
On the Role of Value Sensitive Concerns in
Software Engineering Practice

Balbir Barn∗, Ravinder Barn†, Franco Raimondi∗
∗School of Science and Technology, Middlesex University, London

{b.barn, f.raimondi}@mdx.ac.uk
†Royal Holloway University of London

{r.barn}@rhul.ac.uk

Abstract—The role of software systems on societal sustainab-
ility has generally not been the subject of substantive research
activity. In this paper we examine the role of software engineering
practice as an agent of change/impact for societal sustainability
through the manifestation of value sensitive concerns. These
concerns remain relatively neglected by software design processes
except at early stages of user interface design. Here, we propose a
conceptual framework and language concepts that will translate
value sensitive design from its current focus in participatory
design to one located in mainstream software engineering pro-
cesses. Addressing this need will have an impact of societal
sustainability and we outline some of the key research challenges
for that journey.

Index Terms—Value Sensitive Design, Values, Co-Design, Re-
quirements elicitation

I. INTRODUCTION

Sustainability concerns have been substantively critiqued
from an environmental perspective since the 1960s, with the
dominant, normative definition in the literature centering from
that published in the United Nations Commission on Envir-
onment and Development (UNCED) report “Our Common
Future” [1]: “Sustainable development is development that
meets the needs of the present without compromising the
ability of future generations to meet their own needs”.

Debate around this definition has seen sustainability further
discussed in terms of economic and social / societal sustainab-
ility [2] where the latter includes a focus on processes, systems
and structures to support healthy and liveable communities.
Others1 have noted that sustainability is a social goal and
ultimately there is no dichotomy between environmental and
societal sustainability and this requires that “social scientists
working on these issues cooperate in interdisciplinary projects
with scientists who assess the life-cycle-wide material and
energy flows attributable to products and services, as well as
ICT developers who understand the resulting requirements to
be placed on ICT applications.” [3, ,p19].

The National Research Council of USA reported on the
centrality of the role of Computer Science research to support
societal sustainability and identified a number of strategies
and recommendations [4] based on the assumption that most
sustainability issues require inter-connection and human in-
teractions with systems. The report noted research in socio-

1Following communication from an anonymous reviewer.

technical systems is needed to encompass society, organisa-
tions and individuals and their behaviour rather than remain
focussed on a narrow environment related definition of sus-
tainability. Further, the role of information systems especially
in their new guise of “apps” delivered through smartphones
is particularly pertinent. Organisations responsible for these
apps should recognise that their corporate actions with respect
to design and deployment of such systems have a profound
impact on all aspects of societal welfare.

Given that corporate actions are really an aggregation of
individual behaviours, an examination of the root causes of
human behaviour, particularly within the corporate context and
in relation to the types of corporate actions that either benefit
or harm society, is important [5]. A basic driver of human
behaviour may at least in part be explained by a notion of
“Value” [6]. Hence, a discussion about values in the design of
socio-technical systems is necessary.

Following from this, we hypothesise that part of the problem
of systems design is that the software engineering process (in
any of its variants) does not include a first class representation
of the concept of value in any of its constituent elements.
A simple test of searching for the term “value” in one of
the leading texts on software engineering (Somerville [7])
demonstrates its absence.

In this context, this paper suggests that human values are
influencing factors in acceptance of socio-technical systems
that are part of the necessary fabric for societal sustain-
ability. Therefore consideration of values in the design of
such systems can encourage societal sustainability. The paper
examines the current evidence on how values are integrated
in a very limited software engineering practice and offers
essential characteristics for an approach for these integration
requirements.

II. RELATED WORK

The foundations for discussing how values could be integ-
rated into the software engineering process has largely been
initiated through the domain of human-computer interaction
(HCI) in the seminal article by Suchman [8] and has influ-
enced the advent of Co-Design, where questions about values
“become easier since the collaboration between designer and
client (or user) is explicitly recognised as a goal of the
process.”[9].



A notable and sustained contribution to understanding and
accounting for values in the design process is the work
by Friedman and her colleagues on Value Sensitive Design
(VSD)[10]. Research has informed the debate on the unin-
tended consequences of systems and the detrimental effect or
compromise of moral values that users may believe in.

The concept of value has been investigated in its role to sys-
tems design. Friedman is generally credited with introducing
the study of values to IS practice through the Value-sensitive
design (VSD) [11]. She defines value as: what a person or
group of people consider important in life. Values that are par-
ticularly pertinent to information systems include: ownership
and property; privacy, freedom from bias, universal usability,
trust, autonomy, informed consent, identity and others. In
systems design, values have, to-date, been integrated mostly
with participatory design approaches [12] or more recently Co-
Design. Co-Design involves potential (un-trained) end users
working jointly with researchers and designers to jointly create
artefacts that lead directly to the end product and, as Yoo et al.
[13] note: “become a dominant user study methodology in the
fields of product design, service design, interaction design and
HCI [14]”. Several researchers have commented that whilst
participatory design is a dominant mode of technological
design, end-users still struggle to influence the direction of
design within the participatory process. Furthermore, end-
users may not fully understand the ecology of available
technologies. It may be that the reductionist principles of
software engineering could be argued to have hindered the
integration of values approaches into mainstream practice and
so making it harder to monitor such concerns.

Value-sensitive design (VSD) emerged to integrate moral
values (and more broadly ethics) with the design of systems.
A key premise of VSD is that it seeks to design technology
that accounts for human values throughout the design process
(over and beyond the identification of functionality and visual
appearance) of systems. Thus VSD has a stated goal that there
should be freedom from bias in systems. That is: computer
systems should not systematically and unfairly discriminate
against certain individuals or groups of individuals in favour
of others [11]. VSD has developed both methods and theory
that incorporate particular values into technologies through
conceptual, empirical, and technical investigations.

In the Yoo et al. model, the traditional co-design core blends
methods from value-sensitive design to structure the co-design
engagement with inputs from stakeholders and considerations
of values. The co-design process may be initiated by free-
form thinking, but their key innovation is in the introduction
of two types of structured interventions. Designer prompts
entail materials that originate from expert designers and may
comprise personas, scenarios or the use of envisioning cards.
Stakeholder prompts originate from the end-users and may
utilise value based scenarios addressing concerns such as
unintended uses of the system; changes of the use of the
system over time and so on. Values will be, typically, those
derived from the list suggested by Friedman in [15]. The
reflection element of the model provides a way of representing

how prompts may be generated by either a stakeholder or
a designer as a result of joint participation in the co-design
space.

In software engineering, Goguen’s latter work in require-
ments elicitiation has emerged from formal computer science
but presents a similar discourse on the importance of values
that could be seen as a plea to move from a reductionist
principle to one that proposes “semi-formal approaches that
take account of social processes can be valuable. Values are
the key to unlocking ...the enormous dangers of contemporary
technologies.” [16]. Goguen recognized that there are limita-
tions to formalisms but also noted that ethno-methodologies
present challenges in collection of data and the subsequent
grounding of data in the design of the target technical artefact.
Thus “methods based on ethnomethodology cannot be applied
directly to systems that have not yet been built”. Other
approaches to consideration of values in software enginnering
focus on return on investment calculations and therefore are
not the type (moral) values that we propose also need to be
addressed in the software engineering process [17], [18].

III. A PROPOSAL FOR A CONCEPTUAL FRAMEWORK FOR
INTEGRATING VALUES AND REQUIREMENTS

Currently there are no formal or semi-formal models and
their associated processes for integrating values and require-
ments into the software engineering design process. Building
on the work of Yoo et al. [13], we have developed a co-
design workshop method that exposes value concerns such
as security and privacy. The approach has been applied on
a research project (Mobile Apps for Youth Offending Teams
– MAYOT) aimed at developing social technology for use
by young people and their caseworkers in youth offending
teams in the UK. The project raised requirements on design
methods to incorporate the voice of stakeholders with respect
to privacy issues and an outcome of that work is the conceptual
framework by deriving values and their resolution to value
conflicts between stakeholders for integration into the software
engineering design process.

The Co-Design activities in the various workshops yiel-
ded a rich set of data including design and specification
of features/functions of the MAYOT app. We focus on one
design feature. The Exclusion Zone feature is a function that
is available on the MAYOT app that allows a case worker
to define a geographic region from which a young person is
prohibited (with potential risks to violating their youth order
with obvious detrimental effects). The feature alerts the young
person in possession of the smart phone hosting the app that
they are in an exclusion zone. During the course of a number
of workshops, the feature went through a number of design
changes representing the designer’s view, a case worker’s
view, and views from young people who believed that the
prototype app feature violated their privacy. Such concerns
were considered seriously by the research team to ensure that
a balance was struck between relative privacy and security of
information. Further, there was a clear challenge that if we
are to incorporate value sensitive requirements into the design



Figure 1. Conceptual Model

of software then we need a way of understanding, managing
and exploring the impact of values through the requirements
process.

A. Language Model

Our starting proposal posits that a more computationally
useful understanding for incorporating values into the design
process is to treat the analysis of value sensitive concepts as a
model-based language design activity. Such an approach will
utilise a suitable meta-language that can represent the various
features of language such as the abstract syntax (defining
the information structures to represent essential aspects of
the language in a form suitable for machine processing); the
concrete syntax (the appearance of the language on the screen
or page) the various mappings necessary to relate the abstract
syntax to the concrete syntax and the semantic domain in
a form similar to that in [19]. Simple Unified Modelling
Language (UML) class models and associated constraints can
be used as a suitable meta-language for representing the
language components listed above. Figure 1 shows the abstract
syntax for the essential features of value concepts drawn as a
UML class diagram based on the language design approach
used in [19, pp. 53-54].

The model represents key concepts that we have en-
countered during our efforts at enacting value sensitive co-
design with respect to prompts and how they are utilised.

We limit the semantics of this model to be a collection of
traces. A trace is a sequence of co-design events (workshops).
Each event is described by a system state change represented
by object diagram that are instances of the semantic model.
The semantic model comprises objects and slots that contain
values. Additionally there are well-formed rules that determine
how an instance model is deemed to be correct with respect
to the conceptual model.

A Co-Design Space is any space where key Actors, the
Designers and Stakeholders (including indirect stakeholders)
participate in joint actions to create or evolve design features

of intended systems. Actors are the source of the generation
of Prompts.

Prompts are mechanisms or props that provoke reflection
in the Co-Design Space. They are the main concept that
needs to be tracked with respect to engendered values in
the requirements elicitation and design process. Prompts can
ultimately become a Feature of the system and become tools
for describing how functions of a system may behave by
appearing in scenarios of use. As noted by Yoo et al [13].
Scenarios incorporate Values and thereby bring Values into the
co-design process. A Value may be of a particular type (e.g.
Moral, Privacy etc.) and have properties such as name and
description and relationships with other concepts that capture
the provenance of a value. A Prompt may become a Value
Based Prompt (i.e. it raises concerns or addresses a value of
interest to a stakeholder). A Value Based Prompt ultimately
requires some resolution as different actors may attribute
different measures to the same value (c.f. the value of privacy
and autonomy associated with the “Exclusion Zone” prompt).
To cater for this, we propose that we integrate components
from the Contextual Design participatory design method [20].
In particular, the Contextual Design method utilises the notion
of a Cultural Model that provides an analytical capability for
showing the cultural or political forces in the organisation.
The Cultural Model also allows for values and for different
forces to be applied by stakeholders to those values in order
to arrive at a resolved status for a value. We account for this
by appliesForce association between Actor and Value-Based
Prompt and a function that computes the net force of a Value
Based Prompt.

It is only when the net forces applied are balanced that the
prompt becomes a feature. Forces that are applied to “balance”
value sensitive concerns can be expressed in an arbitrary unit.
To support the model we propose some sample constraints:

Constraint:R1: Not all prompts may become features. In
the illustrative case study, a designer prompt aimed at making
available individual intervention plans from the MAYOT app
was rejected by case workers as potentially an example of a
privacy breach and therefore value-sensitive.

Constraint:R2: A feature must be agreed by all participating
stakeholders. This raises some other issues such as the avail-
ability of all stakeholders throughout the co-design process.
To overcome this we propose that a feature is accepted by all
stakeholders in at least one co-design workshop.

Constraint:R3: If a feature incorporates a value then the
associated value-based prompt must have a net force of nil.

Constraint:R4: The same prompt may have a different
generator role in a different co-design space.

IV. DISCUSSION

We discuss our proposal by raising two open questions and
offer an initial response. (1) What purpose can a framework for
managing value sensitive concerns serve towards a sustainable
society? We suggest that developing a clear, causal, traceable
link that chains together stakeholders, value concerns raised by
stakeholders, the scenarios and space in which concerns were



raised and the feature that is impacted can provide a more
nuanced approach for determining priorities found in more
traditional requirements engineering approaches. In particular,
values that impinge or impede sustainability concerns can be
surfaced. Key to this, is recognising that stakeholders can
include networks that go beyond the designers and users of
the system. For example a system designed for a security
organisation may meet the values of both designers and
the immediate users. However, (privacy) values that reside
amongst in-direct stakeholders could be violated and such
stakeholders may make behavioural changes that have an im-
pact on environmental sustainability. Given that sustainability
is about multi-generational issues, how to represent un-born
generations in the design process is a challenge. Two options
are possible: firstly one could involve stewardship from a state
advocacy policy and recognise that participatory design is not
always appropriate; or secondly, given that we now have inter-
generational use of IT systems, research instruments that can
identify and evaluate generational concerns can be developed.

(2) How does the framework enhance existing practice of
analysis and design? From software engineering, requirements
elicitation/management perspective, a benefit of tracking value
concerns is the opportunity provided for early evaluation of a
particular concern. Other research that we have undertaken
examines how values related to privacy can be subject to
early evaluation through the use of expert domain knowledge
encoded in a Bayesian network [21]. Systems thinking that
has evolved from the participatory design school has had a
traditional strength in examining the socio-technical elements
of systems design but artefacts from that approach are partially
lost in translation in the task of implementation. We suggest
that such a translation loss may be attributed to a lack of
appropriate languages that can bridge different domains. Lan-
guage based approaches lend themselves to model checking
and verification processes.

V. CONCLUSION

The process of creation of information systems involves
stakeholders, both direct and indirect who approach systems
design activities with a pre-conceived set of values (such as
privacy). These values have a critical influence on the design
process and have not yet successfully been translated into
current software engineering practice. This paper has posited
a conceptual model for beginning this translation. The model
has been induced from a single but rich case study from an
ongoing research project aimed at developing mobile apps
to support engagement between young people and their case
workers in the UK youth justice system. The limitations of
the model and the case study approach are apparent, none
the less, the research presented can be seen as a call to
arms and a vision for the SE community to recognise how
systems impact on society at large. Currently the language
has been formulated as an abstract syntax but preparations are
underway to develop appropriate tool support using domain
specific modelling technologies such as Meta-edit+ and to also
explore how methods such as the Architecture Tradeoff Ana-

lysis Method (ATAM) [22] can be extended to include value
concerns. A further branch of work is exploring the role of
value concerns in enterprise modelling languages and business
motivation modelling. Given the role that corporations play
in constructing communities we consider that may also be a
fruitful avenue for research in societal sustainability.

REFERENCES

[1] G. H. Brundtland, World Commission on environment and development:
our common future. Oxford University Press, 1987.

[2] S. McKenzie, Social sustainability: towards some definitions. Hawke
Research Institute, University of South Australia, 2004.

[3] L. M. Hilty and T. F. Ruddy, “Sustainable development and ict inter-
preted in a natural science context: The resulting research questions for
the social sciences,” Information, Communication & Society, vol. 13,
no. 1, pp. 7–22, 2010.

[4] L. I. Millett, D. L. Estrin et al., Computing Research for Sustainability.
National Academies Press, 2012.

[5] J. Marcus, “Human values and corporate actions propensity: Examining
the behavioural roots of societal sustainability,” Business & Society, p.
0007650312448891, 2012.

[6] E. A. Locke, “The motivation sequence, the motivation hub, and the mo-
tivation core,” Organizational behavior and human decision processes,
vol. 50, no. 2, pp. 288–299, 1991.

[7] I. Sommerville, “Software engineering. international computer science
series,” 2004.

[8] L. Suchman, “Do categories have politics? the language/action per-
spective reconsidered,” in Human values and the design of computer
technology. Center for the Study of Language and Information, 1997,
pp. 91–106.

[9] C. A. Le Dantec and E. Y.-L. Do, “The mechanisms of value transfer
in design meetings,” Design Studies, vol. 30, no. 2, pp. 119–137, 2009.

[10] B. Friedman, “Value-sensitive design,” Interactions, vol. 3, no. 6, pp.
16–23, 1996.

[11] B. Friedman and H. Nissenbaum, “Bias in computer systems,” ACM
Transactions on Information Systems (TOIS), vol. 14, no. 3, pp. 330–
347, 1996.

[12] G. Bjerknes, P. Ehn, M. Kyng, and K. Nygaard, Computers and
democracy: A Scandinavian challenge. Gower Pub Co, 1987.

[13] D. Yoo, A. Huldtgren, J. P. Woelfer, D. G. Hendry, and B. Friedman,
“A value sensitive action-reflection model: evolving a co-design space
with stakeholder and designer prompts,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2013,
pp. 419–428.

[14] M. J. Muller, “Participatory design: the third space in hci,” Human-
computer interaction: Development process, pp. 165–185, 2003.

[15] B. Friedman, P. H. Kahn Jr, and A. Borning, “Value sensitive design
and information systems,” Human-computer interaction in management
information systems: Foundations, vol. 5, pp. 348–372, 2006.

[16] J. A. Goguen, “Semiotics, compassion and value-centered design,” Vir-
tual, Distributed and Flexible Organisations: Studies in Organisational
Semiotics, Reading, UK, pp. 11–12, 2003.

[17] B. Boehm, “Value-based software engineering: reinventing,” ACM SIG-
SOFT Software Engineering Notes, vol. 28, no. 2, p. 3, 2003.

[18] M. Heindl and S. Biffl, “A case study on value-based requirements
tracing,” in Proceedings of the 10th European software engineering con-
ference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 2005, pp. 60–69.

[19] B. S. Barn and T. Clark, “A domain specific language for contextual
design,” in Human-Centred Software Engineering, R. Bernhaupt,
P. Forbrig, J. Gulliksen, and M. Lárusdóttir, Eds. Berlin Heidelberg:
Springer, Oct. 2010, vol. 6409, pp. 46–61. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1939212.1939219

[20] H. Beyer and K. Holtzblatt, Contextual design: defining customer-
centered systems. Access Online via Elsevier, 1997.

[21] B. S. Barn, R. Barn, and G. Primiero, “An approach to early evaluation of
informational privacy requirements,” in Proceedings of the 30th Annual
ACM Symposium on Applied Computing. ACM, 2015, to appear.

[22] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and
J. Carriere, “The architecture tradeoff analysis method,” in Engineering
of Complex Computer Systems, 1998. ICECCS’98. Proceedings. Fourth
IEEE International Conference on. IEEE, 1998, pp. 68–78.


