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Abstract
Members of the Neotropical primate genus Chiropotes eat large volumes of immature 
seeds. However, such items are often low in available proteins, and digestion of seeds 
is further inhibited by tannins. This suggests that overall plant-derived protein intake 
is relatively low. We examined the presence of insect larvae in partially eaten fruits, 
compared with intact fruit on trees, and examined fecal pellets for the presence of 
larvae. We found that red-nosed cuxiú (Chiropotes albinasus) individuals may supple-
ment their limited seed-derived protein intake by ingesting seed-inhabiting insects. 
Comparison of fruits partially eaten for their seeds with those sampled directly from 
trees showed that fruits with insect-containing seeds were positively selected in 20 
of the 41 C. albinasus diet items tested, suggesting that fruits with infested seeds 
are actively selected by foraging animals. We found no differences in accessibility to 
seeds, that is, no differences in husk penetrability between fruits with infested and 
uninfested seeds excluding the likelihood that insect-infestation results in easier ac-
cess to the seeds in such fruits. Additionally, none of the C. albinasus fecal samples 
showed any evidence of living pupae or larvae, indicating that infesting larvae are 
digested. Our findings raise the possibility that these seed-predating primates might 
provide net benefits to the plant species they feed on, since they feed from many spe-
cies of plants and their actions may reduce the populations of seed-infesting insects.

Abstract in Portuguese is available with online material.
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1  |  INTRODUC TION

The family Pitheciidae represents, “a clade more committed to eat-
ing seeds than any other primate group” (Rosenberger, 2020; 53). 
This is especially true of the sub-family Pitheciinae, which com-
prises three genera (Cacajao, Chiropotes, and Pithecia) all of which 
show notable dental and cranial specializations for accessing and 
extracting seeds from non-pulpy, hard-husked fruits (Kinzey, 1992; 
Püschel et al., 2018). Of these genera, Cacajao and Chiropotes have 
the most derived suite of adaptations for such a diet (Kinzey, 1992; 
Rosenberger,  2020). In addition, the annual diets of both genera 
are often dominated by seeds from immature, rather than ripe, 
fruits (Ayres, 1989; Barnett et al., 2012; Norconk, 2020; Norconk 
et al., 2013; Pinto et al., 2020). In the genus Chiropotes, such im-
mature seeds may represent between 33% and 75% of the diet 
(Table 1). These seeds may be contained within fruits with either 
dry or pulpy husks (pericarp/mesocarp). Fruits of 117 plant spe-
cies were reported by Pinto (2008) as being eaten by C. albinasus, 
of these 66 (52.8%) were dry-husked, the remainder having pulp. 
Whether possessing pulp or not, most fruit species are used for 
their seeds (53% and 75% of diet for the two sites reported on by 
Pinto et al., 2018), with the seeds eaten when unripe (e.g., 48 and 
65%, respectively: Pinto et al., 2018).

Exploitation of such seeds is beneficial in that unripe fruits 
are available for longer periods than ripe ones (Boubli,  1999; 
Norconk, 2020; Shaffer, 2013), and feeding competition with other 
species may be reduced (e.g., Ara macaws, Palminteri et al., 2012: 
other primates, Kinzey & Norconk, 1990). However, seed-eating 
presents potential nutritional challenges, since unripe seeds tend 
to be rich in hard-to-metabolize structural proteins and poor in 
the more easily digested storage proteins (Craig, 1988), which are 
generally deposited shortly before dispersal (Gallardo et al., 2008; 
Harborne, 1996; Table 2).

Tannin protein-binding capacities may also provide a nutritional 
challenge to seed eaters. Tannins are commonly present in high con-
centrations in both unripe fruit pulps and seeds (Harborne,  1996). 
While tannin-rich food items are often avoided due to their astrin-
gency (Marks, 1986; Simmen & Charlot, 2003), that tannins bind with 
proteins may also pose a challenge (Hagerman, 1989), since this sub-
sequently render such proteins unavailable for digestion thus reduc-
ing food quality (Glander, 1982; Robbins et al., 1987). The relationship 
between tannin ingestion and their potential negative effects is com-
plex (Felton et al., 2009). While proline-rich proteins (PRPs) in saliva 
are known to bind with and detoxify tannins in some animals, it is not 
yet known whether pitheciins produce PRPs or if they would increase 
or decrease nitrogen digestibility in the gut (Skopec et al.,  2004). 
Nevertheless, the high levels of condensed and hydrolysable tannins 
in the immature seeds indigested by C. albinasus may significantly re-
duce the availability of what small levels of proteins are available from 
them during digestion (Lambert & Garber, 1998).

Pitheciins may balance the risks of ingesting high concen-
trations of tannins and toxins by ingesting a variety of fruits with 

different chemical compositions (Felton et al., 2009; Righini, 2017; 
AA Barnett, unpublished data), although individual Cacajao and 
Chiropotes may still run the risk of entering protein deficiency during 
day-to-day foraging. Ingestion of protein-rich buds, young leaves, 
and insects may compensate for this (Cacajao: Barnett et al., 2013; 
Chiropotes: van Roosmalen et al.,  1988), However, for insect in-
gestion only free-living insects (i.e., not those habitually inhabiting 
fruits, their seeds, or other food resources) such as caterpillars, ants, 
termites, and grasshoppers have generally been considered (Ayres 
& Nessimian,  1982; Frazäo,  1991; Mittermeier et al.,  1983; Pinto 
et al., 2018; Port-Carvalho & Ferrari, 2004; Veiga & Ferrari, 2006). 
When consumption of insects embedded in fruit or seeds is recorded, 
their ingestion is generally considered accidental (Raubenheimer & 
Rothman, 2013).

Redford et al.  (1984) pointed out that seeds are often colo-
nized by insect larvae (Coleoptera, Diptera, and Lepidoptera), 
providing a potential source of protein for seed-eating primates. 
While this observation received little attention at the time, more 
recent studies by Barnett, Ronchi-Teles, et al.  (2017); Barnett, 
Silla, et al. (2017) and Ballantyne (2018) have shown that at least 
one pitheciin, the golden-backed uacari (Cacajao ouakary; sensu 
Ferrari et al., 2014), actively selects fruit with insect-infested seeds 
(termed “covert carnivory” by Barnett, Ronchi-Teles, et al., 2017; 
Barnett, Silla, et al., 2017).

Selective predation of infested fruits has been observed in 
primates (Bravo,  2012), and other vertebrates (Alves et al.,  2018; 
Drew, 1987; Silvius, 2002; Valburg, 1992). Predation of seed-eating 
insects is widely considered to be beneficial to host plant fitness, 
since removing a section of the insect seed-predator population 
of future seeds effectively enhances the reproductive fitness of 
the individual plants (Bravo, 2008; Herrera, 1989; Jordano, 1987). 
Furthermore, as noted by Lambert (2001), additional benefits may 
result from the predation of insect-damaged seeds since such seeds 
often become infested by fungi and other pathogens (Barnett 
et al.,  2012; Menendez,  2019), which can potentially transfer in-
festations to healthy seeds and seedlings, reducing their survivor-
ship. Choice of infested fruits and seeds by seed-eating primates 
may reduce such losses, increasing overall plant reproductive fit-
ness (Lambert,  2001). For this to occur, insect larvae and pupae 
must not survive passage through the digestive tract of a seed-
eating primate, as survivorship could result in their dispersal (Guix 
& Ruiz, 1995, 1997).

Selective predation of infested fruits has not been studied in 
Chiropotes. However, as they have a dietary profile and feeding 
ecology very similar to Cacajao (Ayres, 1989; Norconk, 2020), it is 
plausible that Chiropotes may also benefit from covert carnivory. 
Accordingly, we present here a study of infested fruit selectivity in 
the red-nosed cuxiú (Chiropotes albinasus).

We tested the hypothesis that C. albinasus preferentially se-
lect fruits whose seeds are infested with larval insects, these being 
protein-rich (Rothman et al., 2014) and relatively easy to digest. We 
predicted that:
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    |  581BARNETT et al.

TA B L E  1  Infestation levels and selectivitya based on Ivlev Values for 45 diet items from 37 species eaten by Chiropotes albinasus on the 
middle Rio Tapajós, Pará State, Brazil.b,c

Scientific name
No. of 
treesd Habitate

Part eaten and 
maturation statef

Tree: Infested/
uninfested fruits 
(% on tree with 
infested seeds)

Diet: Infested/
uninfested fruits 
(% in diet sample 
with infested 
seeds)

Electivity 
index

Selection 
typeg

Annonaceae

Xylopia cf. fructescens 4h,i Ig Am 40/98 (40.8) 2/17 (11.8) −0.55 A

Apocynaceae

Malouetia flavescens 7h Ig Si 27/117 (23.1) 28/37 (75.7) 0.53 P

Malouetia flavescens 3 Ig Sm 9/46 (19.6) 12/25 (48.0) 0.42 P

Tabernaemontana sp. 7h,j Ig Si 6/28 (21.4) 12/21 (57.1) 0.45 P

Tabernaemontana sp. 4 Ig Sm 5/23 (21.7) 9/14 (64.3) 0.52 P

Chrysobalanaceae

Licania cf. canescens 2i Tf Si 14/89 (15.7) 14/22 (63.7) 0.60 P

Euphorbiaceae

Hevea spruceana 8h Ig Si 7/58 (12.1) 18/40 (45.0) 0.58 P

Mabea nitida 3h Ig Si 21/60 (35.0) 2/23 (8.7) −0.61 A

Fabaceae

Inga alba 5h Tf Am 63/199 (31.7) 3/47 (6.4) −0.64 A

Inga heterophylla 2h Ig Am 46/122 (39.4) 2/50 (4.0) −0.79 A

Dalium sp. 3 Ig Pm 4/37 (10.8) 6/16 (37.5) 0.55 P

Dalium sp. 2 Ig Si 9/19 (47.3) 2/16 (12.5) −0.58 A

Macrolobium 
acaciifolium

8 Ig Si 17/100 (17.0) 9/46 (19.6) 0.07 O

Swartzia polyphylla 2 Ig Wo 27/85 (31.8) 19/23 (82.6) 0.44 P

Swartzia polyphylla 2 Ig Am 8/40 (20.0) 3/17 (17.7) −0.06 O

Humiriaceae

Endopleura uchi 1i Tf Pi 4/31 (12.9) 2/19 (10.5) −0.10 O

Lecythidaceae

Couratari stellata 2 TF Sm 22/207 (10.6) 5/44 (11.7) 0.05 O

Couratari cf. tenuicarpa 3 Ig Si 16/221 (7.2) 4/52 (7.7) 0.03 O

Couratari cf. tenuicarpa 2 Ig Sm 24/194 (12.4) 6/63 (9.5) −0.13 O

Eschweilera albiflora 5h Ig Si 28/74 (37.8) 34/49 (79.6) 0.36 P

Eschweilera obversa 3h TF Si 61/227 (26.9) 57/94 (60.6) 0.43 P

Lecythis lurida 1h TF Si 55/80 (67.8) 20/37 (54.1) −0.11 O

Menispermaceae

Abuta cf. panurensis 1 TF Pmk 7/34 (20.6) 26/41 (63.4) 0.51 P

Moraceae

Brosimum parinarioides 3i Tf Wm 2/78 (2.6) – – n/a

Myristicaceae

Iryanthera sagotiana 1 Tf Am 0/23 – – n/a

Myrtaceae

Calyptranthes sp. 5i Ig. Si 14/34 (41.2) 17/27 (62.9) P

Calyptranthes sp. 3i Ig Wm 26/35 (74.3) – – n/a

Eugenia sp. 11i Ig Si 82/100 (82.0) 36/47 (76.6) −0.03 O

Eugenia sp. 4i Ig Wm 36/50 (72.0) – – n/a

(Continues)
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582  |     BARNETT et al.

Scientific name
No. of 
treesd Habitate

Part eaten and 
maturation statef

Tree: Infested/
uninfested fruits 
(% on tree with 
infested seeds)

Diet: Infested/
uninfested fruits 
(% in diet sample 
with infested 
seeds)

Electivity 
index

Selection 
typeg

Olacaceae

Chaunochiton 
loranthoides

4 Ig Si 12/52 (23.1) 13/19 (68.4) 0.49 P

Passifloraceae

Passiflora cf. costata 5i,j Ig Pm, Sm 10/29 (34.5) 8/11 (72.3) 0.35 P

Polygalaceae

Moutabea guianensis 5i,l Tf Si 14/63 (21.5) 19/33 (57.6) 0.46 P

Securidaca sp. 3 78/100 (78.0) 21/29 (72.4) −0.03 O

Rubiaceae

Duroia sp. 7 Ig Wi 4/47 (8.5) 2/16 (12.5) 0.19 O

Duroia sp. 4 Ig Wm 4/34 (11.8) 2/19 (10.5) −0.05 O

Salicaceae

Casearia sp. 3m Ig Wm 39/56 (69.6) 9/15 (60.0) −0.07 O

Sapotaceae

Chromolucuma cf. 
rubriflora

2m Ig Si 25/43 (58.1) 39/61 (63.9) 0.05 O

Chrysophyllum sp. 2m TF Si 14/49 (28.6) 22/31 (70.1) 0.42 P

Elaeoloma glabrescens 3m Ig Si 8/29 (27.6) 15/23 (65.2) 0.41 P

Manilkara bidentata 2m Ig Si 11/44 (25.0) 54/86 (62.7) 0.40 P

Pouteria bilocularis 1m Tf Si 13/35 (37.1) 7/20 (35.0) −0.03 O

Pouteria cf. cuspidata 1m Ig Si 19/64 (29.7) 36/56 (64.3) 0.36 P

Pouteria gomphiifolia 3m Ig Si 17/41 (41.5) 22/27 (81.4) 0.32 P

Pouteria cf. macrophylla 2m TF Si 39/50 (78.0) 21/28 (75.0) −0.02 O

Theaceae

Ternstroemian 
candolleana

1 Ig Si 8/27 (29.7) 25/39 (64.1) 0.37 P

aElectivity Index = (Oi − Ti)/(Oi + Ti). Electivity Index data are given for each diet item and is based on all analyzed individuals of the species concerned 
for which a particular morphological part was consumed. If a different part was consumed, and that was the only part ingested, then that was treated 
as a separate diet item from any others of the same species (e.g., whole young pods and arils from mature pods of Swartzia polyphylla). If the same 
part was eaten at two different maturational stages (e.g., seeds from immature and mature fruits of Malouetia flavescens), this too was treated as two 
distinct diet items, and the electivity indexes calculated separately combined (different maturation states treated separately).
bC. albinasus was seen feeding on seeds of three species of tree that could not be sampled for logistical reasons (Acosmium sp., Aldina [heterophylla?], 
Swartzia sp., all Fabaceae).
cC. albinasus was also seen eating flowers and young leaves, these data will be reported elsewhere.
dIn all eight cases of multi-use, the same trees were visited.
eHabitat: Tf = terra firme, Ig = igapó.
fPart eaten: A = aril/sarcotesta, P = pulp, S = seed, W = whole fruit, maturation state: m = mature, i = immature.
gSelection type: P = positive, A = avoidance, and O = none; where species that were avoided had some fruits with infested seeds (or fruit parts 
eaten), these were always very lightly infested, so that it is possible that any induced zootropic phytochemicals may not have been present or were 
present at very low levels.
hMulti-seeded fruits, selectivity estimated for individual seeds.
iFruit species had a pulpy pericarp, and there was insect infestation in both the pericarp and seeds.
jA vine with N = number of clumps; the vine was growing on a flooded bank at the time of feeding.
kIn this species, the layer of pulp is thinner as than the exocarp is thick, and infesting insects appeared to be feeding on both.
lA vine, but the true number of individuals was not ascertained.
mFruit species had a pulpy pericarp, and there was insect infestation only in the seeds.
nThe genus Ternstroemia considered by some to belong to the Pentaphylaceae (or its own family Ternstromeaceae).
oVery immature pods.

TA B L E  1  (Continued)
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	(i)	 a high percentage of the fruits eaten by Chiropotes albinasus 
would be infested by larval insects;

	(ii)	 foraging C. albinasus would select such infested fruits at a fre-
quency disproportionate to their availability;

	(iii)	fruit-infesting larvae would not be found intact and alive in the 
feces of C. albinasus;

Finally, because larval infestations generally create holes and 
tunnels in fruit pericarp and/or seed coats (see images in Barnett 
et al., 2016), this could, potentially, make the fruit husk, and/or that 
of the shell of the seed within, easier to break, resulting in a me-
chanical advantage to their exploitation. Thus, to test whether me-
chanical rather than nutritional benefits underpinned any recorded 
preferences, we also predicted that:

	(i)	 for any given species, the force needed to penetrate the protec-
tive covering of the part eaten by C. albinasus would be less in 
infested than in uninfested fruits.

2  |  METHODS

2.1  |  Study site and species

The study took place on middle Rio Tapajós, Pará State, Brazil 
(Figure 1). Regionally, the main forest types are tall terra firme (never-
flooded) forest (15–30 m), and igapó (Prance, 1979). The latter is a 
seasonally flooded forest, inundated at the study site from January-
late April/early May (de Oliveira et al., 2016), by the nutrient-poor 
waters of the Rio Tapajós (Junk, 2013). Igapó forest forms a narrow 
strip (rarely more than 10 m wide) along the banks of the Tapajós 
and tributaries. The study area lies between the town of Itaituba 
(4°16′33″S, 55°59′02″W), the impassable rapids on the Tapajós 
south (upstream) of Machado village, and the first set of impass-
able rapids on the lower Rio Jamanxim (4°45′23″S, 56°26′15″W; 
Figure 1).

Unlike many primate genera in the Tapajós river basin (e.g., 
Alouatta, Aotus, Ateles, Mico, and Plecturocebus), the species of 

TA B L E  2  Content of red-nosed cuxiú (Chiropotes albinasus) fecal pellets, Rio Tapajós, Pará State, Brazil.

Pellet # Plant material present Animal material present Comments

1 Pollen, leaf frag, stamens Some legs (of beetles?), beetle elytra –

2 No identifiable material Spiders, caterpillar headcapsules, setae Possible consumption of the same kind of 
caterpillars as reported by Veiga and 
Ferrari (2006)

3 No identifiable material No identifiable material No identifiable remains, gray-pink matrix 
appeared smooth and homogeneous

4 Strands of fiber (palm fruit?) Spiders, beetle elytra (some very small) Very small elytra could be from seed beetles 
(Bruchinae)

5 No identifiable material Winged ant remains (~25% of pellet by 
volume)

Based on thorax fragments, ants would 
have been around 1.25 cm long. Ferreira 
et al. (2021) report ant-eating very common 
in South American primates.

6 Three intact Duroia seeds, plus 
testa fragments

No identifiable remains – some material 
that might be larval skin

Two seeds germinateda

7 No identifiable material Beetle wings and elytra (some very small), 
spiders, termite wings.

As above, possible bruchinids from seeds?

8 Possible bud scales, pollen, a petal 
fragment

Remains of several stingless bees, small 
irregular shapes (possible remnants of 
nest resin)

Moura (2016) reports Chiropotes sagulatus 
raiding stingless bee nests

9 Leaf fragments, bud scales (?) Leg fragments (possibly from beetle 
imagos)

Young leaf?

10 No identifiable material Some termite wings, beetle legs, and elytra 
(some very small)

As above, possible bruchinids?

11 – – No identifiable remains, gray-pink matrix 
appeared smooth, and homogeneous

12 No identifiable material Grasshopper remains; dense, non-plant, 
material – possibly from a spider egg 
case?

Spider egg case eating reported by Moura (2016) 
for Chiropotes sagulatus

13 – – No identifiable remains, pinkish-gray matrix 
appeared smooth, and homogeneous

aThree Duroia seeds were found intact in one pellet. Since previous studies had found D. velutina seeds in germinated from feces of Cacajao, a close 
Chiropotes relative (Barnett et al., 2012), the seeds were placed on local soil in a plastic pot covered with netting, and watered to keep the soil moist, 
two seeds sprouted (9 and 11 days after sowing).
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Chiropotes, the red-nosed cuxiú (C. albinasus), is found on both 
banks (de Oliveira et al., 2016). The species is arboreal, weighs some 
3.5 kg, travels in groups of 20–60, has a home range that may exceed 
1000 ha (Pinto et al., 2020), and is listed as Vulnerable by the IUCN 
(Pinto et al., 2020).

2.2  |  Data collection

2.2.1  |  Field surveys

As part of a broader series of faunal surveys in the mid-Tapajós (de 
Oliveira et al., 2016; Barnett & de Oliveira 2018; Barnett, Ronchi-
Teles, et al., 2017; Barnett, Silla, et al., 2017, Barnett, de Oliveira, 
et al., 2018; Barnett, Todd, & de Oliveira, 2018; Jucá et al., 2020; 
Tománek et al., 2020), we collected field data on C. albinasus be-
tween October 2013 and December 2014. Primate surveys oc-
curred between 05:30 and 18:30 h from motorized canoes, and from 
06.00–10.00 h and 14.00–18.00 h on trails. Using a pre-existing trail 
system (de Oliveira et al.,  2016), we conducted primate observa-
tions and collected data on the margins of the igapó (a 200-km 
transect) and in adjacent terra firme forest (five 10-km transects). 
During these surveys, the GPS location of each feeding tree was 
recorded, and in-field taxonomic identification of individual trees 
was conducted as far as possible. When a C. albinasus group was 
seen entering a feeding tree, the group was observed to ascertain 
feeding bout duration, plant species identity and part eaten, and 
the way it was processed. As the study was part of a broader faunal 
study, such observations were discontinued after 30 min, unless the 
encounter was close to the end of a survey session.

2.2.2  |  Sample form

Monkeys are not tidy feeders (Howe, 1986), and it is common for 
large volumes of partially eaten fruits to accumulate below feeding 
trees. Barnett, Ronchi-Teles, et al. (2017); Barnett, Silla, et al. (2017) 

used the word “ort” for such material, a word defined as “a frag-
ment of food, fallen from a table. A meal remnant” (https://www.
merri​am-webst​er.com/dicti​onary/​ort). This usage was followed by 
Ballantyne (2018) and dos Santos-Barnett et al. (2022), and we use 
it here.

While monkeys can be messy eaters (Zagt,  1997), they are 
also often highly selective feeders (Chapman et al.,  2012; Clink 
et al.,  2017). Consequently, many previous studies have used ort-
based methods to study diet composition and patterns of selectivity 
(Table S1). Thus, while an imperfect measure of dietary “selectivity” 
that requires controlled laboratory experiments for supportive veri-
fication, dropped fruit is often an important source of information in 
studies of wild primates.

The feeding remnant orts collected from beneath feeding trees 
are likely to be mixed with fruits handled and dropped without 
opening, and those opened and discarded without consumption. 
However, preliminary studies indicated that, for all sampled spe-
cies, fallen whole fruits had the same proportions of infested/non-
infested fruits on the ground as in the trees. It therefore appeared 
that cuxiús did not pluck then reject infested material, and that such 
fruits had simply been knocked down accidentally by movement. 
Accordingly, such material was not used in analysis, which focused 
purely on material that had been fed upon.

2.2.3  |  Sample collection

Fed-at trees were flagged with marking tape. Any repeat vis-
its by C. albinasus to individual trees were treated as independ-
ent events. Trees with very recent feeding signs (orts that were 
not discolored and/or still oozing sap or latex and bearing dental 
marks characteristic of Chiropotes feeding) were also sampled (see 
Figure 2). We did not collect orts or seeds that, based on discol-
oration or loss of texture, were considered likely to have been on 
the ground for longer than 1–2 h, since the action of foraging ants 
could have reduced insect content of such material greatly, and so 
bias results.

F I G U R E  1  Map illustrating the location 
of the study area and positions of land and 
water transects.
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2.2.4  |  Defining and collecting insect-infected fruits

Members of the genus Chiropotes have diets dominated by imma-
ture seeds from hard-husked fruits (Pinto et al., 2018). In such fruits, 
the husk, in addition to a low water content, is often rich in tan-
nins and highly sclerified or fibrous (Cunha Junior et al., 2020; van 
Roosmalen,  1985), which may account for low frequency of their 
infestation by insects, compared to pulp or seeds (AA Barnett, un-
published data). However, pulpy fruits accounted for nearly half the 
species eaten (51 of the 117 species reported for the C. albinasus 
diet by Pinto, 2008). Consequently, both seeds and pulp (if present) 
were checked for the presence of resident infesting insects. We dis-
tinguished these from visiting scavengers by their presence in exca-
vated tunnels, presence of frass, and individuals being at the larval 
(rather than adult) development stage.

To compare infestation levels, we analyzed values from fallen 
fruits (orts) with feeding marks and those from fruits on branches 
trimmed from trees C. albinasus had been observed to feed. To ex-
pand the sample, and more accurately assay the potential range of 
infestation levels, we collected fruit from the canopies of other in-
dividual trees belonging to known food tree species, but in which 
feeding had not been observed. All such trees were within 250 m of 
a tree in which C. albinasus had been observed feeding.

2.2.5  |  Determining which primate species had 
deposited the collected orts

The two pitheciin species in the region (C. albinasus and Pithecia 
mittermeieri) leave different dental marks on orts than the other 
large-bodied primates of the central Tapajós (Ateles chamek, Ateles 
marginatus, Alouatta discolor, Alouatta nigerrima, Cebus albifrons, and 
Sapajus apella: de Oliveira et al., 2016), an effect of the marked dif-
ferences in dental morphology and means of food processing of each 
taxon (Rosenberger, 2020). As pitheciins, C. albinasus and P. mitter-
meieri, have a unique feeding method (termed “sclerocarpic foraging” 
by Kinzey  (1992)), which uses hypertrophied canines to penetrate 
fruit husks and procumbent incisors to extract seeds imparting char-
acteristic dental impressions (see Figure 2) on fruit husks and any 
associated pulp. Pithecia mittermeieri was rarely seen and is smaller 
in body mass than C. albinasus, making it unlikely that orts from the 
two species would be assigned erroneously.

2.2.6  |  Determining larval gut passage survivorship

To assess gut passage survivorship of larvae, we actively searched 
feeding areas for fecal pellets. Chiropotes pellets have a characteris-
tic shape and form, resembling a large coffee bean, that allows them 
to be easily distinguished from those of similar-sized regional pri-
mates. The lack of sections of fiber and leaf fragments sets them 
apart from deer.

During sampling, fruit and seeds were stored in plastic zip-lock 
bags and labeled either as orts, fallen-uneaten fruits, or fruits re-
moved from the tree. We stored fecal material in crush-resistant 
vials. All fruits, seeds, and fecal pellets were analyzed in a field lab 
within 3 h of collection and then preserved in alcohol.

2.2.7  |  Plant species identification

Plants were identified to lowest possible taxonomic category 
using Gentry  (1993), Ribeiro et al.  (1999), van Roosmalen  (1985), 
Neotropical Flora volumes (e.g., Mori & Prance,  1990), specialist 
literature (e.g., Procópio & Secco,  2008 for Couratari), and Harris 
and Harris  (2001) and Jackson  (2004) for botanical terminology. 
Identifications were confirmed using species lists in Pinto  (2008: 
terra firme), Ferreira & Prance (1998: igapó), and comparison of photo-
graphs of fruits, seeds, leaves, flowers (when available), bark, whole 
tree (when possible) with on-line herbarium resources: Neotropical 
Herbarium Specimens, New York Botanic Garden, Tropicos, and 
Flore de Guyane (https://www.field​museum.org/node/4781; http://
sweet​gum.nybg.org/scien​ce/vh/; https://www.tropi​cos.org/home, 
https://flore​deguy​ane.piwigo.com, respectively).

2.3  |  Data analysis

To test Prediction i (that a high percentage of the fruits eaten by 
C. albinasus would be infested by insects), the presence/absence of 
infestation was determined for the seeds in each individual fruit, and 
percentages were then calculated per plant species. This was done 
by analyzing orts discarded by C. albinasus and retrieved from the 
ground. Infestation intensity (measured as number of larvae or their 
total weight) was not quantified due to equipment failure.

To establish on-tree levels of infestation (key for Prediction ii, 
that foraging C. albinasus would select such infested fruits at a fre-
quency disproportionate to their availability), fruits/seeds were sec-
tioned, and the presence of insect larvae and/or damage associated 
with them (tunnels, bore-holes, frass, and discoloration) was noted. 
For each species, infestation was quantified using only fruits at the 
same maturation level as those eaten by C. albinasus. Following 
Barnett, Ronchi-Teles, et al.  (2017); Barnett, Silla, et al.  (2017) and 
Felton et al. (2008), we tested for selectivity of insect-infected fruit 
(Prediction ii) obtain from tree canopies using Electivity Indices 
(Ivlev, 1961) for each fruit species, such that:

where Oi = percent of orts with insect-infestation, and Ti = percent of 
on-tree fruit insect-infestation. Electivity values range from −1 to +1, 
where +1 indicates complete selection, −1 indicates complete avoid-
ance, and 0 indicates no preference (larvae-infested fruits selected at 
ambient value).

(

Oi − Ti

)

∕
(

Oi + Ti

)
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To provide comparability, and to ensure selection estimates were 
conservative, we used the same categories as Barnett, Ronchi-Teles, 
et al. (2017); Barnett, Silla, et al. (2017); values ±0.33 to either side 
of zero (neutral) indicated no selection had occurred; values < −0.33 
indicated negative selection (active avoidance), and values >+0.33 
indicated active selection.

To assess whether fruit-infesting larvae passed intact and alive 
through the C. albinasus digestive system (Prediction iii), fecal pellets 
were broken apart with a thin glass rod. Material was then washed, 
sorted, placed in a petri dish, and scrutinized with a 10x hand-lens. 
We paid particular attention to the presence of invertebrate frag-
ments, intact insect larvae, and pupae (the latter because they may 
not have been masticated due to small size). Any apparently intact 
individuals were prodded with a seeker tip to test for vitality.

To determine whether the force needed to penetrate the cov-
ering of the part eaten by C. albinasus is less for infested fruits than 
those whose non-infested status has left their pericarps intact 
(Prediction iv), we tested relative penetrability of the eight species 
with hard-husked indehiscent fruit (Couratari stellata, Couratari cf. 
tenuicarpa, Eschweilera alba, Eschweilera obversa, Hevea spruceana, 
Lecythis lurida, Mabea nitida, Macrolobium acaciifolium), and two 
species with hard, but indehiscent, fruit (Chaunochiton loranthoides 
and Ternstroemia candolleana). We used only hard-husked fruits, 
due to the differences in materials failure in brittle (dry shell) and 
ductile (pericarp-covered pulp) substances: in the former, cracks 
auto-propagate from the point of impact (Mode I fracture: cracking), 
while in the latter, propagation requires the application of contin-
uous force (Mode III fracture: tearing or ripping) (Sun & Jin, 2012). 
Thus, just as a bored hole creates a zone of weakness in a rigid struc-
ture (Bao & Wierzbicki, 2004; Murdani et al., 2008), a bite is only 

likely to facilitate post-canine insertion crack propagations in hard, 
non-elastic, husks, and not pulpy ones.

Like C. ouakary (Barnett et al., 2016), C. albinasus opens hard-
husked fruits by biting selectively at areas of natural weakness 
(sutures of dehiscent fruit) or thinness (indehiscent fruit) (A.A. 
Barnett, unpublished data). Accordingly, following Barnett 
et al.  (2015), Barnett, Ronchi-Teles, et al.  (2017); Barnett, Silla, 
et al.  (2017) we measured penetrability values at sutures and on 
between-suture faces using an International Ripening Company 
(Norfolk, VA 23502-2095) FT-011 fruit penetrometer, mounted on 
a replica Fridley Fruit Tester (Fridley,  1966), with the prosthetic 
cast of an adult female C. albinasus canine replacing the standard 
plunger head. Single measurements at, and between, sutures were 
made, to avoid the possibility of induced mechanical weakness 
induced by experimentally made holes affecting the values of 
subsequent measurements. We measured the force required not 
just to penetrate the husk, but also to reach the seed since some 
species (e.g., Hevea spruceana) have a second, inner, layer (the en-
docarp) harder than the outer epicarp (Muzik, 1954). Differences 
in penetrability were tested by comparing single measurements 
from the sutures and the areas between them for 10 infested and 
10 uninfested fruits of each species (i.e., fruits with and without 
insect bore/oviposition holes using a Mann–Whitney U test). To 
avoid compromising the very structural integrity under investiga-
tion, all tested fruits were opened only after use, and the presence 
of infesting animals then ascertained. Level of significance was set 
at 0.05.

Although fungal infections have been shown to influence ver-
tebrate choice of fruits, either positively (Buchholz & Levey, 1990) 
or negatively (Cipollini & Stiles,  1993), we did not investigate this 
variable, and excluded fruits with fungal rot from the data sets of all 
investigated species.

3  |  RESULTS

A total of 4649 fruits from 130 trees or vines, representing 37 spe-
cies in 30 genera and 18 families were analyzed. A total of 3249 
fruits from trees were sampled, and 1400 fruits were sampled as 
orts. Of the 130 trees or vines from which fruits were obtained, 56 
were sampled as a result of direct observation, while collections 
from 74 others represented sites where feeding had occurred very 
recently (e.g., fruit not discolored, and/or covered in ants; Table 1).

Of the 37 species recorded as eaten by C. albinasus, eight were 
exploited when both immature and mature (Malouetia flavescens; 
Tabernaemontana sp. – both Apocynaceae; Dalium sp., Swartzia 
polyphylla – both Fabaceae; Couratari cf. tenuicarpa, Lecythidaceae; 
Calytranthus sp., Eugenia sp. – both Myrtaceae; Duroia sp., Rubiaceae), 
providing a total of 45 diet items, with either the same part being 
eaten in both stages (seed: M. flavescens, Tabernaemontana sp., C. 
cf. tenuicarpa) or different parts of the fruit (e.g. whole immature 
pod vs aril in mature pod: Swartzia polyphylla: Table  1). Only one 
(Iryanthera sagotiana, Myristicaceae) definitively lacked any obvious 

F I G U R E  2  A Sapotaceae fruit eaten by Chiropotes, showing the 
curved insertion point of the dental arc of the procumbent incisors, 
and the lateral rips subsequently made by the robust, splayed, 
and canines. Photo Credit: Justin A. Ledogar of fruit bitten by 
Chiropotes sagulatus in Suriname.
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insect infestation. Of the remaining 44 species, selectivity could be 
determined for 41. For the other three species, fruits were ingested 
in their entirety, leaving no orts for analysis. Of the 41, fruits with 
infested seeds were positively selected in 20 (48.8%). In 15 of the 
41 species (36.6%), fruits with infested and uninfested seeds were 
eaten at parity. In 6 species (14.6%), fruits with infested seeds were 
eaten at less than parity, and so appear to have been avoided.

Thus, in terms of the overall diet, the incidence of infestation 
on by-species basis was high (44 of the 45 diet items analyzed: 
97.8%), as were leveled for many species (Table  1). Additionally, 
within species, selectivity was relatively high with infested fruits 
being eaten at a greater frequency than parity for 26 species 
(63.4% of the 41 for which selectivity could be analyzed). Of these, 
20 were positively selected (48.8% of analyzed species, and 76.9% 
of species for which selectivity was demonstrated: Table 1). Thus, 
Prediction i (that infestation would be high) is supported, and 
Prediction ii (that infested fruits would be eaten preferentially) is 
partially supported.

Analysis for living larvae and pupae was conducted on 13 C. al-
binasus fecal pellets (Table 2). Of these, nine (69.2%) contained the 
remains of some form of invertebrate, most likely the result of insec-
tivory sensu stricto (Ayres & Nessimian, 1982; Frazäo, 1991; Pinto 
et al., 2018). There were, however, no living larvae and few larval re-
mains (Table 2), apart from head capsules and other well-sclerotized 
parts and some areas of dermis. Pupal remains were also found, but 
none were intact (Item 4, Figure 3). Thus, Prediction iii is validated: 
neither insect larvae, nor pupae, survived passage through the gut 
of C. albinasus. We did not record any intestinal parasites that might 
have been mistaken for seed-inhabiting larvae that had survived 
passage through the alimentary canal.

Comparative penetrability data for sutures and faces of fruits 
that were and were not infested were obtained for 10 species: eight 
with hard-husked dehiscent fruits, and two hard-husked indehiscent 
species (Table  3). For six of the tested species (including the two 
indehiscent), there were no significant differences between the pen-
etrability faces of infested and uninfested fruits (statistical results 
are in Table 3). We also found no significant difference between the 
force needed to penetrate sutures for infested and uninfested ex-
amples of any of the eight fruits with dehiscent morphologies (sta-
tistical results are in Table 3). Hence, Prediction iv is not validated, 
and infested fruits were not more easily penetrated than uninfested 
fruit.

4  |  DISCUSSION

Infestation levels were high in the fruit tested since of the 45 items 
from 37 species of fruits seen to be consumed by the monkeys only 
one lacked evidence of infestation. Selectivity could be estimated 
for 41 of the 44 infested items, with selectivity data lacking for three 
which were eaten whole. Of the 41, six (15%) appeared to have been 
avoided when infested, while in 20 (49%) fruits with infested seeds 

appeared to have been preferentially selected. Fruits of 15 species 
(36%) were eaten at parity. Furthermore, none of the fecal samples 
showed any evidence of living pupae or larvae.

We found no difference in the penetrability of the husk face or 
suture for any of the 10 species analyzed, indicating that infested 
fruit choice was based on insect presence, rather than relative ease 
of access. Larval infestation was restricted to seeds in all studied 
cases. This is likely due to the dry, fibrous, tannin-rich nature of the 
pericarp of the species investigated and means that the obtained 
penetrability values therefore reflected those of likely to be encoun-
tered by a foraging C. albinasus.

Overall, Prediction i (a high percentage of the species eaten by 
Chiropotes albinasus would have seeds infested by insects) was sup-
ported, while partial support was obtained for Prediction ii (within 
species, C. albinasus would select infested fruits at a frequency dispro-
portional to their availability). Additionally, support was found for 
Prediction iii (fruit-infesting larvae would not be found whole and alive 
in the feces of C. albinasus), but not for Prediction iv (for any given 
species, the force needed to penetrate the protective covering of the part 
eaten by C. albinasus would be greater for fruits with uninfested seeds 
than those where seeds were infested). The fact that there was no dif-
ference between penetration force values at the suture for any of 
the tested species is significant since, like Cacajao ouakary (Barnett 
et al., 2016), C. albinasus selectively bites at the sutures when fruits 
possess them (AA Barnett & T. de Oliveira, unpublished data).

As noted above, infesting insects may occur in both the pulp or 
seeds of fruit. In the current study, 17 of the 37 species of fruits 
recorded in the diet had pulpy pericarp (45.9%: a value close to that 
recorded by Pinto (2008) in the same region, 43.6%). Of these, eight 

F I G U R E  3  Invertebrate remains from a fecal pellet of Chiropotes 
albinasus, showing fragments of spiders, and adult insects, but no 
larval insects associated with fruit infestation or their pupal stages. 
1 = termite wings, 2 = caterpillar skin, 3 = elytra of small beetles, 
4 = empty Dipteral pupal cases, 5 = caterpillar head capsules, 
6 = body of a spider. Each square is 0.5 × 0.5 cm. Photo Credit: 
Adrian A Barnett.
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had records of infestation in both the pericarp and seeds, while in 
nine only the seeds were infested (Table 1). No eaten fruit had only 
pulp infested.

Penetrometer values showed insect presence does not make 
it easier to open a hard-husked fruit. Furthermore, the insects in-
gested (we saw no evidence that they were spat out) appear to have 
been digested, since none appeared as living larvae or pupae in fecal 
samples. The lack of living insects in C. albinasus fecal samples con-
trasts with those of other neotropical seed eaters, where living lar-
vae and pupae of fruit-infesting insects have been found (see Guix & 
Ruiz, 1995, 1997 for birds). Indeed, while diverse remnants of adults 
occurred in the analyzed C. albinasus fecal samples (see Table 3), lar-
val material was represented by just a few head capsules (item 5 in 
Figure  3), setae and material resembling caterpillar skin (item 2 in 
Figure 3). This probably occurred because larvae are generally very 
lightly sclerotized, so that most parts would be unlikely to survive 
the digestive passage intact.

The variation recorded here in C. albinasus selectivity of fruit with 
infested seeds (i.e., select, parity, and reject) has also been reported 
for C. ouakary (Barnett et al.,  2015) and Ateles spp. (dos Santos-
Barnett et al., 2022). As with these species, experimentally verified 
explanations for this range of responses is lacking. However, cases 
where infested items are selected at parity may reflect some form 
of frequency-dependent selection, where the chance of encounter-
ing an item is sufficiently large that the extra time spent in active 
searching is not compensated for in enhanced returns. Meanwhile, 
cases where fruits with infested seeds are selected at parity may 
be due to avoidance of chemicals synthesized as part of the plant's 
defensive response to seed infestation, including those where plants 
selectively accumulate toxic compounds within such infested seeds 
(Ibanez et al., 2009), as well as insect countermeasures where larvae 
sequester such compounds for their own defense (Ferro et al., 2006).

Some responses by C. albinasus clearly showed fine adjustments 
in foraging techniques. For example, very young pods of Swartiza 
polyphylla (Fabaceae) were eaten in their entirety (as humans would 
eat petit pois), while in more mature fruits only the sarcotesta is 
eaten. By weight, the sarcotesta is a very small proportion of the 
entire seed (less than 5%), an aspect that might well have influenced 
the selectivity pattern observed. In species where infested seeds 
were generally avoided, a few were recorded as being eaten (e.g., 
Inga). However, under such circumstances, the missing (i.e., eaten) 
portions appeared not to have insect-bored galleries continuing 
into them. Given the lack of the kind of direct action by insects that 
would induce a phytochemical response, we consider it probable 
that such areas did not have higher levels of toxic chemicals than 
other parts of the seeds of conspecifics.

Infestation was common with 44 of the 45 food items (98%) hav-
ing some individuals that were infested. Of the infested items, 20 
(45%) were positively selected. We attribute this to the nutritional 
benefits of insect consumption. Although we have focused here on 
the potential benefits of larvae as supplements in an immature seed-
dominated diet potentially deficient in protein (Bukkens,  1997), 
it should be noted that insect larvae can also function as sources TA
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of minerals, amino acids, and vitamins (Drew,  1988; Finke,  2013). 
Indeed, accessing such supplements from insect larvae may be par-
ticularly efficient, since the generally low levels of sclerotization 
of larval exoskeletons results in their being more easily digested 
than those of imagoes (Hopkins & Kramer,  1992; Raubenheimer 
& Rothman,  2013). Furthermore, since infesting larvae are con-
centrated within the boundaries of the seed, they also represent 
a clustered resource whose exploitation is more time/energy effi-
cient than the more spatially dispersed adults (Barnett et al., 2020; 
McNamara & Houston, 1987). This may be significant since, in some 
fruits, infesting insects can constitute up to 35% of the total mass 
(Barnett et al.,  2022; Barnett, Ronchi-Teles, et al.,  2017; Barnett, 
Silla, et al., 2017).

However, this foraging approach is not without risks since dam-
aged seeds may contain aflatoxins, which are inimical to mammals 
(Janzen,  1977; Massey et al.,  1995). Accordingly, the avoidance of 
some plant species may be a reflection of aflatoxin avoidance. In ad-
dition, such fruits may have already had a substantial proportion of 
their material consumed – potentially offsetting the energetic gains 
obtained from animal material ingestion (Muñoz & Bonal, 2008).

Thus, we have shown that while it is a species already known 
to eat large free-ranging adult insects (Ayres & Nessimian,  1982; 
Frazäo, 1991; Mittermeier et al., 1983; Veiga & Ferrari, 2006), as well 
as large spiders and their egg sacs (Moura, 2016), C. albinasus also 
appears to practice covert carnivory (sensu Barnett, Ronchi-Teles, 
et al.,  2017; Barnett, Silla, et al.,  2017), eating insects concealed 
within seeds, and appearing to actively select infested seeds when 
doing so.

Chiropotes is a pitheciin, a group of neotropical primates that are 
generally considered to be seed predators and thus a group whose 
dietary strategies work in opposition to the reproductive interests 
of the plant species on which they feed. However, since many of the 
plant species involved have fruiting periods long enough to support 
several sequential generations of seed-predating insects (e.g., multi-
voltine species: Janzen, 1976), the apparent capacity of C. albinasus 
(and presumably other members of the clade) to digest larvae, could 
act as a source of population control for such insects. This may be 
especially pertinent given that fruits with infected seeds are prefer-
entially selected. Combined with observations that pitheciin species 
can also act as seed dispersers (Barnett et al.,  2012), this under-
scores the fact that not all pitheciin intersections with plants in their 
diet are predatory.

Covert carnivory may also be underestimated in other plant 
forms. Other potential insect-rich sources include buds, develop-
ing flowers, and young shoots (dos Santos-Barnett unpublished 
data), while young, unopened, leaves may house concealed cat-
erpillars (Barnett, de Oliveira, et al.,  2018; Barnett, Todd, & de 
Oliveira,  2018). Many primates, including Chiropotes spp., are also 
known to eat buds (stem, leaf, and flower) and flowers (Boyle 
et al., 2012; Di Fiore et al., 2008; Felton et al., 2008; Gregory, 2011; 
Russo et al., 2005). Given the ubiquity of bud-borers (Hanover, 1975; 
Sugiura & Yamazaki, 2009), and the often extensive presence of lar-
val insects in budding and open leaves (Liu et al., 2015), and flowers 

(e.g., Barnett et al., 2020 for Eschweilera tenuifolia, Lecythidaceae), 
it is possible that covert carnivory occurs here too. Along with 
observing insectivory on 18 occasions over a year-long study of 
Chiropotes sagulatus, Gregory (2011) observed frequent (101 bouts) 
consumption of Lecythidaceae flowers, and found that most of the 
fallen flowers inspected on the ground were infested with a variety 
of insect larvae. Additionally, older Pradosia caracasana (Sapotaceae) 
fruit opened by C. chiropotes in Venezuela had (bruchid) beetle emer-
gence holes (M Norconk, unpublished data).

Furthermore, while Chiropotes spp. are known to eat the suc-
culent leaf-bases and central stems of epiphytes, this may not be 
a source of water, as commonly supposed for primates (Galetti & 
Pedroni, 1994; Peres, 2000; Wright, 2004). Instead, they may be 
consuming insects, since such areas are commonly colonized by 
Dryophthorid weevils of the genus Metamasius (Cave et al., 2006), 
which are bromeliad-tissue specialists and can reach high densities 
(Frank, 1999). Additionally, Pinto et al. (2018) reported 39 instances 
of leaf galls being eaten by C. albinasus (though insect type was not 
identified). Galls can be important sources of insect-derived pro-
tein (Milton & Nessimian, 1984) and are known to be eaten by a 
range of other primates (e.g., indri lemur, Indri: Britt et al., 2002; 
patas monkey, Erythrocebus patas: Isbell,  1998; Hanuman lan-
gur, Presbytis entellus: Srivastava,  1991; chimpanzee, Pan trog-
lodytes: Tutin & Fernandez,  1993; Rio Mayo titi, Plecturocebus 
oenanthe: Deluycker, 2012; Chamek spider monkey, Ateles chamek: 
Wallace, 2005). Thus, it is possible that such ingestion again serves 
as a supplemental source of insect-derived protein. In addition, 
Shaffer (2013) noted that C. sagulatus would eat adult beetles pres-
ent within Fabaceae pods, but not in the seeds. Though this was 
observed in fieldwork for the current study and may represent a 
source of additional protein, beetle presence was not quantified. 
Given the large number of small beetle-like legs and small elytra 
that were present in the fecal pellets (item 3, Figure 3), it seems 
likely that such taxa also form part of the C. albinasus diet.

Of the 37 species of fruits studied, 17 had a pulpy exterior, and 
in eight this area was also infested with insects. Thus, it is possible 
that they, rather than the insects in the seeds, alerted and attracted 
the foraging monkeys. Irrespective of this, the fact that covert car-
nivory occurs in C. albinasus remains unaltered. Together, this and 
the information above support the original contention of Redford 
et al. (1984) who were the first to propose that primates might gain 
protein from eating larval insects in food items, but whose insight 
was widely overlooked until recently.
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