—Graph, Visualization, Curved edges, Evaluation.

1 INTRODUCTION

It seems that straight lines seldom occur in natural objects and that
humans actually prefer curved lines [3]. Thus it may not seem sur-
prising that in aesthetics, curved lines are often to be preferred over
straight ones, as found for example in Hogarth’s serpentine Line of
Beauty [16]. Other examples include the works by American artist
Mark Lombardi [15], who is famous for portraying the social networks
behind financial and political scandals with curved edges. Manually
produced network diagrams, such as metabolic pathways and metro
network maps, often contain curved edges as well. A increasing num-
ber of automatic techniques for producing network visualizations with
curved edges are being developed. One example is the visualization of
professional networks on LinkedIn1, in which curved edges are used
to depict the relationships among the users. Started by the work of
Holten [17] and Dickerson et al. [7], there are an increasing number of
techniques that utilize the flexibility of curved edges, i.e., the possibil-
ity to change curvature direction and level, to reduce visual complex-
ity by re-routing edges as curved lines and “grouping” or “bundling”
neighboring edges together. Such methods are commonly known as ei-

• Kai Xu is with Middlesex University, E-mail: k.xu@mdx.ac.uk
• Chris Rooney is with Middlesex University, E-mail: c.rooney@mdx.ac.uk
• Peter Passmore is with Middlesex University, E-mail:

p.passmore@mdx.ac.uk
• Dong-Han Ham is with Chonnam National University,

donghan.ham@gmail.com
• Phong H. Nguyen is with Middlesex University, E-mail:

p.nguyen@mdx.ac.uk

Manuscript received 31 March 2012; accepted 1 August 2012; posted online
14 October 2012; mailed on 5 October 2012.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

1http://inmaps.linkedinlabs.com

ther edge bundling or confluent drawing approaches respectively. Ad-
ditionally, there are methods that aim to automatically produce graph
visualizations with a style similar to that of the works by Mark Lom-
bardi, with the Lombardi Spring Embedder algorithm [6] being such
an example.

Many examples are available to demonstrate the results of graph
visualization with curved edges. However, there have been limited
number of studies to empirically evaluate their effectiveness on com-
mon graph-related tasks. The study by Bar and Neta [3] mainly tested
the psychological reaction to straight and curved lines, not the per-
formance of graph-related tasks. Another study [30] compared hier-
archical edge bundling against node-link diagrams with five software
developers. However, the data and tasks were software engineering-
specific, and can not be easily generalized.

In this paper we present the results from two experiments study-
ing the impact of edge curvature on general graph readability. Fig. 1
shows the different types of edges used in the experiments. The first
experiment compared graphs with constant edge curvatures level, i.e.,
all the edges in a graph have the same level of curvature. The sec-
ond experiment examined the case that edges have varying curvature
within a graph, such as those generated by the Lombardi force-directed
layout [6] (Fig. 1(b)). The experiment results showed significant dif-
ferences between the task performance using straight and curved edges
and also among different types of curved edges.

The remainder of the paper is organized as follows. Section 2 de-
scribes previous work on curved-edge visualization and graph visual-
ization evaluation. Section 3 gives an overview of the experimental
design. The details of the two experiments, including the setup and
procedures, and results, are described in Section 4 and 5 respectively.
Finally, Section 6 concludes the paper with the discussion of possible
future work.

(a) Node A has perfect angular reso-
lution, but not the other nodes.

(b) A Lombardi drawing with all the
nodes have perfect angular resolution

Fig. 2. Lombardi drawing example.

2 RELATED WORK

2.1 Graph Visualization with Curved Edges

Curved edges have been long used to illustrate self loops and multiple
edges between a pair of nodes [5], which are not possible with straight
line segments. Examples include the “Arc Diagram” [33] in which all
the nodes are placed on a horizontal line and half-circled lines are used
to draw the connections among them. The PivotGraph [34] is another
example in which curved edges are used to draw the aggregated rela-
tionship between nodes. The Gephi [4] network analysis software also
uses curved edges to show multiple directed edges between nodes. Al-
gorithms have been proposed to produce curved edges to avoid node-
edge overlapping such as those used in the GraphViz package [13].
In this case, curved edges are supplementary to straight ones, which
account for the majority of the edges.

Curved edges allow more display space compared to their straight
counterparts and potentially reduce visual clutter. The same number
of edges can occupy more space when drawn as curves than straight
lines. This can alleviate edge cluttering problems, which is common
in real-world graphs such as “small-world” networks [35] that have
small graph diameter and densely clustered regions. One of the early
works that exploited this property was the EdgeLens [36]. It is an
interaction technique that dynamically re-draws the edges close to a
point of interest from straight to curved to reduce edge clutter.

Curved edges also appear in many visualization techniques includ-
ing drawing edges on Treemaps [11], linking semantic substrates in
a visualization [29], and label edges [37]. In the last method, edges
are replaced with long curved edge labels. Curved edges are the key
feature of edge bundling and confluence drawing approaches, which
“group” or “bundle” neighboring edges together to reduce visual com-
plexity. Such approaches have gained considerable research attention
recently, with a number of following techniques based on the same
idea. Latest work, such as [10, 12, 27], provides a comprehensive
list of such methods. A recent paper by Riche et al. [28] includes a
detailed discussion on the design space of curved edges in node-link
diagrams.

There are also efforts aiming to automatically generate graph vi-
sualizations with a style similar to the art work by Mark Lombardi.
Duncan et al. [8] defined the Lombardi drawing of graphs that uses
curved edges to generate graph visualization with perfect angular res-
olution. A node has perfect angular resolution if the angles between
neighboring incident edges are all the same. For instance, Node A in
Fig. 2(a) has perfect angular resolution, but other nodes do not. A
graph visualization has perfect angular resolution if all the nodes have
perfect angular resolution. Fig. 2(b) shows the Lombardi drawing of
the network in Fig. 2(a) where curved edges are used to achieve per-
fect angular resolution. For Node B, C, D, and E, the incident edge
angle is formed by the tangents to the edges at the node. Given that
not all networks have a Lombardi drawing [8], Chernobelskiy et al.
proposed a force-directed algorithm [6] that uses circular arcs to make
the network layout as close to a Lombardi drawing as possible.

2.2 Graph Visualization Evaluations
There has been a rich literature on user studies of graph visualization
techniques. These range from the early work by Purchase et al. [26] on
the effectiveness of graph drawing aesthetics to the more recent work
on 3D graphs [32], visual representation of directed edges [18, 19],
and readability of dynamic graphs [2]. Please refer to a recent survey
[14] for more details. In most of these studies, users were asked to
perform graph-related task(s) on drawings produced by different vi-
sualization techniques. Their task completion time and accuracy are
recorded and used to compare the relative effectiveness among meth-
ods. We adopted a similar approach in our study.

Despite its popularity, there are relatively few evaluations available
on graph visualization techniques using curved edges. In the study by
Bar and Neta [3] it was hypothesized that sharp transitions in contours
might convey a sense of threat and thus lead to a negative bias. In
their task subjects were briefly presented with real-life object and arti-
ficial pattern stimuli of various curvature and asked to make a forced
choice judgment as to whether they liked the stimulus or not. Their
results showed that curved lines (i.e., less angular) were the preferred
choice. The work by Telea et al. [30] was a qualitative study compar-
ing hierarchical edge bundling against node-link diagrams with soft-
ware engineering-related data. Five software developers were asked
to rate their preference among the two types of visual representations
based on their experience of using them during the experiment. The
results showed that all participants strongly preferred hierarchical edge
bundling to node-link diagrams.

Studies that are not on curved edges but related to our experiments
include the work by Purchase [25], where aesthetic criteria of graph
visualization are ranked according their impact on graph readability.
There were five aesthetics criteria included in the study: edge bends,
edge crossings, angular resolution, edge orthogonality, and symmetry.
The results showed that edge crossings have the most significant im-
pact, edge bends and graph symmetry have some impact, whereas im-
proving orthogonality or angular resolution had little effect on graph
readability. Ware and Bobrow [31] demonstrated that a key compo-
nent to the readability of shortest paths (one of the tasks used in our
experiments) was to produce a continuous chain of links. In a similar
study using an eye tracking device, Huang and Eades [20] found that
for path searching tasks the edges incident to nodes concerned, edges
going toward to the target node, and the edges alongside the paths af-
fect drawing readability and trigger extra eye movements.

3 EXPERIMENT DESIGN

The study consisted of two experiments to examine the impact of edge
curvature on graph readability. The first experiment studied the dif-
ference among graph edges with different levels of curvature. Three
curvature levels are compared: straight (i.e., zero curvature), slightly
curved, and heavily curved. The second experiment included an addi-
tional curve edge type produced by the Lombardi layout algorithm. In
such a case, curved edges were only used if they help improve angu-
lar resolution. Also, edge curvature is chosen to maximize the angular
resolution of the resulting graph visualization, so edge curvature varies
among edges. This results in a graph visualization with a mixture of
straight and curved edges with changing curvature levels. Breaking
the study into two experiments allowed us to include more tasks with-
out making it too long, and the results from the first experiments were
used to inform the design of the second experiment. This approach
is similar to that of the previous studies [18, 19], which successfully
examined a relatively large number of conditions.

Our study aimed to examine the general impact of edge curvature
on graph readability. This requires a wide range of graph-related
tasks in the experiment to ensure the comparison is comprehensive.
There are a large number of possible tasks according to existing tax-
onomies [1, 22]. In practice, some tasks are more clearly defined and
thus widely used than the others. For instance, topology-related tasks,
such as finding the shortest path length between two nodes, are very
well defined and included in many graph visualization-related evalu-
ations. However, tasks such as identifying clusters and overall graph
structure are relatively less clearly defined and used more rarely in

(a) Straight edge (STL) (b) Slightly curved edge (SCL) (c) Heavily curved edge (HCL)

Fig. 3. Examples of graph visualizations used in the first experiment.

studies. Finally, the practical concerns of not making an experiment
overly long limit the number of tasks that can be included. For our
study, we chose a simple topology task in the first experiment that
allowed us to identify the curve edge type that makes performance
significantly worse than other edge types. In the second experiment,
we used four different tasks to make the comparison more comprehen-
sive. We did not include any overview-type tasks, such as describing
the general structure of a graph, because we felt further research is re-
quired before such tasks can be readily used in evaluation studies. As a
result, we did not include any edge bundling or confluent drawing tech-
niques, because they are known to excel in revealing overall network
structure but not particularly suitable for topology-based tasks [17],
which are the ones used in our study.

To understand the generic impact of edge curvature, we chose undi-
rected abstract graphs instead of examples from a specific domain. The
graphs used in the experiment were generated with the model proposed
by Ware et al. [31]. This model results in a connected graph (no dis-
connected nodes) with reasonable edge density (Fig. 3). It is shown
to produce more realistic graphs (closer to real-world graphs) than
the Erdős-Renyi random graph model [23]. In such a model, each
node has a chance p (0 < p < 1) to connect to one other randomly
selected node and 1− p chance to connect to two other randomly se-
lected nodes. In our study, p is set to 0.5 to allow for a medium edge
density.

4 EXPERIMENT 1 - CONSTANT EDGE CURVATURE

4.1 Graph and Visualization Generation
The aim of the first experiment is to understand the impact of con-
stant edge curvature (i.e., all the edges within a graph share the same
curvature level) on graph readability. We chose three curvature lev-
els: straight edge (zero curvature), slightly curved edge, and heavily
curved edge (Fig. 3). These are referred as STL, SCL, and HCL re-
spectively. A four-point Bézier curve was plotted for SCL, and three
point Bézier curve was plotted for HCL. The SCL is plotted the same
way as curved edges in Gephi [4]: two intermediate control points
were generated to set the curvature on the line (Fig. 4). Firstly a dis-
placement factor d2 was calculated which was 20% of the Euclidean
distance between the two end points (d1). Then starting at either end
the intermediate control point was positioned by traveling down the
straight line between the endpoints by a distance of d2 to create a point
p, and then traveling out from p along the tangent to the straight line
by a distance of d2 to create the intermediate control point. For the
heavy curve, a single intermediate control point was generated such
that an equilateral triangle was formed between it and the two end
points (Fig. 4). The Bézier curve formula was then applied to both to
generate SCL and HCL.

The graphs were generated using the model discussed in the pre-
vious sections. There are three graph sizes: 20, 50, and 100 nodes.
Ten graphs were generated for each size, which results in 30 different
graphs. Three curvature variations (STL, SCL, and HCL) are gener-

Fig. 4. Generation of the SCL and HCL edge.

(a) Path AEFB is smooth but path
CEFD is not.

(b) Path CEFD is smooth but path
AEFB is not.

Fig. 5. “Smooth” path optimization conflicting example.

ated for each graph, which resulted in 90 graph visualizations in total.
We used the spring-embedder algorithm [9] provided by the Gephi
software package [4], and the same layout is used for all three edge
variations to avoid any confounding factor introduced by the graph
layout. In applications such as Gephi, the edge curve is used to in-
dicate edge direction, i.e., the edge curve always goes counter-clock
wise from the starting point to the end point. However, we used undi-
rected graphs so there is no direction associated with each edge.

There are two options to draw a curved edge between a pair of
nodes, either above or below the straight line that connects the two
end nodes. Two possible optimizations were considered when choos-
ing between these two options for each edge: improve path continuity
and reduce edge crossings, which both have been shown to help im-
prove graph readability. It is possible to arrange the curved edges to
make the path between a pair of node A and B “smooth”. For in-
stance, path AEFB in Fig. 5(a) is “smoother” than that in Fig. 5(b).
However, it is not possible to make all the path as smooth as possi-
ble. For example, in Fig. 5 it is not possible to have both path AEFB
and CEFD smooth. Besides, there are a very large number of possible
paths (O(|N|2), where |N| is the number of nodes), and it will be com-
putationally expensive to optimize for all paths. The other possible
optimization is to reduce edge crossing number. Changing the bend
direction of a curved edge usually reduces the edge crossings in the
part of graph the edge was in but increases the edge crossings in the
other part of graph. To find a global optimal it requires to compare to
all cases, which is exponential to the number of edges (O(2|E|), where

|E| is the number of edges). Such optimization is usually not practical
without more efficient heuristics. Both optimizations are non-trivial
research questions, and we are not aware of any existing work that can
be applied to them. As a result, we decided not to use any optimiza-
tion and assign the curve edge side randomly. While this is not an
optimal solution, it does represent the state-of-the-art knowledge on
curve edge crossing reduction or path smoothness optimization.

4.2 Design, Procedure, and Participants
We used a repeated-measures design with the edge curvature and graph
size as the within-subjects independent variables. During the experi-
ment, participants were asked to identify whether a path of length two
existed between two nodes (i.e., path-finding task). The two nodes
used for the path finding task were randomly selected. As previously
discussed, there are 90 graph visualizations in total, 10 for each of
the nine curvature-size combinations (one block). The nine blocks
were randomly ordered and seeded differently for each participant to
remove any effect of learning.

A pilot test was conducted to examine the appropriateness of the
experimental system and the levels of the experimental factors, which
included the user interface features of the application software used in
the experiment, the three edge types, and the three graph sizes. The pi-
lot test was conducted with 12 participants and a within-subject design
approach. In the pilot test, the two main experimental factors were the
three edge types and the three graph sizes. The results of the pilot
test showed that the effects of the two main factors were statistically
significant at the 0.01 significance level in the two measures, which
indicated that the three levels of the two experimental factors could be
appropriate for the purposes of the main experiment.

Before the experiment started, participants were asked for personal
information, given a brief description of the task, and given three prac-
tice trials. During practice, feedback was provided as to whether the
answer was correct. If not, the correct answer was shown to help the
participant identify where they went wrong. No such feedback was
provided during the experiment, which started after the practice. Par-
ticipants were presented with the nine blocks, and given a short break
after each block. After the experiment, participants were given a short
questionnaire to collect subjective feedback. They were asked which
edge type they preferred aesthetically and which they felt was most ef-
fective for the tasks. Results were recorded on a five-point Likert scale.
Finally, participants were asked to provide any general comments.

A custom Java application was built to display the graphs and
record user inputs. Majority of the participants used a 23 inch mon-
itor with 1920x1080 resolution. Participants always sat straight in
front of the display with normal viewing distance. When displayed
the graphs were scaled so that each node occupied approximately the
same amount of screen real estate regardless of the number of nodes
in the graph. As a result, a graph with 50 nodes occupied about 50%
display area of that of a graph with 100 nodes. For each graph, the
two reference nodes presented to the participant were colored orange
while the remainder were colored black, and edges were colored green
to make them distinct from nodes (Fig. 3). The different coloring of
nodes and edges was necessary to avoid the confusion of node-edge
overlap with node-edge connection: edges were connected to the outer
edge of a node (rather than the center) and were plotted on top of the
nodes if the two overlapped (e.g., Fig. 3). It would be difficult to differ-
entiate these two conditions if nodes and edges shared the same color.
Each trial started by displaying only the two orange reference nodes
so they could be clearly identified; two seconds later the remainder of
the graph was displayed. Participants were instructed to press “y” on
the keyboard if a path of length two could be identified and “n” other-
wise. A progress bar was shown on the top indicating the percentage
of the trials that had been completed. Fig. 6 shows the experiment user
interface.

A total of twenty-eight subjects volunteered to participate in the
study and all had normal or corrected-to-normal vision. Among the
participants, there were 22 males and 6 females. Their ages ranged
from 18 to 53 with an average of 29. The participants self-reported
their previous experience with graph visualization: 8 rated ’none or

Fig. 6. The experiment user interface.

very little’, 17 rated ’medium’, and the remaining 3 rated ’extensive’.
They were from diverse social-economical background and included
university students and staff (both academic and non-academic).

4.3 Hypotheses
H1: We predicted that steeper arcs would be detrimental to perfor-

mance. As the curvature level increases, so does edge length
(the node positions are fixed). This may also lead to additional
edge crossings and/or less smooth paths.

H2: As the number of nodes increases, a graph will appear to be more
cluttered. Therefore, we predicted performance would decrease
with the graph size.

H3: We expected the participants would prefer straight edge for ef-
fectiveness, but slightly curved edges for aesthetics.

4.4 Results
This study used two objective measures: time to answer (TIME, in
milliseconds) and the number of correct answers (CORRECT) and
two subjective measures: user preference on effectiveness (PREF-
EFFECTIVE) and look (PREF-LOOK) of edge type. For the two sub-
jective measures, this study used a 5-point Likert-type scale where 1 =
strongly disagree and 5 = strongly agree.

Fig. 7 shows the mean with the 95% confidence interval of each
experimental condition in all the measures. A generalized linear
model (GLM) ANOVA was used for the analysis of TIME and COR-
RECT. Subjects were manipulated as a random factor, whereas the
two within-subjects variables were considered as fixed factors. The
Tukey’s test was used to conduct a pairwise comparison between two
levels of TIME and CORRECT. As the data of the two subjective
measures were ranked order, the Friedman test, which is a nonpara-
metric test for k correlated samples, was used. Before conducting a
GLM ANOVA for TIME and CORRECT, the basic assumptions of the
ANOVA were checked by the examination of residuals. It was found
necessary to apply variance-stabilization techniques to the TIME data
to rectify violations of two assumptions: normality and equality of
variance, and a logarithmic transformation was applied. Residual plots
indicated that the underlying assumptions of the ANOVA were not sig-
nificantly violated in the case of CORRECT.

TIME: The ANOVA results showed that all the main effects
were statistically significant at the 0.05 significance level: edge type
(F(2,54) = 16.31, p < .01) and number of nodes (F(2,54) = 26.64,
p < .01). The interaction effect between two within-subject factors
did not show a statistical significance (F(4,108) = 1.89, p = .117).

(a) TIME (millisecond)

(b) CORRECT (percentage)

(c) PREF-EFFECTIVE and PREF-LOOK (Subjective
Measurements)

Fig. 7. Results of the Experiment on Constant Edge Curvature.

(a) Edge type (b) Graph size

Fig. 8. Summary of the significant difference of TIME and CORRECT.
There is one directed edge for each statistically significant difference,
and the origin performs significantly better (faster/more accurate) than
the destination. A dashed line means TIME is better and a solid line
means CORRECT is better.

Tukey’s test results showed that STL is significantly faster than SCL
(p < .01) and HCL (p < .01), and SCL is also significantly faster
than HCL (p < .01). The average TIME of STL, SCL, and HCL are
5198.1ms, 6405.1ms, and 7280.9ms respectively. In terms of graph
size, 20-node graph is significantly faster than 50-node graph (p< .01)
and 100-node graph (p < .01), and 50-node graph is also significantly
faster than 100-node graph (p < .01). The average TIME of 20, 50,
and 100 nodes are 4840.1ms, 6406.3ms, and 7629.7ms respectively.
Fig. 8 summarizes the significant differences.

CORRECT: The main effect of edge type was statistically signifi-
cant at the 0.01 significance level (F(2,216) = 61.20, p < .01). The
main effect of number of nodes was also significant at the 0.05 level
(F(2,216) = 3.05, p < .05). The interaction effect of the two factors
was not significant (F(4,216) = 0.60, p = .660). Tukey’s test revealed
that STL had a significant difference from HCL at the 0.01 significance
level but no difference from SCL. SCL showed a significant difference
from HCL at the .01 level. The average CORRECT of STL, SCL, and
HCL are 0.845, 0.824, and 0.675 respectively. In the case of num-
ber of nodes, there was only a significant difference between 20 and
100 at the .05 significance level. The average CORRECT of 20, 50,
and 100 node are 0.799, 0.787, and 0.758 respectively. The results are
summarized in Fig. 8.

PREF-EFFECTIVE and PREF-LOOK: For the two subjective mea-
sures, the Friedman test showed that there was a statistically significant
difference among three edge types (PREF-EFFECTIVE (χ2

F = 16.83,
p < .01; adjusted for ties) and PREF-LOOK (χ2

F = 16.83, p < .01; ad-
justed for ties)). Fig. 7(c) shows that STL is the most preferable edge
type in both subjective measures.

4.5 Discussion
The results show that STL has the best performance, in terms of both
TIME and CORRECT. This agrees with our hypothesis H1. The re-
sults also show that performance decreases with the curvature level:
as the curvature increases from zero (STL) to medium (SCL) and then
high (HCL), both TIME and CORRECT drop. Again this is in agree-
ment with our hypothesis H1. While this is hardly surprising, we in-
vestigated further to see whether edge crossing number is the deciding
factor as found in a previous study [25]. We computed the edge cross-
ing number for all the graphs used in the experiment. Fig. 9 shows
the average number of edge crossings (with 95% confidence level) for
each edge type in the three different graph sizes used. Tukey’s test
shows that there is no significant difference between the edge crossing
number of SCL and HCL while both are significantly larger than that
of the STL. This indicates that edge crossing number is unlikely to be
the deciding factor for task performance in the experiment, because
SCL is significantly better than HCL for both TIME and CORRECT
but there is no significant difference in the edge crossing number of the
two. This implies that path distance (i.e., the Euclidean path length)
and “smoothness” (i.e., the level of direction change at each intermedi-
ate node along a path) are more important factors in task performance.

The results also show that the time taken increases with the number
of nodes for each curvature condition, which agrees with our hypoth-
esis H2. However, this is to a much less extent than the impact of cur-
vature level as there is only significant difference between graphs with

(a) Straight edge (STL) (b) Lombardi layout (LBD) (c) Slightly curved edge (SCL)

Fig. 10. Examples of graph visualizations used in the second experiment.

Fig. 9. The average number of edge crossings in the first experiment
with 95% confidence level.

20 and 100 nodes with p < .05. One possible explanation is that path
finding is a local task, i.e., it does not require checking the entire graph.
In this experiment, “visual density” was kept relatively stable across
different graph sizes and as a result the path finding performance may
be less affected by the graph size increase.

Participant preference partly agrees with our hypothesis H3. Par-
ticipants judged STL to be more effective for the path finding task,
which agrees with the hypothesis. However, they ranked STL over
SCL and HCL for aesthetics, which disagrees with our hypothesis H3.
This is surprising because it is different from the results of previous
studies [3, 30]. The latter could be the result of having the preference
ranking after completing the tasks; the advantage of using STL for the
task could have an impact on the aesthetics choice.

5 EXPERIMENT 2 - VARYING EDGE CURVATURE

5.1 Graph and Visualization Generation
Based on the results of the first experiment, it is clear that increasing
edge curvature only is detrimental to performance. As a result, HCL
was excluded from the second experiment. What was missing from the
first experiment was a method that was specifically designed for graphs
with curved edges. The force-directed layout is designed for graphs
with straight edges and as discussed there is no readily available solu-
tion to reduce edge crossing or improve path smoothness when curved
edges are used. As the study was being conducted, a new layout [6]
that was designed for the curved edge graphs became available. As
discussed earlier, the new layout is mainly designed to improve angu-
lar resolution, however, it also improves the ’smoothness’ of a graph

path. For instance, the path ABCA is “smoother” in Fig. 2(b) than that
in Fig. 2(a) as a direct result of the improved angular resolution at node
B and C. Besides, straight edges are used whenever angular resolution
is already optimal. This reduces edge length (a straight edge is alway
shorter than a curved one when end node positions are fixed) and po-
tentially also reduce edge crossings. Therefore, there are three edge
types in this experiment: STL, SCL, and Lombardi (LBD).

The graphs are generated using the same model as before. Given the
relatively less significant effect of graph size in the first experiment, we
replaced the graph size of 20 nodes with 200 nodes. This allowed us
to examine the readability of relatively large graphs. Therefore, the
graph sizes in this experiment are 50, 100, and 200. Eight graphs were
generated for each size, which resulted in 24 different graphs in total.

A force-directed Lombardi algorithm is used to produce layout for
each graph. More specifically, the variation that calculates lateral and
rotational forces based on the two tangents defining a circular arc be-
tween two nodes (the first approach in the paper [6] was used). Dif-
ferent edge curvature variations were applied once the node positions
were fixed by the layout: LBD uses the edges produced by the algo-
rithm (all edges are circular arcs). STL and SCL replaced the edges
with straight line segment and a Bézier curve (the same as the SCL
condition in the first experiment) respectively. As a result, the three
variations of one graph share the same node position but have differ-
ent edge types. Fig. 10 shows the three variations of one graph with
50 nodes.

5.2 Design, Procedure, and Participants
To make the comparison more comprehensive, three new tasks were
added. The four tasks used in this experiment are:

• Path of length two (PATH): to decide if there is a path of length
two connecting the two randomly selected nodes (same as the
first experiment).

• Shortest path length (LENG): to find the length of the shortest
path between two randomly selected nodes.

• Connection number (CONN): to find the number of edges con-
nected to a randomly selected node.

• Common neighbors (NEIG): to find the number of nodes con-
nected to two selected nodes.

The experiment employed a mixed design with one between-subject
factor (edge type) and two within-subjects factors (task type and graph
nodes). Each participant experienced one edge type, but all tasks and
graph sizes. Such a type of experimental design is also called a split-
plot design [21]. This design allowed the inclusion of new tasks and
avoided the experiment being overly long. The edge type a participant
experiences was selected randomly at the beginning of the experiment.
As a result, the number of participants for each type was not exactly

the same (STL 21, LBD 23, and SCL 21). Each participant performed
four types of tasks on three different graph sizes, with eight graphs for
each size. Therefore, each participant performed 96 trials in total.

The procedure is similar to that of the first experiment. Before the
experiment started, participants were asked for personal information,
followed by a choice of edge type for aesthetic preference. The aes-
thetics ranking was moved to the beginning of the experiment to re-
move any potential impact of the edge type utility for completing the
tasks. After that, participants were given a brief description of the task,
followed by two practice trials. Feedback was given during the prac-
tice but not during the experiment. The experiment was broken into
12 blocks, with each block containing 8 trials for one graph size/task
combination. A short break was given after each block.

A Java application similar to the one used in the first experiment
was built to display the graphs and record user inputs. The only differ-
ence is that participants were instructed to press a number between “0”
and “9” for tasks requiring a number for answer. The viewing setup is
also similar to that of the first experiment.

A total of 65 subjects voluntarily participated in the study, all had
normal or corrected-to-normal vision. To avoid any learning effect, we
excluded anyone who had participated in the first experiment. Among
the participants, there were 45 male and 20 female. Their age ranged
from 18 to 52 with an average of 30.3. The participants self-reported
their previous experience with graph visualization: 17 rated ’none or
very little’, 42 rated ’medium’, and the remaining 6 rated ’extensive’.
They were from diverse social-economical background including uni-
versity students and staff (both academic and non-academic).

5.3 Hypotheses
H1: We predicted that LBD would improve performance compared to

SCL. As discussed earlier, LBD should improve path “smooth-
ness”, edge length, and potentially number of edge crossings as
the result of angular resolution optimization.

H2: We predicted that performance using LBD will be similar to that
of STL. As the results of the first experiment indicated, path dis-
tance and smoothness play an important role in deciding the per-
formance. While LBD is likely to have longer path distance, its
paths are smoother.

H3: Similar to the first experiment, we predicted performance would
decrease as the graph size grows, with a potentially more signif-
icant effect on graphs with 200 nodes.

H4: We expected the participants to prefer LBD for aesthetics. As
discussed earlier, we suspect having the preference rating at the
end in the first experiment had negative impact on curved edge
types. LBD may also be more appealing than SCL with its better
angular resolution, path smoothness, and number of edge cross-
ings.

5.4 Results
Two objective measures were used as in the first experiment: time to
answer (TIME, in milliseconds) and the number of correct answers
(CORRECT). TIME is defined as the time taken to solve a problem in
an experimental condition (one level of graph type × one level of task
type × one level of the number of nodes). CORRECT is defined as the
number of correct answers in the eight repetitions of the same exper-
imental condition. For example, a “7” is recorded if seven out eight
questions of the same experimental condition were answered correctly.
Fig. 11 shows the mean of TIME and CORRECT with the 95% con-
fidence interval. Both TIME and CORRECT data are further broken
down according to graph size and task type.

Before conducting a generalized linear model (GLM) ANOVA for
TIME and CORRECT, the basic assumptions of the ANOVA were
checked by the examination of residuals. Three assumptions, which
are normality, independence, and equality of variance, are investi-
gated by using normal probability plot of residuals, plot of residuals in
time sequence, and plot of residuals versus fitted values, respectively. Fig. 11. Results of the Experiment on Varying Edge Curvature.

(a) Edge type (b) Graph size

Fig. 12. Summary of the significant difference of TIME and CORRECT.
There is one directed edge for each statistically significant difference,
and the origin performs significantly better (faster/more accurate) than
the destination. A dashed line means TIME is better and a solid line
means CORRECT is better.

Through the investigation, it was found necessary to apply variance-
stabilization techniques to the time data to rectify violations of two
assumptions: normality and equality of variance. According to the
guidance and procedures described by Montgomery [24], a logarith-
mic transformation was applied to the time data. Residual plots indi-
cated that the underlying assumptions of the ANOVA were not signif-
icantly violated in the case of CORRECT. The Tukey’s test was used
to conduct a pairwise comparison between two graph types in terms of
TIME and CORRECT.

TIME: As stated above, logarithmic transformation of TIME data
was used for the ANOVA test. The ANOVA results showed that all
the main effects were statistically significant: edge type: F(2,62) =
3.23, p < .05; task type: F(3,186) = 78.34, p < .01, and graph size:
F(2,124) = 10.72, p < .01. Tukey’s test results showed that both STL
and LBD are significantly faster than SCL (p < .0001 in both cases),
but there is no significant difference between them. The average TIME
of STL, LBD, and SCL are 9248.1ms, 8655.3ms, and 12778.9ms re-
spectively. For graph size, Tukey’s test results revealed that both 100
nodes and 200 nodes are significantly faster than 50 nodes (p < .0001
in both cases), but there is no significant difference between them. The
average TIME of 50, 100, and 200 node are 10768.1ms, 9960.1ms, and
9954.0ms respectively. Fig. 12 summarizes the pairwise comparison
results from the Tukey’s test.

CORRECT: The main effect of graph type was not statistically sig-
nificant (F(2,62) = 0.14, p = .866). However, the two other main
effects were statistically significant at the .05 significance level: task
type (F(3,186)= 3.82, p< .01) and the number of nodes (F(2,124)=
18.67, p < .01). Tukey’s test results revealed that both 50 nodes and
100 nodes are significantly more accurate than 200 nodes (p < .0001
in both cases), but there is no significant difference between them.
These results are also shown in Fig. 12. The average CORRECT of
50, 100, and 200 node are 6.88, 6.75, and 6.26 (correct answers out of
eight questions) respectively.

ANOVA tests were conducted to examine whether there is any sig-
nificant difference in TIME and CORRECT for each task. Results
showed that only the CORRECT of the PATH task (p < .05) and the
TIME of the NEIG task (p < .05) varied significantly among the edge
types. Tukey’s test results showed that for the PATH task, SCL is sig-
nificantly more accurate than STL (p < .05) and LBD (p < .0001),
and STL is significantly more accurate than LBD (p < .01). For this
task the average CORRECT of SCL, STL, and LBD are 7.24, 6.89,
and 6.43 respectively. For the NEIG task, there is no significant differ-
ence in TIME between LBD and STL, but both are significantly faster
than SCL (p < .0001 in both cases). For this task the average TIME
of LBD, STL, and SCL are 7629.8ms, 8912.4ms, and 13648.7ms re-
spectively.

Figure 13 shows the aesthetics preference data and the y-axis is the
number of participants that selected that edge type as the preferred
one. STL is the clear leader selected by 50 participants (out of 65).

5.5 Discussion
The results regarding SCL and STL are consistent with the conclu-
sions from the first experiment. Tasks performed on STL took less
time than those on SCL, but there is no significant difference in ac-

Fig. 13. Aesthetics preference in the second experiment.

Fig. 14. The average number of edge crossings in the second experi-
ment with 95% confidence level.

curacy level. The addition of three new tasks and a larger graph size
did not lead to any different conclusion. Similarly, LBD is shown to
be faster than SCL but with no significant difference in accuracy level.
This agrees with our hypothesis H1. There is no significant difference
in TIME or CORRECT between LBD and STL, which is consistent
with H2. Similar to the first experiment, we computed the edge cross-
ing number for all the graphs used in the experiment. Fig. 14 shows
the average number of edge crossings (with 95% confidence interval)
for each edge type in the three different graph sizes used. Tukey’s
test showed that SCL has significantly more edge crossings than LBD
(p < .001), which in turn has significantly more edge crossings than
STL (p < .001). This confirms the result from the first experiment that
edge crossing number is unlikely to be the deciding factor for task per-
formance, as there is no significant different between STL and LBD
for TIME or CORRECT but their edge crossing numbers are signifi-
cantly different. As a result, path distance and smoothness are more
important factors, which agrees with H2.

As expected, the 200 node graph size had the worst result for COR-
RECT, which is consistent with H3. As the graph size increases, some
tasks become harder. However, it is surprising to see that the 50 node
graph size had the worst TIME. Learning effect is a possible contribut-
ing factor. 50 node graphs are always shown first, followed by 100
node and then 200 node graphs. Participants might became more fa-
miliar with the tasks when they encountered them again in the set of
graphs with 100 and 200 nodes. According to the first chart in Fig. 11,
the difference among the mean completion time for different graph
sizes is not very substantial.

Participants ranked STL over SCL and LBD for aesthetics, which
disagrees with our hypothesis H4. This is consistent with the results
from the first experiment and showed that having the choice before or
after the tasks did not make any difference. The preference is very
strong with about 77% of participants selected STL as the most aes-
thetically pleasing edge type.

6 CONCLUSIONS AND FUTURE WORK

We studied the impact of edge curvature on graph readability through
two experiments. The results show that there are clear distinctions
among different types of curved edge techniques. Introducing uni-
form edge curvature had a detrimental impact on graph readability and
this negative effect increased with curvature level. On the other hand,
Lombardi layout, which only uses curved edges when they improve
angular resolution, had no significant difference in accuracy or task
completion time when compared to straight edges. This makes Lom-
bardi layout a good alternative to straight edges, especially in cases
where curved edges are preferred. During the study we also found
that edge crossing is unlikely to be the most important factor for read-
ability of graphs with curved edges, because it has a weak correlation
with the task performance. This is different from the results of the
readability study of straight-edge graphs [25]. Instead, path distance
and smoothness play a more important role.

The aesthetic preference for straight edges is very strong. The ma-
jority of the participants selected the straight edges as the most aes-
thetically pleasing when the choice was made both before and after the
tasks. This is different from the conclusion from a previous study[3],
which used real objects and artificial patterns in the experiment instead
of graphs. This could be the result of lack of exposure to graphs with
curved edges for many participants, but currently straight edge is the
clear choice for edge curvature aesthetics.

We would like to acknowledge that the results presented in this pa-
per are limited by the experimental parameters, and some of the con-
clusions may not be applicable to the general comparison of straight
and curved edges for graph visualization. There are a group of
methods, commonly known as edge bundling or confluent drawing
techniques, are not included in this study. More importantly, while
research on straight-edge graph visualization has been ongoing for
decades, curved edges only start to gain research traction recently and
there are still many challenging problems waiting to be solved. One
such problem is the development of a simple and effective heuristics
for reducing the number of edge crossings. For future work, we plan
to expand the types of tasks used in the experiment. Most tasks used in
this study focused on local topology and did not cover aspects such as
overall graph structure. Expanding task types would also allow us to
include popular edge bundling and confluent drawing methods, which
are not covered in this study.

ACKNOWLEDGMENTS

The authors would like to thank Roman Chernobelskiy for the help
on the implementation of the force-directed Lombardi-style algorithm.
A short version of the first experiment was presented as a poster at
Diagrams 2012.

REFERENCES

[1] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic
activity in information visualization. In Proceedings of the Proceedings
of the IEEE Symposium on Information Visualization, pages 111–117,
Washington, DC, USA, 2005. IEEE Computer Society.

[2] D. Archambault, H. C. Purchase, and B. Pinaud. Difference map read-
ability for dynamic graphs. In Proceedings of the 18th international con-
ference on Graph drawing, pages 50–61. Springer-Verlag, 2011.

[3] M. Bar and M. Neta. Humans prefer curved visual objects. Psychological
Science, 17(8):645–648, 2006.

[4] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source soft-
ware for exploring and manipulating networks. In Proceedings of the
International AAAI Conference on Weblogs and Social Media, 2009.

[5] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[6] R. Chernobelskiy, K. I. Cunningham, M. T. Goodrich, S. G. Kobourov,
and L. Trott. Force-directed lombardi-style graph drawing. In Proceed-
ings of the 19th International Symposium on Graph Drawing, pages 320–
331. Springer-Verlag, 2011.

[7] M. Dickerson, M. T. Goodrich, and J. Y. Meng. Confluent drawings:
Visualizing non-planar diagrams in a planar way. In Proceedings of the
11th International Symposium on Graph Drawing, pages 1–12. Springer-
Verlag, 2003.

[8] C. A. Duncan, D. Eppstein, M. T. Goodrich, S. G. Kobourov, and M. Nol-
lenburg. Lombardi drawings of graphs. In Proceedings of the 18th
International Symposium on Graph Drawing, pages 195–207. Springer-
Verlag, 2010.

[9] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[10] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareiro, and A. Telea. Skeleton-
based edge bundling for graph visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 17(12):2364–2373, 2011.

[11] J.-D. Fekete, D. Wang, N. Dang, A. Aris, and C. Plaisant. Overlaying
graph links on treemaps. In IEEE Symposium on Information Visualiza-
tion Compendium, 2003.

[12] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglom-
erative edge bundling for visualizing large graphs. In Proceedings of the
IEEE Pacific Visualization Symposium, pages 187–194. IEEE Computer
Society, 2011.

[13] E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering. Software Practice and Experience,
30(11):1203–1233, 2000.

[14] C. Gorg, M. Pohl, E. Qeli, and K. Xu. Visual representations. In Human-
Centered Visualization Environments, pages 163–230. Springer, 2006.

[15] R. Hobbs. Mark Lombardi: Global Networks. Independent Curators
Inc.,U.S., 2003.

[16] W. Hogarth. The Analysis of Beauty. Yale University Press, 1753.
[17] D. Holten. Hierarchical edge bundles: Visualization of adjacency rela-

tions in hierarchical data. IEEE Transactions on Visualization and Com-
puter Graphics, 12:741–748, 2006.

[18] D. Holten, P. Isenberg, J. J. van Wijk, and J.-D. Fekete. An extended
evaluation of the readability of tapered, animated, and textured directed-
edge representations in node-link graphs. In IEEE Pacific Visualization
Symposium, pages 195–202, 2011.

[19] D. Holten and J. J. van Wijk. A user study on visualizing directed edges
in graphs. In Proceedings of the 27th International Conference on Human
Factors in Computing Systems, pages 2299–2308, 2009.

[20] W. Huang and P. Eades. How people read graphs. In Asia-Pacific Sympo-
sium on Information Visualisation, pages 51–58, 2005.

[21] R. E. Kirk. Experimental Design: Procedures for Behavioral Sciences.
Wadsworth Publishing, 1994.

[22] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy
for graph visualization. In Proceedings of the AVI workshop on Beyond
Time and Errors: Novel Evaluation Methods for Information Visualiza-
tion, pages 1–5. ACM Press, 2006.

[23] G. Melancon. Just how dense are dense graphs in the real world?: a
methodological note. In Proceedings of the AVI workshop on Beyond
Time and Errors: Novel Evaluation Methods for Information Visualiza-
tion, pages 1–7. ACM Press, 2006.

[24] D. C. Montgomery. Design and Analysis of Experiments. Wiley, 2008.
[25] H. C. Purchase. Which aesthetic has the greatest effect on human under-

standing? In Proceedings of the 5th International Symposium on Graph
Drawing, pages 248–261. Springer-Verlag, 1997.

[26] H. C. Purchase, R. F. Cohen, and M. James. Validating graph drawing
aesthetics. In Proceedings of the Symposium on Graph Drawing, pages
435–446. Springer-Verlag, 1996.

[27] G. Quercini and M. Ancona. Confluent drawing algorithms using rect-
angular dualization. In Proceedings of the 18th International Symposium
on Graph Drawing, pages 341–352. Springer-Verlag, 2010.

[28] N. H. Riche, T. Dwyer, B. Lee, and S. Carpendale. Exploring the design
space of interactive link curvature in network diagrams. In Proceedings
of the International Working Conference on Advanced Visual Interfaces,
pages 506–513. ACM, 2012.

[29] B. Shneiderman and A. Aris. Network visualization by semantic sub-
strates. IEEE Transactions on Visualization and Computer Graphics,
12:733–740, 2006.

[30] A. Telea, O. Ersoy, H. Hoogendorp, and D. Reniers. Comparison of node-
link and hierarchical edge bundling layouts: A user study. In D. A. Keim,

A. Pras, J. Schönwälder, and P. C. Wong, editors, Visualization and Mon-
itoring of Network Traffic. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, Germany, 2009.

[31] C. Ware and R. Bobrow. Supporting visual queries on medium-sized
node-link diagrams. Information Visualization, 4(1):49–58, 2005.

[32] C. Ware and P. Mitchell. Visualizing graphs in three dimensions. ACM
Transactions on Applied Perception, 5(2):1–15, 2008.

[33] M. Wattenberg. Arc diagrams: Visualizing structure in strings. In Pro-
ceedings of the IEEE Symposium on Information Visualization, pages
110–116, 2002.

[34] M. Wattenberg. Visual exploration of multivariate graphs. In Proceed-
ings of International Conference for Human-Computer Interaction, pages
811–819, 2006.

[35] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442, 1998.

[36] N. Wong, M. S. T. Carpendale, and S. Greenberg. Edgelens: An interac-
tive method for managing edge congestion in graphs. In Proceedings of
the IEEE Symposium on Information Visualization, 2003.

[37] P. C. Wong, P. Mackey, K. Perrine, J. Eagan, H. Foote, and J. Thomas.
Dynamic visualization of graphs with extended labels. In Proceedings of
the IEEE Symposium on Information Visualization, pages 73–80, 2005.

