
Vol.:(0123456789)1 3

Complex & Intelligent Systems
https://doi.org/10.1007/s40747-021-00471-1

ORIGINAL ARTICLE

IHWC: intelligent hidden web crawler for harvesting data in urban
domains

Sawroop Kaur1 · Aman Singh1 · G. Geetha2 · Xiaochun Cheng3

Received: 23 October 2020 / Accepted: 10 July 2021
© The Author(s) 2021

Abstract
Due to the massive size of the hidden web, searching, retrieving and mining rich and high-quality data can be a daunting
task. Moreover, with the presence of forms, data cannot be accessed easily. Forms are dynamic, heterogeneous and spread
over trillions of web pages. Significant efforts have addressed the problem of tapping into the hidden web to integrate and
mine rich data. Effective techniques, as well as application in special cases, are required to be explored to achieve an effective
harvest rate. One such special area is atmospheric science, where hidden web crawling is least implemented, and crawler is
required to crawl through the huge web to narrow down the search to specific data. In this study, an intelligent hidden web
crawler for harvesting data in urban domains (IHWC) is implemented to address the relative problems such as classifica-
tion of domains, prevention of exhaustive searching, and prioritizing the URLs. The crawler also performs well in curating
pollution-related data. The crawler targets the relevant web pages and discards the irrelevant by implementing rejection rules.
To achieve more accurate results for a focused crawl, ICHW crawls the websites on priority for a given topic. The crawler has
fulfilled the dual objective of developing an effective hidden web crawler that can focus on diverse domains and to check its
integration in searching pollution data in smart cities. One of the objectives of smart cities is to reduce pollution. Resultant
crawled data can be used for finding the reason for pollution. The crawler can help the user to search the level of pollution
in a specific area. The harvest rate of the crawler is compared with pioneer existing work. With an increase in the size of a
dataset, the presented crawler can add significant value to emission accuracy. Our results are demonstrating the accuracy and
harvest rate of the proposed framework, and it efficiently collect hidden web interfaces from large-scale sites and achieve
higher rates than other crawlers.

Keywords Hidden web · Intelligent crawling · Urban planning · Smart cities

Introduction

Smart cities are the essence of new age comfortable living
in urban areas such as towns and cities. The Indian govern-
ment has launched smart cities project intending to promote
sustainable cities. There are certain objectives for the devel-
opment of smart cities. One such objective is the reduction
in air pollution and making better area-based developments.
To implement solutions regarding this objective, the data
are required to be crawled. The objective of this study is to
implement intelligent location-aware hidden web crawling
focused on urban pollution data. A supervision-based hid-
den web crawler is developed for collecting data and it is
implemented for both hidden web domains and for crawl-
ing pollution data from the web. From the numerous ways
to collect data, web search is one of the most used search
methods. It is claimed that 85% of the users rely on search

 * Aman Singh
 amansingh.x@gmail.com

 Sawroop Kaur
 srbal87@gmail.com

 G. Geetha
 gitaskumar@yahoo.com

 Xiaochun Cheng
 xiaochun.cheng@gmail.com

1 Department of Computer Science and Engineering, Lovely
Professional University, Phagwara, Punjab, India

2 Advanced Computing Research Society, Chennai,
Tamil Nadu, India

3 Department of Computer Science, Middlesex University,
London NW4 4BT, UK

http://orcid.org/0000-0001-6571-327X
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00471-1&domain=pdf

 Complex & Intelligent Systems

1 3

engines to find information. Two-thirds to three-quarters use
the web as their primary source of information, while two-
thirds to three-quarters were unable to get the information
they want [1]. We are living in the modern age of the web.
Search engines play a prominent role in our lives. Though
information retrieval is not only confined to web search, a
web crawler is also a more practical and reliable way. Web
crawling is either surface web crawling or hidden web crawl-
ing. The former is publicly and directly accessible and has a
statistical address while the latter is hidden behind the query
interfaces is accessible via registration, search interface and
paid access. For instance, a publisher has published some
research articles. To get access to those articles, one has
to search through the search engine of the publisher or get
a paid access. When you are not able to search something
through the index of easy to access search engines which
mean data are intentionally hidden or masked or protected
by a password. Those articles belong to the hidden web.
An additional layer to get authorization to the hidden web
requires information from the user. Discrete and premium
content can only be accessed via authorisation and is not
easily available. For example, advanced citations on PubMed
can be accessed only after paying the required fee.

The web is getting more hidden due to the presence of
a large number of online databases. The user has to pose a
query to the database to get the answers. Hidden web crawler
has to carefully discover and classify hidden web pages and
forms. It requires an automatic web classification mecha-
nism to classify webpages in relevant classes. The following
factors add to the complications in hidden web crawling:

• The existence of web databases is wide and diverse. Due
to the explosive growth of web-based data, distribution of
web forms is sparse and heterogeneous. Finding domain-
specific databases from the vast amount of web-based
data is not an easy task. Web databases and forms are
meant to be searched by human users. Automation of a
similar interaction is a difficult task.

• Web forms rarely have the same structure and content
it further restricts crawlers to get acquainted with web
databases.

• Forms act as an entry to web databases. Just detecting
a <form> tag is not sufficient to go beyond the walls of
the hidden web. The forms even if non-searchable may
appear similar in structure to searchable. It is expected
from the web crawler to categorize the forms into search-
able and non-searchable. There exist numerous webpages
which have form tag but are not further searchable.

As a new attempt, an intelligent hidden web crawler for
harvesting data in urban domains (IHWC) effectively detects
and submits the forms and categorizes them into a searcha-
ble and non-searchable category. The approach is also tested

for collecting pollution data from the web. At present, the
approach is tested for web-based crawling of particulate mat-
ter (PM): PM10 and PM 2.5 in the air of Amritsar, Jalandhar
and Ludhiana. These three cities are proposed smart cities
in Punjab. The geographic location awareness of a crawler
is based on these cities. The study is divided into two parts.
First, a web crawler is developed then the approach is tested
and validated for pollution data along with five other crawl-
ing domains. The major contributions of the research are
as follows:

• Effective three-step classification strategy for domain
classification.

• Rejection rules to decide which forms are non-search-
able. This not only saves time and resources but also
prevent exhaustive form crawling. First, the potentially
interesting web pages are located. Then rules of rejection
are followed to find the web pages that belong to the hid-
den web category.

• Introduction of rules for stopping criteria to save the
crawler from falling into spider traps.

• This approach works for both get and post methods. It
does not only detect and locate the searchable web pages
but also submits them automatically.

• The crawler is scalable as it can adapt to the increasing
size of the hidden web. It is also extensible to other third-
party components like indexing.

The remaining part of the paper is structured as follows:
the next section throws light on the existing pioneer works
in hidden web crawling. The third section describes the steps
designed for the proposed work. The fourth section discusses
experimental results and subparts of the framework in detail.
While the last section provides a conclusion and outline of
future work.

Related work

Exhaustive crawling is a waste of resources, as the world
is now moving towards the domain-specific search. A web
crawler is designed to crawl the web data [2]. Focused web
crawlers are one such type that contributes to this area. The
cooperation of intelligent, focused and hidden web crawlers
is required to design a special crawling strategy that deter-
mines the degree of relevance of a predefined web page
with a web page that is crawled. From their time of devel-
opment [3], focused crawlers have improved in a variety of
ways. On being categorized into various types, in the hidden
web, these are called form-focused crawlers [4]. Based on
the given topic, focused crawlers attempt to find the most
promising links. As far as domain-specific web databases
are concerned, focused crawlers find relative pages as well

Complex & Intelligent Systems

1 3

as the correlation between domains and domain-specific web
databases [5].

The first step in hidden web crawling is the detection of
web forms which act as an interface to search an online data-
base. This step gives the crawler preliminary access to web
forms. The problem with the hidden web is finding form tag
is easy for any crawler but not all forms are meant to search.
Some forms such as an email subscription and mailing list
should be discarded by a crawler. This generates a need for
a crawler to automatically discern these pages from search-
able forms and then discard them. On this basis, techniques
are divided into first heuristic-based techniques such as the
presence of search, find and query [6], form with at least one
text box [7], or discard forms with short input. The second
type is to get form access based on machine learning. In
these techniques, a classifier is trained to correctly classify
forms, topic, link and page. A technique proposed in [8],
the crawler extracts and analyzes the features of web forms,
based on name and action of attributes in addition to name of
fields and their values. Using these feature, C4.5 algorithm
identifies entry to hidden web, perform and learn classifica-
tion. Another technique called form-focused crawler (FFC)
that consist of four classifiers to classify, links, forms topic
and page. This technique has limitation of manual training of
link classification [9]. Hicks et al. [10] worked on a crawler
that used an ordered list of terms related to domain search. A
crawler is provided with a manually created source descrip-
tion file with example queries.

To automatically locate the potential hidden websites,
Li et al. [5] worked on four classifiers: if the web page
consists of desired and relevant information is classified
by term-based classifier, which URL will lead to relevant
web pages is classified by a link-based classifier. To decide
which form is searchable, a search form classifier is imple-
mented. The fourth one called domain-specific classifier
which selects only those pages which have related infor-
mation to the domain. All the existing classification tech-
niques can be compared using heuristic and machine learn-
ing, whether the machine-learning technique is supervised
or not, whether the web pages are classified before sub-
mission or after submission, or which features are used to

classify forms, or whether the technique is focused towards
the hidden websites or not. To submit forms most com-
monly used technique is the pre-query technique. Table 1
shows the comparison of techniques to find entry to the
hidden web.

Once the entry is identified, next step is to automati-
cally fill and submit the forms. It was first introduced in
[11]. The HiWe crawler can fill the forms semi-automat-
ically. Their work has proved as an important step in the
automation of submission of the form. Shopbot is another
crawler that helps the user to compare the prices of the
selected products and help the consumer while shopping
[12]. To fill out forms, domain heuristics are used but only
for shopping-related web forms. Liddle et al. [13] designed
a model to submit forms to their default values. While He
et al. [14] considered only one field for form modeling
and rest all are submitted using default values. Doan et al.
[14] used a flat compilation where labels can be extracted
automatically. These techniques can be classified into
supervised or non-supervised. Non-supervised extraction
performs an HTML code analysis to identify the labels
from it. Two methods either DOM tree [11, 15], based,
or using visual techniques [16–18], have been reported.

The next step is to fill the form with valid values. The
combinations of values are used to fill and submit the
form. The submission request is received by the web data-
base. For a web site server, these values are termed as the
query. If a crawler submits every possible combination of
the form values to retrieve all the information, it will con-
siderably increase the burden on the resources consumed
by the crawler. Furthermore, some queries will retrieve
the same results, some web pages on submission do not
respond. This will affect the scalability of the crawler. To
fetch more results, crawler can also get blocked because
in this way, it will contravene the politeness policy. The
crawler must crawl within the limits of politeness policy.
If a web form is a simple form, the keywords values can
be chosen from the webpage itself. The webform and
the webpage are always related. In this case, a method is
required to which can automatically extract the keywords
but without human intervention.

Table 1 Comparison of
reported techniques based on
automated discovery of hidden
web interfaces

References Type of proposal
(heuristic/machine
learning)

Pre-query (pre)/
post-query (post)
method

Focused/
non-
focused

Algorithm for
classification

Supervised or not

[6] Heuristic based Pre No Not mentioned No
[27] Classifier based Pre/post No C4.5 No
[28] Classifier based Pre Yes C4.5 Yes
[29] Heuristic based Pre No Not mentioned No
[30] Classifier based Pre Yes Naïve Bayes Yes
[31] Heuristic based Post Yes Not mentioned Not mentioned

 Complex & Intelligent Systems

1 3

Link selection algorithm highly contributes to the perfor-
mance of focused hidden web crawler. A crawler needs to
decide which URLs will help to locate the searchable form,
finding the relation between web documents and which links
to keep or discard otherwise. The existing ranking technique
such as PageRank and HITS are not suitable for hidden web
crawling [19]. Experimental results from [20] proved that
without using link selection, only 94 relevant searchable
forms were found from 100,000 crawled pages. This problem
was overcome by [9] and [21] by working on form-focused
crawler (FFC) and adaptive form-focused crawlers for hid-
den web entries (ACHE). The latter has a high harvest rate
than the former. One another factor that affects crawling per-
formance is breadth or depth-first crawling. Experimental
results from [22–24] have favored breadth-first. The Naïve
Bayes-based focused crawlers developed in [25] proved that
naïve Bayes and breadth-first search have performed bet-
ter as compared to page rank and breadth-first crawler. A
URL-based classifier in [26] has been used for topic-specific
search. URLs are analyzed to find the patterns and formal
representation. To discover similar pages, regular expres-
sions are utilized.

The studies discussed above cover either of the steps in
hidden web crawling. Web crawling is one of the prominent
method being applied in data collection for applications such
as crawling user-generated blogs for recognition of mod-
ern traditional medicine [32], information extraction from
social web forums [33], industrial digital ecosystem [34]
and for carbon emission [35]. Crawling for all the domains
is difficult, so a crawler is required to be focused on cer-
tain domains as well as intelligent rules are required to stop
unproductive crawling and spider traps. To our knowledge,
it has been the first kind of work where hidden web crawling
has been applied for fetching and analyzing pollution-related
data in three cities of Punjab state. The dataset required for
this goal is entirely based on web data. To precise, our goal

for pollution-related data, yet only two features PM 10 and
PM 2.5 are included. The following sections explain the
framework of the proposed crawler and experimental results.

Framework of ICHW

Web databases do not present their internal view. Web forms
are meant to be filled by user no matter if it is a simple
form with one or two fields or a complex form with multiple
attributes. Web forms give the user access to a hidden web
database. Each attribute is labeled with relevant information
that guides the user to fill the form. The performance meas-
ure for the crawler is harvest rate. Suppose the total number
of web pages be denoted by Wn, Wc denotes the number of
web pages crawler has crawled. From Wn, suppose Nj pages
are searchable forms. Nc is the searchable forms crawled by
the crawler. Hr is a harvest rate:

It is required from the crawler that it should have a high
harvest rate, use criteria to prioritize the URLs to focus
towards more coverage and relevant webpages and also save
itself from the crawlers’ traps. It is mentioned in [36] that
most of the search interfaces are found on the home page.
Therefore, if the crawler found the form tag, it is checked if
it is searchable or not. If found searchable then it is classified
into a relevant class. The framework of ICHW is shown in
Fig. 1. It mainly has the following components:

• The frontier for seed URLs: Frontier for seed URLs:
seed URLs play an important role in focused web crawl-
ing. There are two types of techniques for the selection
of seed URLs—Bootstrap based and machine learning

(1)
∑

Hr =
Nc

Wc

, where 0 < Wc,Nc.

Fig. 1 Framework of IHWC

Complex & Intelligent Systems

1 3

based. The main function of the frontier is to keep the
ordered list of URLs. Suppose W is the web page, and
Wi is the URLs available on W, for each value of i in Wi,
there exist some URLs denoted as Wij. The links from
W are kept in frontier for seed URLs. Further links are
kept in fetched link frontier [37]. The proposed crawler
is focused on property, book, flight, hotel, music, premier
and product domains.

• Ranking module: Ranking plays a core role in hidden
web crawling [38]. The goal is to crawl the top k sources.
This module is focused on ranked crawling of hidden
web sources. The conventional crawling techniques with
unranked data sources and the crawling algorithms are
not suitable for the hidden web. Unranked data sources
face query bias problem [39]. A hidden web database is
said to be ranked if it returns k top sources. The ranking
in this approach is not dependent on queries. The ranking
formula is triplet factor of out of site links, term weight-
ing and site similarity. The following formula is proposed
for ranking:

where wij denotes the weight of term, S denotes similarity
or value of cosine function, and SF denotes the weight
of term.

where w is the weight-balancing factor for ranking
reward and cj is the network and bandwidth consump-
tion factor. δj is the total number of the new document
retrieved.

• Page classification: It analyses the web page to find
that if a searchable form belongs to a certain domain. It
selects the relevant searchable forms and adds them to
the form database wherein they are not already present.

• Path learning: It leads the crawler to the good links, i.e.,
the searchable forms.

• Form classification and rejection rules: Form classifica-
tion judges whether a form is searchable or non-search-
able and filters out those non-searchable forms.

• Structure extraction: It extracts the structure of the form
for form filling. Forms are parsed to create a repository
for values. The repository consists of a control element,
label, domain, type of domain size and status after the
structure of forms is extracted.

• Form filling and submission: Forms are filled with suit-
able values from the repository. Form’s submission
includes GET and POST method.

Employing the above components, the crawler coordi-
nates its effective search towards finding the entry into the
hidden web. It avoids misuse of resources and unproductive

(2)C(ranking reward) = wij + S + SF,

(3)(rj) = (1 − w).�j + w.(C)∕cj,

crawling by implementing effective stopping criteria and
rejection rules. Component (1)–(3) help finding the sources
of hidden web content, i.e., the first step in hidden web
crawling. While components (4) and (5) makes the second
step is extracting the underlying content. The components
called form filling and submission is the third step in hid-
den web crawling, i.e., extracting the underlying content.
Figure 1 shows detailed components and the next section
explains the underlying algorithms.

Experimental results

Web page classification

The page classification is based on the similarity index
between the web page extracted by the crawler and the seed
pages of a specific domain. Before the actual crawling begin,
the URLs are pre-processed to develop a feature vector. The
success of classification relies heavily on the feature vec-
tor. The following subsection explains the pre-processing
of URLs.

Pre‑processing

URL and in-links are first divided into their baseline compo-
nents. All the words present will be fed as features of URLs.
A similar process is followed for anchor pre-processing and
text around the anchor. A website is called a hidden website
if it contains searchable forms along with the database at the
back end. Feature space for a hidden web site is based on
URL, anchor and text around the anchor. Each hidden web-
site has further associated links. For further links, feature
space is constructed with the path. Let feature space for the
hidden website be denoted as FS and feature space for links
be denoted as FL:

First, stop words are removed. The next step is stemming,
using the Porter stemming algorithm. The top m terms are
selected. After pre-processing, the URL is represented as

where u is the URL, a is the anchor, t is the text around
URL, and p is the path of URL. Now different weights are
assigned to vector U:

(4)FS = [Url,anchor, text around an anchor],

(5)FL =
[
Url, anchor, path

]
.

U =
[
u, a, t, p

]
,

(6)Tfij = u × tfij1 + a × tfij2 + t × tfij3,

 Complex & Intelligent Systems

1 3

where Wij is the weight to term tj in document di, tf denotes
term frequency, idf denotes inverse document frequency,
N denotes a total number of documents and IG stands for
information gain.

Similarity computation

The goal of similarity computation is how to efficiently con-
struct a similarity index [40]. The crawler needs to explore
similar URLs that link to a particular class.URL, anchor and
text around anchor are used for the construction of feature
vector. The web pages in web directories are organized in
hierarchal order. For example, the URL abc.com/holiday/
new-year/music will be similar to other URLs in its class.
In addition, the URL will be similar to abc.com/holiday in
other class. Let the distance between the webpage be denoted
by D. S be the source document. L be another document in
a class hierarchy. The formula for similarity computation
is used similarly as defined in [37]. It is computed between
new-found URL and already discovered URLs. The function
of determining the similarity is cosine similarity, defined by
Sim (U1, U2):

Algorithm: a novel three‑step algorithm for ICHW

Step 1: A web page is encountered after pre-processing
feature vector is generated. Equation (12) is used to meas-
ure the degree of similarity between the new webpage and
the focused domain. If the value of the similarity func-
tion is above the threshold, then the page is considered
relevant. All the links present on the page are extracted
and checked for form tag. Otherwise, the next step is fol-
lowed.
Step 2: Calculate the similarity of other domain (property,
book, flight, hotel, music, premier and product) and page

(7)Tfij(link) = u × tfij1 + a × tfij2 + t × tfij3,

(8)wij =
tfij × idfj × Igj

√∑N

N=1

�
tfin × idfm

�
2
,

(9)IGj = h(d) − h
(
D|tj

)
,

(10)h(d) = −
∑

di�D
p(di) × log2 p(di),

(11)H
(
d|tj

)
= −

∑
di�D

p
(
di|tj

)
× log2 p(di|ti).

(12)Sim
(
U1,U2

)
=

U1.U2

||U1|×|U2
||
.

to find the domain with the highest similarity value. If it
is relevant, extract the links.
Step 3: Parse the web pages that are found relevant. Form
element table in a repository for a domain-specific data-
base is developed as shown in Fig. 4. It also shows the
outline of the steps involved in creating the repository and
when the forms are submitted with correct values how the
response has been generated.

Path learning

The goal of path learning is to extract only those links which
with minimum hops can lead the crawler to the hidden web
databases. Some of the links are considered good, while oth-
ers are discarded. Along with jasmine directory and amazon,
20 real websites from Alexa’s list of top sites are exhaus-
tively crawled to check at which depth most web pages are
found. Our observation is similar to [37]. Below the depth
of 6, the crawler was not able to find a considerable percent-
age of forms. The simplest reason for this is that form is
designed for human interaction. In addition, for this, most of
the times forms are put on upper levels. Due to this reason,
the depth of the crawler is limited to the 3. It is also observed
that from the crawled URLs the number of URLs for book
domain are high as compared to others. Figure 2 justifies the
observation. Backlinks also impact the performance of the
focused web crawler. Following the connection between the
web pages, crawler the good target pages. Feature’s vector is
constructed for FS and FL as explained in Eqs. 2 and 3. FL is
calculated at each level. From a webpage, a huge number of
feature vector can be extracted. But due to length and space
constraints, the top 10 features are used and are constructed
as explained in “Pre-processing”. The good links are either
immediate benefit link or delayed benefit links. Immediate
benefit links are at level 1, while delayed benefit links are
at levels 2 and 3. The next step is to compute the similarity
between the FS and FL. The similarity is computed between
the already discovered source and the new-found source as
explained in “Similarity computation”.

29%

24%19%

14%

9%
5%

Depth of crawl vs Percentage of forms

1

2

3

4

5

6

Fig. 2 Depth of crawl vs percentage of forms found at particular
depth

Complex & Intelligent Systems

1 3

Searchable form classification

The ultimate goal of the crawler is to grab maximum search-
able forms. First, the crawler has to make a distinction
between searchable and non-searchable forms. This study
introduced a rejection framework for non-searchable forms.
When URL is encountered, it is checked for <form> tag. If
it has <form> tag, it is considered a hidden website. Then,
it is parsed for attributes type, a number of attributes, sub-
mit button, button marker, login, mailing subscription, and
registration to find non-searchable forms.

Figure 3 shows the proposed rejection framework. After
this step, the system has URLs that belong to the hidden
web category and the searchable forms. We have manually
extracted 150 URLs that are real hidden web sites from the
jasmine directory and Alexa’s list of top URLs. 100 negative
samples are extracted manually over the mentioned domains.
The experiments have been constructed using k-fold cross-
validation for the Support vector machine (SVM) and K
nearest neighbor (KNN). Results also show the impact of
the ratio of the split of data. From the parsed form repre-
sentation, a repository is created which act as the source for
form filling.

Repository construction

After parsing, the form values are extracted for repository
creation and are filled with the help of possible values of
associated controls afterwards. The forms are submitted to
the webserver. Now either the form will respond with suita-
ble data otherwise based on response status, a web page with
a certain response code will be returned. If the status code

is 200, it indicates asynchronous response, if the status code
is 400—bad request error, 413—payload too large- request
entity is large, 414—payload too large- URI too large. If
status code is 500 or 513—internal server error, and service
unavailable, respectively. Initially, the repository is manually
populated with instances from seed sites. Labels and associ-
ated values are extracted to create the repository. The crawler
is based only on a finite domain, as it encounters a form with
a finite domain, it extracts the label and domain values. This
will help the crawler to adaptively learn and fill forms with
suitable values. Let us suppose a user wants to book a flight
(Table 2). Table 3 shows the value of the form element table
after parsing the form. Figure 4 shows the steps involved in
the form submission.

Forms either have already available value or there are
text fields that a user fill. Automatic text field submission
is difficult. For the sake of simplicity of the approach, we
have skipped the submission of forms using text fields. The

Fig. 3 Rejection framework for URL

Table 2 Parsed values for form element table of flight booking

Control element Domain attributes

Select Depart from
Select Going to
Select Traveller
Select Class
Radio Economy
Radio Premium economy
Radio Business
Checkbox Non-stop flight

 Complex & Intelligent Systems

1 3

searchable form is parsed for creating the form element table
(FET) as shown in Table 3.

It acts as a source for forms values. Forms are submit-
ted either by GET method or POST method. After submis-
sion, a repository of crawled hidden web pages is created.
From those URLs, further analysis is made. In our case, it
is observed that all the crawled URLs have either HTTP or
HTTPS prefix. From all the status codes, the number of web
pages with status code 524 is only 2. Most of the forms are
from depth 2 and 3.

Stopping criteria and threshold

To stop crawler from unproductive exhaustive crawling,
stopping rules such as maximum crawl depth = 3 and the
threshold is designed. While the assumptions are the same
as in [37]. The problem with the database-driven web is
that the crawlers keep crawling the data under the infinite
loop and actual valuable web page are usually skipped
by the crawler. Stopping criteria are designed to save the
crawler from the trap of infinite searching loops. The
crawler uses rejection rules, stopping criteria and a thresh-
old of 80 new URLs and 100 new forms. As the crawler

has reached 80 new URL, it will start in-site searching.
After 100 new forms at each depth, it jumps to the next
depth. Figure 2 shows the percentage of forms found at
each depth. The forms after depth 6 were not considered
as they are less in number. Table 10 shows the running
time of the crawler with and without using rejection rules.

URL classification based on soft marginal
formulation

Almost all the real-world web data have linear inseparabil-
ity. Support vector machine (SVM) is used to classify the
blocks, and k-fold cross-validation is used for evaluation.
Under the soft margin formulation, the linear kernel-based
SVM classifier makes a certain number of mistakes and
keeps the class margin (CM) as wide as possible to cor-
rectly classify the points. It is expected that the system
must choose a decision boundary that perfectly separates
the features to avoid overfitting. Under soft marginal for-
mulation, SVM is allowed to make mistakes to keep the
margin wide. In this way, other points can be still be clas-
sified correctly:

Hyperparameter v chooses the trade-off between maxi-
mizing the margin and minimizing the mistakes.

• If ν has a small value, classification mistakes are given
less importance. More focus is given to maximize the
margin.

• If ν has a large value, the focus is more on avoiding mis-
classification.

(13)L =
1

2

‖‖‖w
2‖‖‖ + �(number of mistakes).

Table 3 Domain of experiment and description of the search term

Domain Description

Property Property search
Book Book search
Flight Airfare search
Hotel Hotel search
Music Music CDs search
Product Household product search

Fig. 4 Steps involved in the submission of forms

Complex & Intelligent Systems

1 3

More penalty is incurred by the points which are far
away on the wrong side of the decision boundary. For
every data point xi, there exists a slack variable ξi

• ξi = distance of xi from the CM, if xi is on the incorrect
side of the margin,

• ξi = 0, if xi is on the right side.

Each xi has to satisfy the constraint of

The LHS of the equation is the confidence score
denoted by CS.

• For CS ≥ 1, the classifier has classified the point cor-
rectly.

• For CS ≤ 1, the classifier did not classify the point cor-
rectly, and a penalty of ξi is incurred.

Each point P is represented by P(x,y), � is transforma-
tion function for point P as follows:

Minimization function is defined as

In real-world web data, it is difficult to find exact simi-
lar data. Therefore, we have kept the notion of similarity
as to how close the points are. The main takeaway from
this is we have implemented linear classification in higher
dimensional space.

Similarly, in the case of KNN, to work with maximum
separability, for example, a dataset has N number of classes.
µb is the mean vector, where b = I, 2, 3,…,N. Let xb be the
total number of samples.

(14)yi
(
w⃗ ⋅ ��⃗xi + b

)
≥ 1 − 𝜉i.

(15)�(P) =
�
x2, y2,

√
2xy

�
.

(16)L =
1

2
w⃗2 + CΣi𝜆iyi

(
w⃗ ⋅ ��⃗xi + b

)
≥ 1 − 𝜉i,

(17)L = Σi�i −
1

2
ΣiΣj�i�jyiyjxi ⋅ xj,

(18)k(x, y) = ⟨�(x),�(y)⟩,

(19)
(
P1,P2

)
=
⟨
�
(
x1y1

)
+,�

(
x2y2

)⟩
,

(20)k
(
P1,P2

)
= x2

1
x2
2
+ y2

1
y2
2
+ 2x⊥y1x2y2,

(21)K
(
P1,P2

)
=
(
x1x2 + y1y2

)2
,

(22)k
(
P1,P2

)
=
⟨
P1,P

2
2

⟩
.

Distance of all instances is measured from each other
using Euclidian distance metric. The instance with maxi-
mum distance is selected and is called training distance. If
the boundary is 1.5 or 2 times of training distance, it indi-
cates classes are closer to each other. The approach has
implemented non-exhaustive cross-validation. Under which
k-fold cross-validation is implemented. For our approach,
the value of K = 5 comes out to be most suitable. With the
aim of maximizing the prediction accuracy, non-perimetric
neighborhood component analysis is used for selecting fea-
tures. After the domains are classified as relevant, using the
varied queries forms are submitted. If the form is correctly
submitted, its status code is 200. Precision, recall and F1
score are computed using SVM and KNN algorithms.

Form identification and analyses

After the crawler has identified the form, these are analyzed
to explore the form elements. Each form is equipped with
text, HTML elements, and bounded or unbounded controls.
The proposed approach is based on bounded controls only.

The above table shows the domains and the search terms
used for the experiment. We have selected six domains
for the dataset. This dataset will be used to run machine-
learning algorithms. This dataset contains 51,295 associated
URLs. Initially, the jasmine directory and the top 20 real
websites from Alexa’s list of URLs are used as a dataset.
The dataset is cleaned by excluding the non-responsive web
pages. The performance metrics are precision, recall and f1
and accuracy defined as follows:

Recall =
true positive

true positive+false negative
,

F1 = 2 ×
precision×recall

precision+recall
.

Macro-average is the harmonic mean of the precision,
recall and F1 score. Macro-average is computed to know
the overall performance of the system with various sets of
data. Varied values of testing and training have been used.
Once the URL is correctly classified, the next task is to fill

(23)x =
∑N

b=0
xb,

(24)MP =
∑N

b=1

∑Xc

c=1

(
yc − �b

)
(yc − �b)

T ,

(25)MQ =
∑N

b=1
(�b − �)

(
�b − �

)T
,

(26)� =
1

A

∑N

b=1
�b.

Precision =
true positive

true positive + false positive
,

 Complex & Intelligent Systems

1 3

the form values with correct values. k nearest neighbor and
SVM classifier is implemented to check the accuracy of the
form submission. The submission status 200 shows that the
system had submitted the form (Table 4).

The analysis of the status code is required because when
the crawler will submit the web page, only the correct sub-
mission will yield a new URL. These URLs can be used for
further analysis. Tables 5 and 6 show the number of forms
submitted using GET and POST methods. Under these two
methods, status code 524 has only one submission using
the GET method and one using the POST method. From
the total harvested URLs, it is observed that only two URLs
correspond to status code 524. This are very little data to

analyze for the machine-learning algorithm. The total num-
ber of web pages with status code 200 is 14033, it makes the
harvest rate 27%. Table 7 shows the computation of preci-
sion, recall and F1 score using KNN algorithm for varied
values of K. Table 8 shows the computation of precision,
recall and F1 score using SVM for variation of 20–50% of
testing data. Table 9 shows the computation of precision,
recall and F1 score using KNN for variation of 20–50% test-
ing data. On comparing the values of Tables 8 and 9, results
are more promising for k = 5. Table 9 shows that for k = 5
in KNN, the value of accuracy is high as compared to the
SVM algorithm. The optimal values are obtained at k = 5 and
40/60 ratio of training and testing data.

Table 7 shows that the weighted average of precision is
more when there is a 40/60 ratio of testing and training data.
But the values of the weighted F1 score is more promising
in the case of k = 5. The ratio of testing and training data
is tested for other values of k as well, but we found our
approach working well for k = 5. The results for k = 2 and
k = 5 is presented, while others are skipped due to space
constraints.

In the case of SVM, Table 6 shows the value of preci-
sion and recall when testing and training data ratio is 20/80,
30/70, 40/60 and 50/50. The weighted average of F1 is the
same for 30%, 40% and 50%.

Table 10 shows computation of precision, recall and F1
score using KNN for variation of 20–50% of testing data
for K = 5.

Table 4 Status code and their description

Status code Description

200 OK
400 Bad request response status code
401 Unauthorized
403 Forbidden client error status response code
404 Page not found
405 Method not allowed response status code
413 Payload too large
414 URI too long response status code
500 Internal server error
503 Service unavailable
524 A time out occurred

Table 5 The number of forms
submitted using the POST
method

Domain Number
of URLs

200 400 401 403 404 405 413 414 500 503 524

Book 9741 3078 0 0 0 13 2285 893 0 0 3471 1
Product 2 2 0 0 0 0 0 0 0 0 0 0
Auto 29 29 0 0 0 0 0 0 0 0 0 0
Flight 723 183 0 0 0 0 0 0 0 0 540 0
Hotel 0 0 0 0 0 0 0 0 0 0 0 0
Music 0 0 0 0 0 0 0 0 0 0 0 0
Premier 0 0 0 0 0 0 0 0 0 0 0 0

Table 6 The number of forms
submitted using the POST
method

Domain Number of
URLs

200 400 401 403 404 405 413 414 500 503 524

Book 7677 6891 3 24 24 450 0 21 25 2 236 1
Product 633 494 0 0 24 115 0 0 0 0 0 0
Auto 99 29 9 0 0 21 0 0 3 2 35 0
Flight 4422 2892 254 0 0 404 0 26 57 12 540 0
Hotel 959 398 0 0 17 452 0 0 15 50 27 0
Music 84 35 10 0 0 0 0 6 2 0 31 0
Premier 12 2 0 0 10 0 0 0 0 0 0 0

Complex & Intelligent Systems

1 3

Table 7 Computation of
precision, recall and F1 score
using KNN algorithm for varied
values of K

Status code Precision Recall F1 score

K = 2 K = 3 K = 4 K = 5 K = 2 K = 3 K = 4 K = 5 K = 2 K = 3 K = 4 K = 5

200 0.86 0.88 0.88 0.87 0.96 0.94 0.95 0.95 0.91 0.91 0.91 0.91
400 0.36 0.33 0.44 0.44 0.28 0.25 0.22 0.29 0.27 0.29 0.31 0.35
401 1.00 1.00 1.00 0.86 1.00 0.65 0.79 0.60 0.78 0.79 0.72 0.71
403 0.94 0.96 0.82 0.98 0.90 0.97 0.88 0.93 0.83 0.96 0.84 0.96
404 0.76 0.77 0.76 0.78 0.60 0.62 0.60 0.59 0.67 0.69 0.70 0.67
405 0.69 0.71 0.71 0.73 0.91 0.80 0.92 0.83 0.77 0.73 0.82 0.78
413 0.25 0.23 0.34 0.25 0.06 0.15 0.10 0.13 0.16 0.19 0.17 0.17
414 0.17 0.25 0.00 1.00 0.08 0.24 0.00 0.19 0.12 0.28 0.25 0.32
500 1.00 1.00 0.00 0.00 1.00 0.11 0.00 0.00 0.22 0.18 0.10 0.00
503 0.94 0.91 0.90 0.92 0.82 0.86 0.86 0.86 0.87 0.89 0.88 0.89
524 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Macro-average 0.72 0.73 0.51 0.65 0.61 0.58 0.53 0.53 0.62 0.60 0.62 0.56
Weighted average 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.93 0.91 0.92 0.91 0.92

Table 8 Computation of
precision, recall and F1 score
using SVM for variation of
20–50% of testing data

Status code Precision Recall F1 score

20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50%

200 0.79 0.80 0.78 0.79 0.92 0.95 0.96 0.97 0.82 0.87 0.86 0.87
400 0.00 0.75 0.00 0.00 0.00 0.06 0.00 0.14 0.00 0.12 0.00 0.23
401 1.00 0.00 0.00 0.78 0.20 0.00 0.00 0.00 0.33 0.00 0.00 0.00
403 0.83 0.71 0.00 0.77 0.35 0.68 0.00 0.78 0.49 0.70 0.00 0.78
404 0.66 0.71 0.76 0.73 0.59 0.54 0.49 0.35 0.44 0.62 0.59 0.48
405 0.71 0.71 0.68 0.65 1.00 1.00 0.99 1.00 0.62 0.00 0.81 0.84
413 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.83 0.00 0.00 0.05
414 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.92 0.00 0.00 0.69 0.68 0.00 0.00 0.00 0.78
503 0.81 0.90 0.91 0.00 0.67 0.68 0.00 0.00 0.73 0.78 0.78 0.00
524 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Macro-average 0.53 0.41 0.38 0.49 0.42 0.41 0.38 0.39 0.44 0.41 0.39 0.39
Weighted average 0.89 0.90 0.99 0.90 0.90 0.90 0.99 0.80 0.87 0.88 0.88 0.88

Table 9 Computation of
precision, recall and F1 score
using KNN for variation of
20–50% of testing data for K = 2

Status code Precision Recall F1 score

20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50%

200 0.79 0.80 0.78 0.79 0.92 0.95 0.96 0.97 0.82 0.87 0.86 0.87
400 0.00 0.75 0.00 0.00 0.00 0.06 0.00 0.14 0.00 0.12 0.00 0.23
401 1.00 0.00 0.00 0.78 0.20 0.00 0.00 0.00 0.33 0.00 0.00 0.00
403 0.83 0.71 0.00 0.77 0.35 0.68 0.00 0.78 0.49 0.70 0.00 0.78
404 0.66 0.71 0.76 0.73 0.59 0.54 0.49 0.35 0.44 0.62 0.59 0.48
405 0.71 0.71 0.68 0.65 1.00 1.00 0.99 1.00 0.62 0.00 0.81 0.84
413 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.83 0.00 0.00 0.05
414 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.92 0.00 0.00 0.69 0.68 0.00 0.00 0.00 0.78
503 0.81 0.90 0.91 0.00 0.67 0.68 0.00 0.00 0.73 0.78 0.78 0.00
524 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Macro-average 0.53 0.41 0.38 0.49 0.42 0.41 0.38 0.43 0.44 0.41 0.39 0.39
Weighted average 0.89 0.90 0.90 0.90 0.90 0.90 0.99 0.88 0.87 0.88 0.88 0.88

 Complex & Intelligent Systems

1 3

The following figures show the experimental results in
graphical forms. Figures 5 and 6 show a comparison of pre-
cision and recall in KNN for k = 2–5. In Figs. 12, 16 and 18,
the ratio is shown in decimal notation, i.e., 20/100 is 0.2
(Table 11).

Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and
18 conclude that for the proposed approach, KNN has per-
formed better than SVM. Figure 19 shows that ICHW has a
high harvest rate in contrast to its pioneer contemporaries.
The values of the status code as shown in Figs. 5, 6, 7, 8, 9,
10, 11, 12, and 13 show that system has correctly classified
the forms as well as submit them. The values of forms for
submissions are retrieved from the bounded values of form
during parsing. Results are also shown for the ratio of testing

and training data. For this approach for k = 5 at 40% of test-
ing, data gave promising results. On being compared with
a focused crawler (FC), form-focused crawler (FFC), and

Table 10 Computation of
precision, recall and F1 score
using KNN for variation of
20–50% of testing data for K = 5

Status code Precision Recall F1 score

20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50%

200 0.80 0.86 0.86 0.85 0.96 0.95 0.96 0.95 0.87 0.90 0.91 0.90
400 0.00 0.51 0.43 0.57 0.00 0.26 0.22 0.24 0.00 0.34 0.29 0.34
401 0.00 0.93 0.90 0.75 0.00 0.70 0.73 0.71 0.00 0.80 0.81 0.73
403 0.66 0.85 0.83 0.78 0.71 0.82 0.63 0.60 0.69 0.83 0.71 0.68
404 0.72 0.78 0.81 0.79 0.46 0.57 0.55 0.57 0.56 0.66 0.66 0.60
405 0.72 0.72 0.73 0.72 0.98 0.83 0.81 0.85 0.83 0.77 0.77 0.78
413 0.00 0.26 0.26 0.33 0.00 0.13 0.14 0.16 0.00 0.17 0.18 0.22
414 0.00 1.00 0.46 0.50 0.00 0.18 0.13 0.05 0.00 0.30 0.21 0.10
500 0.00 0.00 0.25 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.06 0.00
503 0.91 0.89 0.92 0.88 0.69 0.81 0.85 0.80 0.78 0.85 0.88 0.84
524 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Macro-average 0.44 0.71 0.57 0.55 0.44 0.57 0.47 0.46 0.43 0.60 0.50 0.48
Weighted average 0.88 0.91 0.91 0.91 0.90 0.92 0.92 0.91 0.88 0.91 0.91 0.91

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20
0

40
0

40
1

40
3

40
4

40
5

41
3

41
4

50
0

50
3

52
4

Pr
ec

isi
on

Status code

Comparison of Precision for varied values of k
in KNN.

K= 2 K=3 K=4 K=5

Fig. 5 Comparison of precision for varied values of K in KNN

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20
0

40
0

40
1

40
3

40
4

40
5

41
3

41
4

50
0

50
3

52
4

R
ec

al
l

Status code

Comparision of Recall for varied values of k
in KNN

K=2 K=3 K=4 K=5

Fig. 6 Comparison of recall for varied values of K in KNN

Table 11 Comparison of accuracy for KNN and SVM

Accuracy

KNN SVM

Percentage of
testing data

K = 2 K = 3 K = 4 K = 5

20% 0.89 0.88 0.89 0.9 0.89
30% 0.88 0.89 0.88 0.92 0.90
40% 0.90 0.80 0.90 0.92 0.90
50% 0.90 0.89 0.90 0.91 0.90

Complex & Intelligent Systems

1 3

Enhanced form crawler (EEFC). ICHW has a more than 10%
high harvest rate than EEFC. There exist only a few crawlers
that implement both pre-query and post-query approaches,
ICHW also worked on both techniques. The rejection rules
and stopping criteria have impacted the harvest rate of the
crawler. In the training phase, the space complexity of KNN
is O(n*d), while in the testing phase it is O(n*k*d). n rep-
resents a number of data points, d represents a number of
features and k represents the number of nearest neighbors
considered. For SVM, complexity is O(n3).

ICHW as an approach for atmospheric emission

Suppose the user has a goal to find a property with a good
air quality index. Given f (Amritsar, Punjab), (Ludhiana,
Punjab), (Jalandhar, Punjab) be the three cities for which
search is targeted. Instead of using three different crawl-
ing nodes, the crawling is implemented as three different
threads for each tuple. Let us assign C1 = (Amritsar, Pun-
jab), C2 = (Ludhiana, Punjab), and C3 = (Jalandhar, Punjab).
The location-based subdivisions of the cities are taken as

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
20

0

40
0

40
1

40
3

40
4

40
5

41
3

41
4

50
0

50
3

52
4

F1
 S

co
re

Status Code

Comparison of F1 score for varied values of k in
KNN

K=2 K=3 K=4 K=5

Fig. 7 Comparison of F1 score for varied values of K in KNN

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

K=
2

K=3K=4K=5K=2K=3K=4K=5K=2K=3K=4K=5

Precision Recall F1 Score

Comparision of Macro average and weighted
average for Precision, Recall and F1 Score in

KNN

Macro average Weighted average

Fig. 8 Comparison of macro-average and weighted average for preci-
sion, recall and F1 in KNN

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20
0

40
0

40
1

40
3

40
4

40
5

41
3

41
4

50
0

50
3

52
4

Pr
ec

isi
on

Status code

Comparison of Precision for 20% to 50%
of testing data in SVM

20% 30% 40% 50%

Fig. 9 Comparison of precision for 20–50% of testing in SVM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
20

0

40
0

40
1

40
3

40
4

40
5

41
3

41
4

50
0

50
3

52
4

R
ec

al
l

Status Code

Comparison of Recall using SVM for
variation of 20% to 50% of testing data

20% 30% 40% 50%

Fig. 10 Comparison of recall for varied values of K in KNN

 Complex & Intelligent Systems

1 3

the administrative divisions. Amritsar and Jalandhar have
five administrative divisions whereas Ludhiana has seven
administrative divisions. Location-based crawling is done on
these administrative divisions. Crawled data are combined
for average pollution in each city. The goal is to find PM 10
and PM 2.5 values in administrative divisions. The crawler
will crawl and parse the data from the real estate website,
and combine this with location-aware crawling. The travers-
ing of the crawler is controlled using rejection rules.

The results will be useful for making the right investment
in a property based on qualitative, relevant and empirical

data. In addition, suppose if a user is already living in any of
the above-mentioned cities, crawling using this web crawler
will help find similar properties and set a good value on
their own. User can also search for fair deals. Due to space
constraints, the results regarding the submission of the form
regarding each feature are not presented, moreover, most of
the URLs belongs to the dynamic databases. Data are com-
bined from both real estate and pollution URLs, by imple-
menting the expectation maximum clustering technique
using the Gaussian mixture model. Data normalization is
performed using MAX–MIN normalization. In this case,

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
20

0

40
0

40
1

40
3

40
4

40
5

41
3

41
4

50
0

50
3

52
4

F1
 S

co
re

Status Code

Comparison of F1 using SVM for variation of
20% to 50% of testing data

20% 30% 40% 50%

Fig. 11 Comparison of F1 using SVM for variation of 20–50% of
testing data

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.
2

0.
3

0.
4

0.
5

0.
2

0.
3

0.
4

0.
5

0.
2

0.
3

0.
4

0.
5

Precision Recall F1 Score

Comparison of Macro average and Weighted
average for Precision, Recall and F1 Score for

varied percentage of testing data in SVM

Macro Average Weighted Average

Fig. 12 Comparison of macro-average and weighted average for pre-
cision, recall and F1 score for varied percentage of testing data in
SVM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20
0

40
0

40
1

40
3

40
4

40
5

41
3

41
4

50
0

50
3

52
4

Pr
ec

isi
on

Status Code

Computation of Precision for 20% to 50% of
testing data for k =5.

20% 30% 40% 50%

Fig. 13 Computation of precision for 20–50% of testing data for K = 5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20
0

40
0

40
1

40
3

40
4

40
5

41
3

41
4

50
0

50
3

52
4

R
ec

al
l

Status Code

Computation of Recall for 20% to 50% of
testing data for k =5.

20% 30% 40% 50%

Fig. 14 Computation of recall for 20–50% of testing data for k = 5

Complex & Intelligent Systems

1 3

the expectation–maximization algorithm is implemented to
find parameters. The parameters are defined as: M denotes
the sample of data points, µ is the Gaussian distribution, Σ
covariance, u is defined as input vector, ‘I’ denotes possible
curves, ‘i’ denotes data points, C is the Gaussian curve, wij is
the weighting factor of a feature vector, π denotes Gaussian
weight, � is the standard deviation and m is a number of data
points in dataset. Derivation of likelihood is as follows: let θ
be the random variable with binary values

The likelihood is defined as

Taking derivative on both sides of Eq. (29):

(27)� = P(I)

(28)I − � = P(0)

(29)l(�) = �n1 (I − �)n0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
20

0

40
0

40
1

40
3

40
4

40
5

41
3

41
4

50
0

50
3

52
4

F1
 S

co
re

Status Code

Comparison of F1 for 20 % to 50% percentage
of testing data for k=5 in KNN

20% 30% 40% 50%

Fig. 15 Comparison of F1 score for 20–50% of testing data

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.
2

0.
3

0.
4

0.
5

0.
2

0.
3

0.
4

0.
5

0.
2

0.
3

0.
4

0.
5

Precision Recall F1 Score

Comparison of Macro average and Weighted
average for Precision, Recall and F1 Score for

varied percentage of testing data for k=5 in
KNN

Macro Average Weighted Average

Fig. 16 Comparison of macro-average, weighted average for preci-
sion, recall and F1 score in SVM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

k=2 k=3 k=4 k=5

A
cc

ur
ac

y

Comparison of accuracy for K=2,3,4 and 5 for
KNN.

20% 30% 40% 50%

Fig. 17 Comparison of accuracy for K = 2, 3, 4 and 5 for KNN

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

0.2 0.3 0.4 0.5

A
cc

ur
ac

y

Percentage of testing data

Comparison of Accuracy for KNN and SVM

KNN at k=5 SVM

Fig. 18 Comparison of accuracy for KNN and SVM

 Complex & Intelligent Systems

1 3

If θ = 0, or θ = 1:

� =
n1

n0+n1
.

Let M data samples be denoted as M1, M2, M3,….,Mn,
the maximum likelihood for the Gaussian model is derived
as

Now estimation maximization for the Gaussian model is
derived as follows. Suppose Y is multinomial distribution,

(30)
�2l(�)

�(�)
= n1�

n−1(I − �)n0 − n0�
n1 (I − �)n0−1

(31)= �n−1(I − �)n0−1
(
n1(I − �) − n0�

)

(32)= �n−1(I − �)n0−1(n1
(
n1 + n0

)
�

(33)log l (�, �) =

m�

i=1

�
1√
2Π

e
−(x − �)2

2�2

�

(34)= C +

m∑

i=1

− log l −
(x(i) − �)2

2�

(35)
� log l(�, �)

��
=

1

�2

m∑

i=1

(xi − �)

(36)=

m∑

i=1

1

�
−

(x(i) − �)2

�3

(37)�2Ml =
1

m

m∑

i=1

(x(i) − �Ml)
2

(38)P(Y = k;�) = �k

Expectation calculation:

Maximization calculation:

(39)T ∼ N
(
�k ,

∑
k
)

(40)

p
�
x = k, T;�,�,

��
= �k

1

(2 �)
n

2 ��
∑

k��
1

2

e
−1

2

�
z − �k

�T∑−1

K
(z−�k)

(41)p
(
x|z;�,�,

∑)
=

m∏

i=1

p
(
x(i)

|||z
i;�, �,

∑)

(42)max
�,�,

∑

m�

i=1

m�

i=1

k�

k=1

q(x(i) = k) log
�
�kN(z(i);�k

�

0

5

10

15

20

25

30

FC FFC EEFC ICHW

H
ar

ve
st

 R
at

e
Comparison of FC, FFC, EEFC and ICHW in terms of harvest rate

Fig. 19 Comparison of FC, FFC, EEFC and ICHW in terms of har-
vest rate

21%

30%

49%

PM2.5

Jalandhar

Ludhiana

Amritsar

Fig. 20 Comparison of PM 2.5 in cities of Punjab

34%

48%

18%

PM10

Jalandhar
Ludhiana
Amritsar

Fig. 21 Comparison of PM 10 in cities of Punjab

Complex & Intelligent Systems

1 3

After applying the above-discussed technique, clusters
of regions are formed according to the air quality index in
Amritsar, Jalandhar and Ludhiana (Figs. 20, 21).

The further analysis could be made on reason of low
air quality index. Due to space constraints, tabular form of
data is not presented, and the above figures have shown the
computed results of air quality in the three cities.

Comparative advantages

The proposed technique is one of its kind works that asso-
ciate real estate data and air quality index to find property
in smart cities of Punjab. The crawler can be trained to be
used for any other search terms. The results have shown that
the proposed approach has a high harvest rate as compared
to existing techniques. This approach is scalable in terms
of the growing size of the web, and it is extensible as any
third-party component for example indexer can be added.
The ranking is a function of both out links and term weight-
ing, due to which chances of term bias is less. The crawler
successfully saves itself from the crawler traps due to effi-
cient stopping criteria’s and accurately classify more status
codes than [41]. The F1 measure of the proposed technique
is higher than [42], as this technique has also implemented
text clustering. Another advantage of this technique is that
it works with both GET and Post methods. In this way, the
crawler can have a high number of URLs for analysis and
indexing. Table 12 compares the running time and num-
ber of searchable forms of adaptive crawler for hidden web
entries (ACHE) and ICHW. There exists no technique as
perfect that it can stop a crawler to fall into the spider traps.
Therefore, the intelligent rules of rejection are designed to
prevent the crawler from falling into infinite crawling loops.
This technique outperforms the web crawler presented in
[43]. On comparing accuracy and recall, in testing phase
crawler in [43] has accuracy 81.06% and precision 84.62%,
while both performance measures have reached above 95%
in technique. Figures 9 and 10 show the comparison of pre-
cision and recall delivered by the proposed crawler. Harvest
rate our proposed system is more than [44] and [45], but

their technique has also implemented indexing. Indexing is
part of our future work.

The above table shows the running time of ICHW is
comparatively less than ACHE. In addition, the number of
searchable forms founds are more than ACHE. A goal of a
crawler is to find maximum searchable forms in minimum
visits, so the number of searchable forms without rejection
rules are not included.

Conclusion

ICHW crawler simultaneously works with all stages in
hidden web crawling. The dual objective is fulfilled by
efficiently searching the hidden web sources, and then
minimizing the visit and saving the crawler resources by
proposing rejection rules. This study shows the successful
implementation of a web crawler for combining real estate
data and pollution data in smart cities of Punjab. The
crawler is effective in both applications. By implement-
ing path learning and similarity, the crawler can correctly
judge the form-based data. The intelligent stopping crite-
ria are introduced to minimize the unproductive crawling.
The retrieved hidden web page classification is addressed
by considering URL filtration beyond just <form> tags.
A knowledge base of suitable values extracted is created
to accurately fill the forms. Experiments results show not
only the harvest rate of ICHW is appreciable, but it is also
able to accurately crawl PM 10 and PM 2.5 related data.
Future work includes working with a larger data set, a
large number of classes, advanced stopping criteria, and
the use of geospatial data for air quality index and a user
interface of the crawler.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are

Table 12 Comparison of running time and number of searchable forms

Domain Running time of ACHE Running time of ICHW
without rejection rules

Running time of
ICHW

Searchable form ACHE Searchable
form ICHW

Property Not included 7 h 12 m 6 h 39 m Not included 3809
Book 8 h 21 m 7 h 21 m 6 h 58 m 599 4589
Flight 7 h 59 m 6 h 18 m 7 h 52 m 1705 2843
Music 7 h 59 m 7 h 00 m 6 h 58 m 776 1447
Premier Not included 6 h 35 m 6 h 01 m Not included 668
Product 7 h 50 m 7 h 28 m 7 h 48 m 386 1999
Pollution Not included 7 H 26 M 6 H 20 M Not included 2002

 Complex & Intelligent Systems

1 3

included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Kobayashi M, Takeda K (2000) Information retrieval on the Web.
ACM Comput Surv 32(2):144–173

 2. Wu M, Lee C (2020) A study on natural language processing
classified news. pp. 244–247

 3. Chakrabarti S (2003) Crawling the web. In: Mining the web, pp
17–43

 4. Kaur S, Geetha G (2007) Advances in web crawlers, vol. 10, pp.
1–22

 5. Li Y, Wang Y, Du J (2013) E-FFC: an enhanced form-focused
crawler for domain-specific deep web databases. J Intell Inform
Syst 40(1):159–184

 6. Wu Z et al (2003) Towards automatic incorporation of search
engines into a large-scale metasearch engine. In: Proceedings -
IEEE/WIC International Conference on Web Intelligence, WI
2003, pp 658–661

 7. Madhavan J et al (2007) Web-scale data integration: you can only
afford to pay as you go. Cidr 7:342–350

 8. Cope J, Craswell N, Hawking D (2003) Automated discovery of
search interfaces on the web BT. In: Fourteenth Australasian Data-
base Conference (ADC2003), vol. 17, pp. 181–189

 9. Barbosa L, Freire J (2005) Searching for hidden-web databases.
Proc WebDB 5:1–6

 10. Hicks C, Scheffer M, Ngu AHH, ShengQZ (2012) Discovery and
cataloging of deep web sources. In: Proceedings of the 2012 IEEE
13th International Conference on Information Reuse and Integra-
tion, IRI 2012, pp. 224–230

 11. Raghavan S, Garcia-molina H (2001) Crawling the hidden web.
In: 27th VLDB Conference, Roma, Italy, pp 1–10

 12. Perkowitz M, Doorenbos RB, Etzioni O, Weld DS (1997) Learn-
ing to understand information on the internet: an example-based
approach. J Intell Inform Syst 8(2):133–153

 13. Liddle S, Embley D, Scott D, Yau SH (2003) Extracting data
behind web forms. Lect Notes Comput Sci 2784:402–413

 14. He Y, Xin D, Ganti V, Rajaraman S, Shah N (2013) Crawling deep
web entity pages. Web Search Data Min, 355–364

 15. Furche T, Gottlob G, Grasso G, Schallhart C, Sellers A (2013)
OXPath: a language for scalable data extraction, automation, and
crawling on the deep web. VLDB J 22(1):47–72

 16. Álvarez M, Raposo J, Pan A, Cacheda F, Bellas F, Carneiro V
(2007) Crawling the content hidden behind web forms. In: Lecture
notes in computer science, pp. 322–333

 17. Dragut EC. Deep web query interface understanding and
integration

 18. Khare R, An Y, Song I-Y (2010) Understanding deep web search
interfaces. Survey 39(1):33–40

 19. Jamali M, Sayyadi H, Hariri BB, Abolhassani H (2006) A method
for focused crawling using combination of link structure and
content similarity. In: Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2006 Main
Conference Proceedings), WI’06, pp. 753–756

 20. Chakrabarti S, Van Den Berg M, Dom B (1999) Focused crawling:
a new approach to topic-specific web resource discovery. Comput
Netw 31(11):1623–1640

 21. Barbosa L, Freire J (2007) An adaptive crawler for locating hid-
denwebentry points. In: Proceedings of the 16th international
conference on World Wide Web—WWW ’07, p. 441

 22. Najork M, Wiener JL (2001) Breadth-first search crawling yields
high-quality pages. In: Proceedings of the 10th International Con-
ference on World Wide Web, WWW 2001, pp. 114–118

 23. Korf RE, Schultze P (2005) Large-scale parallel breadth-first
search. In: Proceedings of the National Conference on Artificial
Intelligence, vol. 3, pp. 1380–1385

 24. Peshave M, Dezhgosha K (2005) How search engines work and a
web crawler application

 25. Wang W, Chen X, Zou Y, Wang H, Dai Z (2010) A focused
crawler based on naive Bayes classifier. In: 3rd International
Symposium on Intelligent Information Technology and Security
Informatics, IITSI 2010, pp 517–521

 26. Zheng X, Zhou T, Yu Z, Chen D (2008) URL rule based focused
crawlers. In: IEEE International Conference on e-Business Engi-
neering, ICEBE’08—Workshops: AiR’08, EM2I’08, SOAIC’08,
SOKM’08, BIMA’08, DKEEE’08, pp. 147–154

 27. Barbosa L, Freire J. Searching for hidden-web databases
 28. Barbosa L, Freire J (2007) An adaptive crawler for locating hidden

web entry points. In: 16th International World Wide Web Confer-
ence, WWW2007, pp. 441–450

 29. Madhavan J et al (2007) Web-scale data integration: you can only
afford to pay as you go. In: Proceedings of CIDR, pp. 342–350

 30. Zhao F, Zhou J, Nie C, Huang H, Jin H (2016) SmartCrawler: a
two-stage crawler for efficiently harvesting deep-web interfaces.
IEEE Trans Serv Comput 9(4):608–620

 31. Jou C (2019) Schema extraction for deep web query interfaces
using heuristics rules. Inf Syst Front 21(1):163–174

 32. Tsikrika T, Moumtzidou A, Vrochidis S, Kompatsiaris I (2016)
Focussed crawling of environmental web resources based on
the combination of multimedia evidence. Multimed Tools Appl
75(3):1563–1587

 33. Helfenstein A, Tammela P (2016) Data and text mining analyzing
user-generated online content for drug discovery: development
and use of Med-crawler, pp. 0–5

 34. Dong H, Hussain FK (2011) Focused crawling for automatic ser-
vice discovery, annotation, and classification in industrial digital
ecosystems. IEEE Trans Ind Electron 58(6):2106–2116

 35. Lopez-Aparicio S, Grythe H, Vogt M, Pierce M, Vallejo I (2018)
Webcrawling and machine learning as a new approach for the spa-
tial distribution of atmospheric emissions. PLoS ONE 13(7):1–15

 36. Chang KC-C, He B, Li C, Patel M, Zhang Z (2004) Structured
databases on the web. ACM SIGMOD Rec 33(3):61

 37. Kaur S, Geetha G (2020) SIMHAR—smart distributed web
crawler for the hidden web using SIM+Hash and Redis server.
IEEE Access 8:117582–117592

 38. Teixeira PM (2018) Relevance ranking for predicting web search
results, vol 1

 39. Valkanas G, Ntoulas A (2011) Rank-aware crawling of hidden web
sites. In: WebDB, pp 1–6

 40. Haveliwala TH, Gionis A, Klein D, Indyk P (2002) Evaluating
strategies for similarity search on the web. In: Proceedings of the
11th International Conference on World Wide Web, WWW ’02,
pp 432–442

 41. Heydon A, Najork M (1999) Mercator: a scalable, extensible web
crawler. World Wide Web 2(4):219–229

 42. Sangaiah AK, Fakhry AE, Abdel-Basset M, El-henawy I (2019)
Arabic text clustering using improved clustering algorithms with
dimensionality reduction. Clust Comput 22:4535–4549

 43. Hien NLH, Tien TQ, Van Hieu N (2020) Web crawler: design and
implementation for extracting article-like contents. Cybern Phys
9(3):144–151

http://creativecommons.org/licenses/by/4.0/

Complex & Intelligent Systems

1 3

 44. Schedlbauer J, Raptis G, Ludwig B (2021) Medical informatics
labor market analysis using web crawling, web scraping, and text
mining. Int J Med Inform 150:104453

 45. Sharma A, Shrivastava V, Singh H (2021) Experimental perfor-
mance analysis of web crawlers using single and multi-threaded
web crawling and indexing algorithm for the application of smart
web contents. Mater Today: Proc 37(2):1403–1408

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	IHWC: intelligent hidden web crawler for harvesting data in urban domains
	Abstract
	Introduction
	Related work
	Framework of ICHW
	Experimental results
	Web page classification
	Pre-processing
	Similarity computation
	Algorithm: a novel three-step algorithm for ICHW

	Path learning
	Searchable form classification
	Repository construction
	Stopping criteria and threshold
	URL classification based on soft marginal formulation
	Form identification and analyses
	ICHW as an approach for atmospheric emission
	Comparative advantages

	Conclusion
	References

