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ABSTRACT
In this paper, we address security and privacy of air-traffic control
systems. Classically these systems are closed proprietary systems.
However, air-traffic monitoring systems like flight-radars are decen-
tralized public applications risking loss of confidential information
thereby creating security and privacy risks. We propose the use of
the Isabelle Insider and Infrastructure framework (IIIf) to alleviate
the security specification and verification of air traffic control sys-
tems. This paper summarizes the IIIf and then illustrates the use
of the framework on the application of a flight path monitoring
system. Using the idea of blurring visual data to obfuscate privacy
critical data used in GIS systems, we observe that for dynamic sys-
tems like flightradars, implicit information flows exist. We propose
information hiding as a solution. To show the security of this ap-
proach, we present the extension of the IIIf by a formal notion of
indistinguishability and prove the central noninterference property
for the flight path monitoring application with hiding.

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Human-centered computing → Visualization; • Theory of
computation → Logic.
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1 INTRODUCTION
Privacy as well as security may be endangered when there appear
daily differences on airplane routes. Such irregularities may reveal
secret information, for example, certain areas cannot be overflown
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because of security alerts, or security or privacy critical passengers
are on board of the airplanes so that higher security precautions im-
pose maximally safe airplane routing. These precautions are meant
to increase security and privacy by physical measures. However,
on the level of confidential information they represent implicit in-
formation flows. Geographic Information Systems (GIS) offer the
possibility to obfuscate private information by blurring the details
of the maps thus establishing some level of privacy. However, this
does not scale to dynamic information as needed for example for
airtraffic control systems where blurring could cause implicit infor-
mation flows. In formal techniques for software verification such
implicit information flows are well known and countermeasures are
well understood in an area called Information Flow Control (IFC).
In addition to Access Control, which regulates access to objects,
IFC “specifies valid channels along which information may flow”
[2]. It serves to secure flows of information in software systems
by labeling values with security classes and enforcing the security
policy by only allowing information to flow between classes if they
are in a flow relation [3]. IFC has become a standard technique
in the security specification and verification of software systems
of all shades but is less well understood when it comes to more
heterogeneous systems including physical as well as logical aspects
and human actors.

The IIIf allows the formal specification of actors, policies and
infrastructures within the interactive proof assistant Isabelle thus
supporting automated reasoning for human centric security and
privacy [9]. Existing applications of the IIIf indicate the suitability
for airplane security: the IIIf has been successfully applied to Insider
attacks on airplanes [11].

The IIIf includes automated analysis with attack trees and model
checking. However, more intricate notions like IFC are known to
be not within the reach of model checking verification because
– as McLean has first realized [14] – the central property of non-
interference is a property over sets of system executions rather
than a property on system executions as it expresses the change of
behaviours of a system by comparing various different runs of it.

In the remainder of this section, we briefly summarize the IIIf
and the air-traffic monitoring and control systems we are address-
ing with our approach. Thereafter, we show how an air-traffic
system can be specified in IIIf (Section 2) using blurring for ob-
fuscation. Since this causes implicit information flows, we then
introduce the decentralized label model as a basis (Section 3) and
show subsequently how these labels are integrated into the fligh-
tradar specification (Section 4). To avoid that unauthorized users
can perceive that planes on critical missions are avoiding critical

https://orcid.org/0000-0001-5839-5488
https://doi.org/10.1145/3664476.3670928
https://doi.org/10.1145/3664476.3670928
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3664476.3670928
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664476.3670928&domain=pdf&date_stamp=2024-07-30


ARES 2024, July 30–August 02, 2024, Vienna, Austria Kammüller

Figure 1: Structure of Isabelle Infrastructure framework (IIIf) extended with IFC for airplane monitoring.

regions – and thus giving away the criticality of plane and region –
we introduce a function for hiding details of locations to all but en-
titled users. The idea of hiding gives rise to expressing the notion of
indistinguishability for attackers and proving dynamic information
flow security by noninterference (Section 5). We conclude with a
summary and consideration of related work in Section 6.

1.1 Isabelle Insider and Infrastructure
framework IIIf

The IIIf is an extension (a so-called object-logic) of Higher Order
Logic in the interactive generic theorem prover Isabelle/HOL [17].
It thus augments the automated reasoning capabilities of Isabelle
with dedicated support for modeling and proving of systems with
physical and logical components, actors and policies. The IIIf has
been designed for the analysis of insider threats. However, the
implemented theory of temporal logic combined with Kripke struc-
tures and its generic notion of state transitions are a perfect match
to be combined with attack trees into a process for formal security
engineering [1] including an accompanying framework [8]. An
overview of the layers of object-logics of the IIIf is provided in
Figure 1: each level above is embedded into the one below; the con-
tribution of this paper is the additional layer of Information Flow
Control (IFC) that has been formalized as a generic extension. The
application to Air-traffic control systems serves as an illustration
but it is of general use as a template for similar applications. The
source code of our extension of the IIIf with IFC and its application
to flight control is submitted as a second source code submission
with the paper.

A number of case studies (see Section 6) have contributed to
shape the IIIf into a general framework for the state-based security

analysis of infrastructures with policies and actors. Temporal logic
and Kripke structures are deeply embedded into Isabelle’s Higher
Order logic thereby enabling meta-theoretical proofs about the
foundations: for example, equivalence between attack trees and CTL
statements have been established [7] providing sound foundations
for applications. This foundation provides a generic notion of state
transition on which attack trees and temporal logic can be used to
express properties for applications.

The use of Isabelle and its Higher Order Logic for the construc-
tion of the IIIf permit a meta-theoretical approach: concepts like
temporal logics, model checking, and now IFC can be formalized in
the logic while at the same time these concepts can be applied to
case studies.

1.2 Air-traffic information systems
The American Federal Aviation Administration (FAA) publishes
radar data but systems like flightradar24 (see Figure 2) rely on
planes knowing their own position quite accurately via GPS and
broadcasting them over the Automatic Dependent Surveillance
Broadcast (ADS-B). Partially private ADS-B spotters in various
locations receive this data and forward it to the web-service. Not
all planes can be spotted, for example military planes and private
planes. It depends on them having ADS-B systems on board. Also,
it is possible to agree with the web services not to show one’s plane
– or to show it in a more secure way. That is, what we propose in
this paper and for which we provide the foundations.

2 AIRTRAFFIC SYSTEM IN IIIF
The IIIf allows representing infrastructures as graphs where the
actors and local policies are attached to the nodes. Infrastructures
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Figure 2: Flightradar systems publicly visualize airtraffic routes of airplanes, e.g. flightradar24 [4].

are the states of the system. We use the underlying theory of Kripke
structures and temporal logics CTL in the IIIf to define a specific
state transition relation for our application scenario.

The infrastructure graph is defined as a datastructure igraph
whose components gra, planes, routes, and critloc represent
the parts as: a set of pairs of locations – the coordinates of the
map for the flightradar system; the identities of the airplanes at
each location; the routes of each airplane and the criticality of
each location. The latter is a boolean valued function (predicate)
as we assume for simplicity criticality to be a boolean flag. The
constructor Lgraph puts these components into an igraph.

datatype igraph = Lgraph
gra: (location × location)set
planes: (location × location) ⇒ identity set
routes: identity ⇒ (location × location)list
critloc: (location × location) ⇒ bool

2.1 Infrastructure state transition
The generic state transition relation uses the syntactic infix notation
I →𝑖 I’ to denote that infrastructures I and I’ are in this relation.
To give an impression of this definition, we show here just a couple
of rules that define the state transition for the action move because
these rules will be crucial in the following.

There are two rules for the action move: move and move_crit.
The first specifies how an airplane moves following a flight path in
the non critical case where the next location on the flightpath is not
critical: ¬critloc G (n, n’). It simply updates the flight component
at the current position (l,l’) and the next position (n,n’) on the
flightpath by removing the airplane f from the former and placing
it on the latter position.

move:
G = graphI I =⇒ (l, l') ∈ gra G =⇒
f ∈ planes G (l, l') =⇒
(n,n') = hd(routes G f) =⇒ ¬ critloc G (n, n') =⇒
I' = Infrastructure
(Lgraph

(gra G)
(planes G((l,l'):= planes G(l,l') - {f})

((n,n'):= planes G(n,n') ∪ {f}))
(routes G(f := tl (routes G f)))
(critloc G))

(Localpolicy I)
=⇒ I →𝑖 I'

However, if an airplane comes across a critical location on its flight
path and if the airplane is categorized as a critical plane (facts en-
coded in the component critloc within the infrastructure graph))
then the airplane will circumvent the location. Circumvention is
defined by the function circumvent that uses the current position
(l,l’) and the planned next one (n, n’) on the flightpath to
compute the closest alternative position.

move_crit:
G = graphI I =⇒ (l, l') ∈ gra G =⇒
f ∈ planes G (l, l') =⇒
(n,n') = hd(routes G f) =⇒ critloc G (n, n') =⇒
I' = Infrastructure
(Lgraph

(gra G)
(planes G)((l,l'):= planes G(l,l') - {f})

((circumvent(l,l')(n,n')):=
planes G(n,n') ∪ {f}))

(routes G(f := tl (routes G f)))
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Figure 3: Geographic Information Systems (GIS) use blurring to hide private information in static maps, e.g. ArcGIS [13].

(critloc G))
(Localpolicy I)

=⇒ I →𝑖 I'

The definition of circumvent takes into account the trajectory of the
flightpath1. The function circumvent can be defined surprisingly
easily.
definition circumvent
where
circumvent(l,l')(n,n') =

if l = n then (Suc l, n') else (n, Suc n')

This circumvention now would represent an illicit information flow,
that is, unauthorized users learn confidential information about
the criticality of the plane. To prevent this flow, we can enforce
a blurring effect on the flight monitor for all unauthorized users.
This idea is also used in geographic information systems (GIS) to
preserve privacy: to hide some detail of maps, the maps are blurred.
For example in the commercial GIS system ArcGIS [12] (see Figure
3) details of city maps can be obfuscated by blurring details. Blurring
corresponds to adding “noise” to the data. Consequently, differential
privacy is achieved to some extent [12]. Technically, blurring is
simply achieved by a function on states that identifies locations in
direct vicinity of critical locations.
definition vicinity
where
vicinity (c,c') =

{(c-1,c'),(c+1,c'),(c,c'-1),(c,c'+1),
(c-1,c'-1),(c+1,c'+1),(c-1,c'+1),(c+1,c'-1)}

Blurring is then realized on infrastructure states by adapting the
planes component that shows all airplanes at a location: for all
critical positions, the planes in the vicinity are added to the critical
location. That is, the points which are in vicinity of critical positions
are “displayed” as being on the critical position. Thus the planes

1the points on the flightpath are consecutive which means they are direct neighbours
in the plane. This is provided by an invariant of the state transition relation→𝑖

on the critical position as well as the ones all around are blurred
into one position. This hides the fact that the neighbouring planes
might actually be circumvented.

definition blur
where
blur I = Infrastructure
(Lgraph

(gra (graphI I))
(𝜆(l,l').if critloc(graphI I)(l,l') then

planes(graphI I)(l,l') ∪
planes(graphI I)`(vicinity(l,l'))

else planes(graphI I)(l,l'))
(graphI I))(routes (graphI I))
(critloc (graphI I)))

(Localpolicy I)

2.2 Illicit Information Flow
Analyzing the achieved information hiding, we observe that the
exact position of the critical plane is not precisely visible any more.
However, in terms of privacy preservation, the effect of the blurring
procedure is negative: if attackers observe the flightradar system,
they can observe that a plane is in fact privacy critical if it “blurs up”
on a location, that is, appears to be all over the place. By observing
and comparing the execution of system executions, the difference
between runs of the system over different data (the same plane
flying on different routes) produces differences in the observable
output. Thereby, confidential, or private, values can be revealed
by so-called implicit information flows: since the values of visible
output variables depend on decisions made on the values of private
variables, information flows implicitly – not via direct transfer
from one variable to another. In GIS systems, like ArcGIS [12],
this problem does not occur because they display only static maps
thus attackers do not have the possibility of observing differences
created by system executions on different GIS data.
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In order to effectively address these problems we reuse the con-
cept of Information Flow Control (IFC) designed for information
flows in programming languages here for visually supported GIS
systems. Before we show the IFC enhanced flightradar system, we
present the formalization of the decentralized label model for the
IIIf.

3 IFC FOR IIIF
In this section, we introduce the Decentralized Label Model (DLM)
[15] to provide an extension to the IIIf. Labels in the original DLM
are designed for program execution, program variables, variable
owners and readers. That is, labels are a concept for programming
languages. The concept has been successfully deployed for Java
with the dedicated Jif framework [16] and more recently also for
hardware description languages. Lifting this concept to infrastruc-
tures with actors and policies we simply assume the owners and
readers to be actors of our systems; values are data values but can
also be identities of actors as we are concerned with privacy; the
variables are thus more generally state components that can hold
(store) values. The definitions of labels and allowed flows can then
proceed showing in Isabelle that labels form a complete lattice.
This provides the basis for defining label inference, that is, how a
decision can be made about illicit versus allowed information flows
as well as defining the indistinguishability relation over states and
the state transition relation. The actual implementation of the flow
policies is then part of the definition of the infrastructure in the
following section.

3.1 Labels
Every value (data or identity) that is used or communicated within
the evolution of the infrastructure, that is, in the execution of the
state transition has a label associated to it representing the owner of
that item. Additionally, a set of readers – the actors (principals [15])
allowed to observe that value – are assigned to it. Labels in the DLM
are now sets of allowed flows (pairs of actors) as there may be a
range of permitted flows for a variable (a state component holding
values). Therefore, labels accumulate all possible flows. Thus, a
label is a set of label components summarizing the allowed flows
for a single owner 𝑜 . A label component is a pair (𝑜, 𝑅) specifying
the flows (𝑜, 𝑟 ) for 𝑟 ∈ 𝑅 that is the owner 𝑜 permits all readers to
observe. A label is a set of components. In order to guarantee that
this definition yields a lattice, we complement labels by allowing
all flows for actors that have no components: permitted flows of
a label are the union of all flows of all components of a label 𝐿
unified with the set of all flows (𝑜, 𝑟 ) for every 𝑜 for which there is
no component (𝑜, 𝑅) for some 𝑅 in 𝐿. For those components 𝑜 , the
label set 𝐿 is additionally complemented by adding all flows (𝑜, 𝑟 )
for every principal 𝑟 . For example, for the label

𝐿𝑒𝑥 ≡ {Alice : {Eve}; Bob : {Alice}}

we have

[[𝐿𝑒𝑥 ]]≡{(Alice,Alice), (Alice, Eve), (Bob, Bob), (Bob,Alice),
(Eve, Eve), (Eve,Alice), (Eve, Bob)}.

assuming that Alice, Bob, and Eve are all the actors in the infras-
tructure.

3.2 Label lattice
With this definition of labels as sets of allowed flows, the set of
labels are a complete lattice if combined with the following partial
order relation on labels defined via their flow sets.

𝐿0 ⊑ 𝐿1 ≡ [[𝐿0]] ⊇ [[𝐿1]]

Upper and lower bounds exist naturally as we are using the subset
relation on flows.

𝐿0 ⊔ 𝐿1 ≡ [[𝐿0]] ∩ [[𝐿1]]
𝐿0 ⊓ 𝐿1 ≡ [[𝐿0]] ∪ [[𝐿1]]

A value (and thus information) may flow from a variable (state
component) labeled 𝐿0 to one labeled 𝐿1. This flow is permitted
only if the labels are ordered. That is, the labels must be equal or
𝐿1 is more restrictive than 𝐿0: 𝐿0 ⊑ 𝐿1.

It is useful to show that labels with the ordering are a lattice
because this allows using general lattice operators like upper (join)
and lower bounds (meet) in order to infer labels of compound ex-
pressions. Since lattices are part of Isabelle’s theory library, we can
simply reuse these operators and their properties for the formaliza-
tion of the DLM in IIIf.

owners(𝐿1 ⊔ 𝐿2) ≡ owners(𝐿1) ∪ owners(𝐿2)
readers(𝐿1 ⊔ 𝐿2,𝑂) ≡ readers(𝐿1,𝑂) ∩ readers(𝐿2,𝑂)

Corresponding equations for the operation meet (⊓) are defined
dually.

In the application, we assume initially that all infrastructure state
components and the state transition relation are labeled consistently
with the policy. This means, that the state transition only allows
information flows if they flow “up” with respect to the lattice order
defined above. To verify this in practice, we need to define secure
semantics rules of the state transition relation. This means that
they must respect the labels assigned to the state components and
admit flows only if they are consistent with the policy.

Moreover, we want to additionally verify that there are no im-
plicit flows as has been identified in the blur example in Section
2.2. These are information flows where values of low classified
variable may depend on higher classified control variables thereby
representing illicit leaks of information. To address this, we define
indistinguishability as a relation over the state transition (Section
5). As a motivation, we first introduce DLM labels for IFC into the
airtraffic system.

4 IFC ENHANCED AIRTRAFFIC SYSTEM
For the extension with the IFC, each component of the infrastruc-
ture graph datatype igraph is paired with a DLM label of type dlm
as first element. In addition, the (secret) circumvented position of a
plane is added as a new component critpos. This aims at avoiding
the negative effect of blur that reveals information by implicit flows
and uses data hiding instead. The updated igraph datatype looks
now as follows.

datatype igraph = Lgraph
gra: dlm × (location × location)set
planes: dlm × ((location × location) ⇒ identity set)
routes: dlm × (identity ⇒ (location × location)list)
critloc: dlm × ((location × location) ⇒ bool)
critpos: dlm × (identity ⇒ (location × location)option)
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4.1 Infrastructure state transition
As previously, there are two rules for the action move: move and
move_crit. The first rule is again for the case ¬critloc G (n, n’)
the next position on the flightpath is not critical. Here, the rule
again simply updates the planes component at the current position
(l,l’) and the next position (n,n’) on the flightpath by removing
the airplane f from the former and placing it on the latter position.
Additionally now, the action also sets back the critpos G flag
for the flight to delete a previous “circumvented” position in case
the previous position had been critical (see the following action
move_crit for more detail).
move:
G = graphI I =⇒ (l, l') ∈ gra G =⇒
f ∈ planes G (l, l') =⇒
(n,n') = hd(routes G f) =⇒ ¬ critloc G (n, n') =⇒
I' = Infrastructure
(Lgraph

(gra G)
(fst (planes G),
((snd(planes G))((l,l'):=(snd(planes G))(l,l')-{f})

((n,n'):= (snd(planes G))(n,n') ∪ {f}))
(fst (routes G),
(snd (routes G))(f := tl (snd(routes G) f)))
(critloc G)
(fst (critpos G), (snd (critpos G))(f := None))))

(Localpolicy I)
=⇒ I →𝑖 I'

The case for moving over a critical location is different from the pre-
viously defined model in Section 2. The plane is not circumvented
in the component planes but apparently remains “on course”. In-
stead, the new additional component registers that the flight is in
fact circumvented. Modeling the circumvention this way allows to
hide the actual position easily by using the planes component as
the “public” (or official) position while hiding the real position in
the critpos position.
move_crit:
G = graphI I =⇒ (l, l') ∈ gra G =⇒
f ∈ planes G (l, l') =⇒
(n,n') = hd(routes G f) =⇒ critloc G (n, n') =⇒
I' = Infrastructure
(Lgraph

(gra G)
(fst(planes G),
(snd(planes G))((l,l'):= (snd(planes G))(l,l')-{f})

((n,n'):= (snd(planes G))(n,n')∪{f}))
(fst(routes G),
(snd(routes G)(f := tl (snd(routes G) f)))
(critloc G)
(fst (critpos G),
(snd(critpos G))(f → (circumvent (l,l')(n,n'))))))

(Localpolicy I)
=⇒ I →𝑖 I'

The definition of circumvent is the same as previously defined.
definition circumvent
where
circumvent(l,l')(n,n') =

if l = n then (Suc l, n') else (n, Suc n')

That is, the planes that are circumventing critical positions are
registered in the planes component of the infrastructure graph as

being on the critical position thus hiding the fact that these planes
are actually circumvented. The actual position is, however, not
lost as it is being stored in the new critpos component of the
infrastructure graph.

Similar to the idea of having a blur function, we can now define
a function hide that obfuscates information contained in an infras-
tructure graph from observers whose security clearance is below a
certain threshold.

definition hide
where
hide (Lgraph g pl r cl cp) a =
let G = (Lgraph g pl r cl cp) in
(Lgraph
(if (fst g ⊑ a) then g else (fst g, {}))
(if (fst pl ⊑ a) then pl else (fst pl, (𝜆 x. {})))
(if (fst r ⊑ a) then r else (fst r, (𝜆 x. [])))
(if (fst cl ⊑ a) then cl else (fst cl, (𝜆 x. True)))
(if (fst cp ⊑ a) then cp else (fst cp, (𝜆 x. None))))

The above function hide evaluates the dlm labels on each compo-
nent of an infrastructure graph comparing them to the observers
level a. Observers have access to the components values, if their
clearance label is above the components access label in the dlm
ordering. Otherwise, a sanitized dummy value is output. For exam-
ple, hide obfuscates the fields critloc and critpos that contain
security and privacy critical information (like the real circumvented
position) by replacing them with the trivial predicate (𝜆x.True)
returning True for all inputs for the former and the everywhere
undefined function (𝜆x.None) for the latter.

We are going to define next a general notion of indistinguisha-
bility which conceptualizes the hiding effect of the function hide.
Different to static notions of confidentiality used for judging data
privacy, like differential privacy, indistinguishability is an equiva-
lence relation on states that is used to express security with respect
to dynamic information flows in processing systems. More pre-
cisely, the notion of noninterference shows security as absence of
illicit information flows in dynamic system evolutions. We prove
noninterference for the airtraffic control system.

5 NONINTERFERENCE
IFC can be enforced on programming systems by a concept called
Noninterference (NI) [5]. NI is a an equivalence property over
sequences of state transitions (or sequences of events – depending
on the system view). Intuitively, it characterizes that from a certain
viewpoint various executions of a system do not reveal any secret
information. This viewpoint allows to integrate NI with the idea
of security classes that have different observation (or alteration)
rights on information. This viewpoint, often identified by access
control classes, categories or compartments of user groups, gives
rise to a notion of indistinguishability: from the viewpoint of an
observer, that is, a specific access control class. the system states
appear equal. Given this concept of indistinguishability of states of
a system, the notion of noninterference states that if any two states
of a system are indistinguishable, then so are future next states of
those. Noninterference thus lifts the notion of indistinguishability
of states to those of execution sequences of states.
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More formally, we define the indistinguishability relation over
infrastructure graphs by a case statement that analyses each of the
graph’s components.

definition indistinguishability_g
where indistinguishability_g g0 a g1 ≡
((if (fst (gra g0) ⊑ a)

then (snd(gra g0) = snd(gra g1)) else True) ∧
(if (fst (planes g0) ⊑ a)
then (snd(planes g0) = snd(planes g1)) else True) ∧

(if (fst (routes g0) ⊑ a)
then (snd(routes g0) = snd(routes g1)) else True) ∧

(if (fst (critloc g0) ⊑ a)
then (snd(critloc g0) = snd(critloc g1)) else True) ∧

(if (fst (critpos g0) ⊑ a)
then (snd(critpos g0) = snd(critpos g1)) else True))

Indistinguishability thus requests that all components of the graphs
𝑠0, 𝑠1 that are visible from the observer a’s viewpoint must be equal.
Otherwise – if the component is not visible – there are no con-
straints which is expressed by True for each component.

We then lift the indistinguishability relation over infrastructure
graphs to whole infrastructures allowing us to reason about indis-
tinguishability of system states 𝑠0 and 𝑠1 as 𝑠0 ∼a 𝑠1. Isabelle allows
us to define behind the name of the indistinguishability relation, the
mathematical notation ∼a commonly used for indistinguishability.

definition indistinguishability ("(_ ∼(_) _)")
where 𝑠0 ∼a 𝑠1 =

(indistinguishability_g (graphI s0) a (graphI s1))

Information must only flow from objects to subjects if the objects
level is below the subjects level. This conforms to the policy that
information may only flow up in the security class lattice ordering
of the dlm. Indistinguishability formalizes for a system state that
information contained in a state is visible to higher classified sub-
jects only. Indistinguishability statically expresses the absence of
illicit information flows.

Based on the indistinguishability relation we can also formalize
what it means that the visibility of information is not compromised
during the execution of the state transition relation. This means
that information does not flow across the set boundaries not even
implicitly during system execution. This formal property of the
dynamics of indistinguishability is coined noninterference: If two
states 𝑠0, 𝑠1 are indistinguishable, that is, 𝑠0 ∼ 𝑠1, then for any next
state 𝑠′0 of 𝑠0, that is 𝑠0 → 𝑠′0, there exists a state 𝑠

′
1 reachable from

𝑠1, that is, with 𝑠1 →∗ 𝑠′1, such that 𝑠′0 ∼ 𝑠′1. The states 𝑠
′
0 and 𝑠

′
1 are

also indistinguishable and thus indistinguishability is preserved by
the state transition relation.

Given the definition of indistinguishability, we can prove NI as
a theorem. Apart from being a theoretical exercise, the process of
proving this property is a practical tool because it exhibits a range
of preconditions necessary for IFC of the flightradar application:

• the states 𝑠0 and 𝑠1 have to be reachable by some (initial)
configuration 𝐼 , that is, 𝐼→∗𝑠0 and 𝐼→∗𝑠1;

• the location map of the graph, the routes, and the current lo-
cations of the planes need to have initially the same security
classifications;

• the security level of the critical position needs to be in a class
above the other components.

These conditions have emerged when trying to prove the nonin-
terference property. They reflect the dependencies of the control
flows of the variables. Since we are assuming reachable states, these
initial conditions hold for all reachable states – a fact that we es-
tablished by proving corresponding invariants as a prerequisite for
the proof of the following theorem.
theorem noninterference:

I →∗ 𝑠0 =⇒ I →∗ 𝑠1 =⇒
fst (gra (graphI I)) = fst (planes (graphI I)) =⇒
fst (planes (graphI I)) = fst (routes (graphI I)) =⇒
fst (routes (graphI I)) = fst (critloc (graphI I)) =⇒
fst (critloc(graphI I)) ⊑ fst (critpos (graphI I) =⇒
𝑠0 ∼a 𝑠1 =⇒ 𝑠0 → 𝑠0' =⇒
∃ 𝑠1'. 𝑠1 →∗ 𝑠1' ∧ 𝑠0' ∼a 𝑠1'

Given an initial setting of the security classes, we can prove in the
IIIf that indistinguishability is preserved by the state transition re-
lation. Therefore, attackers with security clearance below a cannot
learn anything about critical values contained in the fields critloc
and critpos – even if they have access to lower components. From
their perspective there are no visible changes because there are no
implicit information flows down the security hierarchy. Thus there
are no leaks from the privacy critical values to unauthorized users.

6 CONCLUSIONS AND RELATEDWORK
In this paper, we have presented the extension of the IIIf framework
by IFC motivating and illustrating it by the application to flight
monitoring systems. We have formalized a flight radar system in-
cluding a blurring function that permits to blur the exact position
of a plane in case the flight passes over a critical region. We have
then argued that although this blurring somehow hides the real
position it gives away that it is a critical flight. To address this issue
we propose to control information flows. Actors in the security
class of external users cannot learn anything about critical missions
visible only to actors in the higher security class of, for example,
air traffic controllers. We have motivated the concept by a hiding
function similar to the previous blur-function. We then introduced
a notion of indistinguishability that allows to precisely character-
ize the visibility of objects in states from any given vantage point.
Indistinguishability permits to prove the noninterference property
showing the absence of implicit information flows during the exe-
cution of a system. The process of proving is not only a proof of
concept for the theoretical concept but serves as a tool to exhibit
the initial security classification of the state components as well as
invariant conditions.

With respect to relevant related work on noninterference for air-
plane security, there appears to be very little. A notable exception
is Hill and Lake’s work [6] on applying noninterference analysis
to code used in avionics systems. In comparison to our work this
previous work uses noninterference for analysis of software within
an airplane as part of the technical control system different from
our high level view of protection of security and privacy related
data within airtraffic control and in relation to geographic informa-
tion systems (GIS). From that perspective, clearly, the application of
the IIIf to airplane-security policies [10, 11] is most closely related.
However, these works are focused on the security policies within
the airplane addressing the verification of airplane security against
insider attacks by applying model checking within the IIIf. This
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work verifies, for example, the two-person rule that has been imple-
mented after a tragic insider attack in 2015 to ensure that always
two crew members are in the cockpit at any time. Such security
properties of policies are similar to safety properties and can very
well be expressed as temporal properties of state transition paths
(for example using temporal logics like CTL). However, more subtle
security properties related to implicit information flows require
more complex notions like noninterference to be formalized and
verified. Exceeding the previous work we have realized this in the
current paper. Besides being more accurate, indistinguishability and
noninterference add a dynamical security aspect. Blurring works
fine for static data, like maps, but when this data is animated infor-
mation leaks appear. A solution to this problem we have presented
in this paper.
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