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Abstract
The emergence and survival of cooperation is one of the hardest problems still open in science. Several
factors such as the existence of punishment, repeated interactions, topological effects and the
formation of prestigemay all contribute to explain the counter-intuitive prevalence of cooperation in
natural and social systems. The characteristics of the interaction networks have been also signaled as
an element favoring the persistence of cooperators. Herewe consider the invasion dynamics of
cooperative behaviors in complex topologies. The invasion of a heterogeneous network fully occupied
by defectors is performed starting fromnodeswith a given number of connections (degree) k0. The
system is then evolvedwithin a PrisonerʼsDilemma game and the outcome is analyzed as a function of
k0 and the degree k of the nodes adopting cooperation. Carried out using both numerical and
analytical approaches, our results show that the invasion proceeds following preferentially a
hierarchical order in the nodes from thosewith higher degree to thosewith lower degree.However,
the invasion of cooperationwill succeed only when the initial cooperators are numerous enough to
form a cluster fromwhich cooperation can spread. This implies that the initial condition has to be a
suitable equilibriumbetween high degree and high numerosity. Thesefindings have potential
applications to the problemof promoting pro-social behaviors in complex networks.

1. Introduction

Howcooperation surges and becomes stable despite the tension introduced by individual interest is one of the
most debated questions across sciences [1–8]. Individual interest implies the search for the own outcome
optimization, although it usually leads to sub-optimal solutions at a community or global scale. Cooperation, on
the contrary,may bring better global results but it requires individuals to relinquish part of their benefits to
others.When the game payoff is attached tofitness in evolutionary game theory, only individually optimal
strategies proliferate and cooperative behaviors are thus doomed to disappear in a few generations. Such grim
expectations are challenged by thewidespread presence of cooperation in human [9–13] and animal societies
[14–17]. Furthermore, cooperation is at the basis ofmulticellular organisms [18–20]. All these examples occur
despite the presence of strong individual incentives to default on the group cooperation. There exist, of course,
counterexamples where the non-collaborative strategies dominate such as criminal activity thatmay be seen as
non-cooperative behavior within human societies, or the loss of growth control exhibited by cancer cells within
biological organisms. The key question of which factors favor the proliferation and eventual generalization of
cooperation thus remains open.

Severalmechanisms have been advanced for explaining the persistence of cooperation. Some of them
include various procedures for punishing free riders [21–28], rewarding cooperators [29–32], or a combination
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of both [33–36], which effectively change the payoff balance. Others consider repeated interactions and the
possible development of prestige [29, 32, 37, 38].When the agents have to playmany times together, the
inclination to cooperatemay enhance if both parts benefit in long term and a trust relation can be built. Even
though this can only be an explanation in some particular contexts, finite size fluctuations can also lead to the
invasion andfixation of a disadvantageous strategy [39]. The structure of the interaction networks have been also
claimed to play a role in increasing global cooperation levels [5, 40–44]. Recent empirical and theoretical results,
however, show that this effectmay be in doubt for social systems [10, 45–49].

Here we take a different perspective. Instead of on a final stationary state, the focus is set on the invasion
process of cooperators in a finite population initially almost full of defectors. As explained before, different
factorsmay lead to the fixation of cooperation, but how does this process take place? The question that we
address here is whether the structure of the interaction networks can influence the dynamics of invasion of the
system by cooperative strategies. In particular, while studies about the probability for cooperators to invade
effectively a system or to survive in a hostile environment have been already accomplished [41, 43, 50, 51], in
this work we aim to understand the precise dynamical process throughwhich the invasion takes place, if and
when it does. For this, we set initially the population in a defection state except for a few agents, and then
checked the evolution of these invaders. The spatial interactions between elements of the system aremodeled
by two types of randomnetworks in which the nodes are the agents and the interactions links: scale-free
(configurationalmodel) and Erdős-Rényi. The invasion process is analyzed as a function of the degree of the
initial cooperative nodes. The strategic interactions between agents aremodeled by a Prisonerʼs Dilemma,
arguably one themost extensively studied game-theoreticalmodels of human cooperation [50–53]. In this
work we do not add further ingredients to the classical Prisonerʼs DilemmaGame, as for instance sanctioning
defectors by cooperators [54–56], reputation [57], or emotions and complex internal dynamics of agents
[58–60], because here we aim to single out the network effects on the invasion process; we only vary the update
algorithm, as we explain in the following, in order to test the robustness of the results we found.We find
numerically and analytically that, in this context, the invasion of cooperation follows a clear pathway passing
fromnodes with high to those with low degrees. Thismechanism stronglymediates the invasion process and
its final outcome.

2. Themodel

Weconsider a system constituted byN agents occupying the nodes of a given network. Each agent interacts
directly onlywith her nearest neighbors, and can adopt two possible strategies: cooperation (C) or defection (D).
The interactions are given by a Prisonerʼs Dilemma game, inwhich nodes playwith their neighbors and collect a
payoff according to the action adopted by themselves and their opponents. Payoffs are collected according to the
followingmatrix [61]:

P
C D

C
D

1 0
1.4

, 1
e

=ˆ ( )

where the punishment parameter εmust fall in the interval [0,1). Among all the possible and equivalent shapes,
we have chosen this kind of payoffmatrix because it allows us to explore what happens in all the (weak)
PrisonerʼsDilemma range: referring to the classical parametrization [3, 53], we setT=1.4 (temptation),R=1
(reward),P=ε (punishment) and S=0 (suckerʼs payoff); the chosen value ofT, already used in literature [61],
has the advantage that is larger than the difference P−S, so that a defector gainsmorefitness with respect to the
opponent when plays against a cooperator than another defector.More precisely, the dynamics takes place as
follows: at each elementary time step an agent i, picked up at random, plays a round of the gamewith her
neighbors. After this, each of her neighbors play a round of the gamewith their neighbors. Subsequently, the
agent i imitates the strategy of themost successful neighbor provided that her own payoff is lower. Otherwise,
nothing happens. This way of updating the strategies is the so-calledUnconditional Imitation (UI) rule
[53, 62, 63] and it ensures that themost successful strategy rapidly spreads across the population. After that, the
payoff of the players is set to zero, so that every evolution act takes place only on the basis of the last round of the
game. A time unit ismade up byN elementary steps of the dynamics (MonteCarlo steps).We stress the fact that
at each round thefitness of a player is the simple sumof the payoffs she has collectedwith all her neighbors,
without any normalizationwith respect to her degree: this choice, which is largely present in literature [51–53,
64, 65], is actually realistic, since in nature and human communities havingmore interactions with peers entails
generally higher fitness, being actually a possiblemechanism enhancing cooperation; indeed, in real situations
the agents (be they humans or not) do not compute an average, but act according to their actual fitness, since it is
usually very hard in human societies, and practically impossible in nature, to get reliable information about the
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fitness gained by others [18, 53] 6. Nevertheless, for sake of completeness, in section 3.4wewill consider the case
where the payoff collected by a player is divided by her degree.

Even though there aremany possible game-theoreticalmodels useful for describing cooperation
phenomena, we consider the PrisonerʼsDilemma game for twomain reasons:firstly, out of the possible two-
player games the conflict between the individual and group utilities is the greatest [52, 53], so themechanisms
which foster cooperation can be efficiently identified.On the other hand, the dynamics of thismodel has been
extensively studied in the literature [50, 51, 53]. This sets a baseline against whichwe can compare our results;
moreover, it opens the door to the analysis of the effects of the update rule in the invasion process, given that the
update rules and their impact on the final outcome have already been deeply studied in the context of the
Prisonerʼs dilemma.

Contrariwise, the use of the update rule is delicate because under some conditions different rulesmay yield
diverging results, so that it is always important to check if the results are robust by changing the evolution
algorithm and inserting stochasticity in it [53]. In this case, we select UI as the first option for the sake of
simplicity butwe have checked that the same invasion patterns are observedwith other updating rules. In
particular, we have used the replicator (REP)update, in which after each game round the evolving individual i
imitates the strategy of a randomly selected neighborwith probability proportional to the payoff difference
between themprovided that the neighborʼs payoff is higher than iʼs [66–68]. BesidesUI andREP updates, we
have also exploredmore realistic rules such as the so-calledmoody cooperation inspired by the findings in
experimental settings [48, 69]. In this rule the probability ofmodifying a strategy depends on the success or not
of the last game round and on the previous strategy of the agent. In all cases, we have found similar results in the
direction of the invasion (top-down) and in the characteristics that initial invaders should have so that the
invasionmay succeed (high degree and numerosity).

Networks - In this workwe tested the behavior of themodel in different topologies. In particular, we utilized
Erdős-Rényi (ER) [70] and Scale Free (SF) randomnetworks generated by theMolloy-Reed algorithm [71]. The
main difference between these types of randomnetworks is the heterogeneity in the number of nodes’
connections (degree, k). In the case of ER graphs the degree distribution is Poissonianwith a given average
degree ká ñ, while in theMolloy-Reed networks it decays as a power-lawwith an exponentβ (P(k)∼k− β). As a
consequence, the number of high degree nodes ismuch larger in the SF than in ERnetworks.

Initial conditions - Since our aim is to study if and how cooperation invade a systemof interacting
individuals, we consider systemswhere initially all the agents are defectors, apart from the ones occupying nodes
of a given degree k0. In this case, we consider two options: either all the agents in nodes with k0 are initially
cooperators or, in section 3.3, only a certainfixed number of nodes with degree k0,Nc

0, selected at random are
cooperators, the rest are defectors. The results were obtained exploring different values of k0.

3.Numerical results

3.1. Final state of the system
Webegin the description of the results by analyzing thefinal configuration of the systemusing numerical
simulations and as a function of the invasion degree k0 for different values of the remaining parameters. If not
explicitly specified, the system size is set atN=1000, although several system sizes have been explored. The
results are always averaged over 2000 independent realizations.

Thefinal value of the cooperator density nc
¥ is displayed as a function of k0 for the invasion of a SF network

withN=1000 agents andβ=1.6 (that is, a heterogeneous network), and for increasing values of the
punishment ε is shown infigure 1(a). All the nodes with degree k0 are set as cooperators at t=0. Then the
system is evolved until nomore changes are observed in the density of cooperators. Interestingly, in the range of
low values of k0, nc

¥ decreases until it reaches aminimum nc
min , after which it increases and tends to amaximum

value nc
max for a very high k0. Thismeans that the chances of cooperators to invade the network strictly depend

on k0. Given the shape of the degree distribution P(k)∼k−β, the number of nodes with low degree is higher and
a competition effect appears between addingmore initial cooperators when k0 is small and the efficiency of the
nodes to propagate the cooperative behavior, which seems to be stronger at higher k0 values. This explains the
initial decay of nc

¥ and its ulterior strong increase. Different parameters ε produce some changes in the level of
final fraction of cooperators nc

¥. However, the curves of n kc 0
¥( ) follow the same qualitative behavior.

When the size of the system is varied for a fixed ε, the picture emerging is similar. Infigure 1(b), nc
¥ is

depicted as a function of k0 for ε=0.05. The invasion fromnodes of degree k 0=2 have a low ratio of success,

6
We recall that when according to the update rule an agent imitates another onewith higher fitness, evolutionarily thismeans that the

former has been substituted by thefittest (natural selection). Therefore, no information about the otherʼs payoff has reached the imitating
individual.
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which increases to values of the order of one if the initial cooperative nodes are the hubs. The intermediate k0
values lead to a very small nc

¥, which becomes smaller and smaller as the system size increases.
Similar results are obtainedwith a less heterogeneous network (β=2.7), as shown infigure 1(c): the only

difference is that after reaching amaximum, nc
max tends to vanish for k0  ¥ due to the scarcity of hubs. In the

extreme situation, the scenario ismodified if we consider almost homogeneous networks as can be seen in
figure 2(a).We show again the behavior of nc

¥ as a function of k0 for different values of ε, but on an ERnetwork
with average degree k 3.5á ñ = . In this case, we see amuch simpler behavior: thefinal cooperation level is always
very low, and rapidly decreases with increasing k0. The same behavior can be observed on a SF network butwith
β=5.6, that is, a networkmuch closer to a homogeneous one than a SFwithβ<3.

In all the configurations that we have investigated the final cooperation level never reaches the unit
density, so that cooperative behaviors are not able to completely invade the network. Furthermore, the
resulting nc

¥ is averaged over thousands of realizations. In some of them the population of cooperators may
have extinguished, providing nc

¥ a clue of the probability of persistence of cooperators at t  ¥.When the
invasion properly occurs, the final density of cooperatorsmust grow respect to the initial one. This is whywe
will talk about a proper invasionwhen the ratio between the final cooperator density and the initial one is
larger than 1. Figure 3 shows this ratio n nc c

0¥ as a function of the degree k0 for different types of networks.
According to these results, a high degree heterogeneity in the network is necessary for cooperative behaviors to
invade (we only see it if β<3). Not only that, it is also required that k0 is over a certain value for cooperation
to spread.

Figure 1. Final cooperator density as a function of the invasion degree k0 for a systemon a scale free network. In (a), exponentβ=1.6,
size (N=1000 and four different values of the punishment; In (b), exponentβ=1.6, ε=0.05, andfive different system sizes; In c),
exponent β=2.7, size (N=1000 and four different values of the punishment.
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3.2.Direction of the invasion process
An important question is throughwhichmodality the invasion process takes place (when it does). In particular,
when a defector imitates a cooperator, i.e. a site is invaded by cooperation, it is rather relevant to know if the
invaded node has a higher degree than the invader or not. Figure 4(a) shows that a single invasion act ismore
likely to happen top-down than bottom-up, that is, there is a statistical bias that favors configurationswith the
invaded node having lower degree than the invading one. The distribution of the ratios between the degree of the
initial cooperative node ki and that of the node adopting cooperation kfis shown infigure 4(a). Thefirst bin,
between zero and one, encloses all the instances when kf�ki. As can be seen, this is amuch smaller fraction of all
the invasion processes registered, and this happens alsowith a different update rule, as shown infigure 4(b). In
principle, this result could be a consequence of the friendship paradox [72]. Anyway, if we compute the average
degree ratio r k kd n= á ñ (being kn the general neighborʼs degree) for the network utilized infigure 4 (Molloy-
Reed scale free networkwithN=2000 nodes and exponentβ=1.6), it results rd;1.59, whilst the average
ratio between the invader degree and the invaded one is around 7 for theUI dynamics and 5.8 for the REP rule.

Figure 2. Final cooperator density as a function of the invasion degree k0 for a systemon anERnetwork in a)with average degree
k 3.5á ñ = , sizeN=1000) and two different values of the punishment. In b), the same results on a scale free networkwith exponent
β=5.6 and sizeN=1000), and two different values of the punishment.

Figure 3.Values of ratio between the final cooperator density nc
¥ over the initial one nc

0 as a function of the invasion degree k0 for
systems of sizeN=1000 and ε=0.05 on different networks. There has been invasion for the points above the tilted line.
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3.3. Fixed number of initial invaders
In order to better understand themechanisms of the invasion, we also performed some simulations setting at the
initial stage of the dynamics only defectors, apart Nc

0 cooperators on nodes of degree k0. Naturally, for small
values of k0 the network has always at least Nc

0 nodes of such degree, whilst for large k0 we have kept only
realizations of the network having the number of nodes needed. This choice allows us to better understand the
mechanisms underlying the observed dynamics. Infigure 5, we see that if the invasion does not take place (that
is, if the final cooperator density is not larger than the initial one), then the cooperator density is generally
vanishing. This is evenmore understandable watching figure 6, wherewe show the average cooperator density in
the last stagewhere both strategies are still present in the system. As it can be easily noticed, with fixed number of
invaders thefinal configuration is always all-cooperators or all-defectors, while setting initially all the nodes of
grade k0 with invaders entails the possibility of afinalmixed state. As the reader can notice, for these simulations
we utilized larger networks, so that the systems can havemore nodeswith larger degrees than in the previous
case,magnifying strength andweakness of high degree invaders.

Figure 4.Histograms of the frequency of transitions fromdefection to cooperation as a function of the ratio ki/kf, being kfthe degree
of the agent whichflipped fromdefection to cooperation by imitating the agent with degree ki, for a systemon a scale free network
(exponentβ=1.6 and sizeN=2000, ε=0.05 and k0=30), in case of (a)UI evolution rule, and (b)REPupdating. The cumulative
frequency of the transitionswith degree ratio larger than one (i.e. the top-down invasion acts) is;98% forUI and;69% for REP.

Figure 5.Values of ratio between the final cooperator density nc
¥ over the initial one nc

i as a function of the invasion degree k0 for
systems of sizeN=4000 on an SF network (exponentβ=1.6), ε=0.05 and different number of initial invaders; the lacking points
for small invasion degrees are values of k0 forwhich cooperators end up totally wiped out; the violet straight line represents a power
lawwith exponent 4. There has been invasion for the points above the tilted line.
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Such results reinforce the previous considerations: the outcome of the dynamics depends on the combined
effect of the degree of the initial invaders and their quantity: without fixed number of initial cooperators
(baselinemodel configuration), increasing k0 is helpful for the invaders because it increases their influence
towards the rest of the system, but, at the same time, reduces their number weakening the enhancing effect of a
higher degree. Therefore, if we set Nc

0, for small k0, we have generally less invaders with respect to the baseline
(all the nodes of degree k0 cooperators at t=0), whilst for high values of k0 we have evenmore invaders than in
the baseline: in practice, if in the previous case we have always two competing effects (a lot of invaders with little
connectivity in one case, few invaders with big connectivity in the second one), by setting Nc

0 we have in both
cases two adding up effects (few, weak invaders for small k0, andmany, powerful invaders for large k0). To be
even clearer, let us suppose that for a given high value of k0 the average number of nodes with such degree be two:
in this case, only two initial invaders have a very low probability to survive, but if we require to have 5 or 6 of
them, selecting only the few iterationswhere the network has generated them,wewill have a bunch of invaders
with high degree and, consequently, very high probability to form a cluster able to completely invade the system,
aswewill show also in section 4. As a result, there is always a complete invasion of cooperators (for large k0), or a
total extinction (for small k0). In short, we can conclude that in order to allow the cooperation to spread
throughout the system, it is important that the initial cooperators are located on nodes of degree large enough to
permit the initial cooperative cluster havemany links, but not too large to reduce excessively the number of
nodes in such cluster and the connections among themselves.

3.4. Average Payoff
In this sectionwe aim to evaluate how changing theway agents collect their payoff affects the behavior of the
model. In particular, as we anticipated in section 2, we consider the case inwhich the payoff collected at each
round by an agent is divided by her degree, that is, the fitness is given by the average payoff per neighbor instead
that by the total payoff. As illustrated infigure 7, here the behavior of themodel is deeply different from the one
previously observed. In particular, we see that the cooperation survives only for very low invasion degrees, then
vanishes exponentially fast as k0 increases.Moreover, the few transitions fromdefection to cooperation prefer
clearly the bottom-up direction, differently from the baseline case. In practice, averaging the payoff over the
neighborsmakes higher degree nodes lose their importance aswill be discussed in the final section.

3.5.Moody conditional cooperation updates
Up to now,we have shown that the spreading of cooperation ismore likely to take place fromhigher-degree
towards lower-degree nodes, setting a preferential direction for the invasion process.We verified this outcome
withUI andREP evolution algorithms, butwemay alsowonder if this effect ismore general, and can be detected
evenwhen the elementary dynamics is deeply different. In practice, wewant to establish if themechanisms at
work in a considerably differentmodel drive the system to the same result. Let us consider, for example, the
MoodyConditional Cooperation (MCC) dynamics [45]. Themoody conditional cooperationwas proposed as a
probabilistic update rule to explain the decision patterns observed among individuals playing a Prisonerʼs
Dilemma in a large-scale experiment. It is, therefore, closer to real human decisionmaking. Themain feature of
moody cooperation is not the evolution algorithm, but the definition itself of the strategies for each player. In the
model as defined in section 2, the strategy of an individual is in everymoment univocally determined, so that
when involved in a game round, her action is already determined. On the contrary, withMCC the action of the

Figure 6.Cooperator density nc
¥ in the lastmixed configuration over nc

i as a function of the invasion degree k0 for systems of size
N=4000 on an SF network (exponentβ=1.6), ε=0.05 and different number of initial invaders. This stage is alwayswith just one
contrarianwhichwill be reabsorbed at the next step of the dynamics.
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players depends on the number of cooperating neighbors they had in the previous round: themore neighbors
cooperated, themore likely it is that the player cooperates. However, the choice depends also on playerʼs own
previous action: thus, it has been shown that cooperation following cooperation ismuchmore likely than
following defection [48, 69].

We implemented theMoodyConditional Cooperation dynamics as follows. The probability Pc to cooperate
of an individual is

P
pX r

q

if cooperated in the previous round

if defected in the previous round,
2C =

+⎧⎨⎩ ( )

whereX is the fraction of cooperating neighbors in the previous interaction, and p, q, rä[0, 1] are the quantities
defining the individualʼs behavior: in practice the set {p i, q i, r i} defines the (complex) strategy of the player i (of
course, if it is pX+r>1, the probability PC is set equal to 1). After the interaction, that is, after i and her
neighbors have played a game round, each onewith her ownneighbors, the strategy evolves according theUI
rule: if at least one neighbor earnedmore than herself, iwill imitate the best performing one, that is, shewill
adopt the set {p, q, r} of thefittest neighbor. The strategy parameters are initially distributed at random, and at
thefirst interaction every player is considered as a previous defector, apart those occupying nodes of degree k0,
which are defined as cooperators.

TheMoodyConditional Cooperation dynamics is well known to be little influenced by the topology of the
network [69] (we found this same behavior in this case), and proved to bemore realistic [45], as it was observed
in experiments with human subjects. Besides, since players’ strategy is not a defined action (cooperation or
defection), but amixed complex one, it is quite hard to define completely an invasion process. However, it is
always possible to study the time evolution of the cooperator density (i.e., the fraction of cooperating actions per
unit time).Moreover, if we consider an agent which cooperates after having defected at the previous game
round, and consider the ratio between the degree of the neighbor she imitated (when the change of action is the
actual consequence of a change of strategy) and her owndegree, we can draw an histogram as those infigure 4.

Here we resume themain results for theMoodyConditional Cooperation dynamics infigure 8. First of all,
thefinal outcome of the evolution is independent from k0, since in this case also the defectors with no
cooperating neighbors have afinite probability toflip action to cooperation. Secondly, considering the
transitions fromdefection to cooperation, when induced by a strategy imitation, we see that also in this case the
vastmajority of such transitions take place fromhigher to lower degrees. Finally, we stress the fact that changing
the type of network in this case does not change the results obtainedwith the SF network utilized infigure 8.
These results allow us to conclude that, alsowith a totally different dynamics, cooperative behaviors, in a
population of individuals interacting as in PrisonerʼsDilemma, spread essentially fromhigher to lower degree
nodes (when they do). Thismeans that this kind of process is very general and does not depend strictly on the
details of themodel, but is quite universal. In fact, since in the Prisonerʼs Dilemma cooperation is at individual
level a disadvantageous behavior, cooperators with higher degree, which in complex networks are also likely to
be directly connected, can sustainmore easily their pro-social strategy, and therefore contribute efficiently to the
invasion of less connected agents.

Figure 7. (a) Final cooperator density as a function of the invasion degree k0 for a system ofN=1000 agents on a scale free network
withβ=1.6, ε=0.05;fitness given by the average payoff per neighbor (black), and by the total payoff collected (red, same curve
shown infigure 1(a)). bHistogramof the frequency of transitions fromdefection to cooperation as a function of the ratio ki/kf, for the
same systemof left panel (average payoff) and k0=4; notice the logarithmic y-scale.
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4. Analytical discussion

In order to shed light on the fundamentalmechanismswhich give origin to the phenomenology presented in the
previous sections, we have to analyze the actual effect of the topology on the dynamics. In order to do that, in this
sectionwe proceed in twoways. First, wewill try to apply to ourmodel a peculiarmean-field approach for
networks already utilized in literature for the study of reaction-diffusion processes. Afterwards, to overcome the
limits of such treatment, wewill considermore qualitatively the effect of the spatial fluctuations through the
network on themodel dynamics.

4.1.Heterogeneousmean-field
Apossible way ahead could be to study the time evolution of the partial cooperator densities nc

k(t) (that is, the
fraction of cooperators occupying nodes of degree k), following an already developed approach utilized for
reaction-diffusion processes on heterogeneous networks [73].We start by defining the single node occupation
number ni

t in this way: 1i
tn = if a cooperator occupies the site i at time t , 0i

tn = if instead the node i is occupied
by a defector. Its evolution rule is

1 , 3i
t

i
t

i i
t

i
1n n h n x= + -+ ( ) ( )

where ηi and ξi are quantities given by

0 with probability

1 with probability 1
4i

i

i
h

l
l

=
-

⎧⎨⎩ ( )

and

0 with probability 1

1 with probability ,
5i

i

i

x
m

m
=

-⎧⎨⎩ ( )

beingλi (μi) the probability that a cooperator (defector) in node i becomes a defector (cooperator) after time t
(for simplicity, we keep implicit their time dependence). It is easy at this point to compute the average over the
ensemble:

, 6i
t

i
t

i i i i
t1n n m l m ná ñ = á ñ + - + á ñ+ ( ) ( )

Figure 8. System on a SF networkN=1000,β=1.6withMoodyConditional Cooperation dynamics. In (a), time behavior of the
cooperator density for different values of the initial invasion degree. In (b), histogramof the frequency of transitions fromdefection to
cooperation as a function of the ratio ki/kf. The cumulative frequency of the transitionswith degree ratio larger than one is;85%.
Considering an ERnetwork leads to very similar results.
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which, passing to continuous time and defining n tc
i

i
tnº á ñ( ) , becomes

n n t . 7c
i

i i i c
im l m= - +˙ ( ) ( ) ( )

Assuming that the nodes of the same degree are statistically equivalent (uncorrelated network), equation (7) can
be rewritten as

n n t , 8c
k

k k k c
km l m= - +˙ ( ) ( ) ( )

where, naturally, the index k refers to all the agents occupying vertices of degree k. Now, evaluating the factorsλk
andμk is very hard: as pointed out at the beginning of this section, the probability for an agent to switch strategy
depends on the distribution of cooperators among the nearest neighbors and next nearest neighbors, with the
spatialfluctuation playing a fundamental role. Nevertheless, we can deduce that initially the partial cooperator
densities have to increase for k k0¹ , whilst nc

k k0= decreases. Indeed, initially we have by construction
n tc

k
k k, 0
d( ) , so that at the early stages of the dynamics, up to some time t*, itmust be

n t t
k k

k k

0

0 ,
9c

k k

k

0

00

*
m
l
> ¹

- < =


⎧⎨⎩˙ ( ) ( )

giving back that, during the initial phase of the evolution, the cooperator density limited to the nodes of degree k0
has necessarily to decrease, whilst it increases in the remaining nodes.

The behavior determined by equation (9) is actually confirmed by simulations (see figure 9), but it is not very
informative (especially for what concerns the k0-nodes, which initially are all cooperators). Therefore, in order
to getmore effective information from equation (8), we should determine the explicit shape of the factorsλk and
μk, which unfortunately is very hard.More precisely, applying this heterogeneousmean-field approach to our
model shows two critical points. First of all,mean-field is rigorously valid in the thermodynamic limit (infinite
system size)which has nomeaningwith heterogeneous networkswhere the average degree diverges withN
increasing: thismeans that equation (9) represents correctly themodel behavior only at the early stages of the
dynamics, after which the finite size effects are no longer negligible. Secondly, the spatial fluctuations are crucial
for the outcome of the dynamics. It is well known indeed that in the PrisonerʼsDilemma game cooperators
survive in highly connected clusters where they can take advantage ofmutual cooperation [52]: that is,
cooperationwill spread starting from a bunch of original cooperators of degree k0 accidentally connected among
themselves. Therefore, in order to describe completely the entire dynamics, we have to lookmore in depth at the
topological properties of the network.

Figure 9.Time behavior of the partial cooperator densities nc
k for two different topologies. In (a), scale-free network (exponent

β=1.6 and sizeN=1000, ε=0.05 and k0=5); the curves shown are for k from2 to 12 (the partial density for k=k0 is explicitly
indicated). In b), ER network (average degree k 3.5á ñ = and sizeN=1000), ε=0.05, k0=5, and some values of k.
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4.2. Initial clusterization effects
Forwhat stated above, we should expect that the invasion of the cooperation ismore effective when starting
fromnodes of higher degree, but also numerous enough to create an initial cluster of connected cooperators
fromwhich the spreading can originate. In order tofind out the strength of the invasion as a function of k0, we
have to evaluate the probability to have in a given network a cluster of nodes of the same degree k¢ connected
among themselves. To this aim, let us start from the conditional probability P k k¢( ∣ ) that a node of degree k¢ is
connectedwith a node of degree k. In the case of uncorrelated networks, we can assume that [74]

P k k
k P k

k
. 10¢ =

¢ ¢
á ñ

( ∣ ) ( ) ( )

From the previous equation it is possible to assess the average number k0
 of neighbors of a node of degree k0

with the same degree:

k P k k
k P k

k
, 11k 0 0 0

0
2

0
0 = =

á ñ
( ∣ ) ( ) ( )

which for a SF network is

k . 12k 0
2

0 µ b- ( )

We remind here that theMolloy-Reed algorithmweused to generate our SF networks does not allow nodes of
degree larger than N , so that equation (12) can be considered valid for every node. Interestingly, k0

 is an
increasing function of k0 forβ<2, implying that the higher is the invasion degree, the bigger is the initial
cooperator cluster and the final number of cooperators, as confirmed by figure 1. The initial decrease for small
values of k0 is afinite size effect, as demonstrated in figure 1(b): in the limit of very highN, thefinal partial
densities appear to behave as

n t
k k

k k N k k

0 if

; , if ,
13c

k

0

*
*


 ¥ =

>

⎧⎨⎩( )
( )

( )

where k k N; ,0( ) is an increasing function of k (dependent also on the parameters k0 andN).
On the other hand, forβ>2 the size of the initial cooperator cluster decreases with k0, so that the invasion

probabilitymust vanish for k0  ¥, as confirmed infigure 1(b), even though for 2<β<3 there is an interval
of intermediate values of k0 where the balance between the initial degree of cooperators and the size of the
invading cluster is still favorable for the spreading of cooperation (this region disappears for larger values ofβ, as
shown infigure 1(b)).

Conversely, for an ER randomnetwork, it is easy to understand that equation (12) reads

k e , 14k
k

0
2

0
0 µ g- ( )

where γ>0. Therefore, k0
 decays very rapidlywith k0, causing the sharp decay of the invasion probability, in

its turn confirmed infigure 2(a). Such result could have been also predicted simply considering that the average
number of sites of higher degree is very small in this kind of networks, so that there are initially too few
cooperators to form a cluster.

5. Conclusions and perspectives

In this paper we have studied themechanisms throughwhich cooperative strategies, which are disadvantageous
for individuals though convenient for the population at a global level, can invade an initially hostile
environment. Themain result we have obtained is that two factors decide if the initial invaders can succeed: they
have to be numerous enough to create a safe cluster fromwhere the invasion can spread, but also have enough
connections with the other individuals. In fact, on complex networks, if we put the initial invaders only on nodes
of the same grade k0, thefirst requirement (high connectivity) is satisfied for large k0, whilst the second one (high
numerosity) is satisfied at small k0. Thismeans that, in order to have a final configuration favorable to
cooperation, the initial conditionmust be a suitable equilibriumbetween high degree and high numerosity,
which takes place, when possible, at intermediate values of k0.More interestingly, our results demonstrate also
that the invasion process, when actually works, is a top-down phenomenon, that is, the cooperators occupy
more often nodes of lower degree than the starting ones. This is a rather strong result, sincewe verified it on
different networks andwith three different update rules: the deterministic Unconditional Imitation; a rule that
allows for the presence of noise, the REP; and theMoodyConditional Cooperation dynamics, that is based on
empirical observations andwhich is deeply different from theUnconditional Imitation andReplicator rules.
These interpretations of the results are further confirmed by the simulations accomplished considering the
average payoff per neighbor: in that case, indeed, the high degree nodes lose their strength in terms of potential
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fitness, remaining few in number. As a consequence, any attempt to invade the system starting fromnodes of not
too low degree fails, and only for very small values of k0 some cooperators canfinally survive. Of course, further
studies should explore the direction of invasion for other imitation rules (e.g.,Moran or Fermi rules, or learning
algorithms) and investigate whether there are boundary conditions for the top-down invasion process that we
have reported; also adding noise in the initial conditions, for example extracting at random froma given
distribution the exact number of invaders, will help to understand themost subtle features of the process.

Such results can have important consequences, both theoretical (for the understanding of the cooperative
phenomena in nature) and practical ones (tomanage correctly social phenomena).Whilst thefixation
probability of a pro-socialmutations is of great relevance [51], our focus in this work is on how the invasion
process takes place. The observed fact that the invasion of cooperative strategies follow a preferred top-down
direction rises questions with implications in social and biological sciences alike: for instance, considering the
vaccination campaigns in case of epidemics, the present study suggests that in order tomake the pro-social
behaviors spread through a skeptic population, it would be better to focus on few, well connected individuals
than trying to convince asmany individuals as possible, with no regards to their connections, which could turn
out to be awaste of time and resources.We stress the fact that, even though it is practically hard for policymakers
selecting all the individuals with a given number of links, as we did in ourmodel, themost importantmessage
that this work is that pro-social strategies have success when they start from a group of agents which havemany
connections with the external world (since it is a hierarchical process), but also among themselves, so that they
can both spread the cooperative behaviours and resist to outer attacks.

Naturally, future studies are needed, both empirical, to confirmor deny thesefindings in other contexts, and
theoretical: in particular, analyzingmodels where the initial invaders are selected on different basis (i.e., by
considering their centrality instead of the degree), or utilizing real networks for the simulations, could shedmore
light on the details of this class of phenomena.
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