A model for trustworthy orchestration in the
Internet of Things

Michele Bottone, Giuseppe Primiero, Franco Raimondi

Department of Computer Science
Middlesex University
London, UK

Email: {m.bottone,g.primiero,f.raimondi} @mdx.ac.uk

Abstract—Embedded systems such as Cyber-Physical Systems
(CPS) are typically designed as a network of multiple interacting
elements with physical input (or sensors) and output (or actu-
ators). One aspect of interest of open systems is fidelity, or the
compliance between physical figures of interest and their internal
representation. High fidelity is defined as a stable mapping
between actions in the physical domain and intended or expected
values in the system domain and deviations from fidelity are
quantifiable over time by some appropriate informative variable.
In this paper, we provide a model for designing such systems
based on a framework for trustworthiness monitoring and we
provide a Jason implementation to evaluate the feasibility of our
approach. In particular, we build a bridge between a standard
publish/subscribe framework for CPS called MQTT and Jason
to enable automatic reasoning about trustworthiness.

I. INTRODUCTION

In the Internet of Things (IoT) paradigm, applications are
typically built by orchestrating many connected components
(the things) to achieve a certain goal. For instance, an intrusion
detection system can be built by connecting sensors for
movement with actuators for alarms; or a monitoring system
can coordinate temperature and humidity sensors with an air-
conditioning system as actuator. In this kind of scenarios, it is
common to adopt a publish/subscribe infrastructure in which
sensor publish their data, and actuators subscribe to certain
topics from the former. MQTT is a standard platform for
M2M/IoT connectivity [6]. It is designed to be lightweight
and aimed at connections with remote locations, with small
code footprint and network bandwidth requirements.

An aspect distinct from simple monitoring of events is the
evaluation of the fidelity of the system of sensors and actuators,
especially when these include several types of monitors and
users. This links the IoT paradigm to another crucial aspect of
smart environment design, namely their trustworthiness. In the
context of connected environments is not only advantageous to
be able to collect as much information as possible to optimize
functionalities. It also becomes essential to overview standards
of efficiency and security, to be able to identify malfunctioning
and detect possible system intrusions that might become safety
critical.

In this paper we offer such a combined analysis. We present
a model to characterise the trustworthiness of a fully functional
IoT monitoring system by building upon the work presented

Vincenzo De Florio
Evolution, Complexity and COgnition Group
The Global Brain Institute
Vrije Universiteit Brussel, BE
Email: vincenzo.deflorio@ gmail.com

in [1] for “standard”, software-only systems. In particular, we
show how to monitor individual sensor values in terms of
fidelity functions that trace three distinct behavioural patterns
dynamically at run-time and use the MQTT publish/subscribe
model to define controllers that connect the sensors to an
actuator. We further define a higher-order function to assess
the overall fidelity of the system and induce a trustworthiness
evaluation to indicate the running conditions of the system,
according to a scale that includes stability and safety condi-
tions. Our contribution is not limited to a theoretical model: we
evaluate our approach using a Jason implementation, a Java-
based multi-agent systems interpreter for the BDI architecture,
developed as an extension of AgentSpeak [5].

The rest of this paper is structured as follows. In Section II
we illustrate the idea of a controller for multi-agents system
in cyber-physical domains. In Section III we briefly introduce
the Jason framework and its syntax and semantics. In Section
IV we describe the encoding of fidelity patterns from Section
IIT in Jason. We offer concluding remarks and further research
directions in Section V.

II. JANUS

A notion of fidelity for systems involving software interact-
ing with human users is introduced in [1]. It relies on the idea
that compliant systems manifest a correspondence between
domains of actions, but that such a property might not always
be perfect. If one is able to monitor and measure the drifting
from an ideal total compliance, then one is in a position to
assess the level of trustworthiness of said system. In turn,
one can evaluate which safety-security actions are required
to maintain the system working.

Let us consider an open system nOP.S, interacting with
n environments, each based on sensors and actuators. nOP.S
will receive information from the sensors (e.g. temperature
and humidity) and send commands to the actuators. Data from
the sensors and activities performed by the actuators are raw
fact [r];,1 < i < n, accompanied by appropriate binary
operations [+]; to form algebraic structures. The internal rep-
resentations of [r]; by nOPS are expressed by [q];,1 <i<n
internally in its monitoring system, together with operations
[@]; corresponding to [+];. The latter is a somewhat faithful
representation of the dynamic variation of the corresponding

class of facts. The mapping of raw facts to their representation
in nOPS is given by reflective maps ®;, bijective functions
expressing perfect fidelity iff the association of ([r];, [+]:)
to ([¢]i, [®]:) is an isomorphism. The shifting from perfect
fidelity in the system representation is called drifting and it is
expressed by the association of an error component A; over
time ¢ to — what could be called — a function ¢; of imperfect
fidelity:

@i : [7‘]1'.—> i,
V+ € [+, V- € @i : dilr1 +r2) = ¢i(r1) - di(r2) - Ai(2).

The monitoring of raw facts and their representations can be
performed through a client for reading values of associated,
asynchronously and continuously updated variables for each
of the involved services. In [1], such a client is called Janus.
The role of Janus is to retrieve periodically the value of
each such variable and store it in the associated memory
cells. Examples include the value of CPU usage percentage,
the state of some executable like MPlayer and the facts
associated with a UL The values retrieved are compared with
“reference behaviours”, representing the expected behavioural
patterns of a trustworthy system. Ideally, such reference value
would be those associated with a perfect fidelity function.
The comparison may be used to detect gradual or sudden be-
havioural driftings: the former can be associated to progressive
deterioration of the system, the latter to instantaneous system
breakdown or takeover.

In the present work, we extend the model of the Janus
to a M2M/IoT paradigm. We extend the Janus client to
retrieve values from sensors and interact with actuators. The
state of each component as derived from the activities of the
publish/subscribe infrastructure can be compared to a set of
behavioural patterns, each specifically designed to reflect a
fidelity level. The Janus client is then able to derive an overall
evaluation on the system by composing such individual fidelity
patterns. Trustworthiness is identified as a second order prop-
erty of the system, induced cumulatively from such patterns,
and used to assess malfunctioning and required intervention
on the IoT platform. Each component ¢ in the platform is
assigned a fidelity function: ¢.,c € {s,a}, respectively for a
sensor and an actuator, such that ¢. : [r]. — [g]. expresses
the value obtained by mapping the input value from the
component’s observable behaviour to the preselected expected
fidelity pattern associated to that component. Fidelity is then
approximated as the inversely proportional function of the
drifting from appropriate mappings ¢.. For a platform with
two sensors s;, s; and two actuators a;, a;,

¢s = 1/f(A(t)SwA(t)Sj>
$a =1/f(A(t)a,, Alt)a,)

and some function f which can be weighted according to
domain specific parameters. Each ¢, is evaluated as displaying
an high, medium or low fidelity level when compared to the
expected behaviour. The value ®"CF5(t) = {¢,, ¢, } is the
global fidelity value for the system parametrised over time.
We consider four levels of analysis of fidelity:

1) a trustworthy system identifies high levels of ®"OF5(¢),
inducing optimal, sustainable working conditions;

2) an unstable system identifies high-to-medium ¢ and low
¢, levels, meaning that monitoring is well-functioning
but interaction with the environment through actuators
might be poor, inducing reconfigurable working condi-
tions;

3) an unsafe system identifies high-to-medium ¢, and low
¢s levels, meaning that monitoring is poor, despite
the fact that interaction with the environment through
actuators might be efficient, inducing unsecure working
conditions;

4) an untrustworthy system identifies low-levels of
®nOP5(¢), inducing inadvisable or below-safety work-
ing conditions.

III. JASON

In this section we introduce Jason, a belief-desire-intention
(BDI) framework for multi-agent systems, which we use as
the underlying platform for Janus. BDI architectures [3] are
among the most popular models of software agency. They are
loosely based on the concept of a reasoning cycle: the agent
has beliefs, based on what it perceives and communicates with
other agents; beliefs can produce desires, intended as states of
the world that the agent wants to achieve; the agent deliberates
on its desires and decides to commit to some; desires to which
the agent is committed become intentions, to satisfy which the
agent executes plans that lead to action. The behaviour of the
agent (i.e., its actions) is thus explained or caused by what it
intends (i.e., the desires it decided to pursue). Ideally, within
the BDI architecture, agents should react to changes in its
environment as soon as possible while keeping its proactive
(i.e., desires-oriented) behaviour.

AgentSpeak(L) [2] is an abstract declarative programming
language for implementing BDI agents with Prolog-like in-
structions, which can be extended to fit specific needs. Its
syntax defines agent programs as a set of logical beliefs, rules
and plans. Formally, the syntax of an agent program is defined
in the following way. For § a finite set of symbols including
predicates, actions, and constants, and) a set of variables one
can define vectors of terms in the first-order logic:

+ If b is a predicate symbol and t a term, we define b(t)
to be a belief atom.

+ if ba(t) and bp(t) are belief atoms, where A and B
can be conjunctions, disjunctions or negations of belief
literals, then the rule ba(t) : — bp(t) describes how the
latter is inferred from the former.

+ If g(t) is a belief atom, then !g(t) and 7g(t) are goals,
lg(t) denoting an achievement goal and ?g(t) a test goal.

+ If p(t) is a belief atom or goal, then +p(t) and —p(t)
are triggering events with + and — denoting respectively
the addition and deletion of a belief to be held or goal to
be achieved.

+ If a is an action symbol and t a term, then a(t) is an
action.

+ If e is a triggering event, cy,...,c,, are beliefs and
qi,---,qn are goals or actions, therule e : ¢y, ..., ¢y
qi,---,qn defines a plan, with ¢y, ..., ¢, its context and
Q- - -,qn its body.

Jason [4] extends the AgentSpeak syntax into a flexible,
extensible Java-based, open-source development environment
and interpreter, which is easily customisable. Jason program-
ming revolves around plans, which are the closest thing there
is to a function or method in a declarative language. Actions
in the body of an expression are executed in sequence as a
consequence of the triggering of the plan, which can consist of
belief addition and removal, requests to achieve and unachieve
(sub)goals, or built-in or user-defined internal actions that
change the environment or the agent’s mental state over
time. In Jason, ground literals are also extended by strong
negation, annotations, and message passing. We refer to [5]
for additional details.

IV. THE ORCHESTRATING SYSTEM

In this section we describe how the fidelity patterns are
encoded in Jason. We set up a multi-agent system (MAS)
where each component is a separate agent, introducing a
special agent — the controller or Janus — that oversees and
assesses the overall fidelity of the system. We further define
a higher-order function to assess the overall fidelity of the
system and induce a trustworthiness evaluation to indicate the
system’s running conditions, according to the scale including
stability and safety conditions introduced in Section II. We
release all the software open source, with the Jason and Java
files available at https://bitbucket.org/mdxmase/janus-jason/.

A. Environment and Communications Protocols

The default Jason environment comes with built-in classes
that make use of the .send and .broadcast inter-
nal actions for single and multiple inter-agent commu-
nication, respectively. In addition to this infrastructure,
we built a custom environment MQTTEnvironment to
bridge between MQTT messages and Jason. The Java class
MQTTEnvironment . java does two things: it implements
the MQTTCallback interface for MQTT connection/discon-
nection and it sets up the topics in the publish/subscribe format
so that when a message is published, it adds the relevant
percept to the belief base together with the value of the sensor.

The following code snippet shows how the environment can
make a connection to an MQTT broker and how messages
published under a certain topic can be translated into Jason
beliefs in the method messageArrived by means of the
internal action addPercept

/* Called before the MAS execution with the args
informed in .mas2j */
@Override
public void init (Stringl]
/S e
try {
client = new MgttClient ("tcp://localhost:1883",
"JasonMQTTEnvironment") ;
client.connect();
S/l
client.setCallback (this);

args) f{

client.subscribe ("MQTTJason/#"); // # is the
wildcard for multiple topics

/0 el]
}

public void messageArrived (String topic,
message) throws Exception {
// Assuming a default format for publish messages:
// MQTTJason/sensorid/temperature [for temperature]
// MQTTJason/sensorid/humidity [for humidity]
String[] components = topic.split("/");
if (components[2].equals ("temperature")) {
addPercept (Literal.parseliteral ("temp_sensor (" +
components[1l] +
"o
new String(message.getPayload()) +
"))

MgttMessage

B. System Configuration

In Jason, it is possible to create a pre-specified number
of identical types of agents using the same code, by using
a multiplicity symbol #. The code snippet below creates
a system running on a single processor with four kind of
agents: the controller, temp_sensor (four instances),
humi_sensor (eight instances), and one type of actuator,
airconditioner.

MAS janus_test {

infrastructure: Centralised
environment: MQTTEnvironment
agents:

controller;

temp_sensor #4;
humi_sensor #8;

airconditioner;
classpath:
"/Path/paho.client.mgttv3-1.0.2.jar";
aslSourcePath: "src/asl";
}
1) The individual components: Humidity and

temperature sensors. Both agents humi_sensor and
temp_sensor implement similar behaviours: they broadcast
the values for humidity and temperature respectively with
a certain frequency. This is done either by the built-in
broadcast (tell, humi_sensor (Me,H)) internal
action, or by bridging a value for the real world. In
our case, we have used two DHT22 temperature and
humidity sensors connected to two Raspberry Pi (cf.
https://www.adafruit.com/products/385).

Air Conditioner. We use an Air Conditioner as the model
of an agent that has to go through a predefined sequence of
states. At the start it is in a waiting state. If it receives a
message turnon from the controller, it will go through states
set_up, cooling, cooldown, and waiting again. The
turnon message is only accepted if it is in state waiting.
When there is a change of state, a message is broadcast so
that it can be monitored by the controller.

Controller. The most complex part of the application logic
resides in this agent. The controller continuously monitors the
sensor values and does pattern matching of the individual
components’ behaviour, and prints the current state of the

system according to a fidelity function. In particular, we
implement the three possible patterns for fidelity:

1) component values remain in a range,
2) values do not oscillate more frequently than X,
3) component goes through a sequence of states.

In the language of Section II, Pattern 1 and Pattern 2 express
sensor malfunction and thus ¢,, while Pattern 3 denotes
¢q, 1.e. drifting of the actuators value from the fidelity
pattern.! Intuitively, the latter can be thought of as more
akin to an “erroneous system deployment”, since actuator
airconditioner is the terminal interfacing the system’s
users.

Each pattern is implemented as a rule associated to each
component. These individual rules are then used in the context
of controller’s plans to raise a warning. For the tem-
perature sensors, the first rule checks the Fréchet distance
between the current value and a baseline value, defined as
an affine periodic function on the hour of the day, so that the
baseline ranges between 15 (midnight) and 25 (noon), with a
valid range of baseline 5 degrees. For the humidity sensors,
Pattern 2 is defined as too many requests in a given time
window — for example a limit of 3 messages in 10 seconds
in a given time window. Finally, for the airconditioner
agent, the rule checks whether it has gone through the correct
sequence of states, thus something will be wrong if (a) there
was no previous message, thus we are at the start, but we
don’t receive message “waiting”; or (b) there was an illegal
transition, encoded by listing all the possible transitions in
sequence.

2) System fidelity: In the setting of [1], fidelity driftings are
calculated based on system processes with variables of a given
type that are associated with some shared volatile memory
segments and read/write access rights. Since Jason runs on
top of the Java virtual machine, we keep track of pattern
violations directly in the controller agent code. Fidelity
is then approximated for each pattern type as the inversely
proportional function of the drifting in the reporting of raw
facts, enabling a continuous cycle of monitoring, apperception,
control and action.

In our Jason evaluation, fidelity corresponding to each
pattern is defined as a rule keeping track of violations and
the dynamical evaluation of trustworthiness of the systems
happens in the main controller loop at run-time as rele-
vant plans for each outcome are selected if certain patterns in
the fidelity evaluation match as true. Each plan also defines
an action that is executed in response to each evaluation (for
example, disabling a sensor or stopping the entire system).

In a system based on mechanical rules, the trustworthiness
assessment produces four outcomes:

1) Trustworthy, with high levels of fidelity on all patterns,
inducing optimal, sustainable working conditions;

'In [1], where cyber-physical systems with users are under consideration,
Pattern 1 and Pattern 2 are used to express machine fidelity, Pattern 3 denotes
user fidelity.

2) Unstable, with high-to-medium values on Pattern 3, and
low values on at least one of Pattern 1 or Pattern 2,
inducing reconfigurable working conditions;

3) Unsafe, with high-to-medium values on both Pattern 1
and Pattern 2, and low levels on Pattern 3, inducing
alarm-rising working conditions;

4) Untrustworthy, with low-levels of fidelity on all patterns,
inducing inadvisable or below-safety working condi-
tions.

We tested the performance of the Janus client by instantiat-
ing up to several hundred temperature and humidity sensors.
Running times were acceptable up to a system size of 500
components, when the overhead of the Java virtual machine
in Jason becomes too much to handle for quad-core Retina
MacBook Pro 2014. Given that real-life home intelligent
systems tend to be in the dozens of components and large
systems — such as those of a skyscraper — are composed of
thousands of sensors and actuators, initial evaluation has been
deemed encouraging.

V. CONCLUSION

We have presented an extension of the Janus model of
trustworthiness for cyber-physical systems based on com-
puting fidelity functions over a MQTT messaging protocol.
This implementation has the advantage of fast deployment
and can be used to operationally control a sizeable number
of individual sensors and actuators. The Janus client scales
well in simulations to several hundreds of components, be-
fore becoming too unwieldy to handle for modern laptops.
Future work will investigate the performance of the system
in a typical external environment compared to a simulated
environment.

REFERENCES

[1] V. De Florio and G. Primiero, A Framework for Trustworthiness As-
sessment based on Fidelity in Cyber and Physical Domains, in Elhadi
M. Shakshuki (ed.) Proceedings of the 6th International Conference
on Ambient Systems, Networks and Technologies (ANT 2015), the 5th
International Conference on Sustainable Energy Information Technology
(SEIT-2015), London, UK, June 2-5, 2015, pp. 996-1003, 2015.

[2] A.S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable
language, in Proceedings of the 7th European workshop on modelling
autonomous agents in a multi-agent world, 1996.

[3] M.E. Bratmann, Intention, Plans, and Practical Reason, Cambridge
University Press, 1999.

[4] J.F. Hiibner and R.H. Bordini, Jason, http://jason.sourceforge.net/wp/.

[5] J.E Hiibner, R.H. Bordini and M. Wooldridge, Programming Multi-agent
Systems in AgentSpeak Using Jason, John Wiley & Sons, 2007.

[6] A. Stanford-Clark and A. Nipper, MQ Telemetry Transport, http://mqtt.
org, 1999.

[7] Eclipse Paho, http://www.eclipse.org/paho/.

