
An Approximate Theory for Value Sensitivity
Balbir Barn∗, Ravinder Barn†

∗School of Science and Technology, Middlesex University, London
{b.barn}@mdx.ac.uk

†Royal Holloway University of London
{r.barn}@rhul.ac.uk

Abstract—The software engineering community is on a quest
for general and specific theories for the discipline. Increasingly,
systems constructed for today’s hyper connected world are
raising issues of security and privacy, both examples of value
concerns. Hence there is a need to articulate a theory for value
sensitivity that software engineers can draw upon to evaluate
their designs and to embed outcomes into systems that are
developed. This paper proposes an approximate theory of value
sensitivity in recognition that this is a journey and an interim
struggle. The theory is articulated using the framework proposed
by Sjøberg et al. An initial evaluation is provided for both the
value sensitivity theory and the framework.

Index Terms—Value Sensitive Design, Values, Co-Design, the-
ory building, software engineering.

I. INTRODUCTION

There is an ongoing quest to establish both a general
theory of software engineering [http://semat.org] and a better
understanding of relevant specific theories that can be applied
to the software engineering domain. Recall that Software
Engineering (SE) as defined by Somerville is: “An engineering
discipline which is concerned with all aspects of software pro-
duction from the early stages of system specification through
to maintaining the system after it has gone into use.” [14]

By virtue of its Wittgensteinan family resemblance to en-
gineering more broadly [19], SE applies theories, methods and
tools in a selective manner. Further more, the broadness and
scope of activities also requires SE to be practiced within
organisational and human based interaction constraints.

One issue with respect to both a general theory and the
use of specific theories is that software engineering is both
a domain in itself as well as its practice being applied in a
variety of domains. Hence the range and applicability of a
particular theory is particularly challenging.

Software engineering is also tricky with respect to theories
because it solves problems in a societal context. Hence SE
practice should really be considered a socio-technical activity.
Yet our literature and practice is relatively limited with respect
to the interaction between SE and socio-technical systems.
Of obvious interest in this paper is the issue of how values
are addressed in SE and in particular, the issues of ethical
concerns.

The word “theory” suffers from both an over-use and a
reluctance in its use by researchers. Weick comments that
most theories that are labeled as theories are actually ap-
proximate theory in that they go some way to establishing
a theory but fall short in some aspect such as: failing to

sufficiently articulate relationships between variables/concepts
contributing to the theory; or perhaps making post-factum
interpretations whereby ad hoc hypotheses are derived from
limited observations [17]. The reluctance to use the word
“theory” is illustrated most aptly by Runkel and Runkel [12]
reported in [17] where titles such as Approach to a Theory of
. . , Notes Toward a Theory of ... are frequent.

This strikes a chord. In this paper, as our title indicates, we
are proposing a theory, moreover the proposed theory is along
the continuum of theory development or “interim struggle”,
and is therefore an “approximate” theory.

A. Values, the need for theory and this contribution

Software engineering is integral to societal sustainability
in that most sustainability issues require inter-connection and
human interactions with systems. Thus research in socio-
technical systems is needed to encompass society, organisa-
tions and individuals and their behaviour [11]. A basic driver
of human behaviour may at least in part be explained by a
notion of “Value” [10]. Hence, a discussion about how values
can be exposed, discussed, mediated and integrated into the
design of socio-technical systems is necessary.

In this paper we hypothesise that part of the problem of
systems design is that current SE practice (in any of its
variants) does not incorporate any theoretical perspective of
value as a first class representation that can support such a
discussion. A simple test of searching for the term “value” in
one of the leading texts on software engineering (Somerville,
6th Edition [14]) demonstrates its absence.

Thus, this paper contributes an approximate theory of value
sensitivity that can be used in software engineering practice
to address the socio-technical aspects of modern information
systems. By drawing on the constructs of Sjøberg et al [13],
we provide a semi-formal representation of the theory and in
using these constructs, we provide a critique of the both value
sensitivity theory and technology of Sjøberg et al.

The remainder of this paper introduced the basic artefacts
for theory description and construction (Section 2). Concepts
and existing work in value sensitivity presented in section 3.
Section 4 presents the basic components of the theory. Section
5 provides some discussion and concluding remarks.

II. THEORY CONSTRUCTION AND DESCRIPTION

Space does not allow for a detailed philosophical discussion
of the nature of a theory, instead, we draw on some representat-



Archetype class Description
Actor a role played by a user or any other system that

interact with the subject
Technology any process, model, method, technique, tool or

language construct.
Activity a piece of behaviour at any level of granularity
Software System a general denotion of a system that can be

classified in many dimensions such as size, domain,
administrative, distributed, embedded. etc.

Table I
TYPOLOGY FOR SE THEORIES (FROM SJØBERG ET AL [13]

ive descriptions to outline what is generally agreed, constitutes
a theory [13], [18], [15]. The main elements of a theory are:

constructs: the basic conceptual elements extracted from the
domain of discourse that are generally measur-
able.

relations: relations describe connections among constructs
and their interactions with one another.

boundary: a boundary of a theory describes its scope or the
validity of the theory under certain conditions.

propositions: statements that are concerned with making pre-
dictions about a theory’s constructs.

A theory for use in SE should therefore be described in these
terms. But the peculiarity of SE demands that a theory both
meets the needs of the domain of SE and indirectly other
domains where software applications incorporating theories
are developed. Hence, a somewhat meta discussion ensues
whereby a framework, or rather an approximate theory is
required to relate the theory under development to SE practice
at large. We use the constructs outlined by Sjøberg et al. to
present our approximate theory [13].

For a theory to be relevant to SE, it must explain or predict
phenomena occurring in SE. In a critical sentence, Sjøberg et
al. succinctly capture how to relate a theory in development
to SE practice:

“The typical SE situation is that an actor applies
technologies to perform certain activities on an (ex-
isting or planned) software system. “[13, :p 10]

In this statement, they introduce what they call “archetype
classes” and propose that for a theory T under development,
theory elements of T should be typically associated with these
archetype classes. Such a typology is a particular form of
theory building in its own right [5]. These classes and tentative
definitions are shown in table 1. The typology is supported by
graphical notation based on the Unified Modelling Language
(see example description of UML here [6]). When using this
approach, Sjøberg et al. identify theory elements similar to
that listed above.

In this paper, we will use both the typology and the UML
notation to present the value sensitivity theory. The next
section will first introduce the domain background for why
this theory is relevant to SE practice.

III. VALUE SENSITIVITY

The background to value sensitivity or value sensitive design
has been described elsewhere (see [1], [2] ). Nonetheless it is
useful to present a short summary here.

The foundations for discussing how values could be integ-
rated into the SE process has largely been initiated through the
domain of human-computer interaction (HCI) in the seminal
article by Suchman [16] and has influenced the advent of Co-
Design, where questions about values “become easier since the
collaboration between designer and client (or user) is explicitly
recognised as a goal of the process.”[9].

A notable and sustained contribution to understanding and
accounting for values in the design process is the work
by Friedman and her colleagues on Value Sensitive Design
(VSD)[7], [8]. Their research has informed the debate on the
unintended consequences of systems and the detrimental effect
or compromise of moral values that users may believe in.

Friedman defines value as: “what a person or group of
people consider important in life”. Values that are particu-
larly pertinent to information systems include: ownership and
property; privacy, freedom from bias, universal usability, trust,
autonomy, informed consent, identity and others. In systems
design, values have, to-date, been integrated mostly with par-
ticipatory design approaches [3] or more recently Co-Design.
Co-Design involves potential (un-trained) end users working
jointly with researchers and designers to jointly create artefacts
that lead directly to the end product and, as Yoo et al. [20]
note: “become a dominant user study methodology in the fields
of product design, service design, interaction design and HCI”.
Several researchers have commented that whilst participatory
design is a dominant mode of technological design, end-users
still struggle to influence the direction of design within the
participatory process. Furthermore, end-users may not fully
understand the ecology of available technologies. It may be
that the reductionist principles of SE could be argued to have
hindered the integration of values approaches into mainstream
practice and so making it harder to monitor such concerns.

VSD emerged to integrate moral values (and more broadly
ethics) with the design of systems. A key premise of VSD
is that it seeks to design technology that accounts for human
values throughout the design process (over and beyond the
identification of functionality and visual appearance) of sys-
tems.

In the Yoo et al. model, the traditional co-design core blends
methods from value-sensitive design to structure the co-design
engagement with inputs from stakeholders and considerations
of values. The co-design process may be initiated by free-
form thinking, but their key innovation is in the introduction
of two types of structured interventions. Designer prompts
entail materials that originate from expert designers and may
comprise personas, scenarios or the use of envisioning cards.
Stakeholder prompts originate from the end-users and may
utilise value based scenarios addressing concerns such as
unintended uses of the system; changes of the use of the
system over time and so on. Values will be, typically, those



derived from the list suggested by Friedman in [7]. The
reflection element of the model provides a way of representing
how prompts may be generated by either a stakeholder or
a designer as a result of joint participation in the co-design
space.

IV. AN APPROXIMATE THEORY FOR VALUE SENSITIVITY

Currently there are no formal or semi-formal models and
their associated processes for integrating values and require-
ments into the SE design process. Building on the work of
Yoo et al. [20], we have developed a Co-design workshop
method that exposes value concerns such as security and
privacy. The approach has been applied on a research project
(Mobile Apps for Youth Offending Teams – MAYOT) aimed
at developing social technology for use by young people and
their caseworkers in youth offending teams in the UK. The
project raised requirements on design methods to incorporate
the voice of stakeholders with respect to privacy and other
moral value issues.

The Co-design activities in the various workshops yielded
a rich set of data including design and specification of fea-
tures/functions of the MAYOT app. We focus on one design
feature. The Exclusion Zone feature is a function that is
available on the MAYOT app that allows a case worker to
define a geographic region from which a young person is
prohibited (with potential risks to violating their youth order
with obvious detrimental effects). The feature alerts the young
person in possession of the smart phone hosting the app that
they are in an exclusion zone. During the course of a number
of workshops, the feature went through a number of design
changes representing the designer’s view, a case worker’s
view, and views from young people who believed that the
prototype app feature violated their privacy. Such concerns
were considered seriously by the research team to ensure that
a balance was struck between relative privacy and security of
information. This consideration creates rich descriptions of the
requirements process that have hitherto not been captured. The
essential purpose of our theory is to provide a mechanism for
explaining these requirements discussions.

In presentation of the value sensitivity theory, constructs
are represented as a UML class or attribute of a class. The
archetype classes from Sjøberg et al. are shown as meta classes
using <<stereotype>> notation. Constructs from the VS theory
are shown as instances of meta types from the archetype
classes. We contend that is a better way of providing a rela-
tionship between the described theory and their SE framework
as it is more parsimonious in its use of space. Additional
semantics (meta model versus model) also become available.
Whilst there are other approaches for developing concpetual
models, the use of UML allows the deployment of existing
experience and knowledge of modelling and other features
of UML to embellish descriptions of theories. The UML
conceptual model is augmented by proposition relationship
stereotypes that highlight possible propositions that can be
used to test the theory. These are shown as directed arrow lines
between classes. Additional sub-typing is also possible. The

Figure 1. Value sensitivity theory

summary UML diagram (mostly conforming to the notation
from Sjøberg et al) is shown in Figure 1.

Using the theory elements framework discussed in section 2.
The following serves to describe the value sensitivity theory.
The theory has been induced from our example project and
design features but we suggest that it is a general theory that
can be applied in other contexts.

Constructs:
VSTActor A VSTActor is a designer, or stakeholder who

participates in joint actions to create or evolve
design features of intended systems. VSTActors
are the source of the generation of Prompts.

Co-Design-Space is any space where key VSTActors, the
Designers and Stakeholders (including indirect
stakeholders, elided in the diagram) participate in
joint actions to create or evolve design Features
of intended systems. In our example they are
workshops.

Prompt is a mechanism or prop that provokes reflection
in the Co-Design Space.

Value-based-Prompt is a prompt that raises concerns or ad-
dresses a value of interest to a VSTActor.

Value is what a person or group of people consider
important in life.

Feature is a Prompt that has been accepted as an intended
function of the socio-technical System as a result
of discussion at least one or more co-design
spaces.

Force Each VSTActor will experience a different inter-
pretation of value embedded in a Value Based
Prompt. This interpretation is captured by the
Force concept, represented as a numeric value
for simplicity. A Force must be balanced between
competing actors before a Value Based Prompt
can be accepted as a Feature.

Propositions

These are statements that are concerned with making pre-
dictions about a theory’s constructs. The propositions define



relationships between constructs as shown in figure 1. The
following propositions have been identified.
P1: The ability to describe how Values influence

Prompts leads to better socio-technical systems
design.

P2: The ability to describe how Value Based Prompts
become Features leads to better socio-technical
systems design.

P3: Value Based Prompts can only become Features
when associated Forces are balanced.

P4a,P4b: The ability to describe how VSTActors generate
prompts in a Co-Design Space leads to better
socio-technical systems design and overall accept-
ance of a System.

P5: Features that have been subject to value sensit-
ivity leads to socio-technical systems that respect
Values that VSTActors see as important.

Finally, the theory is bounded or scoped in limit as it is relevant
to the SE of socio-technical systems. I.e. those that raise issues
of values in their daily use. The mobile app developed as part
of the MAYOT project is one such system.

V. DISCUSSION AND CONCLUDING REMARKS

There are two theories under discussion here. The first is
the use of the typology presented by Sjøberg et al. Some
initial comments can be made. The typology makes it possible
to relate T constructs with SE practice. To our knowledge,
there have only been limited independent efforts to apply this
typology to an SE theory so there is a lack of empirical
support. One such example is work from Santos et al. [4]. This
lacunae is curious and suggests that there may be limitations in
the underlying meta concepts such as omission or ambiguity.
We have used the Technology concept to represent Value and
Prompts. This seems to overload the meaning of Technology
and perhaps there is a missing meta concept. The UML dia-
gram extension and the notation (such as stereotypes) provides
a visual and semi-formal representation of a theory’s con-
structs and propositions. The use of meta classes (by way of
stereotypes) provides an economical means of representation
which we propose is an improvement on the use of inheritance
in their original approach. While the typology is specific to
SE practice, there is scope for a general purpose meta theory
modelling language which could use this framework. Hence
there are potentially multiple meta levels.

As we have argued initially, the Value sensitivity theory is
approximate. The constructs and the general motivation for
this theory arose through a process of induction from an on-
going research project and currently there is limited empirical
evaluation of this approach. In contrast, though, there is ample
qualitative evidence of value sensitivity concerns and how they
might affect acceptance of a system. A small set of constructs
are provided and so help in reducing the cognitive burden.
Potential for widespread utility for the theory is significant
given the increasing concern on how privacy, a core moral
value, is being eroded by socio-technical systems delivered
through apps on smart phones. Even within the limits of the

experiment described here, the typology and its instantiation
in the case of VST, suggests that a richer conceptual theory
building language is required to fully address the constraints
implicit in the proposed theory.

Acknowledgements

This research was partially funded by the Nominet Trust.
We thank Franco Raimondi and the anonymous reviewers who
provided many useful comments.

REFERENCES

[1] Balbir S. Barn, Ravinder Barn, and Giuseppe Primiero. The role of
resilience and value for effective co-design of information systems.
In Proceedings of the Conference of the International Association for
Computing and Philosophy (IACAP 14). To appear in: Synthese Library,
Springer, 2015.

[2] Balbir S. Barn, Ravinder Barn, and Franco Raimondi. On the role
of value sensitive concerns in software engineering practice. In 36th
International Conference on Software Engineering, ICSE Companion,
(Accepted) 2015.

[3] G. Bjerknes, P. Ehn, M. Kyng, and K. Nygaard. Computers and
democracy: A Scandinavian challenge. Gower Pub Co, 1987.

[4] Paulo Sérgio Medeiros dos Santos and Guilherme Horta Travassos. On
the representation and aggregation of evidence in software engineering:
A theory and belief-based perspective. Electronic Notes in Theoretical
Computer Science, 292:95–118, 2013.

[5] D Harold Doty and William H Glick. Typologies as a unique form
of theory building: Toward improved understanding and modeling.
Academy of Management Review, 19(2):230–251, 1994.

[6] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object
Modeling Languange. Addison-Wesley Professional, 2004.

[7] Batya Friedman. Value-sensitive design. Interactions, 3(6):16–23, 1996.
[8] Batya Friedman and Helen Nissenbaum. Bias in computer systems. ACM

Transactions on Information Systems (TOIS), 14(3):330–347, 1996.
[9] Christopher A Le Dantec and Ellen Yi-Luen Do. The mechanisms of

value transfer in design meetings. Design Studies, 30(2):119–137, 2009.
[10] Edwin A Locke. The motivation sequence, the motivation hub, and the

motivation core. Organizational behavior and human decision processes,
50(2):288–299, 1991.

[11] Lynette I Millett, Deborah L Estrin, et al. Computing Research for
Sustainability. National Academies Press, 2012.

[12] Philip Julian Runkel and Margaret Runkel. A guide to usage for writers
and students in the social sciences. Number 382. Rowman & Littlefield,
1984.

[13] Dag IK Sjøberg, Tore Dybå, Bente CD Anda, and Jo E Hannay. Building
theories in software engineering. In Guide to advanced empirical
software engineering, pages 312–336. Springer, 2008.

[14] Ian Sommerville. Software engineering. international computer science
series, 2004.

[15] Klaas-Jan Stol and Brian Fitzgerald. Uncovering theories in software
engineering. In Software Engineering (GTSE), 2013 2nd SEMAT
Workshop on a General Theory of, pages 5–14. IEEE, 2013.

[16] Lucy Suchman. Do categories have politics? the language/action
perspective reconsidered. In Human values and the design of computer
technology, pages 91–106. Center for the Study of Language and
Information, 1997.

[17] Karl E Weick. What theory is not, theorizing is. Administrative Science
Quarterly, pages 385–390, 1995.

[18] Roel Wieringa, Maya Daneva, and Nelly Condori-Fernandez. The
structure of design theories, and an analysis of their use in software
engineering experiments. In Empirical Software Engineering and
Measurement (ESEM), 2011 International Symposium on, pages 295–
304. IEEE, 2011.

[19] Ludwig Wittgenstein. Philosophical investigations. John Wiley & Sons,
2010.

[20] Daisy Yoo, Alina Huldtgren, Jill Palzkill Woelfer, David G Hendry, and
Batya Friedman. A value sensitive action-reflection model: evolving a
co-design space with stakeholder and designer prompts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 419–428. ACM, 2013.


