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Abstract—In future wireless systems of beyond 5G and 6G,
addressing diverse applications with varying quality require-
ments is essential. Open Radio Access Network (O-RAN) ar-
chitectures offer the potential for dynamic resource adaptation
based on traffic demands. However, achieving real-time resource
orchestration remains a challenge. Simultaneously, Digital Twin
(DT) technology holds promise for testing and analysing complex
systems, offering a unique platform for addressing dynamic op-
eration and automation in O-RAN architectures. Yet, developing
DTs for complex 5G/6G networks poses challenges, including
data exchanges, ML model training data availability, network
dynamics, processing power limitations, interdisciplinary collab-
oration needs, and a lack of standardized methodologies. This
paper provides an overview of Open RAN architecture, trend and
challenges, proposing the DT concepts for O-RAN with solution
examples showcasing its integration into the framework.

I. INTRODUCTION

At the heart of digital transformation lies the concept of
the Digital Twin (DT), a virtual replica of a physical system
[1]. Throughout its life cycle, the physical system and its DT
continuously exchange data. This ability to simulate and anal-
yse the physical system’s behaviours in real-time via its DT
enables testing and optimization without risking interference
with the corresponding physical asset. In wireless communi-
cations, the role of DTs can be crucial [2], particularly in
facilitating Open Radio Access Network (O-RAN) to deliver
high-quality services to end users [3], [4].

Towards 2030, the next generation of radio system, known
as 6G, will be evolved to support unprecedented scenarios
including integrated sensing and communications, integrated
AI, and ubiquitous connectivity. The increasing complexity
of networks necessitates an acceleration in the adoption of
open architectures for existing RANs [5]. In response, DT
technology emerges as a crucial enabler in O-RAN archi-
tecture, facilitating better understanding, optimization, and
management of network elements, ultimately contributing to
the enhancement of 6G systems [6]–[8].1

Within an O-RAN network, DT technologies enable the
generation of a virtual model replicating part of or the entire
RAN infrastructure, covering logical functions of base sta-
tions, hardware components, and end-user devices. This virtual
representation facilitates simulation and analysis of diverse
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1Wider application range of DT on Open RAN can potentially include other
use cases such as real-time traffic management and steering, adaptive energy
efficiency, intelligent resource management in dynamically sliced networks
[4], and radio network coverage planning and optimisation [6].

network scenarios, including traffic patterns, congestion, and
interference. The integration of the DT concept into O-RAN
aligns perfectly with the principles of openness, autonomy,
and intelligence that are foundational to O-RAN. It enables
network operators to simulate, analyse, and optimise network
behaviour in real-time. As 5G and 6G networks continue to
expand rapidly, the DT is set to become increasingly vital in
the wireless communications industry, playing a key role in
delivering innovative and reliable next-generation services to
end-users.

While the literature extensively defines the concept of DT,
its integration into O-RAN remains currently under early
development. Example includes the work by Mirzaei et. al.
[9] which outlined potential benefits of a network of DT,
illustrated by two practical use cases of energy saving and
traffic steering, in both the planning and operation phases of
a RAN. There is an initial prototype in the Colosseum project
[10], that functions the RAN elements and various RF channel
conditions as a twin for a real network. The testbed offers
the capability of simulating the transmissions between nodes
with 4G/5G protocol stacks over a RF digital emulator to
generate data for AI/ML applications or interact with other
radio testbeds. In our work, we provide further insights into
how a DT network can be built and integrated into the
RAN with open architecture. Especially, this article addresses
the formulation of DT either as a virtual replica of or as
building blocks within the RAN, highlighting both potentials
and research challenges associated with its integration into
the O-RAN framework. We will propose and discuss rele-
vant DT concepts within the O-RAN architecture, presenting
solution examples and outlining future research directions.
The paper aims to establish the groundwork for implementing
DT concepts, supporting the automation, optimization, and
enhancing the operational efficiency of O-RAN for next-
generation wireless networks.

II. O-RAN: TREND AND ARCHITECTURE TOWARDS
INTELLIGENT CONTROL

A. Trend of Disaggregation and Openness for RAN

The RAN consists of a network of base stations (BSs), each
covering a geometrical cell to provide connectivity for user
equipments (UEs) within that area. Together with the core
network (CN), it establishes connections, interfaces with other
networks, and facilitates wireless transmissions for mobile
users. Traditionally, a BS, usually supplied as a complete
package by a single vendor, converts digital signals from
the CN into high-frequency analog signals for over-the-air
downlink transmission (and a reversed process for the uplink).
However, recent BS designs have evolved by separating the
units responsible for signal conversion from those handling
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digital processing. This allows for more compact and easily
installable radio units near the antenna towers. It also facili-
tates virtualisation, enabling the sharing of digital processing
tasks among multiple BSs on a single computational pooling-
based platform through edge cloud computing.

This trend has given rise to the O-RAN movement, which
exemplifies a significant shift towards openness and interop-
erability within the telecommunications industry. It redefines
the architectural components of a BS and standardises the in-
terfaces between these components, allowing software-driven
functionalities to be more easily integrated and managed, inde-
pendent of the underlying hardware platforms. This openness
not only promotes a more competitive and diverse market
but also encourages innovation by allowing a multitude of
vendors to contribute and compete, breaking the traditional
vendor lock-ins, lowering entry barriers for new players, and
promoting a vibrant ecosystem of interoperable solutions that
can adapt swiftly to evolving market demands and technology
advancements. Significantly, O-RAN facilitates the utilisation
of artificial intelligence and machine learning (AI/ML) algo-
rithms, enabling automated network optimization, predictive
maintenance, and enhanced security. This approach enhances
network management by reducing the need for manual inter-
vention and associated labour costs. Despite the great potential
of the standardized O-RAN architecture [11], resistance to de-
ploying O-RAN-based solutions persists due to the following
challenges:

• The O-RAN architecture and its use cases are relatively
new, prompting hesitation from MNOs to invest in O-
RAN solutions. Limited real-world deployment experi-
ences have hindered a comprehensive understanding of
the full benefits of the O-RAN architecture.

• Concerns about security threats arise from the openness of
interfaces in the O-RAN architecture. While the O-RAN
Alliance is actively working on standardising security
aspects, consumers are still awaiting further maturity in
O-RAN security.

B. Centralised Intelligent Control in O-RAN

There are three key aspects in O-RAN specifications: i) the
BS is logically and functionally split into a central unit (CU),
a distributed unit (DU) and a radio unit (RU) based on the
3GPP 7.2 split with additional features, which is known as 7.2x
split in O-RAN. The CU and DU are logical nodes that can
be implemented by virtual network functions (VNFs) hosted
by a cloud while the RU is a physical node that is usually
implemented by a physical network function (PNF) compris-
ing vendor-specific hardware and software components; ii) the
introduction of the near-real-time (near-RT) and non-RT RAN
intelligent controllers (RICs); and iii) the standardisation of a
virtualisation platform for the RAN.

The RICs connect to the CU and DU through open inter-
faces for data collection and intelligent control. AI/ML inte-
gration into O-RAN occurs through the standardised central
controllers (non-RT and near-RT RICs). The Service Manage-
ment and Orchestration (SMO) is an automation framework
that supports RAN operations via standardized interfaces such

as O1, A1, and the open fronthaul M-Plane. It gathers and
enriches data from O-RAN logical elements (e.g., CUs, DUs,
and RUs) or external application servers. This data is used
to instruct an rApp in the non-RT RIC to train an ML model
with specific goals, such as minimizing power consumption in
a particular area of the radio network. The model parameters
are then sent to an xApp in the near-RT RIC to derive policies
for O-RAN elements using near real-time data from E2 nodes.
This method is advantageous for various use cases as it
accommodates the time-intensive ML model training at the
non-RT RIC, followed by policy inference at the near-RT RIC
within stricter time constraints. However, uncertainties persist.
For example, decisions like shutting off RUs to conserve
energy require comprehensive anomaly checks instead of just
relying on brief periods of low traffic. Similarly, decisions
to add or upgrade DUs and RUs in response to increased
traffic entail complex what-if scenarios. Validating large-scale
models that involve intricate resource usage poses significant
challenges. However, merely implementing add-on xApps and
rApps with conventional algorithms may not fully overcome
these challenges. Integrating them with AI technology can
significantly enhance network performance. Examples include:

a) Network Energy Saving: The introduction of ad-
vanced technologies like massive multiple-input multiple-
output (mMIMO) antennas and network densification enhances
network performance but also increases the carbon footprint
due to greater computing demands. To mitigate this, energy-
saving strategies include: 1) reducing mMIMO antenna ac-
tivity during low traffic periods by turning off specific RF
circuits; 2) selectively deactivating RUs and reorganising cells
for optimal coverage; 3) implementing sleep-active patterns
across multiple sites while ensuring Quality of Service (QoS);
and 4) lowering CPU cycles of additional RAN elements (e.g.,
DUs and CUs) during off-peak times. AI/ML is important for
decision-making in these energy-saving approaches [12].

b) mMIMO Beamforming Optimisation: While fully dig-
ital mMIMO may be prohibitively expensive for some sites,
hybrid antenna arrays, as an alternative, use the extensive
degrees of freedom of mMIMO systems but control anten-
nas in groups instead of individually. This approach allows
mobile terminals within a cell to be served by a grid-of-
beams, with semi-static beams designed to cover specific
geographical regions. Since mobile terminals are not uniformly
distributed, a grid-of-beams can be iteratively optimised with
AI/ML assistance, adapting to changes in user distribution and
continuously refining beam configurations based on AI/ML
model feedback.

c) Zero Touch Network Management: In simple net-
work scenarios, manual configuration by skilled operators can
effectively address failures or underperformance. However,
the increasing complexity of modern networks often makes
manual management impractical, driving the need for zero-
touch network management using AI/ML. This approach is
essential as AI/ML-optimized configuration can reduce human
errors [13]. Developing AI/ML solutions to address these
challenges is not straightforward. The integration of AI/ML
is targeted in non-RT RIC’s rApp and near-RT RIC’s xApp
for optimal RAN control to achieve specific objectives [14].
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Fig. 1: Digital Twin Network for the whole RAN.

III. CONCEPT: DIGITAL TWIN FOR O-RAN

We explore two distinct yet promising conceptual DT direc-
tions: The first focuses on creating a holistic digital replica of
the entire RAN with a hierarchical structure while the second
adopts a modular architecture, treating DT as flexible building
blocks for constructing and evolving the RAN.

A. Digital Twin Network for the Whole RAN

In this approach, a mirror of the RAN, which is referred
to as a RAN Digital Twin Network (DT-RAN) as illustrated
in Fig. 1, includes all the logical elements of a RAN. The
presence of DT-RAN enables us to i) explore various what-
if scenarios and ii) harness intelligent RAN control with
minimal human intervention [6]. This approach should work
well for the case when the creation of a roll-out script for a
network on a large scale is required, even initiated initially
with a small set of sites only. This process builds confidence
in deploying hardware, VNFs in O-Cloud, and applications
in RICs. The DT-RAN should exist side-by-side with the
RAN and may use new interface(s) for data and information
exchange if necessary. Creating a complete replica of the
whole RAN is a complex process so we propose that it is
managed in progressive stages within a hierarchical structure,
each represented by different levels (e.g., Level-0, Level-1,
etc) as depicted in Fig. 2. Each level corresponds to a specific
fidelity requirement of the DT.

a) Fidelity and Hierarchical Architecture of DT-RAN:
‘Fidelity’ broadly defines the accuracy and detail level of
replication concerning RAN functionalities and services, as
well as the components of the RAN that the DT can mimic.
Similar to many other systems, the evolution of a DT-RAN
follows a life cycle in which not all components of DT-
RAN can be present from the initial stages. Consequently,
the architecture of DT-RAN should facilitate its progression
from a basic form to a sophisticated ecosystem, and the
concept of hierarchy can support this evolution. The fidelity
correlates with these proposed hierarchical levels. Fig. 2
shows that Level-0 DT, which has lowest fidelity, represents
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Fig. 2: Proposed hierarchical DT architecture for O-RAN.

basic functions like data enrichment, traffic flow modelling
and resource allocation in a RAN slice. A higher fidelity
DT at Level-1 introduces greater complexity, managing the
entire operation and orchestration of RAN slices under certain
resource constraints, adding further functions such as load
balancing and network security. Level-2 DT expands further
to the whole range of RAN functionalities, mimicking a fully
operational DT-RAN, thus has the highest fidelity. Examples
of such Level-2 DT’s functionalities include prediction and
optimisation (e.g., automated RAN deployment, planning and
cell reorganisation, and energy efficiency) and maintenance
(e.g., network predictive maintenance, interference manage-
ment and fault/anomaly detection). This Level-2 DT should
closely emulate the performance of a fully operational DT-
RAN. In order to assure the fidelity requirement, design
strategies need to be planned meticulously, from data quality,
analytics, modelling to validation, matching each hierarchical
level.

b) Components and Operation of DT-RAN: The RU, the
O-RAN network functions, including CU and DU, and the
near-RT RIC in the O-RAN network are digitally replicated
to increase automation and efficiency, which can be achieved
by testing and analysing different what-if scenarios. The digital
mirrors of CU-CP, CU-UP and DU also host the Packet
Data Convergence Protocol (PDCP), Service Data Adaptation
Protocol (SDAP), Radio Link Control (RLC), Media Access
Control (MAC) and physical layer (PHY) control functional-
ities to replicate the RAN operations.

For a single application, several versions of an xApp can
be created in the digitally mirrored near-RT RIC so that the
DT-RAN uses them to test against the digital mirrors of the
O-RAN elements. The best version is selected to update the
xApp entity who works with the real RAN’s elements.

In the O-RAN architecture, the SMO platform is specified
to provide supports for: i) Fault, Configuration, Accounting,
Performance, Security (FCAPS) functions in the O-RAN net-
work via O1 interface; ii) non-RT RIC for RAN optimization
together with near-RT RIC via A1 interface; and iii) O-
Cloud management, orchestration and workflow management
via O2 interface. In interaction with the DT-RAN, the RAN
management functions in the SMO can also provide FCAPS
services simultaneously to the physical RAN components
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and their mirrored counterpart. The functions in the SMO
framework can be realised with DT-RAN for model training,
inference and updates needed for rApps within the non-RT
RIC.

c) Auxiliary Models of DT-RAN: Additional models, not
necessarily mimicking components of a RAN, can enhance the
functionalities of DT-RAN. These include i) an RF propaga-
tion model, ii) a user-data traffic model, and iii) a cost model
for the RAN’s NFs. Each of these models plays a crucial
role in the operations of a DT-RAN. For example, the RF
propagation model can predict whether the deployment of a
new remote radio head (RRH) at a location would lead to
an expansion of network coverage. On another front, a user-
data traffic model aids in predicting network density and the
level of advancing mMIMO in a given area. The enhancements
in coverage and throughput can then be justified against the
additional cost predicted by the cost model.

d) Interaction between DT-RAN and Physical RAN:
The interaction between the DT-RAN and the physical RAN
facilitates the functioning and evolution of the latter. However,
the O-RAN specifications solely define the interfaces between
O-RAN logical elements (including O-RU, O-DU, O-CU-CP,
O-CU-UP, and near-RT RIC), with the exception of SMO,
which interfaces with external systems to acquire enrichment
data. This limitation in the O-RAN architecture implies that
there might be need for additional solutions to support the
concept of housing the DT as building blocks of the RAN,
and these possibilities will be explored in greater detail in the
following section.

B. Digital Twins as RAN Building Blocks

Developing the DT concept for the entire RAN can be
complex. Nonetheless, we can suggest the idea of formulating
the DT as building blocks (or modules), employed to construct
the DT-RAN eventually, and design it to be open for extension
as a system-of-systems, as depicted in Fig. 3.

This approach views the DT as modular building blocks
within the RAN that are utilised to work with other RAN
components. Existing RAN interfaces are used for the DT.
These DTs are designed to be interoperable and open for
extension, enabling the gradual assembly of a complete
ecosystem (or library) of various DT building blocks. This

approach emphasises scalability, flexibility, and modularity,
treating the RAN as a system-of-systems that can evolve over
time to accommodate new functionalities, technologies, and
requirements.

The building blocks can represent individual RAN com-
ponents or be designed as essential DT elements (similar to
plugins), which may not directly correspond to actual RAN
components. Below are some examples of the DT building
blocks:

• Modelling entities: These entities create precise digital
replicas of various aspects of a RAN network. This in-
cludes a mobility/RF model for channels between devices,
a traffic model for data demand and their QoS con-
straints, a RAN model representing entities in the O-RAN
network, and a cloud model for computing resources.
The models stay synchronised with the live physical
network through data captured from O-RAN standardised
interfaces like O1, O2, E2, and A1 (no new interfaces
required).

• RAN scenario generator: Empowered by AI/ML tech-
nology, this generator automatically parameterises the
models to produce billions of training scenarios. These
scenarios challenge AI/ML models under training. The
RAN scenario generator can autonomously evolve based
on performance feedback from the RAN analytic module,
generating increasingly challenging training datasets. This
process contributes to the continuous improvement of
AI/ML intelligence and performance.

• Advanced visualisation: This component is responsible
for visualising the data needed by the network operators
to facilitate performance monitoring and system diagnos-
tics.

Examples of the modelling entities can include (but not limited
to):

a) Modelling Physical RF Propagation: For realistically
modelling the physical RF propagation characteristics in the
mobility/RF model, ray tracing has been identified as one
of the most promising candidate technologies that can be
leveraged for DT. Ray tracing estimates RF propagation char-
acteristics by calculating path gains through a geometrical
region with varying velocity, absorption characteristics, and
multiple reflecting surfaces. The accuracy of the calculation
relies on the ray tracing algorithm itself as well as the
measurement data that calibrate the penetration loss, reflection
and scattering characteristics of the surfaces of obstacles in the
3-D environment geometry (e.g., buildings). There is also more
advanced ray tracing technology that can automatically gener-
ate a propagation model with less computational complexity
and better accuracy based on AI/ML that is trained with large
amount of real measurement data [15].

b) Modelling RAN and Cloud: Modeling the dynamic
behaviours of O-RAN elements and cloud hardware resource
allocations realistically, while maintaining synchronisation
with real-time states of the physical network, poses a challenge
for RAN and cloud models. A promising approach is to
virtualise the network and UE functions, simplifying them
to retain only the network and UE state, call flow, and KPI
prediction capabilities. Relaxing the real-time constraints of
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Fig. 4: DT integrated in non-RT RIC.

the virtualised mirror of the RAN elements and the cloud
resource to near real-time can help reduce the computing
complexity and resources of the DT. Data plays a crucial
role in syncing the RAN and cloud models with the physical
environment.

To address the high computing complexity of the DT,
selecting an appropriate computing technology is essential.
A GPU-based cloud platform is a feasible choice due to
its programmability and virtualisability, capable of handling
extensive parallel computing tasks with significantly higher
throughput compared to a CPU. The relaxed real-time and
latency constraints on the DT, if possible, enable higher
degrees of parallelization and GPU computing acceleration,
making them more achievable than with physical network
elements.

IV. SOLUTION EXAMPLES: INTEGRATING DIGITAL TWIN
INTO O-RAN

We explore three solutions for integrating DT concept,
utilising the established standardised O-RAN interfaces and
leveraging the advantages of openness.

A. Digital Twin in Non-RT RIC

Figure 4 shows the DT residing in the non-RT RIC frame-
work to improve the performance of the training and testing
process. The DT, implemented with the aid of advanced
computer simulation and modelling technology, can potentially
represent an exact digital replica of physical O-RAN network.

The rApps can engage with the DT function within the
non-RT RIC framework through the R1 and A1 interfaces,
facilitating AI/ML workflow-related services such as model
training, testing, and real-time performance assurance. Specif-
ically, rApps interact with the DT in the following ways:
1) directly accessing training data generated by DT via the

R1 interface;
2) loading the AI/ML models into the training host located

in the non-RT RIC framework for platform layer model
training and testing; and specifying, through the R1
interface, whether and when the physical network data
or DT data should be used; and

3) conveying the control actions and policies to the DT
during AI/ML inference; and predicting the performance
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impact before forwarding them to the physical network
for real-time performance prediction and assurance.

B. Digital Twin in Near-RT RIC

Figure 5 presents another solution featuring the DT located
at the Near-RT RIC. In this solution, the E2 interface is used
to collect real network data for training (online or offline) and
then testing the AI/ML models used by the xApps.

The models in the DT is calibrated with the data captured
from the E2 interface to ensure the DT functions are behaving
as closely as possible to the real network deployment for
reliable RIC AI/ML model training and testing.

Similar to the rApps in previous subsection, the xApps can
access the DT functions in the Near-RT RIC framework via the
Near-RT RIC API for AI/ML model training and testing. Apart
from using the Near-RT RIC API, the same data flow and
methods for AI/ML training, testing, performance assurance,
and DT calibration introduced in the previous solution still
apply.

Note that the DT can also be useful for detecting and
mitigating conflicts among xApps. By running scenarios under
various network conditions, DT can predict individual and
collective xApp behaviours, helping to understand potential
conflicts and their impact on network performance and sta-
bility. Additionally, DT can assist in developing coordination
mechanisms and policies for xApps coming from different
vendors, who can also test their xApps on the DT platform
before deployment.

C. Digital Twin Outside Non-RT RIC and Near-RT RIC

Another viable solution, shown in Fig. 6, involves housing
the DT external to the near-RT and non-RT RIC frameworks.
In this scenario, the DT, simulating the physical network
environment, operates concurrently with the real network. The
DT can be hosted independently on a platform, distinct from
the O-Cloud, where interactions with the physical RAN occur
via the RAN’s SMO interface.

From the RIC perspective, there is no distinction between
the physical network and the simulated network. RICs commu-
nicate with both the DT and physical RAN through standard
O-RAN interfaces (O-FH, O1, O2, and E2). While solutions
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based on the two approaches above follow the interfaces
specified by O-RAN Alliance, this standalone approach allows
more flexibility in choosing the technologies and frameworks
that best suit the DT’s needs without being constrained by
the RIC’s architecture. However, this separation may result
in challenges related to ensuring that the external DT has
access to all necessary data from the RIC while maintaining
strict data privacy and security protocols. External placement
can also complicate the synchronisation processes required to
keep the DT updated with the latest network changes, thus any
time-critical tasks/responsibilities may not be desirable in this
approach, unless a new solution/framework can be found to
manage the DT. In addition, lack of standardisation may pose
challenges for future scalability.

It is also crucial to consider potential communication over-
head on external O-RAN Alliance interfaces (O-FH, O1,
O2, and E2) during AI/ML model training, where numerous
training scenarios are generated. The DT obviously needs
robust and secure communication channels to interact with the
RIC. As a result, additional latency may be introduced due to
the physical and logical separation between the DT and the
RIC. Despite this, the same data flow and methods for AI/ML
training, testing, performance assurance, and DT calibration,
as introduced in the previous solutions, remain applicable.

V. OTHER OPEN CHALLENGES FOR DT OF THE RAN
A. Data Exchange

To maximise the benefits of DT in O-RAN, efficient data
exchange between the Physical RAN and its DT is crucial,
especially with external DT placement. Outdated data can
degrade performance and cause operational mismatches. De-
pending on the DT approach, either existing interfaces might
be used, or new ones may need to be developed. Additionally,
dynamically coordinating the data exchange between the DT
and Physical RAN is essential, as different network scenarios
require varied data amounts due to strict latency, privacy, and
security needs, necessitating adaptive coordination for efficient
resource use.

B. Computational Capacity

While the DT mirrors its Physical RAN, it requires superior
computational capacity to forecast and recommend/control

Physical RAN operations. Determining the extent of this supe-
riority (thus extra costs) depends on various factors, including
the computational capacity of the Physical RAN and the rate of
information exchange between the Physical RAN and its DT.
This poses an open problem that requires further investigation.

C. The Ecosystem of DTs within Physical RAN

The hierarchical DT model offers the flexibility and scala-
bility in deployment. Having multiple DTs of different O-RAN
components poses several challenges. First, if new interfaces
are introduced for the case of external DT placement, there
may be need for standardisation of interfaces. Second, for the
case of internal placement, the DT can consume the compu-
tational resources of the other RAN components, which may
impact the critical tasks that requires near-real-time decision
making. Third, appropriate protocols/procedures are needed to
avoid conflicts on resource utilisation and control. Such pro-
tocols/procedures will also help optimise the data exchanges
between DTs and their physical O-RAN components.

D. Security

The O-RAN architecture presents security risks from appli-
cation to hardware levels, and the integration of DT introduces
additional vulnerabilities due to increased data circulation.
Protecting the exchanged data between DT and Physical
RAN from cyber threats is crucial. Addressing this challenge
involves researching xApp/rApp for threat identification and
elimination, devising methods to enhance secure data ex-
change, and preventing unauthorized O-RAN elements from
exploiting network access mechanisms.

E. Physical RAN and its DT Dependency

It is essential to study the dependency of the Physical RAN
on its DT. Factors such as the optimal frequency and level
of interaction between DT and Physical RAN, considering
constraints on data exchange bandwidth and the adopted
hierarchical DT model, need examination. The DT must also
anticipate and prepare for the worst-case scenario in the event
of system failure. Maintaining the Physical RAN’s superiority
compared to a standard O-RAN, one that lacks an integrated
DT, remains an open and challenging problem.

VI. CONCLUSION

The rapid advancement of DT technology is undeniable,
driven by both extensive research attention and its broad
applicability. The symbiotic relationship between DTs and
emerging 6G networks is evident, with a DT network becom-
ing essential for cost-effective deployment, efficient automated
operation, and straightforward maintenance of a 5G/6G net-
work. This paper studied two conceptual directions for DT
integration into O-RAN, along with three solution examples
and five open challenges, laying the groundwork for potential
future research in this dynamic landscape.
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