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Abstract: Technological advances in the internet of things (IoT) allowed a low-cost, yet small sensor
device to operate with limited power in a dynamic harsh environment where human intervention is
impossible. The wireless sensor network (WSN) is an example of the IoT in which physical devices’
software and sensors can interconnect to provide application services. It is important that such
applications be dependable to meet the required quality of service (QoS) and function as expected.
Consequently, the multi-objective optimization (MOO) problem in WSNs aims to address the trade-
off among coverage, connectivity, and network lifetime requirements. Node scheduling is one
approach of many used to optimize energy in WSNs. The contribution of this work is the proposal
of a self-organizing feature map (SOFM) to enhance the node scheduling in WSNs. The proposed
SOFM node-scheduling algorithm aims to spatially explore the state space domain and obtain an
optimal solution. In our experiment, the proposed SOFM node-scheduling algorithm is evaluated
against a comparable algorithm, namely the BAT node-scheduling algorithm, via MATLAB simulator.
The results showed that the SOFM node-scheduling algorithm outperformed the latter by 27% and
28% for the maximum and minimum coverage, respectively, with similar performance of 99% of
connectivity and network lifetime.

Keywords: IoT sensor system; ad hoc sensor network; dependable WSN; smart sensing for safety;
scheduling algorithms; real-time systems; QoS in WSN; SOM; SOFM neural networks

1. Introduction

A typical WSN is formulated out of multiple sensor nodes connected to each other
through one or two base stations to provide application services [1,2]. The WSN applica-
tions can range from simple detection systems, i.e., environmental monitoring systems, to
complex safety-critical systems, i.e., forced fire detection systems, as shown in Figure 1.
Such safety-critical applications have real-time requirements which, in some cases, require
an immediate alert response from the network [3]. For example, a forest fire detection
system requires rapid detection of a fire breakout, so the incident can be mitigated as soon
as possible without causing any casualties such as loss of forest, animals, and people in
the forest. Another example is the use of the earthquake early warning system (EEWS),
which requires instantaneous detection of the ground motion before, during, and after
the earthquake [2,4,5]. Therefore, the specification requirements of a dependable WSN
safety-critical system must be taken into consideration to ensure proper and functional
operations.
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Figure 1. The WSN architecture with the use of fire forest detection systems. 

It is important that such safety-critical systems continuously and accurately provide 
the required parameter values, such as temperature, humidity, motion, and light, within 
the specified critical time constraint. Hence, the dependability of such a network must be 
as high as possible to ensure the optimal QoS requirements [6,7]. Meeting this time con-
straint and aligning with safety requirements and standards are crucial for real-time mon-
itoring and decision making. According to European standardization, a WSN safety-crit-
ical system must have quick detection for such phenomena and report to the centers of 
authorities as quickly as possible within its occurrence [1,2]. The motivation of this paper 
is to enhance the dependability of safety-critical WSNs by exploring the state space and, 
in the process, finding the optimal solution [8]. Our hypothesis envisages best-connected 
coverage with the best meaningful and useful network lifetime solution. Subsequently, 
the WSN must operate correctly during the run time according to its specification require-
ments. Thereby, the main contribution of this paper is addressing the MOO problem and 
finding the balance among coverage, connectivity, and network lifetime. Thus, we pro-
pose a novel SOFM node-scheduling algorithm to maintain network dependability, via-
bility, availability, and reliability. The novelty of our approach is in its application in the 
MOO problem domain which is an NP-hard problem [9,10]. Furthermore, the proposed 
solution provides an optimal network configuration based on the SOFM spatial represen-
tation model in the context of safety-critical WSNs. 

In its most basic form, the SOFM model emerged from the standard self-organizing 
map (SOM) technique, which allows dimensionality reduction for the data in the state 
space from a higher dimensional space to a lower dimension space [11]. The SOM tech-
nique has a unique property of producing feature maps that can be visually observed and 
then identified. By proof, the feature map of surfaces tends to converge on global maxima 
and minima rather than local maxima and minima. In SOFM, nodes are programmed to 
learn and become their input values/parameters by mapping their weights to follow their 
given input data [12]. In order to understand the concept of the SOFM, first we must il-
lustrate its basic framework. In principle, the SOFM is the process of randomly choosing 
a node from a map or a grid and comparing its distance with the distance of all other 
nodes in the grid [13]. There are many methods to calculate the distance between the 
nodes in the grid. The Euclidean distance is one method, and is the shortest line between 
two points A source and B destination, as shown in Figure 2. 
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It is important that such safety-critical systems continuously and accurately provide
the required parameter values, such as temperature, humidity, motion, and light, within
the specified critical time constraint. Hence, the dependability of such a network must be as
high as possible to ensure the optimal QoS requirements [6,7]. Meeting this time constraint
and aligning with safety requirements and standards are crucial for real-time monitoring
and decision making. According to European standardization, a WSN safety-critical system
must have quick detection for such phenomena and report to the centers of authorities as
quickly as possible within its occurrence [1,2]. The motivation of this paper is to enhance
the dependability of safety-critical WSNs by exploring the state space and, in the process,
finding the optimal solution [8]. Our hypothesis envisages best-connected coverage with
the best meaningful and useful network lifetime solution. Subsequently, the WSN must
operate correctly during the run time according to its specification requirements. Thereby,
the main contribution of this paper is addressing the MOO problem and finding the balance
among coverage, connectivity, and network lifetime. Thus, we propose a novel SOFM
node-scheduling algorithm to maintain network dependability, viability, availability, and
reliability. The novelty of our approach is in its application in the MOO problem domain
which is an NP-hard problem [9,10]. Furthermore, the proposed solution provides an
optimal network configuration based on the SOFM spatial representation model in the
context of safety-critical WSNs.

In its most basic form, the SOFM model emerged from the standard self-organizing
map (SOM) technique, which allows dimensionality reduction for the data in the state space
from a higher dimensional space to a lower dimension space [11]. The SOM technique
has a unique property of producing feature maps that can be visually observed and then
identified. By proof, the feature map of surfaces tends to converge on global maxima and
minima rather than local maxima and minima. In SOFM, nodes are programmed to learn
and become their input values/parameters by mapping their weights to follow their given
input data [12]. In order to understand the concept of the SOFM, first we must illustrate
its basic framework. In principle, the SOFM is the process of randomly choosing a node
from a map or a grid and comparing its distance with the distance of all other nodes in the
grid [13]. There are many methods to calculate the distance between the nodes in the grid.
The Euclidean distance is one method, and is the shortest line between two points A source
and B destination, as shown in Figure 2.
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For example, in Figure 2 we assumed node Xi is randomly selected from the grid as 
a first node X1; then, the distance between X1 and the rest of the nodes in the grid is calcu-
lated, where the closest node to X1 is found and specified. The red dashed lines represent 
the association of this node (i.e., X1) with all the nodes in the grid, where each red dashed 
line has an associated weight value. Once the closest node is specified, it is then considered 
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For example, in Figure 2 we assumed node Xi is randomly selected from the grid
as a first node X1; then, the distance between X1 and the rest of the nodes in the grid
is calculated, where the closest node to X1 is found and specified. The red dashed lines
represent the association of this node (i.e., X1) with all the nodes in the grid, where each
red dashed line has an associated weight value. Once the closest node is specified, it is
then considered the best matching unit (BMU). Then we start updating the values of all
the nodes in the grid according to the input, which is Xi, e.g., the BMU found. Note that
we try to edit a certain range by a certain percentage. This update happens with different
values but at a close range to the BMU (e.g., sensor node) that is initially found. The main
goal of the SOFM is that the BMU value will reach the same absolute value as X1. This
process is iterated from one node to another (X1, X2 . . .Xi), where another node in the grid,
in this case X2, is chosen for the same calculation of applying the Euclidean distance and
comparing and reapplying the same process [14].

In a typical SOFM, the optimization mechanism works towards decreasing the problem-
to-solution domain from multiple dimensions (e.g., 23) to limited dimensions (e.g., 3), which
makes it very easy to handle. It allows us to handle a large amount of data in manageable
datasets without losing their functional properties with respect to the optimized solution.
In this work, the main objective is to optimize the WSN to perform reliably for safety-
critical applications. Hence, we propose the SOFM model by utilizing important features
that are based on update functions, unlike the hidden markov model (HMM) and BAT
node-scheduling algorithms which are based on activation functions.

Hence, this paper is organized as follows: in Section 2, we delve into the current
state-of-the-art SOFM node-scheduling algorithms and their constraints. Section 3 outlines
the problem formulation within the context of a WSN. Section 4 covers the simulation
experiments and the resulting outcomes. In Section 5, the conclusion of the work is drawn.

2. Related Work

There is a plethora of work that addresses energy optimization in the WSN [15,16].
However, only a few works attempted to address energy optimization from the perspective
of the MOO problem, which consider a suitable trade-off across the three dimensions:
connectivity, coverage, and network lifetime. In what follows, we shed light on some of
the most important ones in the literature that use the SOM model to address the problem
of energy optimization in the WSN [16]. For example, the author in [17] utilized SOM to
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propose an energy optimization model to reduce communication in clustered WSNs. In
particular, the author proposed an approach for cluster selection based on the extension to
growing self-organizing map (E-GSOM) technique. The author compared two evolutionary-
based genetic computing techniques against the E-GSOM, where the result showed an
improvement in energy efficiency among its peers. The ref. [18] investigated the latest
state-of-the-art approaches in low-cost fixed relay clustering problems in energy-harvesting
wireless sensor networks (EHWSNs). The author proposed random relay fixed clustering
for EHWSNs. The protocol divides the network into k number of ring areas of an equal
width size, where each ring area is divided into the same number of CHs. This strategy
introduced a metric for random selection of the CH as relay nodes. However, this study
does not consider the energy consumption for the selection of the CH relay nodes.

Another interesting solution was provided by Xie et al. [19] for the connected coverage
problem in WSNs. The authors proposed an active node communication strategy to provide
a spatial optimal coverage solution for dynamic networks. In the proposed communication
strategy, active nodes compensate for the coverage and connectivity that are introduced
by the static nodes. Although this is an interesting solution to the dynamic nature of the
WSN, it requires the use of mobility to compensate for the coverage and connectivity, which
might be infeasible and inapplicable for other types of WSNs.

Another work that utilized SOFM to provide efficient cluster-routing algorithms was
proposed by [17]. The work reduces energy consumption by organizing sensor nodes into
clusters, whereby better communication nodes in the WSN are minimized. The solution
improves the network lifetime via the distance reduction among CH nodes and load-
balancing cost function. Since communication is the most expensive energy expenditure
in a WSN, the proposed solution managed to optimize communication distance among
CHs by reducing the communication distance to the base station. Although this approach
extends the network lifetime by reducing the communication distance to the base station,
the proposed approach incurs messages overhead due to the setup cost of forming the CHs
with the short distinct to the base station.

On the other hand, the author in [20] introduced the self-organizing map scheduling
algorithm (SOMSA) for sensor networks where the scheduling of the nodes is based on
dynamic environment settings with local interactions. These settings are entirely based on
the changing energy levels of the WSN. The SOM, therefore, uses these patterns as input
vectors to produce dynamic scheduling for efficient data transfer. In our case, we already
computed the final scheduling before the WSN operation. However, in the case of [20], the
scheduling is dynamically computed using the SOFM; hence the energy consumption is
more in this case than ours due to the message control exchange overhead.

In ref. [21], the author proposed the SOFM topology building (SOFMTB) algorithm to
optimize energy in WSNs. The work utilized the SOFM technique to adjust the clusters
based on energy levels for efficient dissemination of data over the network. The SOFMTB
divides the WSN into tiers using the k-means algorithm as the cluster head and cluster
members. It also modifies the topology of the network, providing efficient partitions in the
network.

In ref. [13], SOFM was used to reduce energy consumption and bandwidth usage in a
resource-constrained WSN. The solution tends to reduce the data communication during
the entire network lifecycle by reducing its size. For instance, in this work, 1500 data
volumes were generated and aggregated from all sensor nodes and sent to the base station.
This approach clusters these data and reduces their size by selecting the most suitable size
that has the meaningful one and sending it instead of that 1500 large-volume one.

On the other hand, the work in ref. [22] used the self-organizing map technique
for high buildings, in the HVAC system, to find energy-saving opportunities and thus
efficiently distribute the energy. This work used a dataset spanning one-year in time series
analysis to provide a service that accommodates user requests regarding outdoor/indoor
temperature. Utilizing SOM was proven to provide an energy-efficient solution.
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In summary, having assessed the latest state-of-the-art node-scheduling techniques
that utilize the SOM model in WSNs, it has been noticed that the existing literature lacks
solutions that address the three requirements together, i.e., coverage, connectivity, and
network lifetime, which are crucial for dependable a WSN. Hence, there is still more room
to explore the state space to obtain the optimal solution with respect to the MOO, which is
what motivated this work. Therefore, the SOFM node-scheduling algorithm is proposed to
find the optimal scheduling for the MOO problem.

3. Problem Formulation

To explore the search space and find the optimal solution for the MOO problem,
especially in the context of the WSN safety-critical systems, we used a multidisciplinary
approach (i.e., that combines the optimization of three objectives: coverage, connectivity,
and network lifetime) utilizing the SOFM model spatial feature to formulate and solve the
MOO problem. Therefore, this work proposes a novel node-scheduling algorithm using
the SOFM node-scheduling algorithm. In the SOFM node-scheduling algorithm, nodes
are grouped according to their similar features. For example, in the WSN, nodes share
similar features such as energy levels, transmission (Tx), receiving (Rx), and distance (D)
from the sink node or distance between the parent to child nodes; the fifth feature is the
sleep/awake scheduling. The main purpose is to reduce high-dimensional data to a map.

Henceforth, we assume a dataset of size (m, n), where m is the number of training
examples, e.g., the number of sensors in the WSN, and n is the number of features; a
matrix of (100, 2) initializes weights (n, C), where C is the number of clusters. Iterating over
the input data for each training example, it updates the weight vector with the shortest
distance (Euclidean distance) from the training example. The updated rule of weight is
represented in Equation (3). The general structure of the SOFM node-scheduling algorithm
is represented from [14], where we start the formulation by calculating the Euclidean
distance (e.g., the shortest distance between two vectors) as in Equation (1):

D =
[
(x2 − x1)

2 + (y2 − y1)
2
]0.5

(1)

where D is the Euclidean distance, x and y are the cartesian coordinates of the nodes in
the field, where (x1, y1) and (x2, y2) are the input coordinates of the randomly selected
vector/neuron. The mc is the Codebook (feature set) vector matching a given input vector
X, as described in Equation (2):

X−mc = min{x−mi} (2)

mi is the average spatial x-coordinate of a neuron. In this work, we formally defined
mc as the neuron (sensors).

The SOFM units receive updates, as well as their neighbors where the unit of the
highest match is achieved. Within such a process, the best unit becomes updated closer to
the sample vector in the space of the input value, as in Equation (3):

wi.j = wi.j[old] + alpha [t] ∗
[
xi.k − wi.j[old]

]
(3)

where alpha is a learning rate at time t, j denotes the winning vector, i denotes the ith feature
of the training example, and k denotes the kth. training example from the input data. After
training the SOFM network, the trained wi.j weights are used for clustering new examples.
A new example falls in the cluster of winning vectors. The first step is to find the distance
between two sensor nodes. For example, if the distance between, say, node A and node B is
found, then they will be compared; at that point, the distance between sensor B and sensor
C can also be found. The calculations for clustering new examples are performed using
Equation (4):

d_E [x , y] =‖ x− y ‖ (4)
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where ‖ ‖ represents the Euclidean distance, which can be found in terms of the Euclidean
norm of the difference between two vectors (sensor nodes). Please note that A and B
represent two sensor nodes in the system, as shown in Equation (5):

A[x1, y1], B[x2, y2] (5)

Finally, the BMU is updated with respect to the next immediate neighbor, usually
noted as mc, which is represented by Equation (6):

||x−mc|| = mini{||x−mi||} (6)

Equation (6) represents the normalization of the input vector X and the output vector,
where the value of the output vector is equivalent to the minimum Euclidean distance
between the normalized input vector and the path weight vector.

The purpose of Equation (6) is to identify the nodes which can be CH nodes, i.e., the
nodes have better position and energy levels. For example, if three sensors are considered,
A, B, and C, logically there will be a path from A to B and a path from B to C; hence, there
are two paths having two distances that are denoted by D0 and D1. If D0 > D1, then the B
sensor is not a CH; otherwise, it then becomes a CH. Operating the function in Equation (6)
might find more CHs than required; hence, another function is needed that will select
the best five CHs among them. The second function updates the weights and assigns
each weight to the sensor node. This function will collect the highest weights assigned
to the sensor nodes. Hence, the pseudocode of the SOFM node-scheduling algorithms is
presented in Algorithm 1.

The operational setup of the SOFM algorithm includes the five features mentioned
earlier; each feature is associated with a certain weight value, which needs to be updated
in every iteration based on those features. Here the Euclidean distance is calculated and
the best matching is identified where the clustering starts to form a group as a potential
solution. Each group would have its own sleep scheduling, which is based on a value
obtained from the features. All these processes are calculated by the sink node during the
design time and implemented in the run time. Figure 3 illustrates the output of the SOFM
node-scheduling algorithm to create an efficient network for the WSN.

These features are fed into the SOFM model to provide the best node-scheduling
process where the SOFM node-scheduling algorithm can be used to find the winner node
consisting of the best of the available features amongst all other available nodes. The
mechanism of the SOFM node-scheduling algorithm is based on the energy levels of the
sensor node and the distances between the CH and sink, parent, and child nodes, Tx,
Rx, and the node sleep/awake scheduling. Thus, the SOFM node-scheduling algorithm
partitions the network in the form of five-dimensional space layers.

In order to illustrate the principle of the five-dimensional space layers, let us consider
a simple example of three layers starting from one to three, where layer one is presented
for the information dissemination, e.g., packet exchanging. As the WSN progresses in time,
after SOFM node-scheduling algorithm iterations, some sensor nodes will experience a
change in the level of energy, i.e., consume energy. Those sensor nodes are then replaced
with other nearby available nodes that have the same features from the next layers, e.g.,
updated from layer two and consequently layer three. After some time, the layer under
consideration will exhaust the solutions; now the onus is on the immediate next layer to
take on the responsibility of the presently running node.
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Algorithm 1: SOFM node-scheduling algorithms

Input:

1. Input data = “sensor_data.txt” (five
features of sensors) which is represented
in a tabular form in csv format

2. Number of Sensor Nodes = 10 (100)
3. Number of epochs = 100 (1000)
4. learning_rate = 0.1 (0.1)

Output:
SOFM Optimized 5 features for creating
efficient network for WSN.

1. Define function to train SOFM (box)
2. Initialize SOFM weights with random numbers between 0 to 1
3. for i = 1 to num_epochs
4. Loop through input data
5. Calculate the best matching unit (BMU) for the input data
6. Update the weights of the BMU and its neighbors
7. End for
8. for i = 1 to (number of nodes):
9. calculate_distance(updated weights of BMU, Input data)
10. if distance < min_distance:
11. min_distance = distance
12. BMU Index = i
13. End if
14. End for
15. return BMU Index
16. Define function to optimize the network in terms of energy and communication
17. Use the trained SOFM to extract features from sensor nodes
18. Use the extracted features to optimize the network
19. for i = 1 to (number of nodes):
20. calculate the distance to each SOFM node
21. End for
22. Assign the node with the minimum distance as the feature for the sensor node
23. Obtain the SOFM Optimized 5 features for creating efficient network for WSN.
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4. Results and Discussion

The simulation experiment was conducted using a MATLAB_R2018b environment.
In this experiment, we compare the new proposed SOFM node-scheduling algorithm
against the BAT node-scheduling algorithm, hence spatially exploring the state space of the
problem domain. The considered assumptions are as follows:

1. The WSN-monitored area in simulations is 100 m2.
2. All nodes are connected to one sink node.
3. Nodes are randomly deployed.
4. The number of iterations is fixed to 200 epochs.
5. The number of simulation iterations is limited by convergence of the SOFM network

when the wait time reaches a stable condition.

Figure 4 demonstrates the simulation experiment of the SOFM node-scheduling algo-
rithm with 100 homogenous nodes i.e., having the same capabilities (sensing, communicat-
ing, power battery, processing power).
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Figure 4. SOFM simulation setup in MATLAB (Red—cluster head, Blue—child node, Yellow—dead
node).

As mentioned earlier, the SOFM node-scheduling algorithm was compared to the
BAT node-scheduling algorithm. It is worth noting that other node-scheduling algorithms
were not included in this comparative analysis with the SOFM node-scheduling algorithm
as they were demonstrated in our previous work, for example, how the BAT algorithm
outperforms the randomized coverage node-scheduling algorithm (RCS) [23] and HMM
node-scheduling algorithm [1]. Therefore, with the improvements shown by the SOFM
over the BAT algorithm, it can be deduced that the newly proposed SOFM node-scheduling
algorithm also outperforms the RCS and the HMM node-scheduling algorithms.

The simulation was individually tested 30 times, where one-way ANOVA analysis
was implemented on both the SOFM and the BAT node-scheduling algorithms to identify
the p-value for the statistical analysis. The statistical results are shown in Table 1.
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Table 1. Statistical analysis.

Matrices BAT Node-Scheduling
Algorithm

SOFM Node-Scheduling
Algorithm

Number of Hops 26 28
Connectivity 0.99 0.99
Coverage 0.77 0.99
Lifetime 196 126
ANOVA 1 4.12002e × 10−188 6.04755e × 10−89

4.1. All Used Energy

The all used energy metric refers to the energy consumed by the nodes throughout the
simulation time until all nodes fully deplete/consume their energy. In Figure 5, the X-axis
represents time in round units, and the Y-axis is the energy used in Joule.
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Figure 5. All used energy.

For this metric, the SOFM node-scheduling algorithm resulted in less collective energy
consumption by the WSN nodes and lasted for more rounds, i.e., up to 1638 rounds, while
the BAT node-scheduling algorithm lasted up to 1498 rounds. This shows the SOFM
node-scheduling algorithm extended the network’s lifetime more than the BAT algorithm.
Despite these results, the BAT node-scheduling algorithm consumed less energy during
the first half of the simulation. For instance, as can be noticed in the 42 rounds for the
BAT node-scheduling algorithm, the amount of energy used is 1.28 joules, in contrast to
the amount of energy used in the SOFM node-scheduling algorithm, which is 2.97 joules.
However, it is worth mentioning that the SOFM node-scheduling algorithm at around
1000 depleted energy at a faster pace compared to the BAT node-scheduling algorithm due
to the spatial configuration, which is based on the residual energy of each node. This can
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be improved through the utilization of a time series analysis model such as long short-term
memory (LSTM).

4.2. Lifetime of Sensor Nodes

The lifetime of sensor nodes metric represents the number of live sensor nodes in the
network during the simulation rounds. In this metric, the Y-axis represents the number of
alive sensor nodes, while the X-axis represents times in rounds, as shown in Figure 6.
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Figure 6. Lifetime Sensor Nodes.

Initially, both algorithms in the WSN started their operation with 100 nodes. It can
be noted from Figure 6 that the SOFM node-scheduling algorithm falls below the BAT
node-scheduling algorithm from round 0 up to 85 rounds. This is not a disadvantage of
the SOFM node-scheduling algorithm because the higher the number of live sensors, the
higher the energy consumption, which is an undesired result. It can be noticed that the BAT
node-scheduling algorithm fully depletes its energy at 108 rounds, where it is recorded to
have only 15 nodes alive, and where the simulation threshold is set to finish, i.e., when
the number of nodes reaches 15. In contrast, the SOFM node-scheduling algorithm has
maintained the live sensors for a longer period, until round 118, which is an advantage
by 10 rounds over the BAT node-scheduling algorithm. The advantage the SOFM node-
scheduling algorithm has over the BAT node-scheduling algorithm in improving the nodes’
lifetime is due to the spatial feature it has in visualizing the best network configuration. The
SOFM node-scheduling algorithm provides a solution that considers the residual energy
of the nodes. However, a notable observation of the comparison between the two curves
of the two algorithms is that the SOFM node-scheduling algorithm falls below the BAT
node-scheduling algorithm and, hence, consumes more energy. This is due to the spatial
distribution of energy. This confirms our initial observation in Section 4.1.
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4.3. Efficiency

The efficiency metric is a measure of the network’s bandwidth that is used to determine
the number of packets generated in the network. The lower the bandwidth, the lower the
congestion and the fewer the data generated. In contrast, the higher the bandwidth, the
higher the congestion and the more the data generated. The X-axis represents the number
of rounds, while the Y-axis represents the number of packets in the network. The primary
focus lies on the volume of packets transmitted and received within the WSN, as shown in
Figure 7.
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After 110 rounds, it can be noticed that the SOFM node-scheduling algorithm has
recorded a higher efficiency with extended efficiency-lifetime too whereas the BAT node-
scheduling algorithm recorded a network lifetime at the 110 round (died) as can be noted
in Figure 7. The SOFM node-scheduling algorithm has the larger number of packets
sent/received in the network which indicates better connectivity and lifetime of the net-
work.

4.4. Connectivity

The connectivity metric quantifies to which extent nodes are connected in the network.
In Figure 8, the Y-axis is the performance of connectivity which is measured by number as
a value fraction of nodes connected in the network and the X-axis is the number of rounds.
For example, in the simulation, there are 100 nodes in the network when the connectivity
factor reaches 0.98. This indicates that the total number of the connected nodes is 98 out
of 100.

It can be noticed that both algorithms performed similarly well during the simulation
period, except for the SOFM node-scheduling algorithm’s extended network lifetime. As
can be noticed, the BAT node-scheduling algorithm stopped/died at 108 rounds, whereas
the SOFM node-scheduling algorithm continues its lifecycle until round 118.
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4.5. Coverage

The coverage metric represents the extent to which an area to be monitored is covered.
In Figure 9, the Y-axis is the performance of coverage, which is measured by the number
as a value fraction of nodes connected in the network, and the X-axis is the number of
simulation rounds. In the simulation, the coverage is represented by the fraction of the area
covered by the network. For example, if the area of the test field is 100 m2, a coverage of 0.8
value would mean 80 m2 has been covered.
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As can be noted in Figure 9, the overall coverage fluctuates as time progresses, and
as nodes run out of energy, the coverage decreases. Similarly, the coverage of the BAT
node-scheduling algorithm falls after 108 rounds, where all nodes run out of energy; thus,
no coverage is seen. The SOFM node-scheduling algorithm outperformed the BAT node-
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scheduling algorithm coverage by 10 rounds. This is due to the spatial configuration
considered by the SOFM node-scheduling algorithm in its core design. However, this
fluctuation can be controlled through the utilization of a time series model (e.g., LSTM),
where a sequence of good coverage values based on time can be found and then replicated
throughout the lifetime of the WSN.

5. Conclusions

This paper addressed the MOO problem in which a trade-off between requirements
is obtained to provide reliable performance in safety-critical systems in the WSN. The
contribution is a novel node-scheduling algorithm based on the SOFM model to provide
the optimal solution for WSNs. Accordingly, the achieved results always provided an
extended coverage and network lifetime while maintaining the same level of connectivity
in comparison to the BAT node-scheduling algorithm. This, in turn, improved service
availability and reliability for improved dependable WSN safety-critical systems. The
self-organizing capacity in the SOFM node-scheduling algorithm outperformed the BAT
node-scheduling algorithm through its simplistic method of dimension reduction and
classification. While the spatial feature of the SOFM node-scheduling algorithm enabled a
better representation of the WSN configuration, the data representations may be abstracted
due to the migration from spatial to temporal spaces. In future work, this limitation
will be addressed by introducing the LSTM model, whose approach is based entirely
on a time-dependent framework. Although the metrics involved in this research are
concerned with the MOO problem, in future work we will look thoroughly at metrics
that are concerned with real-time system applications to robustly assess the proposed
SOFM node-scheduling algorithm. For example, our hypothesis will extend to propose
an approach that approximates the end-to-end delay distribution of the links between
immediate nodes. This shall enable certain sequences of messages to be sent through a
chain of selected paths within time intervals and thereby enable the application of WSNs to
exploit the QoS trade-off based on timeliness requirements.
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