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Abstract

The putative singular set S in space-time of a suitable weak solution u of the 3D Navier–Stokes equations has box-counting

dimension no greater than 5/3. This allows one to prove that almost all trajectories avoid S. Moreover, for each point x that does

not belong to S, one can find a neighbourhood U of x such that the function u is continuous on U and space derivatives of u are

bounded on every compact subset of U . It follows that almost all Lagrangian trajectories corresponding to u are C1 functions of

time (Robinson & Sadowski, Nonlinearity 2009). We recall the main idea of the proof, give examples that clarify in what sense the

uniqueness of trajectories is considered, and make some comments on how this result might be improved.
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1. Introduction

We consider the three-dimensional Navier–Stokes equations for an incompressible fluid:

ut −Δu+ u · ∇u+∇p = 0, div u = 0 (1)

with an initial condition u0. The domain of the flow, denoted Ω, is a bounded domain with a smooth boundary and

we assume homogeneous boundary conditions: u = 0 on ∂Ω.

In what follows by a weak solution of (1) we mean a function u ∈ L∞(0, T ;V ) ∩ L2(0, T ;V 1) that satisfies (1)

in the distributional sense. If, in addition, u ∈ L∞(0, T ;V 1) ∩ L2(0, T ;V 2) then we call u the strong solution of the

Navier–Stokes equations. Here V k is the completion of smooth divergence-free functions with compact support in

the norm of the Sobolev space Hk.

The existence of global-in-time weak solutions was established in the famous papers of Leray [1] and Hopf [2].

Strong solutions of the Navier–Stokes equations are unique but their existence has been so far proved only locally in
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time. On the other hand, weak solutions of (1) exist globally in time but not much is known about their regularity (see

for example [3]). In particular, they are not known to be unique nor to satisfy the energy equality. Such putative lack

of desirable physical properties of weak solutions brings about the question whether weak solutions are sufficiently

regular for the construction of the corresponding Lagrangian description of the flow. More precisely, one may ask

whether given a weak solution u we can find for each x0 ∈ Ω a corresponding Lagrangian trajectory ξx0(·) of a

particle that at time t = 0 could be found at the point x0. In the classical formulation we would look for a continuously

differentiable function ξx0
: [0, T ]→ Ω solving the Cauchy problem

{
ξ̇x0

(t) = u(ξx0
(t), t)

ξ(0) = x0

However, dealing with a weak solution we need to resort to a less restrictive formulation. Therefore, we look for

an absolutely continuous function 1 satisfying:

ξx0(t) = x0 +

∫ t

0

u(ξx0(s), s) ds. (2)

for all t ∈ [0, T ]. When ξx0
(t) is continuously differentiable then this integral equation is equivalent to the original

ODE. But when ξ is only an absolutely continuous function satisfying (2) then ξ is differentiable for almost all t and

the equation

ξ̇x0
(t) = u (ξx0

(t) , t)

does not have to be satisfied for all t but only for almost all. As a result solutions of (2) may represent a trajectory of

a particle that rapidly changes the direction of its motion, as shown in Fig 1 below.
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Fig. 1

The existence of absolutely continuous particle trajectories corresponding to a weak solution of the Navier–Stokes

equations was established by Foias, Guillopé and Temam. They showed in [4] that for each weak solution u there

exists at least one volume-preserving mapping

Φ : Ω× [0, T ]→ Ω

such that the Lagrangian trajectories are given by

ξx0
(t) = Φ(x0, t) for every x0 ∈ Ω.

An important ingredient of the proof is the fact that one can show that any weak solution u is also an element of

L1(0, T ;L∞(Ω̄)), see [5] or [6]. Since this result can be extended to treat the whole space, one can also obtain a

volume-preserving flow map for a weak solution defined on R3, provided that one replaces the Galerkin procedure

used in [4] by an argument based on mollification (cf. Dashti & Robinson [7]).

The result obtained by Foias et al. may be interpreted in the following way: given a weak solution, one can choose

a family of absolutely continuous trajectories that fit well together to form a measure preserving flow. Is this choice

of trajectories unique? The results of DiPerna and Lions [8] guarantee that Φ is indeed the unique volume-preserving

mapping up to equality outside a null set of initial data. In other words, if Ψ: Ω× [0, T ]→ Ω is a volume-preserving

mapping such that ξx0
(t) = Ψ (x0, t) is a Lagrangian trajectory for each x0 ∈ Ω then

Ψ(x0, t) = Φ (x0, t) ∀ t ∈ [0, T ] , for almost every x0 ∈ Ω.

1A function f : [0, T ] → Rn is absolutely continuous if for each ε > 0 there is δ > 0 such that if [τk, tk], k = 1, 2, ..., N is a family of

disjoint subintervals of [0, T ] and
∑N

k=1 |tk − τk| < δ then
∑N

k=1 |f(tk)− f(τk)| < ε.
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However, such uniqueness of the mapping Φ does not guarantee almost everywhere uniqueness of trajectories (we

illustrate this with a simple example in the next section). Therefore one can ask further questions about the regularity

of Lagrangian trajectories given by the mapping Φ corresponding to a weak solution u:

• Are the trajectories differentiable?

• Do they intersect?

• Are they unique?

If one considers just any weak solution u of the Navier–Stokes equations then to our best knowledge the problems

stated above are open. Thus in what follows we will restrict our investigation to a class of global-in-time weak solu-

tions constructed by Caffarelli, Kohn and Nirenberg in [9]. For such weak solutions called ’suitable weak solutions’

Caffarelli et. al. proved bounds on the size of the set of space-time singularities. Using these bounds we demonstrate

that in fact almost everywhere uniqueness of the trajectories holds, and that these trajectories are not only absolutely

continuous but continuously differentiable (with some additional smoothness).

2. Main problem

To answer the questions posed at the end of Introduction we need to work with a concrete representative of a

function u ∈ Lp rather than with the whole class of functions agreeing almost everywhere. The following example

makes this clear. Suppose that we want to solve the Cauchy problem:

ẋ(t) = f(x, t) x(0) = x0

in the sense defined before: for a given x ∈ Ω we look for an absolutely continuous function x satisfying

x(t) = x0 +

∫ t

0

f(x(s), s) ds

for all t ∈ [0, T ].
If f(x) ≡ 1 then all trajectories are smooth and they do not intersect at all (Fig 2a).

However, if f is given by

f(x) =

{
1 if x �= 0
0 if x = 0

then for all x < 0 the Cauchy problem has an infinite number of solutions since every trajectory that reaches the x = 0
axis can stay on this axis as long as one wishes (yielding a piecewise smooth and absolutely continuous trajectory),

as shown in Fig 2b. Therefore the answers to the questions of the uniqueness and regularity of particular trajectories

depend on the choice of a representative of a function f ∈ Lp. This is why a different level of abstraction is needed

here than for example in the seminal paper by Di Perna and Lions [8] (see also Cipriano and Cruzeiro [10] or Chemin
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and Lerner [11]).
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Fig. 2a Fig. 2b

In the light of the example just considered it is quite natural to expect that in order to investigate the ‘classical’

uniqueness of particular trajectories we will need to make use of some ‘classical’ fine properties of a function u such

as continuity or differentiability. However, weak solutions are not known to enjoy such properties on their whole

domain. Nevertheless, any weak solution (has a representative that) is a smooth function of x for almost all times

except for a small set T of singular times where the norm ‖u‖V 1 becomes locally unbounded (this result goes back to

Leray). The set T has box-counting dimension no greater than a half (see for example Robinson & Sadowski [12]),

but this fact alone is still not sufficient for our purpose. We need to consider even more regular solutions for which we

can show that the set of singular points in space-time is small (in the sense of small box-counting dimension).

Definition. We say that a weak solution u is suitable if the corresponding pressure p belongs to L5/3((0, T )× Ω)
and u satisfies local energy inequality.

Such weak solutions (global in time) can be constructed though it is not clear whether they can be obtained in a

classical way as the limit of Galerkin approximations. Let us now clarify the definitions of singular and regular points

in space-time.

Definition. A point z = (x, t) ∈ Ω× (0, T ) is called regular if u is continuous in some open neighbourhood of z.

A point is called singular if it is not regular. A set of all singular points in space-time we denote by S .

In their famous paper [9] Caffarelli, Kohn and Nirenberg (following the ideas of Scheffer in [13]) proved that for a

suitable weak solution the singular set S in space-time has the Hausdorff dimension no greater than 1 (in fact they used

a slightly different definition of singular points; the definition used here is due to Ladyzhenskaya and Seregin [14];

see also Lin [15]). It can also be easily deduced from their proof that the box-counting dimension of S is no greater

than 5/3 (see [18]; a better result was obtained by Kukavica [16], but the bound 5/3 is enough for our purpose.) Using

this fact one can prove the following theorem ([18], see also Aizenman [17] on avoiding sets of small box-counting

dimension).

Theorem. Let u be a suitable weak solution of the Navier–Stokes equations (1) with u0 ∈ V 1/2. Then almost all

Lagrangian trajectories avoid the singular set S (i.e. they do not intersect S for all t ≥ 0).

Let us sketch the proof following the idea from Robinson and Sadowski [19]. For each natural N we divide an

interval [0, T ] into N subintervals [tk, tk+1] of equal length. Define

δk =

∫ tk+1

tk

‖u(s)‖∞ ds

for k = 1, 2, ..., N . The numbers δk bound from above the maximal distance that a particle can travel between time

tk and tk+1. Let us denote by ΠS the projection of the singular set S onto R3:

ΠS = {x ∈ R3 : (x, t) ∈ S for some t ∈ [0;T ]}.
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Moreover for k = 1, 2, ..., N we denote by Oδk the δk-neighbourhood of ΠS:

Oδk = {x ∈ Ω : |x− s| ≤ δk for some s ∈ ΠS}.

It is easy to see that if at time tk a particle is not in the set Oδk then the particle avoids the set ΠS in the time interval

[tk, tk+1].
We can now use the fact that if a set X ⊂ Rn has box-counting dimension d, then for any d′ > d there exists

a constant C > 0 such that for all sufficiently small ε > 0 the measure of ε-neighbourhood of X can be bounded

above by Cεn−d′
(see for example Falconer [20]). Therefore since the projection of S onto R3 also has box-counting

dimension no greater than 5/3 we can take d′ = 9/5 > 5/3 and deduce that for sufficiently small δk the measure of

the δk-neighbourhood of S is bounded above by

μ(Oδk) ≤ Cδ
6/5
k .

Since the flow is measure preserving the measure of the set of all initial conditions giving rise to a trajectory intersect-

ing the set S is no greater than

N∑
k=1

μ(Oδk) ≤ C
N∑

k=1

δ
6/5
k

≤ Cmax
k

δ
1/5
k

N∑
k=1

δk

≤ Cmax
k

δ
1/5
k ‖u‖L1(0,T,L∞).

As N tends to infinity the RHS of the above inequality tends to zero. It follows that almost all trajectories avoid the

singular set S so they consist only of regular points.

It is noteworthy that this portion of the argument shows, in fact, that any set with box-counting dimension strictly

smaller than 2 would be avoided by almost every trajectory. This suggests strongly that one might be able to limit

further the set of initial conditions that intersect S , by restricting their dimension (or Hausdorff measure).

We can now use standard results about the regularity of u in a neighbourhood of regular points (see for example

Serrin [21] and Skalak & Kucera [22]): for each regular point z0 = (x0, t0) we can find r > 0 such that

• u(·, t) is smooth on

Br(x0) = {x ∈ Ω : |x− x0| ≤ r}
for all t such that |t− t0| < r2

• for every multi-index γ the derivative Dγ
xu is continuous in

Br(z) = {z ∈ Ω× [0, T ] : |z − z0| ≤ r}.

It follows now that the trajectories are C1 functions of time. In fact one can show that in a neighbourhood of a

regular point Dγ
xu ∈ C0,β for all 0 < β < 1/2. Better results are known for the whole space, in which case β ∈ (0, 1).

It is not clear whether these results can be improved. In particular, it is an open problem whether or not almost all

Lagrangian trajectories are C2 functions of time.
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[4] Foias C, Guillopé C, Temam R. Lagrangian representation of a flow. J. Diff. Eq. 57 (1985): 440–449.
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