
Noname manuscript No.
(will be inserted by the editor)

Symbolic Verification of Event-Condition-Action Rules in Intelligent
Environments

Claudia Vannucchi · Michelangelo Diamanti · Gianmarco Mazzante · Diletta
Cacciagrano · Rosario Culmone · Nikos Gorogiannis · Leonardo Mostarda · Franco
Raimondi

Received: date / Accepted: date

Abstract In this paper we show how state-of-the art SMT-
based techniques for software verification can be employed
in the verification of Event-Condition-Action rules in In-
telligent Environments. Moreover, we exploit the specific
features of Intelligent Environments to optimise the veri-
fication process. We compare our approach with previous
work in a detailed evaluation section, showing how it im-
proves both performance and expressivity of the language
for Event-Condition-Action rules.

Keywords Event-Condition-Action rules · Symbolic
Verification

1 Introduction

The term Intelligent Environments (IE) is used to encom-
pass an heterogeneous range of scenarios and applications
that include smart homes, smart factories, autonomous ve-
hicles, etc. A common feature of IE is their ability to im-
plement complex applications on top of an existing network
of sensors and actuators. Several programming models and

C. Vannucchi · M. Diamanti · G. Mazzante · D. Cacciagrano · R. Cul-
mone · L. Mostarda
Department of Computer Science
University of Camerino, Italy
E-mail: claudia.vannucchi@unicam.it
E-mail: michelangel.diamanti@studenti.unicam.it
E-mail: gianmarco.mazzante@studenti.unicam.it
E-mail: diletta.cacciagrano@unicam.it
E-mail: rosario.culmone@unicam.it
E-mail: leonardo.mostarda@unicam.it

N. Gorogiannis · F. Raimondi
Department of Computer Science
Middlesex University, London, UK
E-mail: n.gkorogiannis@mdx.ac.uk
E-mail: f.raimondi@mdx.ac.uk

middleware infrastructures exist and have been investigated
in the past (see, for instance, [22] and references therein).

Domain specific languages have been developed to sup-
port the task of programming IE. The user interfaces pro-
vided to end users to control, for instance, the temperature
and the humidity in an environment according to time slots
and days of the week, can be considered as examples of
such domain-specific languages that are often called con-
text-aware [15].

In our work we consider Event-Condition-Action (ECA)
rules as a model of a generic domain-specific language that
can be employed both by developers and by end users to pro-
gram and configure an IE. Our aim is to prove properties of
applications for IE programmed using ECA rules. Focusing
on the specific domain of IE allows us to develop efficient
techniques.

In this work we employ IRON (Integrated Rule ON data),
a domain-specific language that can be used both by devel-
opers and by end-users to program and configure an ECA
rule-based system for IE. The aim of this work is to provide
techniques and tools to guarantee application-specific prop-
erties of IE, something that is useful in a typical scenario of
IE where non-expert users may autonomously adjust the be-
haviour of the system by updating the rules. Focusing on
a domain-specific language allows us to develop efficient
techniques and our main contribution is showing that ver-
ification methods based on SMT solvers enable the effec-
tive verification of ECA-rule based systems specified in the
IRON language. In detail, the contributions of the work are
the following:

– A formal model for ECA rules in Intelligent Environ-
ments and a formal definition of the properties that ECA
rules should satisfy. These properties are based on a de-
tailed review of existing literature.

2 Claudia Vannucchi et al.

– Verification algorithms for these properties, that treat sets
of states symbolically. We employ techniques that are
used in software verification and adapt them to the do-
main of ECA rules in IE. In particular, we employ the
notion of weakest precondition and we make use of SMT
solvers to prove properties.

– We provide an experimental evaluation using examples
from the literature and we compare our results with those
obtained in the past by other authors on the same exam-
ples. We also provide a prototype implementation.

The rest of the paper is organised as follows: in Sec-
tion 2 we provide a detailed review of the literature; in Sec-
tion 3 we present preliminary notation and the formalism
employed in the paper; in Section 4 we introduce the prop-
erties that any set of ECA rules should satisfy and we present
verification algorithms in Section 5. We describe case stud-
ies and report experimental results of our prototype imple-
mentation in Section 6.

2 Related Literature

IE are a very active area of research and a number of ap-
plications are currently being deployed in domains ranging
from smart homes to e-health to autonomous vehicles. In a
number of cases IE operate together with humans or to sup-
port them. For instance several systems for IE are more and
more frequently designed for critical domains like houses
for frail and elderly inhabitants, hospitals, emergency sce-
narios, etc. Therefore, it is fundamental to meet important
requirements for these systems such as correctness, safety,
security, desired reliable behaviour, something that may also
be imposed by certification authorities before these systems
are used in specific settings like hospitals etc.

IE systems are specific examples of reactive systems,
i.e., systems that react to any stimulus (or event) that oc-
curs in the environment maintaining a continuous interac-
tion with it, since a common feature is their ability to imple-
ment complex applications on top of an existing network of
sensors and actuators. Typically, the approach that is used to
program such systems is via rules, that often take the form
of ECA rules [2]: an action is executed if a certain event
happens and a specific condition is met. ECA rules are an
effective way for representing rules for IE, a good match
with users mental model and can be useful and usable for
end-user programming in IE.

However, programming rule-based systems is a difficult
and error-prone process. In particular, looking at human daily
life, these applications are typically developed and deployed
by experts and engineers and are then left in the hands of
end-users that are allowed to modify the behaviour of some
of the components by adding or removing rules according
to their requirements, as shown in [20].

Therefore, due to the complexity of IE systems, it is nec-
essary to apply appropriate techniques and methods that al-
low to meet the specific requirements. Various approaches
have been proposed in order to apply formal methods to
ECA rule verification. In this section we describe the pro-
posals that are closer to our approach.

Authors in [16] propose an approach to analyse the dy-
namic behaviour of a set of ECA rules by first translating
them into an extended Petri Net (PN), then studying two
fundamental correctness properties: termination and conflu-
ence. They have designed a language for ECA rules with the
following features:

– It distinguishes environmental variables, that are used to
represent environment states that can only be measured
by sensors, and local variables, that can be both read and
written by the system.

– It provide operations to set (absolute change) the value
of local variables to an expression, or increase or de-
crease (relative change) it by an expression; these ex-
pressions may depend on environmental variables.

– Events can be external or internal. An external event can
be activated when the value of an environmental variable
crosses a threshold, and at that time it may take a snap-
shot of some environmental variables and read them into
local variables to record their current values. An internal
event can be activated only by an action of an ECA rule.
Since these two types of events cannot be mixed within
a single ECA rule, rules can be external or internal.

– The execution semantics of actions can be specified as
any partial order described by a graph that is obtained
through appropriate operators.

– Priorities for internal rules with respect to external ones
can be specified.

According to the model in [16], a state is called stable if only
external events can occur in it, unstable if actions of exter-
nal or internal rules are being performed. For what concerns
the evolution model, the system is initially stable and, af-
ter some external events trigger one or more external rules,
it transitions to unstable states where internal events may
be activated, triggering further internal rules. When all ac-
tions complete, the system is again in a stable state, waiting
for environmental changes that will eventually trigger exter-
nal events. In the presented model, the system is frozen dur-
ing rule execution and does not respond to external events.
Thus, rule execution is instantaneous, while in reality it ob-
viously requires some time. However, from a verification
perspective, environmental changes and external event oc-
currences are nondeterministic and asynchronous, thus their
semantic allows the verification process to explore all pos-
sible combinations without missing errors due to the order
in which events occur and environmental variables change.
The set of ECA rules is translated into a PN, and then the

Symbolic Verification of Event-Condition-Action Rules in Intelligent Environments 3

approach computes the initial states symbolically. Thanks to
the nondeterministic semantics of Petri nets, the analysis is
performed once starting from a single, but very large, set of
initial states. Verification of termination and confluence for
this obtained model is performed through their tool Smart.

Authors in [3] investigate the possibility of using a pure
Binary decision diagram (BDD) [5] representation of in-
teger values, and they focus on a particular class of pro-
grams, i.e. ECA rule-based programs with restricted oper-
ations. The subclass of ECA programs considered includes
programs consisting of a single loop in which many condi-
tional branches occur. In each of these branches, the con-
dition is a boolean combination of equalities and negated
equalities between variables and values, and the action is a
sequence of assignments to variables, and all variables are
of type integer. This means that all required operations are
in fact efficiently supported by BDDs, and a symbolic rep-
resentation using BDDs seems indeed appropriate for this
particular class of programs. In order to define a config-
urable verifier, the authors define an iteration algorithm and
a configurable program analysis which defines the abstract
domain, the transition relation, as well as the merge and
stop operators. A program is represented by a control-flow
automaton (CFA) and different verification approaches are
applied in order to solve a reachability problem: Explicit
Value, Bounded Loops with bounded model checking, Pred-
icate Abstraction, Predicate Impact [4], BDD. There is a
number of (state) variables (with an initial value) that model
the state of the system. Considering the BDD-based repre-
sentation, since BDDs do not scale well for the multiplica-
tion operation [5], they partition the set of programs into two
partitions: the first partition Eca-EQ contains all programs in
which no multiplication of integer variables occurs, and the
second partition Eca-MUL contains all programs that do not
have that restriction in terms of operations on integer vari-
ables. In other words, Eca-EQ contains all programs whose
variables are only used in equality expressions (6= and ==)
and not with other arithmetic operators. The results empha-
sise that BDD analysis work very well for Eca-EQ, while in
the context of ECA-MUL the combination “BDD+Impact
predicate” is the most efficient.

In [6] a tool-supported method for verifying and con-
trolling the correct interactions of ECA rules is presented.
This method is based on formal models related to reactive
systems, and Discrete Controller Synthesis (DCS) to gener-
ate correct rule controllers. A formalisation of an ECA rule-
based system is provided in order to perform the translation
into a Heptagon/BZR program. According to the proposed
model, a generic device (sensor or actuator) is composed of
a set of input signals and a set of output signals. The con-
dition of an ECA rule is a Boolean expression of sensor
or actuator output signals. Specific keywords are defined in
the grammar in order to define the adopted execution policy.

The priority is given by the order in which input and output
signals are declared. As a first step, verification is performed
at compilation time by applying simple transformation and
model checking in order to guarantee the satisfaction of cer-
tain properties. For instance, redundancy is verified by us-
ing the Sigali tool [18], consistency is verified by using Si-
gali and Heptagon [10], while circularity is verified by using
Heptagon. The presented method also takes into account dif-
ferent possible execution models of ECA rule-based system.
The work offers users with a combination of high-level ECA
rule language with the compiler and formal tool support for
Heptagon/BZR. Then, coordination and control techniques
are applied at run-time by using Heptagon/BZR in order to
complete the verification.

In [23] a framework is proposed for the validation of data
and rules in knowledge-based systems. In particular, authors
define different type of rules to create a “rule net” consisting
of chained rules, and they present a way to validate a set
of rules and check inconsistencies between different paths
according to predefined constraints.

Conflict detection and resolution methods for distributed
ECA rule processing are proposed in [17] in order to prevent
the various kinds of abnormal situations. An infrastructure
is described to detect and solve static and dynamic conflicts
for a framework based on ECA rules for Web Services. No
implementation is described for this infrastructure.

An approach for the verification of an ECA rule-based
management and control system is proposed in [24]. A for-
mal representation of the system is described in order to de-
fine problems like inconsistency, redundancy and circular-
ity. Three levels are described regarding the verification and
validation of these problems: the level related to the set of
rules, the level based on the direct results of the execution of
actions on the environment, and the level of all the possible
responses of the environment.

An approach based on formal methods is applied for the
verification of ECA rule systems in [13]. In particular, a set
of ECA rules is transformed into different kinds of automata
and then the automata verification tool Uppaal is applied.
The approach is limited to performing model checking of
timed automata and their correspondence to the provided
ECA rule set.

Our work allows the verification of some of the proper-
ties presented in [24], [13] and [6] by using a different ap-
proach based on SMT solver. With respect to the state of the
art of methods applied to the verification of sensor/actuators
applications, SMT solvers have never be applied. Even if
traditional model checkers can be employed to verify some
of the properties we address, they are not specifically dedi-
cated to IE and therefore cannot exploit the structure of ECA
rules that define IE systems.

4 Claudia Vannucchi et al.

3 Preliminaries: ECA Rules and IRON

In this section we introduce preliminary notation and for-
malism that will be employed in the rest of the paper. We
start by introducing a model for ECA rules, we then de-
scribe a language for ECA rules and we also include a short
overview of the weakest precondition predicate transformer
and SMT solvers.

3.1 State Space

Applications for IE are usually built starting from a set of
sensors and actuators that interact by means of message pass-
ing over a network. In [21] we presented a formal model rep-
resenting a system composed of devices of two categories:
sensors and actuators.

We denote with D the set of variables that identify the
devices of the system. In other words, D is the union of two
disjoint sets, I and O, whose elements are, respectively, the
sensors and the actuators of the system. We use the notation
D = I ∪O where I = {i1, . . . , im} and O = {o1, . . . ,on} for
some m,n > 0.

Definition 1 A state of the system is defined as the function
ϕ : D→ V where V is a finite set of integer or boolean val-
ues. In other words, ϕ is a standard first-order valuation of
the variables in D.

For instance, if we consider the set

Dhouse = {presence, light, tv}

where presence is a boolean sensor and light and tv are
boolean actuators, a state is a function of the type ϕ : Dhouse→
{0,1} that associates one value to each device in Dhouse.

We can represent the function ϕ as

ϕ = {i1 7→ u1, . . . , im 7→ um, o1 7→ v1, . . . , on 7→ vn} , (1)

where u j,vk ∈ V for j = 1, . . . ,m and k = 1, . . . ,n. In other
words, a state ϕ is a set of associations between variables in
D and their specific values in V . We use the notation ϕ(d)
for representing the value vd associated to the generic device
d by means of ϕ . Given the set Dhouse defined above, in the
following state

ϕ = {presence 7→ 1, . . . , light 7→ 0, tv 7→ 1}

two devices are on and one actuator is off. We will also use
the notation ϕ =< Iϕ ,Oϕ > instead of ϕ = Iϕ ∪Oϕ , where

Iϕ = {i1 7→ u1, . . . , im 7→ um}
Oϕ = {o1 7→ v1, . . . , on 7→ vn} .
Using the notion of state given in Def. 1, we can define, as
usual, the standard notion of satisfaction of a first-order for-
mula by a state. We will denote that ϕ satisfies the formula
F , as usual, by ϕ |= F .

Given the definition of a state, we now introduce the def-
inition of universe.

Definition 2 The universe Φ of a system is the set of all
possible states of the system. In other words, it is the set of
all possible functions ϕ defined in Def. 1.

According to the running example Dhouse, the corresponding
universe Φhouse has cardinality given by 23. By adding in-
variants to the system, i.e. conditions that must be satisfied
independently from the dynamic of the system, we can de-
fine the admissible state space as follows. Let us denote the
set of the invariants of the system with

Inv = {inv1, inv2, . . . , invv} (2)

where an element inv ∈ Inv is a restricted first-order logic
predicate as defined in the IRON grammar (defined below
in Section 3.3).

Definition 3 Let Φ be the universe. The admissible state
space Φa is the subset of Φ whose elements are all the states
ϕ that satisfy the constraints of the system.

For instance, if all sensors and actuators in D are boolean,
the set V consists of two values and the set Φ has cardinality
2m+n . By applying the static constraints we obtain the ad-
missible state space Φa ⊆Φ having cardinality less or equal
than 2m+n . The set of static invariants must be satisfied inde-
pendently from the set of ECA rules of the system. We will
denote a generic state in Φa with ϕ . For example, if we de-
fine the following invariants for the system defined starting
from Dhouse

Invhouse = {((not light) or presence),((not tv) or presence)}

we can observe a reduction in the cardinality of the state
space.

3.2 ECA rules

Given the set D and the state space Φ , we consider a finite
set R of labels for ECA rules

R = {r1,r2, ...,rk} , k ∈ N0 . (3)

Since ECA rules are inspired by UML [12], we use the no-
tation Event[Condition]/Action , to represent a generic ECA
rule labelled with r. Therefore, a generic rule r in R is rep-
resented as

e[c]/a (4)

where e ,c ,a are, respectively, labels for the event, the condi-
tion and the action of r. Let us now define each component
of the ECA rule r. The generic event e is represented as a
subset of variables in D , i.e.

e = {dα1 , · · · ,dα f } ⊆ D .

Symbolic Verification of Event-Condition-Action Rules in Intelligent Environments 5

The event is the trigger for the ECA rule, i.e. when a change
concerning the value of at least one of the variables in e
occurs, the condition is evaluated. The condition c is a re-
stricted first-order logic predicate (as defined in the IRON
grammar below) having variables in D , i.e.

c = P(dβ1 , · · · ,dβl
) , dβ1 , · · · ,dβl

∈ D .

If the condition is true, the action is applied to the state of the
system. A generic action a is defined as a set of assignments
for a subset of actuators in O i.e.

a = {oγ ← Eγ |where oγ ∈O and Eγ is a term over D} . (5)

Note that each oγ must appear at most once in a (i.e., we
do not allow two or more assignments to the same variable).
Additionally, we will write oγ ↑ a if there is no Eγ such that
(oγ ← Eγ) ∈ a.

In other words, the action a assigns values to a subset of
variables in O . In detail

– if oγ is a boolean actuator, Eγ is a boolean expression
over boolean variables in D,

– if oγ is an integer actuator, Eγ is an integer expression
over integer variables in D.

Let us denote with A the set of actions associated to rules
in R. In order to represent the effect of the action a of the rule
r on the admissible state ϕ defined in (1) we introduce the
following operator

[] : Φa×A→Φ

such that
ϕ[a] = ϕ

′

where

ϕ
′ = {i1 7→ u1, . . . , im 7→ um,o1 7→ v′1, . . . ,on 7→ v′n}

and for γ = 1, ...,n

v′γ =

{
Eγ |ϕ if (oγ ← Eγ) ∈ a

vγ otherwise.

where the | operator is the first-order interpretation function:

Eγ |ϕ = Eγ(ϕ(d1), ...,ϕ(dh)), d1, . . .dh ∈ D.

The operator [·] is deterministic: an action a transforms a
state ϕ to exactly one state ϕ[a].

In order to make more clear the contents of this sub-
section, we introduce some examples of ECA rules. If we
consider the example Dhouse presented above, we can de-
fine the rule presence[presence = 1]\ light← 1, tv← 1 and
presence[presence = 0] \ light ← 0, tv← 0. The first rule
turns on the light and the tv if someone enter the house,
while the second rule turns them off if someone exists.

Notice that we have exploited here the features that are
typical of IE, taking into account the fact that a generic ac-
tion defined by the user can only change actuator configura-
tions.

Moreover, for what concerns the execution semantics,
the assignments that are part of the actions are executed in
parallel. In detail, this means that all the assignments make
use, in their right-hand side, of the values in state ϕ .

As no priority between rules is specified, in the verifi-
cation step we explore all possible orderings. This means
that whenever more than one rule is applicable, one rule is
chosen non-deterministically and executed. In details, our
execution semantic is described in [21] and is very similar
to that one specified in [16].

3.3 IRON

We employ IRON (Integrated Rule on Data) as the underlin-
ing formalism for modelling IE. IRON is presented in [7]:
it is a restricted first-order logic-based language that sup-
ports the categorisation of devices into sets [19], allows the
definition of properties over sets and supports multicast and
broadcast abstractions.

IRON programs are composed of two separate classes
of specification: static and dynamic. We report the IRON
syntax in Figure 1 ; in this grammar, [x] means an optional
occurrence of x, and boldface denotes keywords of the lan-
guage.

The static part is composed of variables declarations
(these variables can be sets, physical and logical devices)
plus global constraints defined over them using restricted
first order formulae. A physical device defines a piece of
hardware that is physically installed in the environment, it
has a type (i.e. integer or boolean) and can be either a sen-
sor or an actuator. A physical device has a name and is
characterised by the syntax node(Id, Id) where the first Id
uniquely identifies the physical node while the second Id
uniquely identifies a sensor/actuator that is installed on the
node. The keyword in can be added in order to specify a list
of sets the physical device belongs to. IRON also supports
the definition of logical devices. A logical device can be set
according to the values observed over different sensors and
actuators, and thus it produces information that would be
impossible to get by considering a single physical device.
A logical sensor/actuator does not specify any node(Id, Id)
keyword but must specify an initial value (line 9−11 of the
grammar).

The static part also includes the declaration of constraints
(specified by the keyword where), i.e. laws that various vari-
ables, devices and sets must always satisfy. Constraints can
be used in order to specify rules that bind variables together.
The use of a constraint has two applications (1) it defines

6 Claudia Vannucchi et al.

1 Program ≡ (Device | Rule | VarDecl)+;
2

3 Device ≡ PhysicalDevice | LogicalDevice | Set;
4

5 PhysicalDevice ≡ physical (sensor|actuator)
6 Type Id [= Exp] node(Id Sep Id) [in id (Sep Id)*]
7 [where BoolExp];
8

9 LogicalDevice ≡ logical (sensor|actuator)
10 Type Id = Exp[in Id (Sep Id)*]
11 [where BoolExp];
12

13 Set ≡ set (sensor | actuator) Type Id;
14

15 Rule ≡ rule Id
16 on Id (Sep Id)* when BoolExp then Action;
17

18 Action ≡ [Id = Exp]+;
19

20 Exp ≡ BoolExp | IntExp;
21

22 BoolExp ≡ CompIntExp | (BoolExp BoolBinaryOp BoolExp) |
23 (BoolUnaryOp BoolExp) | PrimaryBoolExp;
24 CompIntExp ≡ IntExp CompOp IntExp;
25 PrimaryBoolExp ≡ (LRB BoolExp RRB) | BoolConst | Id;
26

27 IntExp ≡ UnaryIntExp | (IntExp IntBinaryOp IntExp);
28 UnaryIntExp ≡ (IntUnaryOp UnaryIntExp)| PrimaryIntExp;
29 PrimaryIntExp ≡ (LRB IntExp RRB) | IntConst | Id;
30

31 Type ≡ integer | boolean;
32

33 IntConst ≡ [-] Digit (Digit)*;
34

35 Digit = [0-9];
36

37 BoolConst ≡ true | false;
38

39 Letter ≡ [A-Za-z];
40

41 Id ≡ Letter(Letter|Digit)*;
42

43 IntBinaryOp ≡ + | - | * | /;
44 BoolBinaryOp ≡ and | or;
45 BoolUnaryOp ≡ not;
46 CompOp ≡ == | != | < | > | <= | >=;
47 IntUnaryOp ≡ + | -;
48

49 Sep ≡ ,;
50 LRB ≡ (;
51 RRB ≡);
52

53 VarDecl ≡ BoolVarDecl | IntVarDecl ;
54 BoolVarDecl ≡ boolean Id [= BoolExp] [where BoolExp];
55 IntVarDecl ≡ integer Id [= IntExp] [where BoolExp];

Fig. 1 The IRON extended BNF

valid states of the system regardless of the rules that are de-
fined, and (2) it is used at run-time to verify whether any
physical device is providing erroneous data. Sets (line 3 of
the grammar) are considered to be logical devices and are
used to group together either sensors or actuators of the same
type (line 13 of the grammar). A programmer can assign val-
ues to a set that contains actuators. This assignment can be
used in order to instruct all the actuators to perform a spe-
cific action. Effectively, a set assignment is an abstraction
of a multicast communication primitive that can be used to
communicate an action to be performed to actuators. A pro-
grammer can read the value of a set of sensors in order to
define events and specify conditions. To this end various set
operators are introduced.

The dynamic part of IRON is composed of ECA rules
that are defined by the programmer. The monitoring and
control actions are specified by using ECA rules. A rule has
an identifier (line 15 of the grammar) and is composed of
three different parts that are on, when and then (line 16 of the
grammar). A list of variables follow the on keyword. When-
ever one of them changes its value, the boolean expression
that follows the keyword when is evaluated. When this ex-
pression is evaluated to true the rule can be applied and the
actions listed after the keyword action can be executed. A
boolean expression (line 22− 25 of the grammar) can in-
clude relational and logical operators, integers, devices and
variables. An action is a list of assignments to variables,
physical actuators and logical devices. Special operators are
used to support the definition of a boolean condition over a
set: all, any, no, one and lone (line 49 of the grammar). All is
a universal operator that allows the definition of conditions
that must be satisfied by all devices belonging to the set. Any
is an existential operator that can be used in order to specify
that at least one of the element of the set must satisfy the
condition. No (one) is used when we need to express that no
(respectively, exactly one) element of the set must verify the
specified condition. lone is used when we need to express
that at most one element of the set must verify the specified
condition.

For the sake of simplicity but without loss of generality,
the model presented in [21] and briefly resumed in Section
3.1 and 3.2 does not include the definition of sets and the
distinction between logical and physical devices as detailed
in IRON. These could be introduced at the cost of additional
notation but do not affect the overall verification strategy we
propose in this paper.

3.4 Weakest preconditions and SMT solvers

In this section we briefly provide the theoretical foundations
for the proposed approach, i.e., predicate transformers and
Satisfiability Modulo Theories (SMT).

Dijkstra introduced the notion of predicate transformer
in [11] and developed a formalism for proving program prop-
erties by focussing on a particular predicate transformer, the
well-known weakest precondition transformer.

Given a statement S of some programming language, the
weakest (liberal) precondition operator transforms a predi-
cate Q to a predicate wp(S,Q), denoting the largest set of
states such that if S is executed at any of these states and it
terminates, then it necessarily does so at a state satisfying Q.

Equations satisfied by wp(S,Q) can be found in [11]. In
particular, the weakest precondition predicate transformer
semantics of an assignment V := E is

wp((V := E),Q) = Q[E/V] .

Symbolic Verification of Event-Condition-Action Rules in Intelligent Environments 7

However, in the context of ECA rules, statements are
multiple assignments a, meaning that each action a may spec-
ify multiple simple assignments that occur simultaneously.
The above rules are not adequate for working out the weak-
est preconditions of a multiple assignment. Let

θ = E1/V1 · · ·En/Vn

stand for the simultaneous substitution of variable Vi with
the expression Ei for 1 ≤ i ≤ n. Gries [14] provides the fol-
lowing rule:

wp((V1 := E1, . . . ,Vn := En),Q) = Q[θ] , (6)

i.e., the weakest precondition of a simultaneous substitution
is a formula Q[θ] in which variables Vi are replaced by Ei,
for all i ∈ {1, . . . ,n}.

Closely related to the problem of program verification,
the topic of Satisfiability Modulo Theories (SMT) [1] is a
growing area of automated deduction with many important
applications, especially in static analysis and system veri-
fication. An SMT problem is the problem of checking the
satisfiability of logical formulae over one or more theories.
Given a certain logical formula, SMT solvers find satisfying
assignments (or report that there are none).

An SMT solver is any software that implements a pro-
cedure for satisfiability modulo some given theory, for ex-
ample the theory of linear arithmetic. This means that log-
ical formulae of this logic are boolean combinations of lin-
ear arithmentic expressions. Typically, SMT solvers support
several fragments of first order logic (FOL). The solution
of an SMT problem is an interpretation for the variables,
functions and predicate symbols that makes the formula true
[9]. For the purposes of our work, as described below, we
are interested in unquantified linear integer arithmetic, i.e.,
boolean combinations of equalities, comparisons and inequal-
ities between linear expressions over integer and boolean
variables.

4 Properties of ECA rules in Intelligent Enviroments

The application of formal verification techniques to ECA-
based programs is essential to support the error-prone activ-
ity of defining ECA rules. We want to avoid “bad” situations
deriving from erroneous definitions of ECA rules that may
result in inefficient or potentially dangerous effects on the
real world.

In this work we focus on the verification of the consis-
tency of a system of ECA rules. This property is defined as
follows.

Definition 4 A system of ECA rules satisfies the consis-
tency property if its rules are neither unused nor redundant
nor incorrect.

In the next subsections we will properly define unusability,
redundancy and incorrectness. We now give a brief overview
of these properties with respect to the literature. All these
properties are application specific, and they are relevant to
guarantee fundamental requirements for IE systems and avoid
possible errors.

According to [7], unusable rules are rules that can never
be applied. The authors categorise them into inapplicable
rules and rules with contradictory premises. A rule that is in-
applicable has a condition that is only true for states that are
outside the domain. A rule with a contradictory premise has
some logical contradiction in its condition and thus it can
never be true. They also define the concept of redundancy,
as similarly done by authors of [6]. They state that state that
redundancy of rules is detected when the condition and the
action of one rule represent a subset of the condition and the
action of the other rule. In oder words, this means that there
are two or more rules in the system whose functionality is
replicated. This could represent an overload in the rules sys-
tem in the best cases, and an undesired repetitive activation
of orders on environment devices. The concept of correct-
ness concerns whether an application’s behaviour meets its
requirement specification, as stated in [13].

All these properties are important requirements to guar-
antee reliability of IE applications. In particular, the user
could have defined a rule in an inappropriate way, and this
error could lead to an undesired behaviour of the system. So
the user can benefit from the identification of inconsistent
rules.

4.1 Unused Rules

Informally, we can say that a generic rule r ∈ R is called un-
used if it can never be applied to any state of the system. This
property characterises those rules whose conditions are only
true for the states that are outside the admissible universe
Φa. For instance, we can consider a temperature physical
sensor t of the type integer whose value belongs to the inter-
val [−80,+60] (e.g. expressed in degree celsius), that is its
value cannot exceed sixty degree and be under minus eighty
degree celsius. The condition (t > 65 or t < −90) is never
met, since it is only valid outside the admissible interval for
t. Another example is given by a rule whose condition is
(t < 5 and t > 20): such a condition is never true since it is
a logical contradiction.

We can formalize the definition of unused rules as fol-
lows:

Definition 5 An ECA rule r ∈ R of the form (4) is called
unused if the condition c is false for every state ϕ ∈Φa.

Since the set Φa is the set of all states in Φ satisfying the
invariants (2) of the system, we can alternatively say that r

8 Claudia Vannucchi et al.

is unused if the logical predicate

P = c∧ inv1∧ inv2∧·· ·∧ invv (7)

is such that P(ϕ) is false for all states ϕ .

4.2 Redundant Rules

In the IE context, redundancy means that there are two or
more rules in the system whose outcome is replicated. As
an example, we consider i1, i2 boolean sensors and o1,o2
boolean actuators. No constraints are defined. The follow-
ing rules are given:

r1 : i1[(i1 = true) and (i2 = f alse)]\o1← f alse

r2 : i1, i2[(i1 = true) and (i2 = f alse)]\o1← f alse

r3 : i1[i1 = true]\o1← f alse

r4 : i1[(i1 = true) and (i2 = f alse)]\o2← f alse.

Looking at them, we can observe that the rule r1 is identical
to rule r2 apart from the variable in the event part. In fact r1
is applicable only if the value of i1 changes, while rule r2 is
applicable also when i2 change its value. We can refer to this
situation by using the term redundancy, i.e., r1 is redundant
w.r.t. r2, in the sense that functionality of r1 is included in r2.
Another case of redundancy happens when a rule subsumes
another rule, that is whenever one rule is applicable, then
the other is also applicable. This is the case of r1 and r3,
since the condition ((i1 = true) and (i2 = f alse)) implies
(i1 = true), and the event and action parts of these rules are
identical. However, rules r1 and r4 are not redundant, since
the action parts are different.

The redundancy property is defined as follows.

Definition 6 Given ri,r j ∈ R such that

ri : ei[ci]/ai

r j : e j[c j]/a j

we say that ri is redundant w.r.t. r j if the following condi-
tions are met:

1. ei ⊆ e j;
2. ci ∧ Inv⇒ c j is valid (where, by slight abuse of nota-

tion, we denote with Inv the conjunction of all invari-
ants); and,

3. for every state ϕ satisfying ci∧ Inv, ϕ[ai] = ϕ[a j].

Condition 1. means that variables in ei belong to e j too. Thus
this condition, if met, guarantees that every time the occur-
rence of an event triggers ri then it triggers r j too. If both
1. and 2. are verified, than when ri is applicable, so is r j. If
the result of applying action ai is equal to the result of ap-
plying a j , i.e., if given a certain state in ci ∧ Inv, the state
that results from the application of ai is always equal to the
state obtained by performing action a j , then ri is redundant

with respect to r j, in the sense that ri is “included” in r j.
A possible system behaviour is represented in figure 2. Ac-
cording to [21], empty circles represent admissible unstable
states, while double circles are admissible stable states. Nat-
ural evolutions of the system, i.e., changes in sensor values,
are represented by dotted arrows, while artificial transitions
(ECA rules) are represented by solid arrows. States with the
same configuration of sensor values are grouped into boxes.

According to the previous definition, the figure could
represent a situation due to redundancy, in the sense that
when r2 is activated, also r1 is applied, and there is a tran-
sition of the system that results from the application of r2
but r1 is not applicable. It could be that r1 is redundant with
respect to r2, but formal verification is needed.

Fig. 2 Example of redundant rules

4.3 Incorrect Rules

In this work we use the term incorrect to refer to a rule r
that can lead to a state whose values are not admissible. For
instance, consider an actuator l for adjusting indoor light
intensity whose integer value belongs to the interval [0,5].
A rule r whose condition is always true for the admissible
states and whose action assigns to l the value 10 is consid-
ered incorrect, since the action always leads the system out-
side of the valid domain. Another rule having the condition
given by (1 ≤ l ≤ 5) and the action l ← l + 2 is correct if
applied for example to a state ϕ having the value 3 for l but
it leads to a non-admissible state if the initial value is l = 4.
We now define this property formally.

Definition 7 Incorrect rules are those ones that can lead to
a state that is outside of Φa.

The term “incorrect” can be interpreted as “potentially in-
correct” in the sense that the definition of incorrectness in-
cludes not only rules that always lead the system to a non-
admissible state, but also rules that if applied to a certain

Symbolic Verification of Event-Condition-Action Rules in Intelligent Environments 9

admissible state, lead to a state that deny the invariants of
the system.

Fig. 3 Example of incorrect rules

In figure 3 for instance the rule r2 leads to a non-admissible
state (represented by a crossed circle).

5 Verification Algorithms

In this section we describe the algorithms that allow the ver-
ification of the properties defined in Section 4. The general
approach is based on the following observations.

According to the model described above, our key insight
is observing that it is possible to perform verification of ECA
rules using the weakest precondition/strongest postcondition
predicate transformers.

Before going into details, we want to emphasize the fact
that the verification algorithms we will describe exploit the
specific structure of ECA rules in IE. In fact, the actions
only deal with output variables and this reduces the size of
the state space in the verification as sensor variables can be
discarded.

5.1 Unused Rules

The detection of unused rules is based on Definition 5. Given
a generic rule r : e[c]/a, we have to check whether the con-
dition c is satisfiable in Φa. This is equivalent to asking a
(sound and complete) SMT solver whether there exists ϕ

such that formula P defined in (7) is satisfiable. If P is sat-
isfiable, the rule r can be used, otherwise it is unused. In
Figure 4 the algorithm is described in detail.

1 let R := {r1,,rk}
2 let I := {inv1,, invv}

3 define Inv =
v∧

j=1

inv j

4 for each i = 1, ...,k:
5 if (ci ∧ Inv) is unsatisfiable:
6 declare ri unused
7 end

Fig. 4 Unused rule verification

Proposition 1 The algorithm in Fig. 4 is correct.

Proof

∀ϕ ∈Φa.ϕ 6|= c (Def. 5)

⇔ ∀ϕ.ϕ |= Inv⇒ ϕ 6|= c (Def. Φa)

⇔ ∀ϕ.ϕ 6|= Inv∧ c (Prop. Log.)

⇔ ¬∃ϕ.ϕ |= Inv∧ c (Duality)

⇔ Inv∧ c is unsatisfiable.

5.2 Redundant Rules

The detection of redundant rules is performed under the fol-
lowing hypothesis on the ECA rule structure: with respect
to the general definition in Section 3.2, if oγ is an integer ac-
tuator, we will consider only expressions Eγ that are linear
functions to integer variables, i.e. of the kind

f : Zh→ Z

where h ∈ N depends on the specific assignment and f is
such that

f (d1, ...,dh) = k1d1 + . . .+ khdh + k0, k0,k1, . . .kh ∈ N.

In order to detect redundant rules, we have to check whether
conditions 1-3 of Definition 6 are verified. The algorithm is
described in Figure 6 and explained below. The algorithm
makes use of the definition given in Figure 5.

ψai,a j (o) =


> if o ↑ ai and o ↑ a j

o = E j if o ↑ ai and (o← E j) ∈ a j

Ei = o if (o← Ei) ∈ ai and o ↑ a j

Ei = E j if (o← Ei) ∈ ai and (o← E j) ∈ a j

Ψ(ai,a j) =
∧

o∈O

ψai,a j (o)

Fig. 5 Preliminary defnition.

1 let R := {r1,,rk}
2 let I := {inv1,, invv}

3 define Inv =
v∧

j=1

inv j

4 for each ordered pair (ri,r j) ∈ R2 such that ri 6= r j and
5 such that ri,r j are usable:
6 if (ei ⊆ e j) and (¬(ci ∧ Inv⇒ c j) is unsatisfiable) and
7 ¬(ci ∧ Inv⇒Ψ(ai,a j)) is unsatisfiable):
8 then declare ri redundant with respect to r j
9 end

Fig. 6 Redundancy verification.

10 Claudia Vannucchi et al.

First of all, we consider all ordered pairs of distinct rules,
i.e. (ri,r j) such that ri 6= r j, among those ones that are us-
able, i.e., not unused according to Definition 5. Rule ri is
redundant with respect to r j if conditions 1-3 of Definition
6 are all verified. This fact is expressed at line 4 in Figure 6.
Condition 1 simply corresponds to ei ⊆ e j.

The property ci∧Inv⇒ c j is checked by asking the solver
whether its negation is satisfiable. This allows us to verify
whether there exists a state in which ci∧ Inv is true but c j is
not and, if this is the case, we can conclude that r j is poten-
tially redundant with respect to ri:

¬(ci∧ Inv⇒ c j) is satisfiable.

We also need to check condition 3 to verify effective re-
dundancy: the action parts of the considered rules must be
in some sense equivalent within the domain c∧ Inv. This
is done by checking the validity of the formula ci ∧ Inv⇒
Ψ(ai,a j), where Ψ(ai,a j) is defined in Fig. 6.

If all conditions (line 6 of the algorithm in Figure 6) are
verified, then the rule ri is declared redundant with respect
to r j . The procedure described above must be performed for
all pairs of rules (line 4) .

Proposition 2 The algorithm in Fig. 6 is correct.

Proof Requirements (1) and (2) of Def. 6 are checked ver-
batim in the algorithm. Thus, it remains to show that the
algorithm is correct w.r.t. requirement (3). Recall require-
ment 3:

∀ϕ |= c∧ Inv, ϕ[ai] = ϕ[a j] .

This can be equivalently rewritten as

∀o ∈ O.o|ϕ[ai] = o|ϕ[a j] (8)

since we require that for all variables in O, their final values
are the same after executing ai and a j.

Equally, the formula checked in the algorithm can be
rewritten appropriately:

ϕ |=Ψ(ai,a j)

⇔ ϕ |=
∧

o∈O

ψai,a j(o)

⇔ ∀o ∈ O.ϕ |= ψai,a j(o)

Thus we need to show that for any o∈O, o|ϕ[ai] = o|ϕ[a j]

is equivalent to ϕ |= ψai,a j(o). We do this by case analysis.
Case o ↑ ai and o ↑ a j. First, observe that by Fig. 6, ψai,a j(o)=
>, thus trivially ϕ |= ψai,a j(o). Since o is not assigned by
neither ai nor a j, this means o|ϕ = o|ϕ[ai] = o|ϕ[a j] and thus
we are done.
Case o ↑ ai and (o←E j)∈ a j. By Fig. 6, ψai,a j(o) is o=E j.
Thus we need to prove that ϕ |= o = E j iff o|ϕ[ai] = o|ϕ[a j].
But since o ↑ ai, it follows that o|ϕ = o|ϕ[ai]. By the fact that

(o← E j) ∈ a j, we can conclude that o|ϕ[a j] = E j|ϕ . We are
done, since ϕ |= o = E j⇔ o|ϕ[a j] = E j|ϕ .
Case (o← Ei) ∈ ai and o ↑ a j. Symmetric to previous case.
Case (o← Ei) ∈ ai and (o← E j) ∈ a j. Now, ψai,a j(o) is
Ei = E j; o|ϕ[ai] = Ei|ϕ ; and o|ϕ[a j] = E j|ϕ . Thus we need
to show that ϕ |= Ei = E j ⇔ Ei|ϕ = E j|ϕ which is true by
construction.

5.3 Incorrect Rules

In order to verify the correctness of the generic rule r : e[c]/a
according to definition 7, we compute the weakest precon-
dition PInv for the set of invariants, i.e., the formula

PInv = wp(a, Inv) .

In order to declare the rule r correct, the set of states where
the rule may apply must be contained into the set of states
PInv, for otherwise there would exist a state where the rule
applies, but from which we can reach a state outside those
satisfying the invariants. Therefore, we translate this prob-
lem into the following SMT instance:

(c∧ Inv)∧¬PInv

and we verify that this is not satisfiable. If the solver answers
that the proposition is satisfiable, then we conclude that the
rule r is incorrect, otherwise we declare that r is correct. The
algorithm is described in figure 7.

1 let R := {r1,,rk}
2 let I := {inv1,, invv}

3 define Inv =
v∧

j=1

inv j

4 for each i = 1, ...,k:
5 if (ci ∧ Inv)∧¬wp(a, Inv) is satisfiable:
6 declare ri incorrect
7 end

Fig. 7 Incorrectness verification

Lemma 1 Let a be an assignment as defined in (5), and let
ϕ be a state. Then

ϕ |= wp(a,P) ⇔ ϕ[a] |= P .

Proof By definition, ϕ |= wp(a,P) iff for every state ϕ ′ that
results by a terminating execution of a starting at ϕ , it is
the case that ϕ ′ |= P. However, as argued in Section 3.2,
the transition relation of any assignment a (the operator [·])
is deterministic. In addition, assignments that involve linear
functions over integers are always terminating. Therefore,
ϕ |= wp(a,P) iff ϕ[a] |= P.

Proposition 3 The algorithm in Fig. 7 is correct.

Symbolic Verification of Event-Condition-Action Rules in Intelligent Environments 11

Fig. 8 ECA tool

Proof

∃ϕ ∈Φa.ϕ |= c and ϕ[a] /∈Φa (Def. 7)

⇔ ∃ϕ.ϕ |= Inv∧ c and ϕ[a] 6|= Inv (Def. Φa)

e⇔ ∃ϕ.ϕ |= Inv∧ c and ϕ 6|= wp(a, Inv) (Lem. 1)

⇔ ∃ϕ.ϕ |= Inv∧ c∧¬wp(a, Inv) (Prop. Log.)

⇔ Inv∧ c∧¬wp(a, Inv) is satisfiable

6 Evaluation

6.1 The prototype tool

We have implemented a tool to evaluate our approach. We
have released the tool open source1. Figure 8 depicts the
graphical interface of the tool. Users only need to select in-
put IRON files and then the tool reports the results of the
analysis.

The tool makes use of Z3 [8], a high-performance SMT
Solver implemented in C++ and developed at Microsoft Re-
search. Z3 is released under the Microsoft Research Licence
Agreement (MSR-LA) license2. Application Programming
Interfaces (APIs) are available in C, C++, Java and others.
Out tool is developed entirely in Java and we make heavy
use of the Java API. To implement the algorithms described
in Section 5 we consider the logic “QF_LIA” (quantifier-free
linear arithmetic).

The verification proceeds in the following order: firstly,
unused rules are detected, then among usable rules we look
for incorrect rules, finally we check redundancy.

In the next section we describe four case studies taken
from the literature and we present performance results. We

1 it is available at https://gitlab.com/MichelangeloDiamanti/ecaProject
2 http://research.microsoft.com/en-us/um/redmond/projects/z3/z3-

commercial-license.pdf

report only the key parts of each example and we refer to
the files available on-line for the full source and additional
details of each example.

6.2 Case study 1 (CS1)

The first case study models a smart home and it is an ex-
tension of the one described in [21]. In the simple scenario
represented in figure 9 the house is composed of two rooms:
the living room (L) and the bedroom (B). The entrance is in
the living room and the bedroom is accessible from the liv-
ing room. Both rooms contain a motion sensor (m), a light
sensor (l), a light switch (s) to turn on and off the light man-
ually, a light actuator (a) to automatically turn on and off the
lamp.

Fig. 9 Floormap.

We assume that only one person has access to the house
at any given time. In figure 10 the invariants of the system
are declared at lines 2− 3. The first constraint states that
the person cannot stay in both rooms simultaneously. The
second one states that light actuators cannot be both on at
the same time. As a consequence, according to the first con-
straint, a state having both light actuators on is not admissi-
ble. At the end of the verification procedure, among the rules
reported in figure 10, the rule r5 is declared unused, since
the condition is never met, r1 is incorrect, since it could lead
outside of the domain if applied to a state having Ba := true
(a possible correct version of r1 is r1c). Rules r11 and r13
are incorrect, since they lead the system to a non admissible
state. Among usable and correct rules, the verification pro-
cedure declares rule r7 redundant with respect to r2, rules
r4 and r19 are mutually redundant, rule r6 is redundant with
respect to r2,r7,r8, the rule r8 is redundant with respect to
r2,r6,r7.

6.3 Case study 2 (CS2)

The second case study has been adapted from [16], where
a light control subsystem in a smart home for senior hous-
ing is considered. The number of devices is greater than that
of CS1, and also the dynamic is more complex. Indeed, by
using motion and pressure sensors (Mtn,Sl p respectively),
the system attempts to reduce energy consumption by turn-
ing off the lights in unoccupied rooms or if the occupant is

12 Claudia Vannucchi et al.

1 Bl bool in
2 Bm bool in
3 Bs bool in
4 Ll bool in
5 Lm bool in
6 Ls bool in
7 Ba bool out
8 La bool out
9

10 # Invariants
11 [!(Lm & Bm)]
12 [!(La & Ba)]
13

14 # ECA rules
15 r1: Lm [Lm == true & Ll == false] La:=true
16 r1c: Lm [Lm == true & Ll == false & Ba == false] La:=

true
17 r2: Bm [Lm == false & Bm == true & Bl == true] La:=

false, Ba:= true
18 r4: Lm [Lm == false & La == true] La:=false
19 r5: Lm,Bm [Bm == true & Lm == true] La:=true
20 r6: Bm [Lm == false & Bm == true & Bl == true & La ==

true] La:= false, Ba:= true
21 r7: Bm [Lm == false & Bm == true & Bl == true & Ba ==

false] La:= false, Ba:= true
22 r8: Bm [Lm == false & Bm == true & Bl == true & La ==

true & Ba == false] La:= false, Ba:= true
23 r9: Bm [Bm == false & Lm == true & Ll == false] Ba:=

true, La:= true
24 r11: Lm [Lm == false & La == true] Ba:= La
25 r14: Lm [Lm == false & Ba == true] La:= Ba
26 r19: Lm [Lm == false & La == true] La := !La

Fig. 10 (CS1) ECA rules for the lighting control system in a simple
scenario.

asleep, and it also provides automatic adjustment for indoor
light intensity based on an outdoor light sensor (ExtLgt).

We made some changes in the admissible values for
lgtsT mr and in the rules involving this variable (see line 3
in figure 11). Indeed, our tool automatically fixes upper and
lower bounds (we choose the values of +127,−128 respec-
tively) for those integer variables that have no limited values.
We also defined some additional rules with respect to the
original version of the case study in order to have a greater
number of rules to be analysed.

We report in figure 11 a subset of the rules analysed.
The verification procedure declares r14 as unused, rule r2
as potentially incorrect (since there is no upper bound for
lgtsT mr, but for instance rule r2c is a possible correct ver-
sion of r2). Finally, rule r11 is redundant with respect to r5.

6.4 Case study 3 (CS3)

The case study we present in this subsection has been de-
veloped starting from the example presented in [7]. The dy-
namic of a fire alarm system composed of temperature sen-
sors, smoke detectors and sprinkler actuators is described
through ECA rules. When a temperature sensor reads a value
that exceeds a specified threshold and a smoke sensor de-
tects smoke all the sprinklers are activated. Among the rules
defined in figure 12, rules r7,r8,r11 are declared unused,
there are no incorrect rules and for what concerns redun-

1 Mtn bool in
2 ExtLgt int in
3 Slp bool in
4 lgtsTmr int out
5 intLgts int out
6 Lgts bool out
7 ChkExtLgt bool out
8 ChkMtn bool out
9 ChkSlp bool out

10

11 # Invariants
12 [ExtLgt >= 0 & ExtLgt <= 10]
13 [lgtsTmr >= 0 & lgtsTmr <= 120]
14

15 # ECA rules
16 r2: Mtn, ExtLgt, Slp [lgtsTmr >= 1 & Mtn == false]

lgtsTmr:=lgtsTmr+1
17 r2c: Mtn, ExtLgt, Slp [lgtsTmr >= 1 & Mtn == false &

lgtsTmr < 120] lgtsTmr:=lgtsTmr+1
18 r5: ChkExtLgt [ChkExtLgt == true & Lgts == false &

ExtLgt <= 5] Lgts:=true
19 r11: ChkExtLgt [ChkExtLgt == true & Lgts == false &

ExtLgt <= 4] Lgts:=true

Fig. 11 (CS2) ECA rules for the light control system of a smart home.

1 temperature int in
2 smoke bool in
3 presenceLiving bool in
4 sprinkler bool out
5 heating bool out
6 tv bool out
7 light bool out
8 tempAlarm bool out
9 smokeAlarm bool out

10

11 # Invariants
12 [temperature > -80 & temperature < 60]
13

14 # ECA rules
15 r1: temperature [temperature < 16] heating:=true
16 r2: temperature [temperature > 18] heating:=false
17 r7: temperature [temperature < 30 & temperature > 30]

tempAlarm:=true
18 r8: temperature [temperature >= 1000] tempAlarm:=true
19 r9: temperature [temperature == 14] heating:=true
20 r10: temperature [temperature > 20] heating:=false
21 r11: temperature [temperature < 15 & temperature > 50]

tempAlarm:=true

Fig. 12 (CS3) ECA rules for a fire alarm system.

dancy, r9 is redundant with respect to r1 and r10 is redun-
dant with respect to r2.

6.5 Case study 4 (CS4)

The fourth case study consists of a Wireless Sensor and Ac-
tuator Network (WSAN) composed of five devices for ir-
rigation management system and controlled use of fertiliz-
ers. In detail the network is composed of a a rain sensor r
to sense precipitation, a water valve actuator w, a fertilizer
valve actuator f , a timer sensor t and a timer actuator c for
the sprinkler. The property analysis gave the following re-
sults: r5,r8,r9 are declared unused, r2,r4,r7 are declared
incorrect (for instance r2c is a possible correct version of
r2), and there are no redundant rules.

Symbolic Verification of Event-Condition-Action Rules in Intelligent Environments 13

1 r bool in #rain
2 t int in #temperature
3 w bool out #water
4 f bool out #fertilizer
5 c int out #counter
6

7 # Invariants
8 [(!f | w)]
9 [!(r & w)]

10 [c >= 0 & c < 120]
11 [t >= 0 & t < 120]
12

13 # ECA rules
14 r2: t,w [t-c > 2 & w == true] w:=false,c:=t
15 r2c: t,w [t-c > 2 & w == true & f == false] w:=false,c

:=t
16 r4: t,w [t-c > 2 & w == true]w:=false
17 r7: t,w [t-c>8] w:=false, c:=t+1
18 r8: r [r==true & w==true]w:=false
19 r9: r [r==true & w==true] c:=t+1

Fig. 13 (CS4) ECA rules for an automatic irrigation system.

In figure 13 we define the invariants of the system and a
set of ECA rules.

6.6 Results

In this section we present the results of the analysis of the
case studies introduced in the previous subsections.

In table 1 we report some information about each prob-
lem and its results. In particular, we report the universe car-
dinality |Φ | and the dimension of the admissible state space
|Φa|. We also give the number of the analysed ECA rules
Ntot , and the number of unsed, incorrect and redundant rules
(denoted with Nun,Ninc,Nred) declared by the tool. Further-
more, we measure the performance of the verification pro-
cedure in terms of time (expressed in milliseconds). The in-
dicators Tun,Tinc and Tred refer, respectively, to the duration
time of the verification for unused, incorrect and redundant
rules, and Ttot is the duration time of the entire procedure.

All the experiments have been performed on an Intel
Core i7-4700MQ CPU @ 3.4GHz with 8GB of RAM run-
ning Debian Linux.

7 Discussion and Conclusion

We evaluated our approach by using some case studies taken
from existing works in the area.

The results in Table 1 show that our approach allows
for the verification of non-trivial examples that include both
boolean and integer variables. The table reports the size of
the examples, showing that a state space of 230 and a num-
ber of rules comprised between 12 and 20 can be verified
in approximately 1 second with our approach. The results
also show that the running time does not seem to be affected
by the size of the state space (compare CS1 with CS2), but
rather by the number of rules. In particular, the verification

of redundancy is the most computationally expensive step,
as the verification happens for each pair of rules, and thus it
requires a number of iterations that is quadratic in the num-
ber of rules to be checked.

At a higher level, in this paper we have shown that tech-
niques for software verification can be applied to the veri-
fication of ECA rules. We have identified key properties of
ECA rules from a detailed analysis of related literature and
we have implemented our algorithms in a tool that is pub-
licly available.

In particular, we consider the domain-specific language
IRON that can be employed both by developers and by end-
users to program and configure an ECA rule-based system
for IE. Focussing on IRON allows us to develop efficient
techniques and our main contribution is showing that ver-
ification methods based on SMT solvers efficiently verify
ECA-rule based systems specified in IRON language. With
respect to the state of the art of methods applied to the ver-
ification of sensor/actuators applications, SMT solvers have
never be applied.

Furthermore, we provide a user-friendly tool that has
been implemented to test and validate our approach, and that
can be used by developers of rule-based applications for IE
for modelling and formally analysing their applications. In
particular, by using formal methods, errors can be prevented
from being introduced in the system in an early stage of de-
velopment and thus we contribute to guarantee reliability of
IE systems.

We are currently working at including non-linear expres-
sions and we are also investigating additional properties of
ECA rules, such as non-determinism, non-confluence and
termination.

References

1. Barrett, C., Stump, A., Tinelli, C., Boehme, S., Cok, D., Deharbe,
D., Dutertre, B., Fontaine, P., Ganesh, V., Griggio, A., Grundy, J.,
Jackson, P., Oliveras, A., KrstiÄĞ, S., Moskal, M., Moura, L.D.,
Sebastiani, R., Cok, T.D., Hoenicke, J.: C.: The SMT-LIB Stan-
dard: Version 2.0. Tech. rep., Department of Computer Science,
The University of Iowa (2010)

2. Berndtsson, M., Mellin, J.: ECA Rules, pp. 959–
960. Springer US, Boston, MA (2009). DOI
10.1007/978-0-387-39940-9_504. URL http://dx.doi.
org/10.1007/978-0-387-39940-9_504

3. Beyer, D., Stahlbauer, A.: BDD-based software verification. In-
ternational Journal on Software Tools for Technology Transfer
16(5), 507–518 (2014). DOI 10.1007/s10009-014-0334-1. URL
http://dx.doi.org/10.1007/s10009-014-0334-1

4. Beyer, D., Wendler, P.: Algorithms for software model checking:
Predicate abstraction vs. impact. In: 2012 Formal Methods in
Computer-Aided Design (FMCAD), pp. 106–113 (2012)

5. Bryant, R.E.: Graph-based algorithms for boolean function ma-
nipulation. IEEE Trans. Comput. 35(8), 677–691 (1986). DOI
10.1109/TC.1986.1676819. URL http://dx.doi.org/10.
1109/TC.1986.1676819

14 Claudia Vannucchi et al.

Table 1 Synthesis of the results.

State Space ECA rules Verification Time (ms)
Case study |Φ | |Φa| Ntot Nun Ninc Nred Ttot Tun Tinc Tred
CS1 28 9 ·24 20 1 7 5 1297 197 331 769
CS2 230 1331 ·214 17 1 1 1 1040 155 240 645
CS3 216 139 ·28 14 3 0 2 827 113 177 537
CS4 219 2252̇8 17 3 6 0 1085 256 279 550

6. Cano, J., Delaval, G., Rutten, E.: Coordination Models and Lan-
guages: 16th IFIP WG 6.1 International Conference, COORDI-
NATION 2014, Held as Part of the 9th International Federated
Conferences on Distributed Computing Techniques, DisCoTec
2014, Berlin, Germany, June 3-5, 2014, Proceedings, chap. Co-
ordination of ECA Rules by Verification and Control, pp. 33–
48. Springer Berlin Heidelberg, Berlin, Heidelberg (2014). DOI
10.1007/978-3-662-43376-8_3. URL http://dx.doi.org/
10.1007/978-3-662-43376-8_3

7. Corradini, F., Culmone, R., Mostarda, L., Tesei, L., Raimondi, F.:
A Constrained ECA Language Supporting Formal Verification of
WSNs. In: 29th IEEE International Conference on Advanced In-
formation Networking and Applications Workshops, AINA 2015
Workshops, Gwangju, South Korea, March 24-27, 2015, pp. 187–
192 (2015). DOI 10.1109/WAINA.2015.109. URL http://
dx.doi.org/10.1109/WAINA.2015.109

8. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Pro-
ceedings of the Theory and Practice of Software, 14th Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’08/ETAPS’08, pp. 337–340.
Springer-Verlag, Berlin, Heidelberg (2008). URL http://dl.
acm.org/citation.cfm?id=1792734.1792766

9. De Moura, L., Bjørner, N.: Satisfiability modulo theories: An ap-
petizer. In: Brazilian Symposium on Formal Methods, pp. 23–36.
Springer (2009)

10. Delaval, G., Rutten, E., Marchand, H.: Integrating discrete con-
troller synthesis into a reactive programming language compiler.
Discrete Event Dynamic Systems 23(4), 385–418 (2013). DOI
10.1007/s10626-013-0163-5. URL http://dx.doi.org/
10.1007/s10626-013-0163-5

11. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM 18(8), 453–457 (1975).
DOI 10.1145/360933.360975. URL http://doi.acm.org/
10.1145/360933.360975

12. Dumas, M., Hofstede, A.H.M.t.: UML Activity Diagrams as a
Workflow Specification Language. In: Proceedings of the 4th
International Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, pp. 76–90. Springer-
Verlag, London, UK (2001). URL http://dl.acm.org/
citation.cfm?id=647245.719456

13. Ericsson, A.: Enabling tool support for formal analysis of eca
rules. Ph.D. thesis, University of Skövde (2009)

14. Gries, D.: The Science of Programming. Monographs in Com-
puter Science. Springer New York (1989)

15. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An ontology-based
context model in intelligent environments. In: Proceedings of
communication networks and distributed systems modeling and
simulation conference, vol. 2004, pp. 270–275. San Diego, CA,
USA. (2004)

16. Jin, X., Lembachar, Y., Ciardo, G.: Symbolic verification of ECA
rules. In: Joint Proceedings of the International Workshop on Petri
Nets and Software Engineering (PNSE’13) and the International
Workshop on Modeling and Business Environments (ModBE’13),
Milano, Italy, June 24 - 25, 2013, pp. 41–59 (2013). URL http:
//ceur-ws.org/Vol-989/paper17.pdf

17. Lee, W.s., Lee, S.y., Lee, K.c.: Conflict detection and resolution
method in WS-ECA framework. In: Advanced Communication

Technology, The 9th International Conference on, vol. 1, pp. 786–
791. IEEE (2007)

18. Marchand, H., Bournai, P., Borgne, M.L., Guernic, P.L.: Synthe-
sis of discrete-event controllers based on the signal environment.
Discrete Event Dynamic Systems 10(4), 325–346 (2000). DOI 10.
1023/A:1008311720696. URL http://dx.doi.org/10.
1023/A:1008311720696

19. Mostarda, L., Marinovic, S., Dulay, N.: Distributed Orchestration
of Pervasive Services. In: 24th IEEE IAINA 2010, Perth, Aus-
tralia, 20-13 April 2010, pp. 166–173 (2010)

20. Sun, Y., Wang, X., Luo, H., Li, X.: Conflict detection scheme
based on formal rule model for smart building systems. IEEE
Transactions on Human-Machine Systems 45(2), 215–227 (2015).
DOI 10.1109/THMS.2014.2364613

21. Vannucchi, C., Cacciagrano, D.R., Corradini, F., Culmone, R.,
Mostarda, L., Raimondi, F., Tesei, L.: A Formal Model for Event-
Condition-Action Rules in Intelligent Environments. In: Proceed-
ings of the 11th International Conference on Intelligent Environ-
ments, pp. 56–65 (2016). DOI 10.3233/978-1-61499-690-3-56

22. Whitmore, A., Agarwal, A., Da Xu, L.: The internet of things—a
survey of topics and trends. Information Systems Frontiers 17(2),
261–274 (2015). DOI 10.1007/s10796-014-9489-2. URL http:
//dx.doi.org/10.1007/s10796-014-9489-2

23. Yoon, J.P.: Techniques for data and rule validation in knowledge
based systems. In: Computer Assurance, 1989. COMPASS ’89,
’Systems Integrity, Software Safety and Process Security’, Pro-
ceedings of the Fourth Annual Conference on, pp. 62–70 (1989).
DOI 10.1109/CMPASS.1989.76042

24. Zhang, J., Moyne, J., Tilbury, D.: Verification of ECA rule based
management and control systems. In: 2008 IEEE International
Conference on Automation Science and Engineering, pp. 1–7
(2008). DOI 10.1109/COASE.2008.4626431

