Table 2. Changes in performance and asymmetries after unilateral eccentric overload training with different strategies.

	SVW ($\mathrm{n}=10$)					DVW ($\mathrm{n}=11$)					SVS ($\mathrm{n}=14$)				
	Pre-	Post-	ES (CL90\%)	Chances	Outcome	Pre-	Post-	ES (CL90\%)	Chances	Outcome	Pre-	Post-	ES (CL90\%)	Chances	Outcome
SLHR (cm)	167.1 ± 16.8	170.6 ± 16.0	0.19 (-0.14; 0.52)	48/49/3\%	Unclear	166.2 ± 15.5	168.5 ± 11.5	0.15 (-0.10; 0.40)	36/63/2\%	Unclear	167.8 ± 17.6	164.7 ± 11.0	-0.13 (-0.49; 0.23)	7/57/37\%	Possibly*
SLHL (cm)	168.4 ± 16.9	171.8 ± 18.0	0.17 (-0.14; 0.48)	43/54/3\%	Unclear	169.9 ± 14.3	171.0 ± 15.7	0.06 (-0.27; 0.40)	24/66/9\%	Possibly\#	168.1 ± 18.6	168.2 ± 18.2	0.01 (-0.27; 0.29)	12/77/11\%	Likely\#
SLHS (cm)	171.3 ± 15.5	171.7 ± 13.9	0.03 (-0.18; 0.24)	8/88/4\%	Likely\#	170.8 ± 14.5	170.3 ± 15.3	-0.03 (-0.35; 0.28)	10/72/18\%	Possibly\#	170.7 ± 16.1	167.2 ± 17.0	-0.21 (-0.45; 0.03)	0/46/53\%	Possibly*
SLHW (cm)	164.1 ± 17.2	170.7 ± 19.5	0.32 (-0.05 0.70)	72/27/2\%	Possibly	165.2 ± 14.9	169.2 ± 12.0	0.24 (-0.02; 0.50)	61/38/1\%	Possibly	165.2 ± 19.3	165.7 ± 12.9	0.06 (-0.30; 0.42)	25/64/12\%	Possibly\#
Asyslh (\%)	4.3 ± 3.4	4.0 ± 2.7	0.06 (-0.40; 0.51)	29/55/17\%	Unclear	3.3 ± 2.8	4.2 ± 1.7	$-0.51(-1.04 ; 0.02)$	2/14/84\%	Likely*	3.4 ± 4.2	5.8 ± 5.5	-0.58 (-0.99; -0.16)	0/6/93\%	Likely*
TSLHR (cm)	541.6 ± 51.3	588.2 ± 91.2	0.71 (0.20; 1.23)	95/5/1\%	Likely	548.9 ± 43.5	584.7 ± 85.9	0.65 (0.05; 1.26)	90/9/1\%	Likely	546.4 ± 57.6	551.7 ± 39.8	0.11 (-0.19; 0.41)	30/65/5\%	Unclear
TSLHL (cm)	560.1 ± 42.0	588.4 ± 83.5	0.52 (-0.14; 1.17)	80/16/4\%	Likely	560.5 ± 39.5	591.5 ± 84.3	0.63 (-0.03; 1.28)	87/11/2\%	Likely	555.9 ± 70.0	557.7 ± 50.5	0.05 (-0.23; 0.33)	19/75/7\%	Possibly\#
TSLHS (cm)	562.1 ± 41.7	591.5 ± 84.0	0.53 (-0.15; 1.22)	80/16/4\%	Likely	565.9 ± 37.9	591.0 ± 83.9	0.51 (-0.16; 1.17)	79/17/4\%	Likely	563.4 ± 63.1	562.0 ± 47.2	0.00 (-0.24; 0.25)	9/83/8\%	Likely*
TSLHW (cm)	539.5 ± 50.6	585.1 ± 90.6	0.71 (0.20; 1.21)	95/4/0\%	Very Likely	543.4 ± 42.5	585.2 ± 86.3	0.79 (0.17; 1.41)	94/5/1\%	Likely	583.9 ± 62.9	547.4 ± 42.5	0.15 (-0.18; 0.48)	40/56/4\%	Unclear
Asytslh (\%)	4.0 ± 4.9	3.8 ± 4.5	$-0.07(-0.86 ; 0.71)$	27/35/39\%	Unclear	4.0 ± 1.7	2.8 ± 2.1	0.88 (-0.14; 1.89)	87/9/4\%	Likely	4.7 ± 2.9	4.7 ± 3.5	0.01 (-0.58; 0.60)	29/44/27\%	Unclear
CMJ (cm)	33.9 ± 3.8	36.0 ± 4.5	0.48 (0.18; 0.79)	94/6/0\%	Likely	35.3 ± 5.4	37.0 ± 6.2	0.27 (0.07; 0.48)	73/27/0\%	Possibly	34.2 ± 5.9	36.2 ± 6.3	0.30 (0.14; 0.46)	86/14/0\%	Likely
CMJR (cm)	19.0 ± 2.2	21.1 ± 3.3	0.82 (0.20; 1.45)	95/4/1\%	Likely	18.5 ± 3.8	19.7 ± 4.6	0.24 (-0.02; 0.50)	61/39/1\%	Possibly	19.1 ± 4.1	19.9 ± 4.0	0.12 (-0.09; 0.32)	24/75/1\%	Possibly\#
CMJL (cm)	20.3 ± 3.5	21.2 ± 4.1	0.22 (-0.18; 0.62)	53/42/4\%	Unclear	19.4 ± 3.5	20.4 ± 4.4	0.20 (-0.01; 0.41)	50/50/0\%	Possibly	19.2 ± 4.4	19.8 ± 4.5	0.19 (0.00; 0.38)	45/55/0\%	Possibly
CMJS (cm)	20.8 ± 2.9	21.7 ± 3.7	0.27 (-0.17; 0.71)	61/35/4\%	Unclear	19.7 ± 3.2	20.3 ± 4.3	0.12 (-0.12; 0.35)	26/72/2\%	Unclear	19.8 ± 4.3	20.1 ± 4.3	0.07 (-0.14; 0.27)	13/85/2\%	Likely\#
CMJW (cm)	18.4 ± 2.5	20.5 ± 3.5	0.68 (0.10; 1.26)	92/7/1\%	Likely	18.2 ± 3.9	19.7 ± 4.7	0.31 (0.08; 0.54)	79/21/0\%	Likely	18.4 ± 4.0	19.5 ± 4.0	0.23 (0.04; 0.43)	62/38/0\%	Possibly
Asycmi (\%)	10.9 ± 9.8	6.4 ± 4.1	0.23 (-0.26; 0.72)	54/39/7\%	Possibly	8.3 ± 7.9	6.2 ± 3.7	0.08 (-0.49; 0.65)	36/45/20\%	Possibly	6.8 ± 5.4	5.0 ± 4.6	0.24 (-0.33; 0.82)	55/35/10\%	Possibly

Note. SLHR and SLHL $=$ single leg horizontal jump with right and left leg, SLHS and SLHW $=$ single leg horizontal jump with the stronger and the weaker leg, Asysth $=$ asymmetry in the single-leg horizontal jump, TSLHR and TSLHL = triple single leg horizontal jump with right and left leg, TSLHS and TSLHW = triple single leg horizontal jump with the stonger and the weaker leg, AsyTsLH= asymmetry in the triple single-leg horizontal jump, CMJ = bilateral countermovement jump, CMJR and CMJL $=$ unilateral countermovement jump with right and left leg, CMJS and CMJW $=$ unilateral countermovement jump with the stronger and the weaker leg, Asycm $=$ asymmetry in the unilateral countermovement jump, $\mathrm{ES}=$ effect size, $\mathrm{CL}=$ confidence limit, $\mathrm{SVW}=$ unilateral eccentric overload training in the lateral squat performing the same volume with both limbs starting with the weaker limb, DVW= unilateral eccentric overload training in the lateral squat performing the double volume with the weaker limb starting with the weaker limb, SVS= unilateral eccentric overload training in the lateral squat performing the same volume with both limbs starting with the stronger limb. *It denotes a harmful effect, \#It denotes a trivial effect. All results are presented in the same direction; that is, a positive change is considered an improvement, while a negative change is considered an impairment.

