
 Procedia Computer Science 52 (2015) 996 – 1003

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2015.05.092

ScienceDirect
Available online at www.sciencedirect.com

2nd International Workshop on Computational Antifragility and Antifragile Engineering
(ANTIFRAGILE 2015)

A framework for trustworthiness assessment

based on fidelity in cyber and physical domains

Vincenzo De Florioa,∗, Giuseppe Primierob

aMOSAIC, University of Antwerp & iMinds Research Institute, 2020 Antwerpen, Belgium
bDepartment of Computer Science, Middlesex University, London, UK

Abstract

We introduce a method for the assessment of trust for n-open systems based on a measurement of fidelity and present a prototypical

implementation of a complaint architecture. We construct a MAPE loop which monitors the compliance between corresponding

figures of interest in cyber- and physical domains; derive measures of the system’s trustworthiness; and use them to plan and

execute actions aiming at guaranteeing system safety and resilience. We conclude with a view on our future work.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Fidelity; trustworthiness; cyber-physical systems; n-open systems; resilience.

1. Introduction

Fidelity of an open system can be interpreted as the compliance between corresponding figures of interest in

two separate but communicating domains, see1. In cyber-physical systems, perfect fidelity means that actions in

the physical domain have a well-defined and stable counterpart in the cyber domain, and vice-versa. This is an

ideal state, as no concrete cyber-physical system may guarantee at all times a perfect correspondence between its

domains of action. In practice, fidelity is affected by circumstances that let the system drift from the optimal case.

Our stance is that, by observing the characteristics of said drifting, we may introduce a fine-grained characterisation

of the quality of system trustworthiness. To this aim, we introduce a practical method for the assessment of trust

based on the measurement of fidelity in computational systems, including cyber-physical ones. As a way to measure

fidelity drifting we propose to adopt and extend the approach described in2,3. We propose to make use of the accrued

information to assess the characteristics of drifting in fidelity; we derive from it dynamic properties of both user and

machine; evaluate it in terms of system’s trustworthiness and use it to execute safety-assurance actions. This generates

a trust-induced MAPE-loop.

∗ Corresponding author. Tel.: +32-3-2653905 ; fax: +32-3-2653777.

E-mail address: vincenzo.deflorio@gmail.com ().

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.092&domain=pdf

997 Vincenzo De Florio and Giuseppe Primiero / Procedia Computer Science 52 (2015) 996 – 1003

The paper is structured as follows. In Sect. 2 we describe the conceptual model of system fidelity; in Sect. 3 the

model for fidelity evaluation is implemented in an architecture for a cyber-physical system; in Sect. 4 we build the

link to trustworthiness evaluation; finally, in Sect. 5 we conclude by drawing some observation and describing further

lines of research.

2. Conceptual understanding of System Fidelity

In the present section we introduce a conceptual model of system fidelity, derived from the one presented in1. Our

starting point is the concept of n-open systems (nOPS), characterised by the following properties:

• nOPS interact with one or more of the environments they are deployed in.

• nOPS base their action on the ability to sense n classes of raw facts taking place in their deployment environ-

ments.

• nOPS are able to construct and maintain n classes of internal representations of the raw facts, called qualia.

• Qualia are, to some extent, faithful, meaning that they timely reflect the dynamic variation of the corresponding

class of raw facts.

We discuss here fidelity as a characterisation of the above-mentioned faithfulness. More formally, given any S ∈
nOPS, we consider n classes of raw facts, [r]i, 1 ≤ i ≤ n, and n classes of binary operations, [�]i, such that each of

the couples

([r]i, [�]i) (1)

constitutes an algebraic structure; for instance, when [�]i is a singleton, then ([r]i, [�]i) is a group. Likewise, for any

1 ≤ i ≤ n, we call [q]i the class of qualia corresponding to [r]i and [⊕]i the class of binary operations corresponding

to [�]i. Moreover, as we did for (1), we assume that ([q]i, [⊕]i) is an algebraic structure. Then, for each 1 ≤ i ≤ n, we

consider the following function:

Φi : [r]i → [q]i, (2)

mapping the qualia corresponding to any raw fact in [r]i. We refer to the Φi functions as the reflective maps of some

n-open system S . Reflective maps are assumed to be bijective functions, with Φ−1
i being the inverted reflective maps

of S associating the raw fact corresponding to each input quale. We shall say thatΦi expresses perfect fidelity between

([r]i, [�]i) and ([q]i, [⊕]i) if and only ifΦi preserves its algebraic structures (i.e., it is an isomorphism). More formally,

for any couple of raw facts (r1, r2) ∈ [r]i × [r]i and for all + ∈ [�]i and all · ∈ [⊕]i: Φi(r1 + r2) = Φi(r1) · Φi(r2).
Perfect fidelity may be better understood through an example. Let us assume that S is a cyber-physical system

responsible for the operation of a mission critical hard-real-time service. An operator is responsible for the issuing

of requests for service, which is done through a user interface (UI). A set of raw facts and prescribed behaviours

pertaining to the physical environment are represented as “cyber-qualia” and “cyber-behaviours” stored in computer

memories. Likewise, a set of “UI-qualia” and “UI-behaviours” are respectively rendered and operable through the UI.

Perfect fidelity states that the correspondence between the physical, the cyber, and the UI domains is such that the

prescribed behaviours as well as the referred raw facts and qualia are consistent on either of the involved domains.

Thus certain operations and objects represented and rendered via the UI perfectly correspond to operations and objects

encoded in S ’s computer components, which in turn perfectly correspond to physical actions having effects on physical

entities. Obviously, perfect fidelity only represents a reference point and can not be sustained and guaranteed at all

times in real life. A slightly different and more practical definition of fidelity is given by a function φi, 1 ≤ i ≤ n:

φi : [r]i → [q]i, such that ∀+ ∈ [�]i,∀ · ∈ [⊕]i : φi(r1 + r2) = φi(r1) · φi(r2) · Δi(t). (3)

As for the Φi function, φi returns the qualia associated with the input raw facts. Contrarily to the Φi function, the φi

does not preserve their algebraic structures unless the value of the error component Δi(t) is zero. The use of lower-

case “φ” is meant to suggest that φi represents a less-than-perfect version of Φi. The Δi(t) quantifies a drifting in time

(represented by variable t) of the ability to create a trustworthy “internal” representation of an experienced raw fact.

In1, fidelity is classified in function of the type of drifting. Classes may include, e.g., the following cases:

998 Vincenzo De Florio and Giuseppe Primiero / Procedia Computer Science 52 (2015) 996 – 1003

• Hard-bound fidelity drifting, exemplified by hard-real-time nOPS.

• Statistically-bound fidelity drifting—as typical of, e.g., soft real-time systems.

• Unbound fidelity drifting characterised by a “trend”.

• Unbound fidelity drifting with a random trend.

Accordingly, very disparate cases can be presented to exemplify imperfect fidelity, e.g. the accidents experienced

by the linear accelerator Therac-254,5 and the system failure caused by the last Scud fired during the Gulf War6. In

the former case, one of the reasons that led to some of the accidents was that the UI-qualia and the cyber-qualia did

not match when the operator was typing at a very fast pace. As a result of such imperfect fidelity, the quantities

represented on the screen of the Therac-25 did not correspond to the data stored in its memories—and, regrettably,

to the amount of radiations supplied to the patients by the linear accelerator. In the Patriot case, resulting in 28 US

Army reservists being killed and 97 injured by a Scud missile on 25 February 1991. The missile-defence system was

an nOPS that interacted with its environment through a number of context figures that included velocity and time.

As discussed in7, the cyber-quale corresponding to physical time was represented as the number of tenths of seconds

from a reference epoch and stored in a 24-bit integer variable. Imprecision in the conversion of said variable into a real

number translated in an unbound drifting of fidelity over time. The more the Patriot missile-defence system operated

without a reboot, the larger was the Δi pertaining to time and, as a consequence, the greater the discrepancy between

the expected and the real position and velocity of the incoming Scud missile. An obvious workaround to the above

unbound drifting is that of rebooting the system regularly so as to rejuvenate8 the qualia management system and

bring back the Δi to “safe” values. Although both problem and workaround were known at the time of the accident,

no upper bound was known beyond which the resilience of the system would be affected. Common belief was that

the unresilience threshold would never be reached in practice. Regrettably, reality proved the trust on that belief to be

misplaced. The Patriot missile that had to intercept the Scud never took off. The cases of the Therac-25 and of the

Patriot system reveal a common denominator: behaviours such as those of a human operator or those produced by a

numerical algorithm are all translated into a same, homogeneous form: that of a stream of numerical data representing

samples of the Δi(t) dynamic systems. A major methodological assumption in the present work is that the above data

could be compared with other data representing reference conditions. In the Therac-25 case, such data may correspond

to, e.g., reference user stereotypes of expected operator behaviours, represented for instance as the numerical weights

in a Hidden Markov Model13. Likewise, in the Patriot case, those reference data may correspond to, e.g., a threshold

representing safe ranges for accumulated or cumulative numerical errors produced through the iterations of numerical

methods. In both the exemplified cases, assessing fidelity is thus translated into the problem of evaluating a “distance”

between observed and reference data.

In what follows, we propose an architecture and a prototypical system to evaluate systematically a system’s fi-

delity drifting. These are modelled on a toy example, easily modified and extended to a real case scenario, whose

presentation we reserve to an extended version of this work.

3. Janus’ Architecture

In view of the above discussion, our approach to systematic evaluation of fidelity requires at least the following

components:

• A sensory service, interfacing the deployment environments so as to register a number of “raw facts”, namely

variations in a number of environmental properties. Raw facts could refer, for instance, to variations in lumi-

nosity, temperature, or the amount of network bandwidth available between two endpoints.

• A uniform qualia service, providing consistent, timely and reliable access to cyber-qualia (computer-based

representations of the raw facts).

• An application layer, providing a convenient means for fidelity assessment and reactive control.

In what follows we introduce the above components and a prototypical system compliant to the just sketched models,

see Fig. 1.

999 Vincenzo De Florio and Giuseppe Primiero / Procedia Computer Science 52 (2015) 996 – 1003

Fig. 1. Sequence diagram of the Janus’ components.

3.1. Sensory and Qualia Services

Our sensory and qualia service is based on so-called reflective and refractive variables (RRvars)10,11, a tool for the

development of nOPS in the C programming language. The idea behind RRvars is quite simple: a number of prede-

fined variables provide access to the qualia of corresponding raw facts. Those variables are “volatile”, meaning that

their content is asynchronously and continuously updated by an associated thread. Thus for instance RRvar int cpu

does not retain a constant value; rather, it is continuously updated by the Cpu() thread. Such thread cyclically re-

trieves the percentage of CPU currently in use and stores it in the memory cells associated to cpu as an integer number

ranging between 0 (CPU fully available) and 100 (no CPU available). In the current implementation, which runs on

Linux and Windows/Cygwin systems, Cpu() retrieves its raw facts by calling the top utility. This is referred to as

process1b in Fig. 1.

A second and slightly more complex example is given by RRvar int mplayer, a variable updated by thread

Mplayer(), referred to as process2b in Fig. 1. The latter component communicates with an instrumented MPlayer

movie player12 through a simple UDP client/server protocol. By reading the content of mplayer one is informed of

the state of the MPlayer—see Fig. 3. Currently, the following integer values are used:

#define UDPMSG_STOP 1 // mplayer has finished playing a video

#define UDPMSG_SLOW 2 // mplayer is encountering problems while playing a video

#define UDPMSG_PAUSED 3 // mplayer has been paused

#define UDPMSG_START 4 // mplayer has been launched

#define UDPMSG_SIGNAL 5 // mplayer caught an exception and is about to exit abnormally.

A third case is given by RRvar int ui, updated by thread Ui(). This is a special case in that this RRvar repre-

sents a UI-qualia (see Sect. 2) reporting raw facts specific of an instance of a user interface. This is referred to as

process3b–process3e in Fig. 1. Said user interface and the Ui() thread communicate transparently of the operator

via the same mechanism presented for RRvar mplayer. The values returned in RRvar int ui represent usability raw

facts derived by comparing the behaviours exercised by the current user with “reference behaviours” representing the

expected behavioural patterns of a trustworthy operator. The method to derive these raw facts is described in2,13. This

method may be used to detect gradual behavioural driftings (due to, e.g., fatigue, stress, or the assumption of psy-

chotropic substances) and sudden behavioural driftings (caused, e.g., by an account takeover or other cyber-criminal

attacks).

1000 Vincenzo De Florio and Giuseppe Primiero / Procedia Computer Science 52 (2015) 996 – 1003

Fig. 2. Typical structure of an RRvar client. Here three RRvars (cpu, mplayer, and ui) are declared and continuously displayed.

Fig. 3. An instance of the MPlayer connects with Janus and reports its state.

3.2. Control Layer: Janus

Janus is the name of our exemplary RRvar client component.2 The structure of Janus is the one typical of RRvar

clients11 and exemplified in Fig. 2. As can be seen from the picture, the RRvar metaphor makes it possible to quickly

define nOPS components based on the three classes of qualia presented above, see Fig. 4.

4. Fidelity as Trustworthiness

In this final section, we link the model of open systems offered in Sect. 2, and their architecture implemented in

Sect. 3, to a model of trustworthiness evaluation. We use fidelity to assess the working conditions of an open system

and to establish a metric of trustworthiness. Our final objective is to provide a qualitative extension of the standard

MAPE-loop based on trustworthiness assessment. Trust for security, management and reputation systems is gaining a

lot of attention in the literature and it is typically accounted for as a first-order relation between (possibly autonomous)

agents or system’s modules, see e.g.16,17,18,19,20. Our account considers trust as a second order property characterising

cumulatively system’s fidelity, where the latter is obtained as the dynamic variation of properties of the system’s

modules. This approach to second-order trust has been already used for information transmission evaluations (21),

access-based control (22), and software management systems (23). In the present analysis, trustworthiness is used to

plan reaction to malfunctioning and restoring of functionalities in cyber-physical systems. As the cases of Therac-

2 As for the system described in 14, the name of our component comes from mythical Janus Bifrons, the god of transitions, who had two faces and

thus could observe and reason by considering two different “views” at the same time. Of the proposed etymologies of Janus, particularly intriguing

here is the one proposed by Paul the Deacon 15: hiantem, hiare, “to be open”. Due to this fact one would be tempted to refer to Janus Bifrons here

as to a 2-open system.

1001 Vincenzo De Florio and Giuseppe Primiero / Procedia Computer Science 52 (2015) 996 – 1003

Fig. 4. The RRvar client connects with both MPlayer and an exemplary user interface.

Fig. 5. Log of the interaction between user and UI. Between 50 and 60s a rapid burst of keystrokes is interpreted as an anomalous situation.

25 and the Patriot-missile defence system show, unacknowledged drifting can be crucial in maximising unjustified

trust to dangerous levels. On the other hand, a metric evaluating minimal functionality thresholds can minimise

unjustified mistrust, reducing confidence that the system will choke and eventually fail (antitrust). Early cases of low

true-alarm rate or high false-alarm rate in automation do not need to set constants for future behaviour of the user.

Similarly, criteria to compare intended and current behaviour are essential to allow mechanical assessment of user’s

inability, incompetence or threats. Fidelity and drifting can provide the systematic methodology and quantitative

model to continually evaluate and experiment the system’s vulnerability in the context of its operations, thus making

the dichotomy conditional vs. unconditional trust (faith) working. Trust can be thought of as a measure of confidence

about minimal drifting from fidelity for all the components, and hence that the overall behaviour of the system is

sufficiently resilient. In the following, we reconstruct the process of fidelity monitoring, trustworthiness evaluation

and operation execution in terms of a MAPE-loop designed for trust, see24. In the architecture presented in Sect. 3, the

Janus assesses the behaviour of the system. This is parametrised in view of reflective variables for CPU consumption

and a component’s operations (on the machine side of the system), and for the user interface (on the user’s side).

Mapping of these variables values as raw facts and qualia provides a measure of system’s fidelity:

1002 Vincenzo De Florio and Giuseppe Primiero / Procedia Computer Science 52 (2015) 996 – 1003

Fig. 6. A MAPE-loop for System trustworthiness based on fidelity.

• ΦCPU : [r]CPU → [q]CPU , obtained by the mapping of input values from the top process to pre-selected param-

eters assigned to CPU-consumption behaviour;

• Φcomponent : [r]component → [q]component, obtained by the mapping of input values from the executable’s observable

behaviour to pre-selected parameters assigned to its operations;

• ΦUI : [r]UI → [q]UI , obtained by the mapping of input values from the user’s observable behaviour to pre-

selected parameters assigned to a standard or expected user’s behaviour.

The system’s component monitoring the classes [r]i of raw facts is called the sensor layer; similarly, we use qualia
layer to refer to the component monitoring the classes [q]i of qualia. The combination of the sensory and representative

layers constitutes the Monitoring component within our MAPE-loop. Fidelity is then approximated as the inversely

proportional function of the drifting from appropriate mappingsΦi. We shall refer to the value of user-based mappings

as user-defined fidelity (ΦU); correspondingly, we shall call machine-defined fidelity (ΦM) the value based on mappings

related to the machine behaviour. For the Janus introduced in Sect. 3,

ΦU = 1/Δ(t)UI (4)

ΦM = 1/ f (Δ(t)CPU ,Δ(t)exec) (5)

where f is some function, weighted according to domain-specific and user defined parameters. We refer to the set

of values Φ(t) = {ΦU ,ΦM} as the content of our Analysis component, with the global value Φ parametrised by time.

As an example, consider the class of mappings ΦUI , with a value of the sensor layer indicating e.g. quick typing

and a value of the qualia layer returning a distress indication: in this case the fidelity layer reports an high value. As

an example across distinct mappings, assume that the reflective variable for MPlayer indicates that the application

is running slower, while the one for CPU monitoring indicates low usage value: this is expressed by a low fidelity

value across the two classes in ΦM . Analysing fidelity values across the distinct monitoring layers allows a cumulative

evaluation to be obtained. This value is monitored by the apperception layer. This layer is used to evaluate system

trustworthiness as a global value of user-defined and machine-defined fidelity values. The next level is represented

by the Janus feeding the content of the apperception layer into the control layer. This corresponds to the Planning
component of our system. At this stage, system trustworthiness is matched to a resilience scale that identifies and

automatically triggers actions aimed at preserving system safety or enabling ameliorating conditions. The latter part

of the system is the Execution component, monitoring an action layer. Despite the fact that a resilience scale should

be highly domain specific, a possible general model can be given in terms of four essential stages:

1. Trustworthy System identifies high levels of Φ(t), inducing optimal, sustainable working conditions;

2. Unstable System identifies high-to-medium ΦU and low ΦM levels, inducing reconfigurable working conditions;

3. Unsafe System identifies high-to-medium ΦM and low ΦU levels, inducing alarm-rising working conditions;

1003 Vincenzo De Florio and Giuseppe Primiero / Procedia Computer Science 52 (2015) 996 – 1003

4. Untrustworthy System identifies low-levels of Φ(t), inducing inadvisable or below-safety working conditions.

The above analysis is summarised in the MAPE-loop in Fig. 6.

5. Conclusions

We have presented a prototypical model architecture for a trust-based MAPE-loop for cyber-physical systems. The

trust evaluation is grounded on the assessment of fidelity drifting with respect to values representing ideal reference

conditions for both user and machine. Although prototypical, we believe that our architecture proves the feasibility

of our approach to trustworthiness assessment and paves the way towards future implementations. Our goal is to

develop systems that are trustworthy in integrating quality-of-service and quality-of-experience, by optimising the

relations between system-level, “microscopic” aspects and user-level, “macroscopic” ones. A further goal is to extend

our architecture into that of a MAPE-K loop and apply machine learning methods such that systems based on our

approach may systematically improve the match with the environments they interact with. Costs analysis for the trust-

based MAPE-loop remains to be explored. Its use at early stages of design can reduce risks; our examples shows,

nonetheless, that it is possible to deploy the methodology on existing software, by selecting relevant variables. Further

work will focus on formal modelling of trustworthiness assessment in a probabilistic epistemic setting.

References

1. De Florio, V. Antifragility = elasticity + resilience + machine learning. Models and algorithms for open system fidelity. Procedia Computer
Science 2014;32:834–841. URL: http://goo.gl/Ji40dH. 1st ANTIFRAGILE workshop (ANTIFRAGILE-2014).

2. De Florio, V., Blondia, C. Safety enhancement through situation-aware user interfaces. In: System Safety, incorporating the Cyber Security
Conference 2012, 7th IET International Conference on. 2012, p. 1–6. doi:10.1049/cp.2012.1520.

3. De Florio, V., Blondia, C. Reflective and refractive variables: A model for effective and maintainable adaptive-and-dependable software.

In: Proc. of the 33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007). Lübeck, Germany; 2007.

4. Leveson, N., Turner, C.S. An investigation of the Therac-25 accidents. IEEE Computer 1993;26(7):18–41.

5. De Florio, V. Software assumptions failure tolerance: Role, strategies, and visions. In: Architecting Dependable Systems VII; vol. 6420 of

LNCS. Springer; 2010, p. 249–272. URL: http://dx.doi.org/10.1007/978-3-642-17245-8 11.

6. Schmitt, E. After the war; army is blaming patriot’s computer for failure. New York Times 1991;URL: http://goo.gl/uGNhkm.

7. Grottke, M., Trivedi, K.S. Fighting bugs: Remove, retry, replicate, and rejuvenate. IEEE Computer 2007;40(2):107–109.

8. Grottke, M. et al. The fundamentals of software aging. In: Proc. of the 1st Int.l Workshop on Software Aging & Rejuvenation. 2008.

9. Anonymous. Patriot missile defense: Software problem led to system failure at Dhahran, Saudi Arabia. Tech. Rep. GAO/IMTEC-92-26;

U.S. Government Accountability Office; 1992. URL: http://www.gao.gov/products/IMTEC-92-26.

10. De Florio, V., Blondia, C. On the requirements of new software development. Int.l J. of Business Intelligence & Data Mining 2008;3(3).

11. De Florio, V., Blondia, C. Reflective and refractive variables: A model for effective and maintainable adaptive-and-dependable software.

In: Proc. of the 33rd Euromicro Conf. on Soft. Eng. & Adv. App. (SEEA 2007). Lübeck, Germany: IEEE Comp. Soc.; 2007.

12. Anonymous. Mplayer — the movie player. 2015. Retrieved on February 3, 2015 from www.mplayerhq.hu/design7/info.html.
13. Duyse, J.V. A toolkit for the concurrent analysis and adaptation of graphical user interfaces. Master’s thesis; Dept. Math. & Comp. Sci.,

Univ. of Antwerp, Belgium; 2013. URL: http://tinyurl.com/k5a8zyo; promotor: V. De Florio.

14. De Florio, V. et al. A hypermedia distributed application for monitoring and fault-injection in embedded fault-tolerant parallel programs. In:

Proc. of the 6th Euromicro Workshop on Parallel& Distrib. Processing (Euro-PDP’98). Madrid, Spain: IEEE Comp. Soc.; 1998, p. 349–355.

15. Paulus Diaconus. Excerpta ex libris Pompeii Festi de significatione verborum. W. M. Lindsay; 1930.

16. Carbone, M., Nielsen, M., Sassone, V. A formal model for trust in dynamic networks. In: 1st Int.l Conf. on SW Eng. and Formal Methods
(SEFM 2003), 22–27 September 2003, Brisbane, Australia. IEEE Comp. Soc.. 2003. doi:10.1109/SEFM.2003.1236207.

17. Clarke, S. et al. Trust*: Using local guarantees to extend the reach of trust. In: Security Protocols XVII, 17th Int.l Workshop, Cambridge,
UK, April 1–3, 2009. Revised Selected Papers; vol. 7028 of LNCS. Springer. ISBN 978-3-642-36212-5; 2009, p. 171–178.

18. Chang, J. et al. AS-TRUST: A trust quantification scheme for autonomous systems in BGP. In: Proc. of Trust and Trustworthy Computing -
4th Int.l Conf.l, TRUST 2011, Pittsburgh, PA, June 22-24, 2011; vol. 6740 of LNCS. Springer. ISBN 978-3-642-21598-8; 2011, p. 262–276.

19. Grandison, T., Sloman, M. A survey of trust in internet applications. Commun Surveys Tuts 2000;3(4):2–16.

20. Yan, Z., Prehofer, C. Autonomic trust management for a component-based software system. IEEE Transactions on Dependable and Secure
Computing 2011;8(6):810–823. doi:http://doi.ieeecomputersociety.org/10.1109/TDSC.2010.47.

21. Primiero, G., Taddeo, M. A modal type theory for formalizing trusted communications. J Applied Logic 2012;10(1):92–114. URL:

http://dx.doi.org/10.1016/j.jal.2011.12.002. doi:10.1016/j.jal.2011.12.002.

22. Primiero, G., Raimondi, F. A typed natural deduction calculus to reason about secure trust. In: 2014 12th Annual Int.l Conf. on Privacy,
Security and Trust, Toronto, ON, Canada, July 23-24, 2014. IEEE. 2014, p. 379–382.

23. Boender, J., Primiero, G., Raimondi, F.. Minimizing transitive trust threats in software management systems. Tech. Rep.; Foundations of

Computing Group, Middlesex University; 2015.

24. Jacob, B. et al. A Practical Guide to the IBM Autonomic Computing Toolkit. IBM Redbooks; 2004.

