
Human Centric Security and Privacy for the IoT using 
Formal Techniques 

 

Florian Kammüller 
Middlesex University London, Department of Computer Science, UK 

f.kammueller@mdx.ac.uk 

Abstract. In this paper, we summarize a new approach to make security and 
privacy issues in the Internet of Things (IoT) more transparent for vulnerable 
users. As a pilot project, we investigate monitoring of Alzheimer’s patients for a 
low-cost early warning system based on bio-markers supported with smart 
technologies. To provide trustworthy and secure IoT infrastructures, we employ 
formal methods and techniques that allow specification of IoT scenarios with 
human actors, refinement and analysis of attacks and generation of certified 
code for IoT component architectures. 
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1 Introduction 

The Internet of Things (IoT) denotes the combination of physical objects with their 
virtual representation in the Internet. It consists not only of human participants but 
“Things” as well. The IoT has a great potential to provide novel services to humans in 
all parts of our society.  Amongst the biggest problems for this technology to catch on 
in critical applications are security flaws, due to technical restrictions, immaturity of 
software applications, and mainly a lack of transparency. The main trigger for security 
problems is human behaviour, either unintentional or malicious. 
In this paper, we give an overview of how we apply formal techniques to enhance 
security and privacy of human centric IoT systems. We focus on healthcare aiming to 
support low-cost Alzheimer’s diagnosis. We outline the process we use in the CHIST-
ERA project SUCCESS. In detail, we report on using interactive theorem proving 
with Isabelle. We use this proof assistant for the modeling and attack analysis of in-
frastructures with humans and for the formal definition cryptographic. We apply the 
Isabelle Insider framework for human centric infrastructure analysis and the inductive 
approach for security protocol verification to support the secure IoT system develop-
ment in the early security requirement phase as well as the technical network security 
level. 

2 Background 

This section provides a short summary of the techniques used in the process of formal 
development that we use in SUCCESS before highlighting the contributions of the 
current paper.  



2.1 Overview of SUCCESS Project  

The core idea of our approach is to use formal methods and verification tools to pro-
vide more transparency of security risks for people in given IoT scenarios.  
SUCCESS will validate the scientific and technological innovation through pilots, one 
of which will be in collaboration with a hospital and will allow all stakeholders (e.g. 
physicians, hospital technicians, patients and relatives) to enjoy a safer system capa-
ble to appropriately handle highly sensitive information on vulnerable people while 
making security and privacy risks understandable and secure solutions accessible. 
This international collaboration is funded by the European programme CHIST-ERA 
[1]. We apply techniques from hardware and software, user behaviour and human-
computer interaction to a research pilot from the healthcare sector on supporting IoT 
monitoring techniques that are human understandable and can be certified by auto-
mated techniques. 
• specification and verification techniques for secure IoT components and their com-
position [2],  
• verification methods and risk assessment techniques [3] for IoT scenarios with mod-
els of human behavior [4], social interactions and human-system interactions, 
• implementation and modeling languages with algorithms for the certification of 
safety, availability, secrecy, and trustworthiness across from the model to the platform 
[5]. 



2.2 Contribution of this Paper and Overview 

This paper summarizes how the requirements for the IoT healthcare system lead to a 
high level formal specification in the Isabelle insider framework [6] which also allows 
attack tree analysis [4]. This first phase of the SUCCESS approach is summarized in 
Section 3 illustrated on a simplified architecture and use cases for the pilot case study. 
As a result of this first phase, the input to the BIP-based analysis and component ar-
chitecture design and certified code generation is provided. We omit details on this 
phase since it is not within the scope of the paper. The output of this process however 
is a Java Script smartphone app capable of synchronous communication within the 
phone and via Bluetooth with sensors in the environment of the phone in the patient’s 
home. The communication of the smartphone app with data servers in hospitals and 
other institutions (like research centers) is asynchronous and channeled via the Inter-
net. It cannot be part of the certified code generation in BIP (which is restricted to 
synchronous communication). Therefore, we show up in Section 4 what is the state of 
the art of technically realizing secure communication for privacy sensitive data using 
web services and data interchange formats. In Section 5, we illustrate how to formally 
verify this communication using the inductive approach of security protocol verifica-
tion in Isabelle (which is compatible with the Isabelle Insider framework as has re-
cently been shown [7]). 

3 Healthcare Case Study in Isabelle Insider Framework 

The case study we use as a running example in this paper is a simplified scenario 
from the context of the SUCCESS project for Security and Privacy of the IoT [1]. A 
central topic of this project for the pilot case study is to support security and privacy 
when using cost effective methods based on the IoT for monitoring patients for the 
diagnosis of Alzheimer’s disease. As a starting point for the design, analysis, and 
construction, we currently develop a case study of a small device for the analysis of 
blood samples that can be directly connected to a mobile phone. The analysis of this 
device can then be communicated by a dedicated app on the smart phone that sends 
the data to a server in the hospital. 

 
Fig. 1. Health care scenario: carer and patient in the room may use smartphone apps. 
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3.1 Healthcare Scenario 

In this simplified scenario, there are the patient and the carer within a room together 
with the smart phone (see Figure 1). 
The carer has access to the phone to support the patient in handling the special diag-
nosis device, the smart phone, and the app. The insider threat scenario has a second 
banking app on the smart phone that needs the additional authentication of a “secret 
key”: a small electronic device providing authentication codes for one time use com-
mon for private online banking. 
Assuming that the carer finds this device in the room of the patient, he can steal this 
necessary credential and use it to get onto the banking app. Thereby he can get money 
from the patient’s account without consent. 
 

3.2 Isabelle Insider Framework Analysis 

 
The Isabelle Insider framework enables formalization of the infrastructure as a graph 
of locations, like room or smartphone, in which human actors reside in locations and 
local policies are attached to them as well. The details of this modeling and analysis 
of the case study is given in [4]. As a brief illustration we give some excerpts here. 
The local policies are given by the following Isabelle definition and explained below. 
 
local_policies G ≡  
(λ x. if x = room then {(λ y. True,{get, put, move}) }  
      else (if x = sphone then  {((λ y. has (y, ’’PIN’’)),           
                   {put,get,eval,move}),(λy. True, {})} 
            else (if x = healthapp then   
                         {((λ y. (∃ n. (n @G sphone)∧ 
                           Actor n = y)), 
                           {get,put,eval,move})} 
                  else (if x = bankapp then   
                          {((λy.(∃n.(n@G sphone)∧ 
                           Actor n=y ∧ has(y,’’skey’’))),  
                           {get,put,eval,move})} 
                        else {})))) 
 
In this policy, any actor can move to the room and when in possession of the PIN can 
move onto the sphone and do all actions there. The following restrictions are placed 
on the two other locations. 
• healthapp: to move onto the healthapp and perform any action at this location, an 
actor must be at the position sphone already; 
• bankapp: to move onto the bankapp and perform any action at this location, an actor 
must be at the position sphone already and in possession of the skey. 
 



3.3 Attack Tree Analysis 

Attack Trees [8] are a graphical tree-based design language for the stepwise investiga-
tion and quantification of attacks. They have been integrated as an extension to the 
Isabelle Insider framework [6]. This integration extends the Insider model described 
in the previous section with a proof calculus and modelchecking semantics for attack 
trees. The extension allows stepwise refinement of attacks exhibiting possible attack 
paths. The refinement of attack trees is illustrated in Figure 2 with the refined attack 
path highlighted.   

 
Fig 2. Attack tree refinement enables stepwise attack path discovery. 
 
The following refinement shows the logical expression of this attack refinement. It 
expresses that the carer can evaluate the money transfer on the bankapp by first steal-
ing the skey, getting on the phone, on the bankapp and then evaluating. 

 

[Goto bankapp, Perform eval] ⊕∧

move−grab 

 

 ⊑hc_scenario 
[Perform get, Goto sphone, Goto bankapp, Perform eval] 

⊕∧

move−grab 

 

The proof calculus uses the refinement to prove that the sequence of actions  
[Perform get, Goto sphone, Goto bankapp, Perform eval]  
represents an attack in the given infrastructure. The underlying semantics providing 
the notion of validity of an attack is based on the state transition relation defined in 
the modelchecking foundation (Kripke-structure over infrastructure states) we con-
structed in the Isabelle Insider framework.  
The attack tree analysis enables formalizing the requirements and high level architec-
ture of the pilot case study. The found attacks can be used to improve the security 
policies on the model to provide a security enhanced formal specification for the next 
phase of applying the BIP methodology to develop a component architecture for the 
target IoT infrastructure in which the security properties of the initial model are pre-
served and certified code for the components (sensors and smart phone) can be gener-
ated. We omit any details of this phase since they will be reported elsewhere. In addi-
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tion, the attack trees and paths are naturally suited to visualize the security risks to 
users showing up potential attacks. 

4 Security of Web Services for Mobile Devices 

We now move to the level of the overall system architecture of SUCCESS in order to 
show up security and privacy risks of IoT devices connected to data servers via Inter-
net and smart phone technology. In order to be compatible with existing standard 
technologies, the target code for the smartphone healthapp will be implemented in 
Java Script. This app represents the client side interface to the database servers in 
hospitals and other institutions, like research centers. Fortunately, the BIP methodolo-
gy [2] is flexible enough to produce a Java Script app as certified target code for this 
component. However, BIP is designed for the formal development of synchronous 
systems. For the local scenario of sensors connected to a central hub like the 
smartphone either by physical link – like a blood sample sensor that can be connected 
via the micro usb or lightning port of the smartphone – or through close range net-
working protocols – like motion sensors communicating with the phone via Bluetooth 
[9], this is sufficient. Bluetooth is a packet-based protocol with a master-slave struc-
ture where all slaves share the master’s clock, i.e., it is synchronous and thus amena-
ble to the BIP code generation and certification process.  
But the main data upload of the diagnosis data is to databases on external servers 
connected via Internet. This is asynchronous communication using web-services. The 
overall architecture is shown in Figure 3 showing yet another Insider attack by the 
carer (discussed further below).  
Current standards of best practice for web services for mobile applications have set-
tled on two combinations of technology (1) Java Script Object Notation (JSON) [10] 
over RESTful web services using http(s) or (2)  eXtensible Markup Language XML 
over SOAP using Web Service Security (WSS) [11]. Solution (1) is more lightweight 
since the JSON data transfer standard is much less complex than XML. REST pre-
scribes a standard format for web services that is also less complex than SOAP.  
So from that perspective, it is a clear choice that in the context of mobile application 
the former is preferable to guarantee less resource consumption caused by an over-
head of the SOAP/XML solution. The critical point is the consideration of security. 
While the combination of JSON over an https based RESTful web service is slick and 
appears sufficient it relies on the “s” in https, i.e. Transport Layer Security (TLS) (or 
Secure Socket Layer (SSL) how it was originally called and is still more widely 
known as).   
TLS is a good standard solution providing point-to-point security between the http 
port or http proxy of the smart phone and its counterpart on the database servers. 
However, it does not provide end-to-end security. The difference is that in an end-to-
end security connection the security protection would be between the healthapp and 
the database application on the server instead of in between the http socket of the 
smartphone usually on port 80 and the connected socket on the same port on the serv-
er as it is provided by a TLS connection. Do we need end-to-end security for 
SUCCESS?  
 



 
Fig 3. Carer puts sniffer on smart phone eavesdropping on cleartext TCP packets. 
 
Consider again Figure 3: since the carer needs to have access to the smart phone to 
support the patient, he can still endanger privacy by the following attack. Suppose, we 
only use point-to-point security as given by TLS available on smart phones and serv-
ers by default. The carer can use his access to the smartphone to download a sniffer 
app from the app store, like Wireshark and thereby he can trace and intercept all mes-
sage communication on the smartphone. This is again an insider attack since again the 
carer is the attacker. The CMU Insider Threat Guide provides the Insider Attack pat-
tern of ambitious leader: if the carer would collaborate with an ambitious leader out-
side the home, he could install a specialized app on the phone that would forward 
intercepted packages from the healthapp to the server of the ambitious leader who 
could sell the data to interested parties or use it directly for blackmail. 
Using the Isabelle Insider framework with its extension to attack trees [6,4] this attack 
can be discovered and proved in the attack tree calculus. 
[Goto sphone, Perform put, Goto sniffer, Perform eval] 
⊕∧put-sniffer  
It exposes an interesting challenge for the Isabelle Insider framework since an actor 
extends the infrastructure (and thus implicitly the local policies) by adding the new 
location sniffer. 
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5 Suggested Solution for Security of Web-Services for Mobile 
Devices 

Practically, to introduce end-to-end security we could use JSON as data-interchange 
format and a RESTful web service with http and TLS. The standard use of http does 
not foresee the use of an individual protocol for the authentication and key establish-
ment between the healthapp and the database servers, we can design a protocol on top 
of the transport layer security that enables our application to establish end-to-end 
rather than point-to-point security.  
Designing your own protocol bears risks since security flaws can be introduced. 
However, in SUCCESS, we use formal methods and in particular Isabelle offers the 
inductive approach to security protocol verification, e.g. [12], which we use to verify 
our protocol.  

5.1 Isabelle Inductive Approach 

A TLS formalization exists already in Isabelle [12]. It uses the inductive approach to 
security protocol verification that is compatible with the Isabelle Insider framework as 
we have found in recent applications to an auction protocol [7]. So, for our purposes 
we can simply assume TLS to be available and base the formal modeling and verifica-
tion of the current end-to-end extension for SUCCESS on it. Such formal representa-
tion of security protocols in the inductive approach and other formal approaches, pro-
vide abstract descriptions of protocols. These abstract descriptions usually express 
what is formalized in standards like in the case of TLS. They serve to prove security 
properties with mathematical rigour and machine support making the assumption that 
keys are not lost, and cryptographic algorithms are not broken. Concerning communi-
cation channels they use the common strong Dolev-Yao attacker model: messages can 
be eavesdropped, intercepted and faked.  
The Isabelle formalization uses inductive definitions. These definitions are contained 
in Isabelle theory files adding some modularity to the inductive approach. That is, for 
our application, we can use aspects of the TLS protocol and mainly its underlying 
theory of cryptographic keys and messages. To ensure end-to-end security, however, 
we define our own lightweight security protocol that runs within the TLS. The full 
TLS specification and proved properties can be found elsewhere [12]. Details on for-
malizing a protocol in the inductive approach are explained below when presenting 
the protocol. 

5.2  End-to-End Security for Smartphone Apps over JSON and REST 

We can now express a simple protocol that supports mutual authentication between 
the healthapp represented as P (for Patient) and a database server Server. In the pro-
cess of this communication a shared key is negotiated that can then be used for future 
encrypted data upload to the server. We focus on two security goals: (A) authentica-
tion of the client to the server and of the server to the client (B) symmetric key ex-
change for future confidential communication.  



The protocol we propose assumes public keys to be in place and trusted. This is a 
realistic simplifying assumption since the communication is usually to fixed institu-
tions and additional public keys of new servers can be added  on the smart phone app. 
An additional public key certification authority protocol in the style of the DNSsec 
protocol could be used to set this up [13].  
 Nonces (Numbers only used once) are used for freshness in the key establishment 
and authentication phase. The goal of the protocol is the establishment of a shared key 
KP,Server for a future secure communication of private data from the app to the ap-
plication on the Server. The healthapp is here referred to as P (for Patient) and the 
application on the server as Server. The protocol is specified as a set of event lists in 
the following inductive definition; the rules are explained below. 
 
inductive_set sucsec :: event list set 
where 
Nil:  [] ∈ sucsec  |  
Fake: [| evsf ∈ sucsec; X ∈ synth (analz (spies evsf)) |]  
       ⇒ Says Spy A X # evsf ∈ sucsec | 

suc1: [| evs1 ∈ sucsec; ~(Nonce NP ∈ used evs1);  
       ~(Key KP,Server ∈ used evs1) |]  
    ⇒ Says P Server (Crypt(pubK Server) 
           {Key KP,Server, Nonce NP}) # evs1 ∈ sucsec |  

suc2: [| evs2 ∈ sucsec; ~(Nonce NServer ∈ used evs2); 
      Says P Server (Crypt(pubK Server) 
      {Key KP,Server, Nonce NP}) ∈ set evs2 |] 
    ⇒ Says Server P (Crypt(pubK P) 
           {Nonce NP, Nonce NServer, Server})  
      # evs2 ∈ sucsec | 

suc3: [| evs3 ∈ sucsec; Says Server P (Crypt(pubK P) 
      {Nonce NP, Nonce NServer, Server}) ∈ set evs3 |]  
    ⇒ Says P Server  
           (Crypt(pubK Server){Nonce NServer})  
      # evs2 ∈ sucsec 

 
This protocol is inspired by the improved version of the Needham-Schroeder public 
key protocol adding the symmetric session key KP,Server created by the healthapp using 
for example AES 256.  The rule Nil initiates the set with the empty trace representing 
the point before any protocol session starts. The rule fake is the rule that introduces 
events created by the agent Spy who can synthesize and play into any event trace evsf 
messages based on what he analyses from all eavesdropped traffic: synth(analz(spies 
evsf)).  
Note, that he “says” this message to an unspecified agent A which could be Server or 
P. The rule suc1 requires a fresh Nonce and a fresh symmetric key both created by the 
healthapp. Freshness of a Nonce or a key is expressed for example as ~(Nonce NP ∈ 
used evs1) meaning that this Nonce has not (~) been used in the trace evs1 before. 



Agent P then sends these items encrypted with the public key of the server process 
Server. Consequently, those items can only be seen by Server. According to rule suc2, 
the server process responds with a message in which it packs its fresh Nonce and the 
unpacked Nonce of P submitted in the previous message thereby proving that it is in 
the possession of the private key priK Server. This corresponds to server authentica-
tion. Finally, rule suc3 is the client authentication in which the healthapp P proves that 
it is in possession of priK P by unpacking and repacking Nonce NServer from the previ-
ous message. 
Despite these arguments being seemingly obvious deductions from the protocol steps, 
they need to be verified to guarantee security. The inductive approach in Isabelle al-
lows formal verification of these and other security properties of the protocol. 
The provided abstract specification of the protocol can be implemented as initially 
mentioned using JSON or XML to encode the transmitted data (messages including 
keys) over https (thus automatically creating the TLS tunnel between the smart phone 
and the webserver of the hospital or research institution). The asymmetric cryptog-
raphy for public and private key pairs can be implemented for example using RSA 
and the symmetric keys could be AES 256. For both JavaScript libraries exist.  
The authentication protocol can be used for different servers. The data that is then 
sent by the healthapp (either in JSON of XML) can be preprocessed by sanitization of 
the data (e.g., delete names and address for scientific purposes when connecting to the 
database of the research center).  Following instead  the SOAP standard would require 
the use of XML and this is not suited to our mobile app. The practical ad hoc standard 
of using the lighter JSON data interchange format and combining it with a RESTful  
web service is practically sufficient and compatible with JavaScript as target language 
for the certified code generation of the healthapp as output of the BIP process. 

6 Discussion and Conclusions 

In this paper, we have given an overview of applying a range of formal techniques to 
the security and privacy sensitive scenario of healthcare focused on mobile Alz-
heimer’s diagnosis. We only sketched the overall process as we envisage to use it in 
the CHIST-ERA project SUCCESS but detailed on the use of interactive theorem 
proving in Isabelle in two stages: (1) for a formal machine-supported analysis of at-
tacks at early development stages and (2) for the formal definition of a dedicated end-
to-end cryptographic protocol between a smart phone app and server database appli-
cations. Both stages are supported by Isabelle frameworks: (a) the Isabelle Insider 
framework for human centric infrastructure analysis and (b) the inductive approach 
for security protocol verification. The combination of both within the Isabelle frame-
work is straightforward. A closer integration to formalize and prove deeper security 
properties involving both levels has been explored in a different context of auction 
protocols [7] and has procured interesting insights into collusion attacks and new 
notions of rational agents. 
It seems promising and a future challenge for SUCCESS to explore this integration on 
privacy of IoT solutions for vulnerable agents. Initial challenges like dynamic exten-
sion of the infrastructure graph and local policies (example of the sniffer app down-
load) have already been identified in this paper. 



The suggested use of the Bluetooth protocol [9] for the short distance communication 
in the patients home offers an additional security vulnerability due to symmetric key 
agreement protocols. However, there is a stronger implementation that uses asymmet-
ric key establishment and that is feasible for certain devices including smart phones 
[14]. Starting from Bluetooth version 2.1 it is required to use Secure Simple Pairing 
(SSP) for pairing which is the public key based pairing method. If the attack analysis 
will show that  a Bluetooth based attack is a risk SUCCESS needs to address, then we 
have to verify whether this asymmetric solution is feasible between the motion sen-
sors and smartphone. Otherwise, we need to integrate weaker mitigation stategies, e.g. 
enable Bluetooth only when required, in the patient diagnosis policy. This part is ad-
dressed in the central part of the formal development of a component based architec-
ture using the BIP methodology and is not covered in this paper. 
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