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Abstract. Classical homogenization theory based on the
Hashin-Shtrikman coated ellipsoids is used to model the changes
in the complex valued conductivity (or admittivity) of a lung
during tidal breathing. Here, the lung is modeled as a two-phase
composite material where the alveolar air-filling corresponds to
the inclusion phase. The theory predicts a linear relationship
between the real and the imaginary parts of the change in the
complex valued conductivity of a lung during tidal breathing,
and where the loss cotangent of the change is approximately the
same as of the effective background conductivity and hence easy
to estimate. The theory is illustrated with numerical examples
based on realistic parameter values and frequency ranges used
with Electrical Impedance Tomography (EIT). The theory may
be potentially useful for imaging and clinical evaluations in
connection with lung EIT for respiratory management and
control.

1. Introduction

Electrical Impedance Tomography (EIT) is a non-
radiative, inexpensive technique that can facilitate real
time dynamic monitoring of regional lung aeration
and ventilation for clinical use [1]. The approach
lacks spatial resolution, but it benefits largely
from its high temporal resolution and is therefore
currently emerging as a technique that can potentially
reduce complications and disability in preterm babies
by continuous bedside monitoring and respiratory
management [2, 3].

From a mathematical/physical point of view, EIT
constitutes an ill-posed inverse problem [4–7], and the
use of EIT as a successful imaging modality relies
therefore on the effectiveness of creating difference
conductivity images rather than to generate absolute
reconstructions, see e.g., [8, 9]. The difference imaging
approach benefits from the linearization of the forward
problem, and it alleviates much of the sensitivity
to sensor imperfections as well as the unknown
background parameter values. In lung EIT, tidal
images can be created by using a breath detector
[10] providing difference voltage data that is perfectly
synchronized with the time of end-expiration and end-
inspiration, defining the breathing cycle. For these
tidal images, EIT related lung function parameters
such as Center of Ventilation, Silent Spaces and
ventilation distribution, etc., can then be calculated [3].

Early EIT systems were usually designed for
operation at very low frequencies, typically in the
kilohertz range [11, 12], where the conductivity of
biological tissue usually is considered to be purely

resistive (even though this is not entirely true [13]).
However, the need of improved image quality in both
the spatial and the temporal domains is nowadays
driving the development of the commercial EIT
systems and their data acquisition hardware to higher
speeds (typically in the range of several hundreds of
kilohertz) and hence their performance requirements
imply that the imaginary part of the complex valued
conductivity (or admittivity) of human tissue no
longer can be disregarded. Notably, this constitutes
a technical challenge, but it can also be a great
asset due to the additional clinical information carried
by the permittivity of the tissue. To this end,
there is no fundamental limitation associated with
the reconstruction of the complex valued conductivity
using standard optimization algorithms such as in [4,
5, 7, 9, 11], nor with the new developments such as the
D-bar methods [14, 15]. In this paper, we investigate a
mathematical/physical mechanism that can model the
changes in the complex valued conductivity of a lung
during tidal breathing. This is particularly interesting
as it is already empirically known that the EIT pixel
sum of (real valued) conductivity changes within a
particular region of interest is almost linearly related
to the changes in lung volume, see e.g., [12].

A comprehensive overview on the dielectric
spectral properties of biological tissue, including
modeling, measurements and literature is given in [13,
16, 17]. In particular, as a realistic estimate of the
background conductivity of an inflated lung we have
used here the real valued conductivity and permittivity
data from [13, Fig. 2e on p. 2257] which is of bovine
origin. Measurement data from human tissue, and
in particular from neonatal patients is obviously very
difficult to obtain. Hence, in order to estimate the
typical volume fraction of air during tidal breathing we
have used data regarding the lung volume of an adult
male and the corresponding condensed matter weight
from [18] and [19], respectively.

A basic model predicting the dielectric properties
of lung tissue as a function of air content was given
in [20], and which has been followed by several other
works, see e.g., [21] and [22] with references. The
basic work in [20] was followed by a comprehensive
study based on EIT spectroscopy measurements and
an improved model taking both the air content and
tissue dispersion into account [21]. In [22] is given an
experimental study of dielectric properties of human
lung tissue in vitro and its dependency on the air
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filling factor. Human lung tissue specimens from more
than 100 patients were investigated with respect to the
differences in the impedance spectrum for cancerous
and normal tissue, and where the cancerous tissue
typically show much larger conductivity values due
to the deterioration of the alveolar structure. The
same can also be said about interstitial pneumonia [20],
where the increased conductivity is explained by the
increased thickness of the alveolar walls. Notably, the
investigations on the dielectric properties of lung tissue
as a function of air content in [20] and [22] are in
vitro, with volume fractions of air up to about 58-60 %,
whereas our estimates of the air content with reference
to [18] and [19] are rather in the range 75-78 % for tidal
breathing in vivo.

The dielectric measurements in [20] were made on
the excised lungs of slaughtered calves in the frequency
range of 5 kHz to 100 kHz, and a simple theory was
developed to model the complex valued conductivity as
a function of air filling. The theoretical model in [20]
is based on the deformation of a cube-shaped alveolus
where the conductivity is given approximately as the
conductivity of the enclosing walls of a square cylinder
where the volume of the (periodic) wall system is kept
fixed and the cube size and the wall thickness are
variable to account for the deformation of the epithelial
cells and blood vessels through the expansion of the
alveoli. The parameters of the model are adjusted by
histological investigations. In this way, the thinning of
the alveolar walls can explain the decrease of effective
conductivity and permittivity of the lung as a function
of an increased air filling.

In this paper, we derive an alternative physical
model based on classical homogenization theory [23,
24] to predict the changes in the complex valued
conductivity of a lung during tidal breathing. The
lung is modeled here as a two-phase composite
material where the alveolar air-filling corresponds to
the inclusion phase and the exterior phase is due
to the blood and tissue. The parametric model is
based on classical Hashin-Shtrikman/Maxwell-Garnett
theory [23, 24] and is simple and well-suited for
an analytical study on the changes in the effective
conductivity of the lung due to the corresponding
small changes in the volume fraction of air during
tidal breathing. This model is in many ways similar
to that of [20] (an effective conductivity model
with thinning of the alveolar walls, etc.), but it
has a rigorous foundation in homogenization theory.
In particular, the parametric model based on the
Hashin-Shtrikman (HS) assemblage [24] comprises a
fully three-dimensional homogenization of the lung
tissue with ellipsoidal shaped alveoli constituting the
inclusion phase. The HS assemblage furthermore
accounts for the random nature of the alveolar

structure, as seen in e.g., [20, Figs. 14 and 15 on
p. 711], by the inherent variation of the HS scaling and
positioning of the prototype ellipsoid. Hence, it may
be argued from the figures in [20] that the shape of the
alveoli is typically more round than square and that
the close packing of alveoli at high air content can be
achieved due to a large variation in their sizes, similar
to the HS assemblage.

The presented parametric model predicts an
almost linear relationship between the real and the
imaginary parts of the changes in the complex valued
conductivity of a lung during tidal breathing, and
where the loss cotangent of the change is approximately
the same as of the effective background conductivity
and hence easy to estimate. It is expected that this
a priori knowledge can be useful in the development
of new improved image reconstruction algorithms
exploiting complex valued measurement data, and/or
to define new clinically useful outcome parameters in
lung EIT. The theoretical study is based on realistic
parameter choices for the conductivity of an inflated
lung [13], and hence the corresponding loss cotangent
is estimated to be in the order of about cot δ =
0.2 at 200 kHz. It should be noted that, even at
low frequencies, the loss cotangent of the inflated
lung may not be negligible (due to the very high
relative permittivity of tissue at low frequencies), and
is expected to be in the order of about cot δ = 0.1 at
1 kHz. At higher frequencies, it will increase to about
cot δ = 0.3 at 1 MHz [13]. The theoretical study is
illustrated with numerical examples.

2. Homogenization theory based on
Hashin-Shtrikman coated ellipsoids

A brief review on the classical homogenization theory
based on Hashin-Shtrikman coated ellipsoids is given
in this section, see [24] for an in depth derivation of
the corresponding results.

2.1. Notation and conventions

The following notation and conventions will be used
below. Classical electromagnetic theory is considered
based on SI-units [25], and with time convention
ejωt for time harmonic fields where ω is the angular
frequency. Let µ0, ε0 and c0 denote the permeability,
the permittivity and the speed of light in vacuum,
respectively, and where c0 = 1/

√
µ0ε0. A passive,

homogeneous and isotropic dielectric material with
complex valued relative permittivity ε = ε′ − jε′′

and real valued conductivity σr ≥ 0 has complex
valued conductivity (or admittivity) σ given by σ =
σR + jσI where σI = ωε0ε

′ represents the lossless
capacitive part and σR = σr + ωε0ε

′′ ≥ 0 includes
both the conduction and the dielectric losses. The
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complex valued conductivity is conveniently written
as σ = σR (1 + jη) where η = cot δ is the loss
cotangent (corresponding to the more commonly used
loss tangent tan δ = σR/σI = 1/η). Both parameters
σR and σI may depend on frequency, in which
case they must also satisfy the associated Kramers-
Kronig relations, see e.g., [26, 27]. The cartesian unit
vectors are denoted (x̂1, x̂2, x̂3). Finally, the real and
imaginary part and the complex conjugate of a complex
number ζ are denoted <{ζ}, ={ζ} and ζ∗, respectively.

2.2. The Hashin-Shtrikman coated ellipsoid
assemblage

Ej

σeff
j

σ2

σ1

Figure 1. The Hashin-Shtrikman coated ellipsoid assemblage.
The figure illustrates a partial assemblage in a process that
is completed when all space has been filled with ellipsoids.
Here, Ej denotes the applied electric field, σeff

j the homogenized

(effective) conductivity parameter and σ1 and σ2 the core and
the exterior conductivity of the prototype ellipsoid, respectively.

Consider a general anisotropic two-phase compos-
ite material consisting of an inclusion phase with con-
ductivity σ1 and an exterior phase with conductivity
σ2 and where the volume fraction of the inclusion phase
is given by the parameter f . A classical homogeniza-
tion approach to model such a material is given by the
Hashin-Shtrikman coated ellipsoid assemblage [24], as
illustrated in figure 1. All the coated ellipsoids are
scaled and translated versions of a single prototype
coated ellipsoid consisting of a core (inclusion) phase
with conductivity σ1 and an exterior (coating) phase
with conductivity σ2. The semi-axis lengths of the pro-
totype core and exterior ellipsoids are denoted lcj and
lej , respectively, and where j = 1, 2, 3 refers to the
cartesian coordinates x1, x2 and x3, respectively. The
prototype core and exterior ellipsoids are confocal in
the sense that they can both be represented in the same

system of elliptical coordinates as

x2
1

c21 + ρ
+

x2
2

c22 + ρ
+

x2
3

c23 + ρ
= 1, (1)

where cj are constants and ρ the elliptical coordinate
playing the role of the “radius”. Hence, with ρc and
ρe denoting the “radius” of the two confocal ellipsoids,
we have

l2cj
c2j + ρc

=
l2ej

c2j + ρe
= 1, (2)

which implies that

l2ej = l2cj + α, (3)

where α = ρe − ρc > 0 and j = 1, 2, 3. The volume
of the two prototype ellipsoids are Vc = 4πlc1 lc2 lc3/3
and Ve = 4πle1 le2 le3/3, and hence the volume fraction
between the core phase and the total volume of the
coated ellipsoid is given by

f =
Vc

Ve
=
lc1 lc2 lc3
le1 le2 le3

. (4)

The Hashin-Shtrikman coated ellipsoid assemblage
is obtained when the whole space is filled with
scaled ellipsoids as indicated in figure 1. In this
way, the resulting assemblage models the general
anisotropic two-phase composite material where the
volume fraction f of the inclusion phase is preserved
and parameterized according to (4).

2.3. The effective conductivity

Consider a single prototype coated ellipsoid with core
and exterior conductivities σ1 and σ2, respectively, as
described in section 2.2 above. Suppose further that
the prototype ellipsoid is embedded in an arbitrary
homogeneous auxiliary medium with conductivity σeff ,
and excited with an external static electric field Ej =
E0x̂j aligned with the jth axis of the ellipsoid, as
illustrated in figure 1. The fundamental equations to
be solved are given by
∇×E(r) = 0,

∇ · J(r) = 0,

J(r) = σ(r)E(r),

(5)

where E(r) and J(r) are the electric field intensity
and the electric current density, respectively, and where
σ(r) is the complex valued conductivity which is
assigned the appropriate constant values (σ1, σ2, σ

eff)
inside and outside the prototype ellipsoid, respectively.
The electric field outside the prototype ellipsoid may
furthermore be denoted E(r) = Ej(r) +Es(r) where
Es(r) may be thought of as the scattered field. The
boundary conditions supplementing the equations in
(5) are obtained from the continuity of the normal
component of the current density J(r) at the media
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interfaces. The equations in (5) can be solved by
introducing the scalar potential Φ(r) where E(r) =
−∇Φ(r), and where Φ(r) satisfies the Laplace equation
∇2Φ(r) = 0, together with the continuity of Φ(r)
as well as the continuity of the normal current
σ(r) ∂

∂nΦ(r) at the media interfaces.
Since the elliptical coordinates constitute one

of the very special coordinate systems for which
the Laplace operator can be separated [28], the
electrostatic problem above can be solved analytically
involving ordinary functions and elliptic integrals, see
e.g., [24, 28, 29]. In particular, by investigating these
analytic solutions, it is found that one can choose
the auxiliary medium parameter σeff in such a way
as to render the scattered field Es(r) = 0 (and at
the same time there is a uniform non-zero field inside
the ellipsoid core with the same polarization direction
as the applied field). Hence, in this situation the
prototype ellipsoid is in some sense cloaked as it does
not interfere with the surrounding uniform current
field. The resulting auxiliary, or effective, medium
parameter σeff

j depend in general on the polarization
direction x̂j , and is given by

σeff
j = σ2 +

fσ2 (σ1 − σ2)

σ2 +
(
dcj − fdej

)
(σ1 − σ2)

, (6)

where the depolarizing factors (cf., the geometrical
factors in [29], and the demagnetizing factors in [30])
dcj and dej are given by dcj = dj(lc1 , lc2 , lc3), dej =
dj(le1 , le2 , le3) where

dj(l1, l2, l3)

=
l1l2l3

2

∫ ∞
0

dy(
l2j + y

)√
(l21 + y) (l22 + y) (l23 + y)

, (7)

and where l1, l2 and l3 are the semi-axis lengths of
the corresponding ellipsoids, and j = 1, 2, 3, see [24,
p. 129]. The depolarizing factors are normalized in the
sense that d1 + d2 + d3 = 1.

Since further scaled and translated coated ellip-
soids can be inserted into the effective medium with-
out disturbing the surrounding uniform current field,
the resulting Hashin-Shtrikman coated ellipsoid assem-
blage can finally be viewed from a macroscopic scale to
have the homogeneous and anisotropic constitutive re-
lation

J = σeff ·E, (8)

where the effective conductivity dyadic σeff is given by

σeff =

3∑
j=1

σeff
j x̂jx̂j . (9)

The coated sphere is a special case of the coated
ellipsoid with dcj = dej = 1/3 for j = 1, 2, 3, and hence

σeff
sph = σ2 +

3fσ2 (σ1 − σ2)

3σ2 + (1− f) (σ1 − σ2)
, (10)

which is identical with the classical Maxwell-Garnett
mixing formula, see e.g., [23, 24].

2.4. Spheroidal inclusions

Spheroids are particularly simple ellipsoidal shapes
having rotational symmetry, and for which the
corresponding depolarizing factors as well as their
surface areas can be expressed by explicit formulas
involving simple functions. Without loss of generality,
it will be assumed here that the axis of rotation is
defined by the x1-axis.

A prolate spheroid is characterized by its semi-
axis properties l1 > l2 = l3 = l, and hence with
depolarizing factors d1 < d2 = d3 = d where d1 < 1/3
and d = (1 − d1)/2. The eccentricity of the prolate
spheroid is defined by

ε =

√
1−

(
l

l1

)2

, (11)

and the corresponding depolarizing factor d1 is given
by

d1 =
1− ε2

ε2

(
1

2ε
ln

(
1 + ε

1− ε

)
− 1

)
, (12)

cf., e.g., [24, p. 132] and [30, pp. 352–354]. The surface
area of the prolate spheroid is furthermore given by

S = 2πl2 + 2π
ll1
ε

arcsin ε, (13)

see [31, p. 364].
An oblate spheroid is characterized by its semi-

axis properties l1 < l2 = l3 = l, and hence with
depolarizing factors d1 > d2 = d3 = d where d1 > 1/3
and d = (1 − d1)/2. The eccentricity of the oblate
spheroid is defined by

ε =

√
1−

(
l1
l

)2

, (14)

and the corresponding depolarizing factor d1 is given
by

d1 =
1

ε2

(
1−
√

1− ε2

ε
arcsin ε

)
, (15)

cf., e.g., [24, p. 132] and [30, pp. 352–354]. The surface
area of the oblate spheroid is furthermore given by

S = 2πl2 + π
l21
ε

ln

(
1 + ε

1− ε

)
, (16)

see [31, p. 364].

3. A parametric model for the changes in the
conductivity of a lung during tidal breathing

A Hashin-Shtrikman homogenization approach based
on (6) is considered to model the changes in
the complex valued conductivity of a lung during
tidal breathing. The lung is modelled as a two-
phase composite material where the air-filled alveoli
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constitute the inclusion phase with volume fraction
f and conductivity σ1 = jωε0 corresponding to the
electric displacement current in vacuum (similar as in
air). The conductivity σ2 of the exterior phase can be
identified from some a priori information regarding the
effective conductivity σEI of an inflated lung. Hence,
it is assumed that the conductivity of the inflated lung
obtained from measurements such as in [13] can be used
as an effective conductivity of the lung corresponding
to a certain maximum volume fraction fEI at end-
inspiration, and where the alveoli have a maximally
extended spherical shape. The conductivity of the
exterior phase can then be obtained by solving the
Maxwell-Garnett equation (10) with respect to σ2

when the effective parameter σeff
sph = σEI is given. This

is equivalent to finding the roots of the following second
order polynomial equation

σ2
22 (1− fEI) + σ2 (σ1 (1 + 2fEI)− σEI (2 + fEI))

−σEI (1− fEI)σ1 = 0, (17)

and where the root of physical interest has <{σ2} > 0
and ={σ2} > 0 (unless the exterior phase is a Drude
material with ={σ2} < 0, etc.).

Tidal breathing is then considered with small
changes in alveolar air-filling where the corresponding
volume fraction f changes from its maximum value
fEI at end-inspiration to its minimum value fEE at
end-expiration. Two fundamentally different physical
modes of alveolar air-fillings are considered for the tidal
breathing.

• Spherical shaped alveoli with fixed shape and
varying surface area: The alveoli are assumed
to have a fixed spherical shape and the volume
change is obtained by a change of its radius. This
implies that the surface area of the alveoli as well
as the whole structure of the lung is stretched
during the tidal breathing.

• Spheroidal shaped alveoli with varying shape and
fixed surface area: The alveoli are assumed to
have a varying spheroidal shape and the volume
change is obtained by a change of its spheroidal
eccentricity while keeping its surface area fixed.
In this mode, the volume change of the alveoli
is due solely to a change in the alveolar shape
(prolongation or flattening of the spheroid) with
a minor stretch in the lung structure.

With a tidal breathing based on spherical shaped
alveoli (fixed shape and varying surface area) the
change in conductivity is obtained from (10) as
∆σeff

sph = σeff
sph(f) − σeff

sph(fEI) where f denotes
the volume fraction of air-filled alveoli during tidal
breathing and fEI the corresponding value at end-
inspiration. Hence

∆σeff
sph =

3fσ2 (σ1 − σ2)

3σ2 + (1− f) (σ1 − σ2)

− 3fEIσ2 (σ1 − σ2)

3σ2 + (1− fEI) (σ1 − σ2)
, (18)

where f = fEI − ∆f and ∆f > 0. For a comparison
with the spheroidal case below, the Hashin-Shtrikman
prototype core sphere is defined to have unit radius
at maximal volume fraction fEI corresponding to the
surface area S0 = 4π.

With a tidal breathing based on spheroidal shaped
alveoli (varying shape and fixed surface area) the
change in conductivity is obtained from (6) and defined
by ∆σeff

j = σeff
j (f) − σeff

j (fEI). The prototype core
spheroids are furthermore assumed to be unit spheres
at the maximal volume fraction fEI at end-inspiration,
and hence from (6) and (10)

∆σeff
j =

fσ2 (σ1 − σ2)

σ2 +
(
dcj − fdej

)
(σ1 − σ2)

− 3fEIσ2 (σ1 − σ2)

3σ2 + (1− fEI) (σ1 − σ2)
, (19)

where f = fEI − ∆f and ∆f > 0. Here, dcj

and dej are the depolarizing factors of the Hashin-
Shtrikman prototype core and exterior spheroids at
volume fraction f , respectively. Since the Hashin-
Shtrikman prototype core spheroid coincides with the
unit sphere at maximal volume fraction fEI, the
following relation is obtained from (4)

fEI =
1

le1 le2 le3
, (20)

where the product le1 le2 le3 is proportional to the
volume of the prototype exterior spheroid. Finally, the
eccentricity ε of the prototype core spheroid as defined
in (11) or (14) is used as a parameter to control the
shape of the spheroid, as well as its volume fraction
f < fEI.

3.1. The prototype core spheroids

Consider a prolate core spheroid with lc1 being the
length of the semi-axis of rotation and lc = lc2 = lc3
the length of the orthogonal axes. Let the spheroidal
eccentricity ε =

√
1− t2 be fixed, where t = lc/lc1 ,

0 < t < 1 and 0 < ε < 1. The surface area of the
prototype core spheroid is fixed at S = 4π, and hence
(13) yields the equation

2πl2c + 2π
lclc1
ε

arcsin ε = 4π, (21)

and which can be solved for lc to yield

lc =

√
2εt

εt+ arcsin ε
, (22)

and lc1 = lc/t. The corresponding depolarizing factor
dc1 is given by (12) and dc = (1− dc1)/2.

Consider similarly an oblate core spheroid with
lc1 being the length of the semi-axis of rotation and
lc = lc2 = lc3 the length of the orthogonal axes. Let



A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing 7

the spheroidal eccentricity ε =
√

1− t2 be fixed, where
t = lc1/lc, 0 < t < 1 and 0 < ε < 1. The surface area
of the prototype core spheroid is fixed at S = 4π, and
hence (16) yields the equation

2πl2c + π
l2c1
ε

ln

(
1 + ε

1− ε

)
= 4π, (23)

and which can be solved for lc to yield

lc =

√√√√ 4ε

2ε+ t2 ln
(

1+ε
1−ε

) , (24)

and lc1 = tlc. The corresponding depolarizing factor
dc1 is given by (15) and dc = (1− dc1)/2.

3.2. The prototype external spheroids

By increasing the eccentricity ε > 0 of the prototype
core spheroid while keeping its surface area fixed, its
volume will decrease. Hence, by defining the volume
of the prototype exterior spheroid Ve = 4πle1 le2 le3/3
to be fixed, the corresponding volume fraction f of the
inclusion phase will decrease. The volume fraction f
for a given eccentricity ε is hence obtained from (4)
and (20) as

f = fEIlc1 l
2
c . (25)

To find the semi-axes of the prototype exterior
spheroid at volume fraction f , the relations (3) of the
confocal ellipsoids are now inserted into the following
equation based on the definition (4)

f2l2e1 l
2
e2 l

2
e3 = l2c1 l

2
c2 l

2
c3 , (26)

and which is equivalent to finding the real and positive
root of the algebraic equation

α3 + α2
(
l2c1 + 2l2c

)
+ α

(
2l2c1 l

2
c + l4c

)
+l2c1 l

4
c

(
1− 1

f2

)
= 0. (27)

Once the correct real valued and positive root α has
been identified, the semi-axes lengths lej are given by
(3). The eccentricity and the depolarizing factors dej

of the prototype exterior spheroid are now given by
(11) and (12) for the prolate spheroid, or by (14) and
(15) for the oblate.

3.3. Sensitivity analysis for high contrast inclusions

A first order Taylor series approximation of the
conductivity changes in (18) and (19) is given by

∆σeff
j ≈

dσeff
j

df

∣∣∣∣∣
f=fEI

df, (28)

where σeff
j is given by (6), and where the spherical case

(18) is a special case of (19) for which dcj = dej = 1/3
and (10) is used. Note that in the spheroidal case

as defined above, the depolarizing factors dcj and dej

depend on f via ε.
Assume that the conductivity σ1 of the inclusion

phase is very small and negligible in comparison to
the conductivity σ2 of the exterior phase. The exact
expression (6) can then be approximated by

σeff
j ≈ σ2

(
1− dcj + f

(
dej − 1

)
1 + fdej − dcj

)
. (29)

Hence, both σeff
j and its derivative

dσeff
j

df
≈ σ2

d

df

{
1− dcj + f

(
dej − 1

)
1 + fdej − dcj

}
, (30)

are proportional to the complex valued conductivity
σ2 of the exterior medium, and where the constant
of proportionality is real valued. In particular, in
the spherical case the following simple expressions are
obtained

σeff
sph ≈ σ2

(
2− 2f

2 + f

)
, (31)

and

dσeff
sph

df
≈ −σ2

6

(2 + f)
2 . (32)

Note that for the a priori effective conductivity σEI of
the inflated lung, (31) yields

σEI ≈ σ2

(
2− 2fEI

2 + fEI

)
, (33)

which approximates the solution to (17).
By writing σ2 = <{σ2} (1 + jη), and by employing

(28) and (30), it is concluded that

∆σeff
j ≈ <{∆σeff

j } (1 + jη) , (34)

where η is the loss cotangent associated with the
exterior phase having complex valued conductivity σ2.
Note finally that (33) implies that

σEI ≈ <{σEI} (1 + jη) , (35)

expressing that the loss cotangent of σEI is approxi-
mately the same as of σ2.

4. Numerical examples

A theoretical study on the changes in the complex
valued conductivity of a lung during tidal breathing
is described below. As a prerequisite for this modeling
an a priori estimate of the complex valued conductivity
σEI of an inflated lung is needed. Here, the data
is taken from [13, Fig. 2e on p. 2257] with σEI =
σa

R + jωε0ε
a
r where σa

R = 0.1 S/m and εar = 2000 at
200 kHz yielding σEI = 0.1 (1 + j0.22). The resulting
conductivity of the exterior phase is obtained from
(17) and is given by σ2 = 0.6318 (1 + j0.22) S/m. The
complex valued conductivity of the air-filled alveoli
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is given by σ1 = j1.1127 · 10−5 S/m, and which
hence can be regarded negligible in comparison to the
conductivity σ2 of the exterior phase.

Another a priori input needed for this modeling is
the range of volume fractions [fEE, fEI] during tidal
breathing. Consider e.g., the lung volume of an
adult male with a functional residual capacity of 2.3 l
and tidal volume 0.5 l, cf., [18]. Suppose further
that the weight of the two lungs is about 0.8 kg
[19], corresponding approximately to 0.8 l of blood
and tissue. The following volume fractions are then
obtained

fEE =
2.3

2.3 + 0.8
= 0.75,

fEI =
2.8

2.8 + 0.8
= 0.78,

(36)

where the results have been rounded to two digits.
The theoretical study based on (18) and (19)

(spheres and spheroids) is illustrated in figures 2
through 6 below, where the changes in conductivity
are parameterized by the volume fraction f = fEI−∆f
with ∆f ∈ [0, 0.03] and fEI = 0.78.

In figures 3 and 5 the changes are plotted directly
in the complex plane, and it is noted that there is a
fixed, almost linear relationship between the changes
in the real part of the conductivity <{∆σeff} and
the imaginary part ={∆σeff}. This observation is
in full agreement with the theory predicted by the
Taylor series approximation (28) and (34) assuming
that the changes in volume fraction df = −∆f < 0 are
small. Hence, the linear slopes seen in figures 3 and 5
are consistent with the theory predicted by (34) and
where η = 0.22 is the loss cotangent associated with
the exterior phase having complex valued conductivity
σ2 = 0.6318 (1 + j0.22). Note that this loss cotangent
is also approximately the same as the one associated
with the a priori (effective) background conductivity
σEI = 0.1 (1 + j0.22) according to the theory expressed
in (35).

As predicted by the linearization theory expressed
in (30), the linear slopes seen in figures 3 and 5 are
independent of the assumed alveoli model (spherical,
prolate spheroidal or oblate spheroidal), as well as of
the assumed excitation polarization (excitation aligned
along spheroid or orthogonal to it). It is only the
magnitude of the conductivity changes that differ in
between these different modes of alveolar air-filling and
their anisotropy.

In figure 6 is illustrated the different sensitivity
slopes that are obtained with a prolate spheroidal
alveoli model excitet along its symmetry axis, and with
different a priori assumed background conductivities
σEI = σa

R + jωε0ε
a
r . As before, the resulting change in

complex valued conductivity ∆σeff = σeff(f)−σeff(fEI)
is plotted for volume fractions ranging from fEI = 0.78
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Figure 2. Real and imaginary parts of the change in effective
lung conductivity parameter, ∆σeff = σeff(f) − σeff(fEI), as
a function of the change in volume fraction ∆f and where the
actual volume fraction of alveoli is f = fEI−∆f . The plot shows
results for a prolate spheroidal alveoli with excitation aligned
along and orthogonal to the spheroid, respectively, and which
has constant surface area and increasing spheroidal eccentricity
(decreasing volume). The plot shows also results for a core
sphere with decreasing volume. The exterior Hashin-Shtrikman
spheroids (and sphere) have constant volumes and all spheroids
are spheres at fEI = 0.78.
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Figure 3. Change in the effective lung conductivity parameter
∆σeff from figure 2, plotted here in the complex plane. As in
figure 2, the resulting change in complex conductivity ∆σeff =
σeff(f) − σeff(fEI) is plotted for volume fractions ranging from
fEI = 0.78 to fEE = 0.75 where the last value at fEE is indicated
with the corresponding plot symbol. The plot shows results with
a prolate spheroidal alveoli (constant surface area and increasing
eccentricity, hence decreasing volume) in comparison with a
spherical alveoli (decreasing volume).

to fEE = 0.75 where the last value at fEE is indicated
with the corresponding plot symbol. Note that the
corresponding changes ∆σeff are directly proportional
to σ2 by (30), or σEI by (33).
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Figure 4. Real and imaginary parts of the change in effective
lung conductivity parameter, ∆σeff = σeff(f) − σeff(fEI), as
a function of the change in volume fraction ∆f and where the
actual volume fraction of alveoli is f = fEI−∆f . The plot shows
results for an oblate spheroidal alveoli with excitation aligned
along and orthogonal to the spheroid, respectively, and which
has constant surface area and increasing spheroidal eccentricity
(decreasing volume). The plot shows also results for a core
sphere with decreasing volume. The exterior Hashin-Shtrikman
spheroids (and sphere) have constant volumes and all spheroids
are spheres at fEI = 0.78.
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Figure 5. Change in the effective lung conductivity parameter
∆σeff from figure 4, plotted here in the complex plane. As in
figure 4, the resulting change in complex conductivity ∆σeff =
σeff(f) − σeff(fEI) is plotted for volume fractions ranging from
fEI = 0.78 to fEE = 0.75 where the last value at fEE is indicated
with the corresponding plot symbol. The plot shows results
with an oblate spheroidal alveoli (constant surface area and
increasing eccentricity, hence decreasing volume) in comparison
with a spherical alveoli (decreasing volume).

5. Summary and conclusions

A theoretical model based on classical homogenization
theory and the Hashin-Shtrikman coated ellipsoids
has been derived to model the changes in the
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σa
R = 0.1, εar = 4000

σa
R = 0.05, εar = 2000
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R = 0.2, εar = 2000

σa
R = 0.1, εar = 1000

Figure 6. Change in the effective lung conductivity parameter
∆σeff for prolate spheroidal alveoli with excitation aligned along
the spheroid, as in figures 2 and 3, plotted here for different
values of a priori inflated lung parameter σEI = σa

R + jωε0εar .

complex valued conductivity of a lung during tidal
breathing. Here, the alveolar air-filling corresponds
to the inclusion phase of the two-phase composite
material. The model predicts a linear relationship
between the real and the imaginary parts of the
changes in the complex valued conductivity of a lung
during tidal breathing, and where the loss cotangent
of the change is approximately the same as of the
effective background conductivity. Hence, even though
the magnitude of the change depend on the chosen
ellipsoidal model, the loss cotangent of the change
is virtually independent of the shape and orientation
(anisotropy) of the alveoli. Future work will be aiming
to investigate the usefulness of the new model based
on experimental and clinical data obtained within the
ongoing CRADL study.
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