Quantum Machine Intelligence (2023) 5:39
https://doi.org/10.1007/542484-023-00126-z

RESEARCH ARTICLE l‘)

Check for
updates

Resource saving via ensemble techniques for quantum neural
networks

2

Massimiliano Incudini'® - Michele Grossi . Andrea Ceschini3® - Antonio Mandarino?® - Massimo Panella3

Sofia Vallecorsa?(® - David Windridge®

Received: 15 March 2023 / Accepted: 11 August 2023 / Published online: 29 September 2023
© The Author(s) 2023

Abstract

Quantum neural networks hold significant promise for numerous applications, particularly as they can be executed on the
current generation of quantum hardware. However, due to limited qubits or hardware noise, conducting large-scale experiments
often requires significant resources. Moreover, the output of the model is susceptible to corruption by quantum hardware noise.
To address this issue, we propose the use of ensemble techniques, which involve constructing a single machine learning model
based on multiple instances of quantum neural networks. In particular, we implement bagging and AdaBoost techniques, with
different data loading configurations, and evaluate their performance on both synthetic and real-world classification and
regression tasks. To assess the potential performance improvement under different environments, we conducted experiments
on both simulated, noiseless software and IBM superconducting-based QPUs, suggesting these techniques can mitigate the
quantum hardware noise. Additionally, we quantify the amount of resources saved using these ensemble techniques. Our
findings indicate that these methods enable the construction of large, powerful models even on relatively small quantum

devices.

Keywords Ensemble technique - Bagging - Boosting - Quantum neural network - Quantum machine learning

1 Introduction

The emerging field of quantum machine learning (Biamonte
et al. 2017) holds promise for enhancing the accuracy and
speed of machine learning algorithms by utilizing quantum
computing techniques. Although the potential of quantum
machine learning is expected to be advantageous for certain
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classes of problems in chemistry, physics, material science,
and pharmacology (Cerezo et al. 2022), its applicability to
more conventional use cases remains uncertain (Schuld and
Killoran 2022). Notably, utilizable quantum machine learn-
ing algorithms generally need to be adapted to run on “NISQ”
devices (Preskill 2018), that are current noisy quantum com-
puter, no error corrected and with modest number of qubits
and circuit depth capabilities. In the quantum machine learn-
ing scenario, the quantum counterparts of classical neural
networks, quantum neural networks (Abbas et al. 2021),
have emerged as the de facto standard model for solving
supervised and unsupervised learning tasks in the quantum
domain.

While quantum neural networks have generated much
interest, they presently have some issues. The first is bar-
ren plateau (McClean et al. 2018) characterized by the
exponentially-fast decay of the loss gradient’s variance with
increasing system size. This problem may be exacerbated by
various factors, such as having overly-expressive quantum
circuits (Holmes et al. 2022). To address this issue, quantum
neural networks need to be carefully designed (Larocca et al.
2022) and to incorporate expressibility control techniques
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such as projection (Huang et al. 2021) and bandwidth con-
trol (Canatar et al. 2022). The second problem, which is the
one addressed in this work, concerns the amount of resources
required to run quantum neural networks (the limited number
of total qubits -currently up to over a hundred- and the low
fidelity of operations on current quantum devices severely
restrict the size of the quantum neural network in terms of
input dimension and layers).

In order to address the latter issue, we propose employing
of NISQ-appropriate implementation of ensemble learning
(Zhang and Ma 2012), a widely used technique in classi-
cal machine learning for tuning the bias and variance of a
specific machine learning mechanism via the construction of
a stronger classifier using multiple weak components, such
that the ensemble, as a whole, outperforms the best indi-
vidual classifier. The effectiveness of ensemble systems has
been extensively demonstrated empirically and theoretically
(De Condorcet 2014), although there does not currently exist
any overarching theoretical framework capable of, e.g., cov-
ering the requirements of ensemble components diversity to
guarantee its out-performance. We here seek to provide and
quantify a motivation for employing classical ensemble tech-
niques in relation to NISQ-based quantum neural networks,
which we address via the following three arguments.

The first argument concerns the potential for the supe-
rior performance of an ensemble system composed of small
quantum neural networks compared to a single larger quan-
tum neural network. This notion is based on the rationale
that while quantum neural networks are inherently powerful
machine learning models, they exhibit intrinsic variance due
to the nature of highly non-convex loss landscape, implying
that different predictors will result from randomly-initialized
stochastic gradient descent training, in common with classi-
cal neural networks. Modern deep learning practice often
deliberately overparametrises the network in order to ren-
der the loss more convex (Oymak and Soltanolkotabi 2020),
with the asymptotic case of infinitely wide neural networks
exhibiting a fully convex loss landscape, making it effectively
a linear model (Jacot et al. 2018). Although overparam-
eterization in quantum neural networks has been studied
theoretically (Larocca et al. 2021; Liu et al. 2022; Incudini
et al. 2022) and has been shown to be beneficial to gener-
alization performances within certain settings, the increase
in resource requirements makes this approach almost com-
pletely impractical on NISQ devices. In the classical lit-
erature, however, it has been demonstrated that ensemble
techniques can perform comparably to the largest (gen-
erally overparameterized) models with significantly fewer
resources, especially in relation to overall model parameter-
ization, cf, for example (Geiger et al. 2020, Figure 2).

The second argument pertains to the resource savings
achievable by ensemble systems, particularly in terms of the
number of qubits, gates, and training samples required. For
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example, the boosting ensemble technique involves progres-
sive dividing of the training dataset into multiple, partially
overlapping subsets on the basis of their respective impact on
the performance of the cumulative ensemble classifier cre-
ated by summing of the partial weak classifiers trained on
previously-selected data subsets. This enables the ensemble
quantum neural network to be constructed in parallel with
individual quantum neural networks operating on datasets of
reduced size. The random subspace technique, by contrast,
trains each base predictor on a random subset of features, but
also provides an advantage in terms of the overall number
of qubits and gates required. Employing the random sub-
space technique in a quantum machine learning setting would
parallel the various quantum circuit splitting techniques (cf,
for example Lowe et al. 2022), and divide-and-conquer
approaches, that have been utilized in the field of quantum
chemistry (Yoshikawa et al. 2022) and quantum optimization
(Asproni et al. 2020).

Our third argument, which is specific to quantum comput-
ing, examines the potential of ensembles’ noise-canceling
ability. Previous works have demonstrated that ensembles
can enhance the performance of several noisy machine-
learning tasks (see Zhang et al. 2011). Our investigation aims
to determine whether and to what extent these techniques
can reduce the impact of noise during the execution on a
NISQ device at the applicative level. This approach differs
from most current approaches, which aim to reduce noise at
a lower level, as described in LaRose et al. (2022).

‘We here examine the impact of ensemble techniques based
on bagging (bootstrap aggregation) and boosting ensembles
in a quantum neural network setting across seven variant data
loading schemes. Bagging techniques are selected for their
applicability in high-variance settings, i.e., those exhibiting
significant fluctuations in relation to differ initialisations and
differ sample subselections; contrarily, boosting techniques
are effective in relation to high-bias models, i.e., those that
are relatively insensitive to data subsampling.

Our first objective is to quantify the amount of resources
(in particular, the number of qubits, gates, parameters, and
training samples) saved by the respective approaches. Sec-
ondly, we evaluate the performance using quantum neural
networks as base predictors to solve a number of represen-
tative synthetic and real-world regression and classification
tasks. Critically, the accuracy and loss performance of these
approaches are assessed with respect to the number of layers
of the quantum neural networks in a simulated environment.
We thus obtain a layer-wise quantification of performance
that addresses one of the fundamental questions in archi-
tecting deep neural systems, namely, how many layers of
abstraction to incorporate? Note that this question is funda-
mentally different in a quantum setting compared to classical
neural systems; in the latter, the possibility of multi-level
feature learning exists, and thus the potential for indefinite
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performance improvement with neural layer depth (Incudini
et al. 2022). This contrast with the quantum neural networks,
in which an increase in the number of layers affects the
expressibility of the ansatz and thus might introduce a barren
plateau (Holmes et al. 2022).

Finally, the noise-canceling capabilities of ensembles will
be investigated by testing a synthetic linear regression task
both on a simulated noisy environment mimicking IBM’s real
quantum device Lima and on IBM’s superconductor-based
quantum processing unit (QPU) Lagos.

Contributions Our contributions are the following:

e We evaluate various ensemble schemes that incorporate
bagging and boosting techniques into quantum neural
networks, and quantify the benefits in terms of resource
savings, including the number of qubits, gates, and train-
ing samples required for these approaches.

e We apply our approach both to a simulated noisy envi-
ronment and to the IBM Lagos superconductor-based
quantum processing unit to investigate the potential
advantages of bagging techniques in mitigating the
effects of noise during the execution of quantum circuits
on NISQ devices.

e We conduct a layer-wise analysis of quantum neural net-
work performance in the ensemble setting with a view
to determining the implicit trade-off between ensemble
advantage and layer-wise depth.

2 Related works

The quest for quantum algorithms able to be executed on
noisy small-scale quantum systems led to the concept of
variational quantum circuits (VQCs), i.e., quantum circuits
based on a hybrid quantum-classical optimization framework
(Cerezo et al. 2021; Mitarai et al. 2018). VQCs are currently
believed to be promising candidates to harness the poten-
tial of QC and achieve a quantum advantage (Tilly et al.
2022; Di Marcantonio et al. 2022; Liu et al. 2021). VQCs
rely on a hybrid quantum-classical scheme, where a param-
eterized quantum circuit is iteratively optimized with the
help of a classical co-processor. This way, low-depth quan-
tum circuits can be efficiently designed and implemented
on the available NISQ devices; the noisy components of
the quantum process are mitigated by the low number of
quantum gates present in the VQCs. The basic structure of a
VQC include a data encoding stage, where classical data are
embedded into a complex Hilbert space as quantum states,
a processing of such quantum states via an ansatz made of
parameterized rotation gates and entangling gates, and finally
ameasurement of the circuit to retrieve the expected outcome.
Many different circuit architectures and ansatzes have been

proposed for VQCs (Benedetti et al. 2021; Choquette et al.
2021; Farhi et al. 2014; Patil et al. 2022), depending on the
structure of the problem or on the underlying quantum hard-
ware. VQCs demonstrated remarkable performances and a
good resilience to noise in several optimization tasks and real-
world applications. For example, researchers in Schuld et al.
(2020) introduced a circuit-centric quantum classifier based
on VQC that could effectively be implemented on a near-term
quantum device. It correctly classified quantum-encoded data
and demonstrated to be robust against noise. Mitarai et al.
(2018) proposed a VQC that successfully approximated high-
dimensional regression and classification functions with a
limited number of qubits.

VQCs are incredibly well-suited for the realization of
quantum neural networks with a constraint on the number
of qubits (Massoli et al. 2022). A quantum neural network
is usually composed of a layered architecture able to encode
input data into quantum states and perform heavy manipu-
lations in a high-dimensional feature space. The encoding
strategy and the choice of the circuit ansatz are critical
for the achievement of superior performances over classi-
cal NNs: more complex data encoding with hard-to-simulate
feature maps could lead to a concrete quantum advantage
(Havlicek et al. 2019), but too expressive quantum circuits
may exhibit flatter cost landscapes and result in untrain-
able models (Holmes et al. 2022). An example of quantum
neural network was given in Macaluso et al. (2020), where
a shallow NN was employed to perform classification and
regression tasks using both simulators and real quantum
devices. In Zhao and Gao (2021), authors proposed a multi-
layer quantum deep neural network (QDNN) with three
variational layers for an image classification task. They man-
aged to prove that QDNNSs have more representation capacity
with respect to classical deep NN. A hybrid quantum-
classical recurrent neural network (QRNN) was presented in
Ceschini et al. (2022) to solve a time series prediction prob-
lem. The QRNN, composed of a quantum layer as well as
two classical recurrent layers, demonstrated superior perfor-
mances over the classical counterpart in terms of prediction
error.

However, quantum neural networks suffer from some non-
negligible problems, which deeply affect their performances
and limit their impact in the quantum ecosystem. Firstly,
they are still subject to quantum noise, and it gets worse as
the number of layers (i.e., the depth of the quantum circuit)
increases (Wang et al. 2022; Liang et al. 2021). Secondly, bar-
ren plateaus phenomena may occur depending on the ansatz
and the number of qubits chosen, reducing the trainability
of such models (Holmes et al. 2022; Cerezo et al. 2021;
McClean etal. 2018). Finally, data encoding on NISQ devices
continues to represent an obstacle when the number of fea-
tures is considerable (Massoli et al. 2022), making them hard
to implement and train (Ceschini et al. 2022).
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In classical ML, ensemble learning has been investigated
for years to improve generalization and robustness over a
single estimator (Seni and Elder 2010; Zhang and Ma 2012).
Ensembling is based on the so-called “wisdom of the crowd”
principle, namely it combines the predictions of several base
estimators with the same learning algorithm to build a single
stronger model. Despite there are many different ensemble
methods, the latter can be easily grouped into two different
categories: bagging methods, which build and train several
estimators independently and then compute an average of
their predictions (Altman and Krzywinski 2017), and boost-
ing methods, which in turn train the estimators sequentially
so that the each one corrects the predictions of the prior
models and output a weighted average of such predictions
(Bithimann 2012). Ensemble methods for NNs have also
been extensively studied, yielding remarkable performances
in both classification and regression tasks (Osman and Aljah-
dali 2020; Sagi and Rokach 2018; Berkhahn et al. 2019;
Dietterich 2000; Zhou 2012; MasUd et al. 2014; ALzubi
et al. 2019; Kumar et al. 2016; Firdaus et al. 2018). Kim
et al. (2021) have shown that overparameterization renders
an optimization problem easier to train.

In the quantum setting, the adoption of an ensemble strat-
egy has received little consideration in the past few years,
with very few approaches focusing on near-term quantum
devices and VQC ensembles. In Schuld and Petruccione
(2018); Abbas et al. (2020), the authors exploit the super-
position principle to obtain an exponentially large ensemble
wherein each instance is weighted according to its accu-
racy on the training dataset. However, they make use of a
fault-tolerant approach rather than considering limited quan-
tum resources. A similar approach is explored in Leal et al.
(2021), where authors create an ensemble of quantum binary
neural networks (QBNN5s) with reduced computational train-
ing cost without taking into consideration the amount of
quantum resources necessary to build the circuit. An effi-
cient strategy for bagging with quantum circuits is proposed
in Macaluso et al. (2020) instead. Very recently, Stein et al.
(2022) has proposed a distributed framework for ensemble
learning on a variety of NISQ quantum devices, although
it requires many NISQ devices to be actually implemented.
A quantum error-correcting output codes multiclass ensem-
ble approach was proposed in Windridge et al. (2018). In
Qin et al. (2022), the authors investigated the performance
enhancement of a majority-voting-based ensemble system in
the quantum regime. Krisnanda et al. (2023) studied the role
of ensemble techniques in the context of quantum reservoir
computing. Finally, an analysis of robustness to hardware
error as applied to quantum reinforcement learning, and pre-
senting compatible results, is given in Skolik et al. (2023).

In this paper, we propose a classical ensemble learning
approach to the outputs of several quantum neural networks
in order to reduce the quantum resources for a given quantum
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model and provide superior performances in terms of error
rate over single quantum neural network instances. To the
best of our knowledge, no one has ever proposed such an
ensemble framework for VQCs. We also compare both bag-
ging and boosting strategy to provide an analysis on the most
appropriate ensemble methods for quantum neural networks
in a noiseless setting. An error analysis with respect to the
number of layers of the quantum neural networks reveals
that bagging models greatly outperform the baseline model
with low number of layers, with remarkable performances
as the number of layers increase; in fact, sufficiently com-
plex bagging models allow to select better points on the
bias-variance trade-off curve, such that one can maximize
generalisability in a way not always possible with a single
learner (especially ones with intrinsic constraints such as the
QNN) (Rayana et al. 2016; Merentitis et al. 2014). Finally, we
apply our approach both to a simulated IBM Quantum Lima
noisy backend and to the IBM Lagos superconductor-based
QPU to investigate the potential advantages of bagging tech-
niques in mitigating the effects of noise during the execution
of quantum circuits on NISQ devices.

3 Background and notation

We provide a brief introduction to the notation and concepts
used in this work. The sets X' and ) represent the sets of
features and targets, respectively. Typically, X" is equal to
RY, with d equal to the dimensionality in input, whereas ) is
equal to R for regression tasks and YV isequal to {c1, ..., ¢t} for
k-ary classification tasks. Sequences of elements are indexed
in the apex with x(/), where the i-th component is denoted
as x;. The notation € ~ N (u, o2) indicates that the value of
€ is randomly sampled from a univariate normal distribution
with mean . and variance o>, We use the function [P] to
denote one when the predicate P is true and zero otherwise.

3.1 Models in quantum machine learning

We define the state of a quantum system as the density matrix
p having unitary trace and belonging to the Hilbert space
H = C¥'*2" where n is the number of qubits. The system
starts in the state p9 = ]0)(0|. The evolution in a closed
quantum system is described by a unitary transformation
U =exp(—itH),t € R, H Hermitian operator, and acts like
p — U'pU. The measurement of the system in its com-
putational basis {IT; = |i)(i |}12i61 applied to the system in
the state p will give outcome i € 0, 1, ..., 2" — 1 with prob-
ability Tr[IT; poI1;] after which the state collapses to o' =
I1; pI1; /Tr[I1; pI1;]. The expectation value of a Hermitian
operator associated to a physical observable, O = ), A;I1;,
acting on the system on the state p, is given by the Born rule
(0) =Tr[pO].
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Quantum computation can be described using a quantum
circuit, a sequence of gates (i.e., elementary operations) act-
ing on one or more qubits of the system terminating with
the measurement operation over some or all of its qubits.
The output of the measurement can be post-processed using
a classical function. “The set of gates available shall be uni-
versal,” i.e., the composition of such elementary operation
allows the expression of any unitary transformation with arbi-
trary precision. An exemplar universal gate set is composed
of parametric operators Rff)(G) = exp(—i %o)gi)), R;i)(Q) =
exp(—i%a}(,i)), Rz(i)(e) = exp(—i%az(i)), and the operator
CNOT /) = exp(—i%af)ay )). The gate [ is the identity.

The matrices o —<01> o —<0_i> o —<1 0)
PTN10)Y T\ o0 ) R N0 -1

are the Pauli matrices. The apex denotes explicitly the qubits
in which the transformation acts.

Quantum machine learning forms a broad family of
algorithms, some of which require fault-tolerant quantum
computation while others are ready to execute on current
generation “NISQ” (noisy) quantum devices. The family
of NISQ-ready techniques of interest in this document is
denoted variational quantum algorithms (Cerezo etal. 2021).
These algorithms are based on the tuning of a cost func-
tion C(0) dependent on a set of parameters 6 € [0, 2P
and optimized classically (possibly via gradient descent-
based techniques) to obtain the value 6* = argming C(6).
Optimization through gradient-descent thus involves com-
putation of the gradient of C. This can be done using finite
difference methods or else the parameter-shift rule (Schuld
et al. 2019). The parameter-shift rule is particularly well-
suited for NISQ devices as it can utilize a large step size
relative to finite difference methods, making it less sensitive
to noise in calculations.

In general, C(0) is a function corresponding to a paramet-
ric quantum transformation U (6) of a length polynomial in
the number of qubits, the set of input states {p;}, and the set
of observables { Oy }. Specifically, a quantum neural network
is a function in the form

fx;0) =TrU @)V (x)poV (x)U () 0] (1

where pg is the initial state of the system, V (x) is a parametric
quantum circuit depending on the input parameters x € X,
U (#) is a parametric quantum circuit named an ansatz that
depends on the trainable parameters 6 € [0, 27)”, and O is
an observable. Given the training dataset {(x®, y(i))}iﬁi | €
(X x y)M , the cost function of a quantum neural network,
being a supervised learning problem, is the empirical risk

M
CO) =Y t(fx:0),y") )

i=1

where £ : ) x ) — R is any convex loss function, e.g., the
mean squared error (MSE).

The quantum neural network constitutes a linear model in
the Hilbert space of the quantum system as a consequence
of the linearity of quantum dynamics. It behaves, in partic-
ular, as a kernel machine that employs the unitary V (x) as
the feature map p — p, = V(x)p VT(x), while the vari-
ational ansatz p — pyp = U(®)pU'(0) adjusts the model
weights. Note that although the model is linear in the Hilbert
space of the quantum system, the measurement projection
makes it nonlinear in the parameter space, enabling a set
of rich dynamics; nevertheless, this is not the only way of
introducing nonlinearity into the quantum model (Inajetovic
et al. 2023). Quantum neural networks can have a layer-wise
structure, i.e., U (0) = ]_[f: 1 Ui (6;), which provides it with
further degrees of freedom for optimization (however, due to
the lack of nonlinearity between the layers, the model does
not possess the hierarchical feature learning capabilities of
classical neural networks).

The selection of the ansatz is thus a crucial aspect in defin-
ing the quantum neural network, and it is required to adhere
to certain classifier-friendly principles. Expressibility is one
such, being the model’s ability to approximate any quantum
state in the Hilbert space. Although there are various ways
to formalize expressibility, one of the most widely used def-
initions is based on the generation of the ensemble of states
{pg = U(@)poUT(Q) | & € ®} and the standard ensemble of
random states induced by the Haar measure over the corre-
sponding unitary group. Expressible unitaries are those that
make small the deviation between the former and the latter
ensembles. However, expressible circuits are susceptible to
the barren plateau problem, where the variance of the gradient
decreases exponentially with the number of qubits, making
parameter training infeasible. The varieties of ansatz and their
expressibilities are presented in Sim et al. (2019). Express-
ibility is tightly connected to the concept of controllability
in quantum optimal control, and Larocca et al. (2022) show
that the asymptotic limit of the number of layers £ — oo in
the expressible circuits are the controllable ones, i.e., those
whose ansatz is underlied by a Lie algebra matching the space
of skew-Hermitian matrices u(2").

3.2 Ensemble techniques

The purpose of using ensemble systems is to improve the gen-
eralization performance through reducing the bias or variance
of a decision system. Such a result is obtained by training
several models and combining the outcomes according to
a combination rule. A large body of literature on ensemble
techniques exists; the reader is referred to Zhang and Ma
(2012) for a general overview.

The idea behind the ensemble system may be motivated
by Condorcet’s jury theorem (De Condorcet 2014): a jury of
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m peers, each having probability p = % +€6,0<ek1,of
giving the correct answer, implies that the probability of the
verdict given by majority voting to be correct is

S my _ o \m—k
> (k)” (1—=p) 3)

k=[m/2]+1

Pjury =

and quickly approaches 1 as m — oo. The theorem, broadly
interpreted, suggests that a combination of small, individ-
ually ineffective machine learning models k1, ..., h,, (weak
learners) can be combined to constitute a more powerful
one, with arbitrarily good performance depending on the
nature of data manifold and the base classifiers hepg (strong
learner). According to Zhang and Ma (2012), three aspects
characterize an ensemble system: a data selection strategy,
the composition plus training strategies of the single model
instances, and the combination rule of its output. Some of
the possible choices are summarized in Fig. 1.

The data selection strategy determines how the data should
be distributed to the individual instances. If all instances
are trained on the same dataset, their predictions will be
highly correlated, resulting in similar output. The boot-
strapping technique creates smaller, overlapping subsets by
sampling with replacement from the dataset, which are then
assigned to different instances. Alternatively, the pasting
technique can be used for processing larger datasets by sub-
sampling without replacement. Another approach is to divide
the dataset by randomly assigning different sets of features

with replacement, known as the random subspace technique
(when the bootstrapping and random subspace techniques
are combined, the result is the random patch technique).

There are numerous schemes for combining predictors,
with bagging being the most straightforward and commonly
used. Bagging, short for bootstrap aggregation, involves the
creation of multiple homogeneous model instances trained on
bootstrapped datasets. An instance of a bagging scheme is the
random forest, which involves bagging decision trees trained
on differing sample subsets (in some cases, random forests
may favor a random patch data selection strategy over bag-
ging). Another predictor combination scheme is boosting,
which involves training a sequence of predictors via sub-
sampling data according to the following strategy: an initial
predictor is trained on a uniformly drawn subset of samples,
while the i-th instance of the predictor is trained on a subset
of elements that the previous ensemble classifier incorrectly
predicted. The ensemble is itself the convex cumulative sum
over predictors. Numerous variations of boosting exist, one
of the most notable being AdaBoost (Freund and Schapire
1997). Contrary to vanilla boosting, AdaBoost employs an
exponential loss such that the ensemble error function allows
for the fact that it is only the sign of outcome that is signif-
icant. These two scheme are illustrated in Fig.2. The other
major ensemble scheme is stacking in which a collection
of heterogeneous classifiers trained on the same dataset are
combined via an optimized meta-classifier.

The combination rule merges the output of individual
models iy, ..., h,,. In classification tasks, i.e., where the label

Fig.1 Taxonomy of the three
aspects characterizing an

Data selection strategy

ensemble system

Subset of
samples

Yes Bootstrapping, pasting

Subset of features
No Yes

No /

Random subspace
Random patch

Composition + training of single model instances

Model instances

Heterogeneous Homogeneous
Type of  Sequential / Boosting
processing  Parallel Stacking Bagging
Combination rule of the outputs
Discrete Continuous
Majority voting Average

Weighted majority voting  Weighted average
Borda counts Min Max
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Fig. 2 Comparison between bagging (left) and “vanilla” boosting
(right) techniques. The bagging ensemble trains the models in paral-
lel over a subset of the dataset drawn uniformly; each prediction is then
merged via an average function. The boosting ensemble trains the mod-

output is discrete y € C = {cy, ..., ¢k}, the most com-
monly used rule is majority voting. This is calculated as
Yens = argmaxcec ;o [hi(x) = c]. Where there exists
prior knowledge regarding the performance of individual pre-
dictors, positive weights w; can be assigned, such that the
output is a weighted majority vote. The ensemble prediction
in this case will be yens = argmaxcec Y reg wilhi(x) =
c]. Alternatively, the borda count method sorts labels in
descending order by likelihood, with the ensemble predic-
tion being the highest ranking sum. Nevertheless, averaging
functions can also be utilized for ensemble classifiers for
small ensemble sizes (Hastie et al. 2009). For regression
tasks where y € R, common combination rules are (pos-
sibly weighted) mean, minimum, and maximum.

4 Discussion

Ensemble techniques, while well-established in the classical
realm, have been largely overlooked in the quantum liter-
ature, leaving a number of open questions in this setting,
such as whether bagging techniques, which reduce variance,
can be deployed as effectively as boosting techniques, which
reduce bias (both of which are also data-manifold and base-
model dependent). It is also unclear as to the relative resource
saving in terms of circuit size (number of qubits) and depth
(number of gates), and also samples required for training, that
can be obtained by using an ensemble of quantum neural
networks instead of a single, large quantum network. Fur-
thermore, it is not currently well understood the extent to
which an ensemble system can mitigate hardware noise. Our
experiments are designed to explore these questions.

To investigate the first two aspects, we conduct a suite
of experiments within a simulation environment, employ-
ing seven distinct ensemble schemes with varying strategies
for data selection, model training, and decision combination
applied to four synthetic and real-world datasets, encom-
passing both regression and classification tasks. Specifically,

els sequentially, the first predictor draws the samples uniformly, and
the subsequent models draw the elements from a probability distribu-
tion biased toward previously misclassified items

we analyze a synthetic linear regression dataset, the con-
crete compressive strength regression dataset, the Diabetes
regression dataset, and the Wine classification dataset, which
are widely used benchmarks for evaluating machine learning
models.

Six of the proposed techniques are classified as bag-
ging methods, employing bootstrapped data to generate the
ensemble, while the seventh is a sequential boosting tech-
nique, namely AdaBoost. In particular, we implemented the
AdaBoost.R2 version (Drucker 1997) for the regression tasks
and the AdaBoost SAMME.R version (Hastie et al. 2009) for
the classification problem. The bagging ensembles are char-
acterized by two parameters: the sample ratio r,, € [0, 1],
which determines the percentage of training samples used for
each base predictor (with replacement), and the feature ratio
ry € [0, 1], which indicates the percentage of features used
for each predictor (without replacement). We test six bagging
schemes by varying (r,,7¢) € {0.2,1.0} x {0.3,0.5,0.8}.
For both the classification and regression tasks, the outputs of
the base predictors are combined via averaging, as suggested
in Hastie et al. (2009). In the case of the AdaBoost ensemble,
the training set for each base predictor has the same size and
dimensionality as the original training set. However, the sam-
ples are not uniformly drawn but are selected and weighted
based on the probability of misclassification by previous clas-
sifiers composing the cumulative ensemble; single predictors
are hence combined using a weighted average. Each ensem-
ble system comprises 10 base predictors. The characteristics
of these ensemble schemes are summarized in Table 1, where
FM identifies the baseline quantum neural network model,
whereas Bag_r ¢_r,, represents a bagging model with r ; per-
centage of the features and r,, percentage of the samples. Our
experiments aim to evaluate the performance of each of the
ensemble frameworks in comparison to the baseline model,
as well as to assess the overall resource saving, including the
number of qubits and overall parametric requirements.

To investigate the impact of quantum hardware noise,
we conduct two additional experiments. The first one is

@ Springer



39 Page8of24

Quantum Machine Intelligence (2023) 5:39

Table 1 Characteristics of the

baseline benchmark model (0) Model Data loading Ensemble #BP Rule
and ensemble systems (I to VII) RSBS (ry) BST (ra)
FM - — — — —
Bag 0.3_0.2 0.3 0.2 Bagging 10 Avg
Bag 0.3_1.0 0.3 1.0 Bagging 10 Avg
Bag_0.5_0.2 0.5 0.2 Bagging 10 Avg
Bag_0.5_1.0 0.5 1.0 Bagging 10 Avg
Bag_0.8_0.2 0.8 0.2 Bagging 10 Avg
Bag_0.8_1.0 0.8 1.0 Bagging 10 Avg
AdaBoost 1.0 1.0 AdaBoost 10 W.Avg

The ensemble system is identified by its broad data loading method (BST for Boosting and RSBS for Random
Subspace), predictor composition and training type (Ensemble), number of base predictors (#BP), composition
rule (Rule, with Avg representing the average function and W.Avg representing weighted average)

performed in a noisy simulated setting with PennyLane-
Qiskit plugin, which allows to simulate a noisy device by
selecting a fake backend from IBM Quantum’s suite. It mim-
ics the behaviors of IBM Quantum systems using system
snapshots. The latters contain information about the quantum
system such as coupling map, basis gates, qubit properties
(T1, T2, error rate, etc.). These elements are useful for incor-
porating a realistic noise model into our experiment and thus
performing noisy simulations of the system. We selected
IBM Quantum Lima as the quantum backend to mimic. It
is a 5-qubit superconducting-based quantum computer, and
its topology is depicted in Fig. 3a. In this experiment, the
baseline FM is compared to the Bagging models, with the
aim to assess their robustness in the presence of quantum
hardware noise and qubit coupling. The second noisy exper-
iment was performed directly on the IBM Lagos QPU real
hardware. Such a device is a 7-qubit superconducting-based
quantum computer. The topology of Lagos is depicted in
Fig. 3b. Specifically, here we compare the performance of
the baseline model FM with that of the Bag_0.8_0.2 config-
uration on the linear regression dataset. Our goal with these

Fig.3 Topology of (a) IBM
Lima QPU, (b) IBM Lagos QPU

(a)

@ Springer

two experiments is to determine whether ensemble tech-
niques can effectively mitigate quantum noise, and whether
the difference in performance between single predictors and
ensemble systems is more pronounced within a simulated,
noise-free environment in comparison with noisy executions
on quantum hardware.

4.1 Experimental setup

This section outlines experimental protocols used to evalu-
ate the performance of the various ensemble approaches in
terms of both the experimental structure and specific param-
eters/settings used to configure the algorithm and hardware.

Choice of quantum neural networks We utilize a quantum
neural network of the form f (x; ) = Tr[UT(0) VT (x)poV (x)
U (0) O], which operates on n qubits, with n corresponding to
the number of features in the classification/regression prob-
lem. For the feature map, we opted for the simple parametric
transformation V(x) = Q_; R;')(x,-). This choice was
motivated by the findings in Kiibler et al. (2021), suggesting

(b)
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that more complex feature maps can lead to unfavorable gen-
eralization properties, the incorporation of which may thus
unnecessarily bias our findings. (In Lloyd et al. (2020), var-
ious feature maps are compared).

The ansatz is implemented with the parametric trans-
formations structured layer-wise with, for £ the number of
layers, a total of 3¢n parameters. It is thus defined as fol-
lows:

¢ n n—1
(@ ome) o)
1

k=1 i=1 i=

n n—1
<® RY (93kn+n+l-)> (1"[ CXW“))

P il
<® R)(ci)(93kn+i)> ] “)
i=1

The role of CNOT gates is the introduction of entangle-
ment in the system, which would otherwise be efficiently
classical simulable. We select as the observable O = O'Z(O),
which operates on a single qubit. Local observables like this
one are less susceptible to the barren plateau problem than
global ones, for example, O = ®/_ 10;1) (as noted in Cerezo
et al. (2021)). Note that the measurement on the first qubit
depends nontrivially on the overall state due to the entangle-
ment introduced by the chosen unitary. The quantum neural

network described in our investigation is pictured in Fig. 4.

Training of the model To train models, we utilize a standard
state-of-the-art gradient descent-based algorithm, ADAM.
The MSE was selected as the loss function and error metric
to evaluate the performances of the models in the regression
tasks, as it is a standard error metric in supervised learning.
MSE was selected as the loss function to train the networks
because it is more sensitive to larger errors. Categorical
cross entropy (CCE) was used as the loss function for the

classification task instead, while Accuracy score was employed
as the error metric to assess the goodness of the classifica-
tion. Given the output f of the model, the computation of its
gradient V f, which is required to calculate the gradient of
the loss function, is accomplished using the parameter-shift
rule (Schuld et al. 2019), since the commonly-used finite
difference method V f(x;0) ~ (f(x;0) — f(x;0 4+ ¢€))/€
is highly susceptible to hardware noise. The optimization
hyper-parameters used are the learning rate, set to 0.1, and
the number of training epochs, which was selected through
empirical investigation. Specifically, we carry out 150 train-
ing epochs to obtain the simulated noise-free results, while
for noisy simulations and real QPU-based results we perform
just 100 and 10 epochs respectively, due to technological con-
straints on current hardware.

Datasets We assess the performance of our approach using
both synthetic and real-world datasets, across both regression
and classification problems. The linear regression dataset is
artificially generated with parametric control over the number
of samples n, the dimensionality d, and the noise variance o.
It is procedurally generated by randomly sampling a weight
vector w uniformly over [—1, 11¢ such that the training set
{(xD), y("))}f':1 is constructed with x) uniformly sampled
from [—1, 114, y® = w - xD + €@ and €@ sampled from
a normal distribution with zero mean and variance o. In
our case, we have n = 250 (jointly the training and testing
datasets), d = 5 and o = 0.1. The other datasets involved
in the experiments are the concrete compressive strength
dataset, the Diabetes dataset, and the Wine dataset. The first
of these is a multivariate regression problem calculating the
strength of the material based on its age and ingredients.
The second is a multivariate regression problem correlat-
ing the biological and lifestyle characteristic of patients to
their insulin levels. The third one is a multivariate, three-class
classification problem investigating the geographic origin of
wine samples from their chemical characteristics. All are

0) —{ Ry(wo)  Rulth) |

0) —] Ry(an) H Ba(01) ]

0) — Ry(22) — Ra(02)

0) — Ry(x3) —{ R (03) I

[ 2.065) ] R, (610)
o [ 1.0 |- Ry (611)
2 R.(07) ® Ry (f12) |—
&—p—] 7.0 | ® Re (013)
&—{ R-(0) &— Ru(01) |—

0) — Ry(x4) — Ru(04)

Fig.4 Quantum neural network used to classify the linear regression dataset, having 5 qubits and £ = 1 layers. The rotational gates parameterized
by the feature x; form the feature map, while those parameterized via the 6s form the ansatz
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freely available and open source. Table 2 summarizes the
characteristics of these datasets; more details can be found
in Shaikhina and Khovanova (2017); Gupta (2018); Nelli
and Nelli (2018). Every dataset is divided into 80% train
samples and 20% test samples. Moreover, in a data prepro-
cessing phase, raw data were scaled in the range [—1, 1] to
best suit the output of the quantum neural networks; the scaler
was fitted using training data only. No other preprocessing
technique, i.e., PCA, has been applied.

Implementation details Our implementation! is written in
Python3, and utilizes Pennylane as a framework to define
and simulate quantum circuits, with the Pennylane-Qiskit
plugin used to execute circuits on IBM Quantum devices
via the Qiskit software stack. To improve simulation times,
we employed the JAX linear algebra framework as the sim-
ulation backend. By using JAX, the quantum circuit can
be just-in-time compiled to an intermediate representation
called XLA, which can significantly speed up simulation
times (by up to a factor of 10). Our simulations were run
on a commercial computer with an AMD Ryzen 7 5800X
(8-core CPU with a frequency of 3.80 GHz) and 64 GB of
RAM. The first experiment on the noise canceling prop-
erties of ensemble systems was simulated with Qiskit’s
FakeLimaV2 backend, which mimics the behavior of IBM
Quantum’s Lima QPU. It consists of 5 qubits arranged in the
topology {(0, 1); (1,2); (1, 3); (3,4)}. The single-gate and
CNOT fidelities of this QPU were 4.79¢=* and 1.07¢72,
respectively. The second experiment on the noise cancel-
ing properties was conducted on the ibm_lagos quantum
processing unit, which consists of 7 qubits arranged in
the topology {(0, 1); (1, 2); (1, 3); (3, 5); (4, 5); (5, 6)}. The
single-gate fidelity and CNOT fidelity of this QPU did not
exceed 2.89¢~* and 8.63¢ 73, respectively (according to the
latest calibration available).

4.2 Simulated noiseless experiments

Initially, we evaluate our method in a simulated environ-
ment, one free of noise, such that the output estimation is
infinitely precise. This differs significantly from execution on
a NISQ quantum processing unit, which introduces various
types of hardware error (such as decoherence and infidelity
of operations) as well as sampling error caused via the mea-
surement operation. We examine the performance of both the
baseline models and ensemble systems in a scenario where
the number of layers (i.e., quantum neural network depth)
is gradually increased. To establish robustness to random

! The source code used to obtain our results can be freely accessed
at https://github.com/incud/Classical-ensemble- of-Quantum-Neural-
Networks.

@ Springer

initialization of parameters (that is, susceptibility to local
minima effects), each simulation is repeated ten times. More
plots are shown in Appendix A and a correlation analysis in
included in Appendix B.

4.2.1 Experiment|

The first experiment seeks to perform linear regression on
a synthetic noisy 5-dimensional dataset. The function gen-
erating the targets is as follows: y = w - x + €, where
xe (=1, CR,we R is randomly generated from
a uniform distribution having as support the range —1 to 1,
and € is a Gaussian noise of mean zero and standard deviation
0.1. The total number of samples composing this synthetic
dataset is 250. Each experimental data point instantiates a
layer number, a number of bagged features, and a percentage
of training data points available to the ensemble.

The results of the first experiment are indicated in Fig. 5.
Both FM and AdaBoost achieve the lowest MSE on test of
about 0.021 at 10 layers, reaching a performance plateau at
5 layers. The bagging models utilizing 80% of the features
are able to reach satisfactory results with 10 layers, which
are only 0.03-0.05 points higher than the error obtained by
the best performing models. In general, it appears that quan-
tum bagging models with a high number of features are able
to generalize well on unseen data in this setting, even with
only 20% of the training samples (unsurprisingly, the perfor-
mance of bagging models with only 20% of training samples
are worse than those of the counterparts using 100% of the
training samples). Nevertheless, they still achieve remark-
able results and show impressive generalization capabilities,
confirming the effectiveness of bagged quantum models in
generalizing well with relatively little training data (Caro
et al. 2022).

Itis also notable that all of the bagging models have a lower
MSE test error as compared to FM and AdaBoost when the
number of layers is low. In particular, with just 1 layer, all
of the bagging models outperform FM and AdaBoost. How-
ever, as the number of layers increases, the performances of
bagging models begin to plateau more rapidly than FM and
Adaboost which, in contrast, continue their trend of decreas-
ing error with increasing circuit depth. This is due to bagging
models reaching their performance saturation point more
quickly as the number of layers increases, so that additional
layers do not significantly improve their predictive power.
The primary cause for this phenomenon is the impossibility
of bagging models in utilizing all the available information
from the features of the samples; an increment in the num-
ber of bagging estimators may alleviate such phenomenon.
On the other hand, FM and AdaBoost have the advantage of
fully leveraging all the features of the samples for the predic-
tion. As a result, they gain benefits from higher circuit depth,
enabling them to progressively diminish their error rates.
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Table 2 Characteristics of the

datasets analyzed Dataset Source Nature # Features # Samples Task
Linear - Synthetic 5 250 Regression
Concrete UCI Real-world 1030 Regression
Diabetes Scikit-learn Real-world 10 442 Regression
Wine UCI Real-world 13 178 Classification

UCI stands for the open source UCI Repository available at https://archive.ics.uci.edu. Scikit-Learn is an
open-source software library for Python3. The number of features does not include the target

Finally, the decreasing error trend seen in the more com-
plex bagging models as well as the FM and AdaBoost models
is not visible in relation bagging with 30% of the features.
We conjecture that since this bagging configuration utilizes
only 1 qubit, it cannot appropriately model the evolution of
the quantum state with respect to the input. Hence, despite
leveraging 10 different submodels of 1 qubit (i.e., one fea-
ture) each, the performance of bagging models with 30% of
the features cannot improve as the number of layers increases
(adding more layers in this case translates in performing rota-
tions on the single qubit only, without the possibility of fur-
ther CNOTs or other entangling gate operations). This result
hence highlights the importance of entanglement in quantum
neural network models as a means of improving performance.

In order to provide a comprehensive evaluation of the mod-
els’ performances, we hereafter report the results obtained by
varying not only the characteristics of the single base learners
(i.e., the number of layers, the number of samples r,,, and the
number of features r 7), but also the ensemble size (i.e., the
number of base learners that are averaged). As illustrated in
Table 3, the ensemble works as expected, since the test error
decreases while increasing the ensemble size.

4.2.2 Experiment |l

The second experiment seeks to assess the performance of the
respective ensemble techniques on the concrete compressive

Experiment I

—— FM
—®- Bag 0.3 0.2
—#— Bag_0.3_1.0
—@— Bag 0.5 0.2
—%- Bag_0.5_1.0 ——@#————p—-9
—- Bag 0.8 0.2
o~ Bag 0.8_1.0
—#— AdaBoost

0.4 4

0.3 4
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0.0
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Fig.5 Evolution of MSE with respect to the number of quantum neural
network layers in Experiment I. Each experimental data point instanti-
ates a layer number, a number of bagged features and a percentage of
training data points available to the ensemble

strength dataset, which consists in 1030 samples of 8 features.
The target value to predict in this regression case is hence
the concrete compressive strength, measured in Megapascal
(MPa), a highly nonlinear function of age and composition
of the material.

The results of the regression experiment are in line with
the findings of Experiment I, and are reported in Fig. 6. FM,
AdaBoost and the two bagging models applied in relation to
80% of features achieve comparable results at 10 layers, with
the Bag._0.8_1.0 configuration obtaining the lowest MSE,
followed by Bag._0.8_0.2, FM and finally by AdaBoost.
Also in this case, the differential between bagging models
with 20% of samples and with 100% of samples is marginal,
confirming the effectiveness of bagging quantum models in
relation to reduced training dataset size. In contrast with
Experiment I, bagging models having 30% of available fea-
tures now have 2 qubits, and therefore demonstrate a relative
improvement in test error when/ = 2. However, their expres-
sive power soon saturates and their error curves plateau.

In general, the generalization capability of bagging mod-
els decreases monotonically with the number of layers, in
contrast to FM and AdaBoost. In fact, they exhibit episodes
of increased test errors when utilizing 5 (and up to 7) lay-
ers, while bagging appears to be able to evade this outcome.
Such an increase in the test error of FM and AdaBoost may
be due to the complex landscape of the cost function, which
in some cases could be challenging to optimize and lead to
bad generalization.

All of the bagging models analyzed still outperform FM
and AdaBoost at a low number of layers, suggesting that
they may be the right choice for implementation on NISQ
devices, or else when there is any necessity of implementing
low-depth quantum circuits. As in the first experiment, it is
also of interest to note that all the bagging models with/ = 1
here have very similar MSE values, while their performances
vary as the number of layers increases. This may indicate that
the MSE value reached at/ = 1 is the optimal for that family
of bagging models, given their expressibility. Moreover, a
sharp decrease in MSE beyond the first layers would appear
to be a common pattern, both with respect to the ensembles
and the FM model. For example, at [ > 3, the MSE of FM
and AdaBoost dramatically decrease, while bagging models
with 50% of the features exhibit this trend between/ = 1 and
| = 2. (A future analysis of this topic might seek to exploit
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Table 3 MSE of bagging

. Layers
ensembles by varying the g or Model 2 3 3 g 10
number of bagging estimators in
Experiment I 4 Bag 0.3_0.2 0.390 0.390 0.390 0.390 0.390
Bag_0.3_1.0 0.378 0378 0.378 0378 0.378
Bag_0.5.0.2 0.243 0.241 0.240 0.240 0.240
Bag_0.5_1.0 0.241 0.237 0.237 0.238 0.236
Bag_0.8_0.2 0.090 0.078 0.079 0.082 0.080
Bag 0.8_1.0 0.084 0.069 0.068 0.068 0.065
6 Bag_0.3_0.2 0375 0375 0375 0375 0376
Bag_0.3_1.0 0373 0373 0373 0373 0.373
Bag_0.5.0.2 0.237 0.235 0.236 0.236 0.235
Bag_0.5_1.0 0.240 0.237 0.237 0.238 0.237
Bag_0.8_0.2 0.102 0.090 0.093 0.094 0.092
Bag 0.8_1.0 0.090 0.073 0.071 0.071 0.069
8 Bag_0.3_0.2 0.365 0365 0365 0365 0.365
Bag_0.3_1.0 0.365 0.365 0365 0365 0.365
Bag_0.5.0.2 0.230 0.228 0.229 0.229 0.228
Bag_0.5_1.0 0.234 0.231 0.231 0.232 0.231
Bag_0.8_0.2 0.091 0.080 0.082 0.083 0.082
Bag_0.8_1.0 0.084 0.066 0.064 0.064 0.063
10 Bag_0.3_0.2 0.362 0362 0.362 0362 0362
Bag_0.3_1.0 0.361 0.361 0.361 0.361 0.361
Bag 0.5.0.2 0.220 0.219 0.219 0.219 0.218
Bag_0.5_1.0 0.228 0.225 0.225 0.226 0.225
Bag_0.8_0.2 0.086 0.074 0.077 0.077 0.075
Bag_0.8_1.0 0.080 0.061 0.059 0.059 0.058

Only even number of layers are reported for brevity

this characteristic in order to predict a priori how many lay-
ers one would need to attain an error level within a given
bound).
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Fig.6 Evolution of MSE with respect to the number of quantum neural
network layers in Experiment I1
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As for Experiment I, we report here the MSE of the bag-
ging models with respect to the variation of the ensemble size
(Table 4). It confirms the trend for which as the ensemble size
increases, the MSE on test decreases.

4.2.3 Experiment Il

The dataset used in Experiment III is the reference Dia-
betes dataset from Scikit-learn, consisting of 10 numerical
features, including age, sex, body mass index, blood serum
measurements, and also a target variable, a quantitative mea-
sure of disease progression one year after baseline. The
dataset is composed of 442 instances and is often used for
non-trivial regression analysis in ML.

Figure 7 illustrates the results of this experiment. The per-
formance of the quantum models is notably different from
those of the previous two experiments. It may be seen that
the best-performing models are the bagging models contain-
ing 80% of the features for almost any number of layers,
while FM and AdaBoost achieve satisfactory results up to
6 layers, at which point their MSE begins to increase. At
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Table 4 MSE of bagging

. Layers
ensembles by varying the g or Model 2 3 3 g 10
number of bagging estimators in
Experiment II 4 Bag 0.3_0.2 188.1 188.0 188.0 187.9 187.5
Bag_0.3_1.0 188.0 187.3 187.8 187.4 187.4
Bag_0.5.0.2 152.1 140.7 138.2 137.0 136.2
Bag_0.5_1.0 149.0 137.1 135.2 134.6 134.0
Bag_0.8_0.2 167.1 125.7 1222 118.0 1157
Bag 0.8_1.0 163.8 122.0 118.8 1159 112.8
6 Bag_0.3_0.2 184.7 184.2 184.3 184.0 183.7
Bag_0.3_1.0 1837 182.7 182.9 182.6 1826
Bag_0.5.0.2 150.5 139.1 136.6 135.5 134.6
Bag_0.5_1.0 147.1 1359 133.7 133.1 1324
Bag_0.8_0.2 164.3 1258 122.8 1193 116.9
Bag 0.8_1.0 161.2 122.1 119.2 1163 113.7
8 Bag_0.3_0.2 183.0 182.7 182.5 182.1 182.0
Bag_0.3_1.0 183.0 182.0 181.9 181.6 181.5
Bag_0.5.0.2 148.6 137.2 134.0 134.0 133.3
Bag 0.5_1.0 145.4 134.1 132.0 131.3 130.6
Bag_0.8_0.2 163.4 123.6 121.0 117.6 115.0
Bag_0.8_1.0 161.0 120.9 117.8 114.6 112.0
10 Bag_0.3_0.2 181.6 181.2 180.9 180.7 180.5
Bag 0.3_1.0 182.1 181.2 181.1 180.8 180.8
Bag 0.5_0.2 1482 136.9 134.6 133.7 133.0
Bag_0.5_1.0 145.9 134.7 1326 1319 131.1
Bag_0.8_0.2 162.2 122.8 120.9 117.6 114.9
Bag_0.8_1.0 160.2 121.0 1183 115.0 112.5

Only even number of layers are reported for brevity

! = 10, every model has stabilized, however. Bag._0.8_1.0
and Bag._0.8_0.2 have an MSE of respectively 8.8% and
6.1% lower than that of FM. AdaBoost has an MSE compa-
rable to the error of Bag._0.3_1.0, being only 0.9% higher

Experiment III
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Fig.7 Evolution of MSE with respect to the number of quantum neural
network layers in Experiment I11

than FM. Bagging models with 50% of the features have sur-
prisingly good results, better than those of FM and very close
to bagging models with 80% of the features.

As in Experiment I and II, a very sharp MSE reduction
between / = 1 and / = 3 is evident for all of the models.
Less complex models like bagging with 30% and 50% of the
features immediately reach a plateau, while the error curves
for bagging with 80% of the features, FM and AdaBoost
evolves as the number of parameters increases. Considering
layer numbers between / = 6 and [ = 8, it is possible that
the capacity of FM and AdaBoost models saturates as the
number of model parameters increases, and thus they per-
form poorly on both training and test data; they struggle in
navigating the cost function and escaping from local minima
during training. In particular, their learning is constrained
to such an extent that they almost reach the same perfor-
mance level of the simplest bagging models with 30% of the
features. The latter show no indication of bad generalization
however, in common with bagging models having 50% of the
features. Bagging with 80% of the features shows light signs
of bad generalization and learning saturation when [ > 6,
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but still achieve the best results from among all of the tested
algorithms.

The robustness of bagging models to learning saturation
with respect to AdaBoost and FM arises from their ability to
reduce variance via averaging of decorrelated error across the
predictions of each submodel. By contrast, when the num-
ber of layers is high, AdaBoost and FM utilize a model that
is too complex and expressive for the underlying task, lead-
ing to learning saturation, bad generalization performances
and difficulties in approximating the underlying function.
In concordance with Experiment II, this results confirm the
effectiveness of bagging models in improving the predictive
performance of QNN models, especially in cases where the
optimization of the cost function becomes challenging, in
line with the classical counterpart.

In addition, this experiment also highlights more markedly
the discrepancy between the error level of bagging models
with the same number of features but a distinct number of
training samples. The difference between the MSE of the
bagging model with 30% and 20% of samples and that with
100% of samples is now far more apparent, suggesting that

when the variance of the dataset is very high, even bagging
models require a sufficient threshold of training samples to
perform well in the NISQ setting.

Regarding the performances of the bagging models with
different ensemble sizes, the results are displayed in Table 5.
The findings further support the previously observed trend
that as the size of the ensemble increases, the MSE decreases
on the test dataset.

4.2.4 Experiment IV

For the classification task in Experiment IV, we used the
reference UCI Wine dataset. It is a multi-class classification
dataset corresponding to the results of a chemical analysis of
wines grown within a specific region of Italy. It consists of 13
numerical features representing various chemical properties,
such as alcohol, malic acid, and ash content, and a target
variable indicating the class of the wine. The dataset has 178
samples and is a common baseline ML benchmark for low-
parametric complexity classifiers.

Table 5 MSE of bagging

. Layers
ensembles by varying the -y g aior Model ) 3 6 g 0
number of bagging estimators in
Experiment IIT 4 Bag_0.3_0.2 3438.6 3428.7 3421.7 3426.0 3418.7
Bag_0.3_1.0 3321.8 3323.6 3319.5 33333 33284
Bag_0.5_0.2 3236.1 3169.1 3173.7 31719 3165.2
Bag 0.5_1.0 3121.1 3041.4 3053.2 3058.5 3051.6
Bag_0.8_0.2 3340.9 2959.9 2986.8 2998.4 2975.1
Bag_0.8_1.0 32726 2867.8 2868.8 2889.0 2874.7
6 Bag_0.3_0.2 3326.2 3324.8 3325.6 3324.0 3319.7
Bag 0.3_1.0 3218.5 3225.2 3222.0 32315 3227.7
Bag 0.5_0.2 3152.9 3077.6 3084.4 3082.7 3080.2
Bag 0.5_1.0 3049.6 2983.8 2993.1 2995.3 2990.1
Bag_0.8_0.2 32754 2928.5 2956.2 2973.3 2956.4
Bag_0.8_1.0 3198.8 2845.5 2852.5 2870.0 2847.6
8 Bag_0.3_0.2 3259.5 3249.9 3250.3 3250.1 3246.5
Bag_0.3_1.0 3174.6 3180.9 3176.2 3186.1 3188.6
Bag_0.5_0.2 3130.5 3053.3 3057.5 3056.5 3052.5
Bag_0.5_1.0 3061.6 2978.0 2986.1 2987.7 2985.3
Bag_0.8_0.2 3265.1 2900.8 2933.5 2958.3 2934.7
Bag_0.8_1.0 3209.1 2838.3 2860.0 2884.8 2861.5
10 Bag_0.3_0.2 3204.9 3200.2 3198.8 3198.4 3195.6
Bag_0.3_1.0 3139.8 3145.1 3141.6 3150.7 3152.8
Bag_0.5.0.2 3102.5 3017.7 3010.1 3011.5 3007.6
Bag_0.5_1.0 3041.5 2949.0 2955.6 2954.5 2955.3
Bag_0.8_0.2 3243.9 2879.8 2926.6 2957.7 2932.9
Bag_0.8_1.0 3175.1 2826.6 2843.1 2872.3 2848.5

Only even number of layers are reported for brevity
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Results from Experiment IV are reported in Fig. 8.
Although they cannot be directly compared to the previous
results due to the intrinsically different nature of the prob-
lem, there are few comparative insights that can be gained
from the respective plot of Accuracy curves. First, all the
models except bagging with 30% of the features achieve the
same accuracy score of 97.2% using 10 layers. The perfor-
mances of Bag._0.3_0.2 and Bag._0.3_1.0 are still relatively
strong; however, having an accuracy score of 94.2% and
96.9% respectively. Given the very low complexity of these
two models, this is a striking result.

A further notable aspect of the Accuracy curves is that
all ensemble models converge with far fewer layers than
FM. In particular, they require 3 layers in order to reach
a performance plateau on average, after which they saturate
and the accuracy score reaches saturation as well. By con-
trast, FM struggles to achieve a comparable accuracy score,
only achieving accuracy greater than 90% when [ > 7. This
means that the ensemble models are able to learn and cap-
ture the complex relationships between the input features
far more efficiently than FM, which requires a much deeper
architecture to attain comparable results. This observation is
particularly relevant when considering the implementation of
these models on NISQ devices, where the number of qubits
and the coherence time are severely limited.

As expected, bagging models with 100% of the samples
obtain almost everywhere (especially with few layers), a
higher accuracy score than their counterparts with 20% of the
features given the same number of layers. This suggests that
using more training samples can improve the performance of
ensemble models provided that the number of layers is low,
as it allows them to better capture the underlying patterns of
class discriminability in the data.

Finally, Table 6 shows the performance of the bagging
models with varying ensemble sizes. The outcomes confirm
the previously observed pattern that increasing the ensemble

Experiment IV

0.9 1

4
)

Accuracy

I
9

—h— FM
—®- Bag_0.3_0.2
—4#— Bag 0.3_1.0
0.6 4 —&— Bag 0.5.0.2
— Bag_0.5_1.0
—— Bag 0.8 0.2
Bag 0.8_1.0
0.5 —#— AdaBoost

1 2 3 4 5 6 7 8 9 10
Layers

Fig. 8 Evolution of accuracy score with respect to quantum neural
network depth in Experiment [V

size leads to an increment in the accuracy calculated on the
test set. This indicates that the use of larger ensembles can
contribute to improving the accuracy and robustness of the
quantum predictive models.

4.3 Resource efficiency of quantum neural network
ensembles

Besides performance, resource efficiency is a key argument
for the utilization of quantum neural network ensembles. Effi-
ciency can be measured by various metrics: for example,
number of qubits, gates, parameters, and training samples
required to achieve comparable performance.

To determine the potential savings in the number of qubits
we here deploy the random subspace technique (also known
as attribute bagging or attribute bootstrap aggregation). Our
experiments (cf Fig. 9) suggest a potential saving of 20 to
80% of the total qubit budget via this approach. However,
such a saving is made at the cost of the ensemble was a
whole having the potential for less rich class-discrimination
behavior, dependent on both the sampling required to achieve
full feature coverage and the nature of the underlying data
manifold. A positive consequence of reducing the number of
qubits, though, is that each quantum circuit will have fewer
gates and parameters, resulting in improved noise robust-
ness on real hardware (i.e., less decoherence, higher overall
fidelity), as well as faster gradient calculation (individual gra-
dient calculations require P + 1 quantum circuit evaluations
for P parameters). This allows for a saving of the parameter
budget of up to 75% in the indicated experimental regime,
while the saving on gates corresponds proportionately (cf
Fig. 4). Savings for each dataset and ensemble technique are
as depicted in Fig. 9.

4.4 Simulated noisy experiments

For the noisy simulated experiment, we compare the perfor-
mance of the FM baseline with all the Bagging techniques on
the same synthetic linear regression dataset used in Exper-
iment I, in order to assess the ensemble’s noise mitigation
properties. Unfortunately, further experiments on the other
datasets are currently unfeasible due to technological con-
straints, since noisy simulations with Qiskit’s backend on
large datasets are very time-consuming above 5-6 qubits.
Moreover, such constraints allow to simulate up to 3 layers
only; simulation of more complex models would demand a
significant amount of runtime and computational resources
that are currently unfeasible. Nevertheless, they are enough to
demonstrate the behavior and goodness of the ensemble tech-
niques in the presence of quantum hardware noise, as well
as the evolution of the models’ performance as the number
of layers increases. Each experiment is repeated 5 times to
ensure statistical validity.
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Table 6 Accuracy of bagging

. Layers
ensembles by varying the g or Model 2 3 3 g 10
number of bagging estimators in
Experiment IV 4 Bag 0.3_0.2 0.875 0.897 0.892 0.900 0.900
Bag_0.3_1.0 0.908 0911 0911 0917 0911
Bag_0.5.0.2 0.897 0.947 0.953 0.953 0.947
Bag_0.5_1.0 0.928 0.967 0.969 0.967 0.969
Bag_0.8_0.2 0.889 0.936 0.939 0.964 0.964
Bag 0.8_1.0 0.947 0.969 0.969 0.972 0.975
6 Bag_0.3_0.2 0.908 0.933 0.933 0.931 0.931
Bag_0.3_1.0 0.922 0.936 0.936 0.933 0.939
Bag 0.5.0.2 0.919 0.964 0.964 0.967 0.972
Bag 0.5_1.0 0.947 0.969 0.969 0.969 0.969
Bag_0.8_0.2 0911 0.944 0.947 0.969 0.956
Bag 0.8_1.0 0.953 0.969 0.983 0.978 0.978
8 Bag_0.3_0.2 0.925 0.933 0.933 0.933 0.933
Bag_0.3_1.0 0.942 0.956 0.958 0.958 0.961
Bag_0.5.0.2 0.931 0.969 0.964 0.972 0.969
Bag_0.5_1.0 0.958 0.972 0.972 0.972 0.972
Bag_0.8_0.2 0.908 0.947 0.961 0.967 0.969
Bag_0.8_1.0 0.942 0.967 0.986 0.975 0.975
10 Bag_0.3_0.2 0.933 0.944 0.939 0.942 0.942
Bag_0.3_1.0 0.956 0.964 0.967 0.967 0.969
Bag 0.5.0.2 0.928 0.972 0.975 0.975 0.978
Bag 0.5_1.0 0.956 0.978 0.972 0.972 0.972
Bag 0.8_0.2 0.928 0.950 0.967 0.972 0.975
Bag_0.8_1.0 0.944 0.978 0.978 0.972 0.972

Only even number of layers are reported for brevity

From Fig. 10a, it is evident that FM is highly affected
by noise, while sufficiently complex Bagging techniques are
more resilient to such errors and manage to achieve bet-
ter results, even outperforming FM in the case of Bagging
with 80% of the features. This discrepancy in performance is
expected to accentuate as the number of layers (i.e., the depth)

Number of qubits used in each experiment

Experiment I

Experiment IT
10 4 s Experiment IIT
BBl Experiment IV

Number of qubits

of the circuit or the number of ensemble estimators increase.
These results confirm the goodness of the Bagging approach
in mitigating the effect of noise for QNNs if compared to the
outcomes of the same experiment in an ideal setting, as illus-
trated in Fig. 10b for the best-performing techniques (FM
and Bagging with 80% of the features).

Number of parameters used in each experiment

40

Experiment I

Experiment II
30 4 I Experiment IIT
Bl Experiment IV

20 A

10~

Number of parameters (x no. of layers I)

Fig.9 Number of qubits & parameters employed in individual experiments

@ Springer



Quantum Machine Intelligence (2023) 5:39

Page 170f24 39

Fig. 10 Comparison of average

performance of the baseline 0.45 A FM
5 N o— Bag 0.3 0.2
model and the Bagging  —+ Bag 03.1.0 0.4

ensemble models on simulated
IBM Lima quantum hardware.

0.40 A

0.35 -

Experiment I (simulated noise)

Experiment I (ideal vs simulated noise)

—e— Bag 0.5.0.2 —;
—%— Bag 0.5_1.0
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(a) shows the difference in terms %1 +~ Bag 08.1.0 &
of MSE over 5 executions with ~0.25 4 ~ o2
all the bagging techniques. (b) 0.20 {

shows the performance of FM 0.15 0.1
and bagging models with 80% 0.10 4

of the features both in an ideal : 7

and simulated noisy setting Layers

(a)

4.5 Experiments executed on
superconducting-based QPU

For the real-hardware evaluation, we compare the per-
formance of the baseline quantum neural network with
the Bag_0.8_0.2 ensemble on the same synthetic linear
regression dataset used in Experiment I. We selected the
Bag_0.8_0.2 model as representative ensemble technique for
its outstanding performance in the simulated experiments
despite the low number of training samples. To ensure statis-
tical validity, we repeat each experiment 10 times. However,
due to technological constraints on real quantum hardware,
we analyze only the linear dataset with a quantum neural
network having a single layer.

Figure 11 presents the real-world experimental findings,
which indicate that the bagging ensemble reduces the
expected MSE by one-third and the expected variance
by half when executed on quantum hardware, compared
to the baseline model. Such results demonstrate that the
noise-canceling capabilities of ensemble technique can be
effectively exploited to work on NISQ devices in realistic
settings. Additionally, the performance of the ten bagging
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models varied significantly, underlining the need to reini-
tialise the ensemble multiple times and validate it against a
suitable validation dataset to ensure that the best model is
selected.

5 Conclusion

We propose the use of ensemble techniques for practical
implementation of quantum machine learning models on
NISQ hardware. In particular, we justify the application of
these techniques based on their capacity for significant reduc-
tion in resource usage, including in respect to the overall
qubit, parameter, and gate budget, which is achieved via
the random subspace (attribute bagging) technique. This
resource-saving is especially crucial for noisy hardware,
which is typically limited to a small number of qubits, being
vulnerable to decoherence, noise, and operational errors.
Consequently, the contribution of ensemble techniques may
be seen as a form of quantum noise reduction.

To establish this, we evaluated and compared various con-
figurations of bagging and boosting ensemble techniques
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Fig. 11 Comparison of average performance of the baseline model and the Bag_0.8_0.2 ensemble technique on IBM quantum hardware. (a) shows
the difference in terms of MSE over 10 executions. (b) shows the performance of the bagging model with respect to its estimators
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on synthetic and real-world datasets, tested in a simulated
noise-free environment, in a simulated noisy setting and on a
superconducting-based QPU by IBM, and subtending arange
of layer depths.

Our experimental findings showed that bagging ensembles
can effectively train quantum neural network instances using
fewer features and qubits, which leads to ensemble models
with superior performance compared to the baseline model.
Reducing the number of features in bagging models of quan-
tum neural networks directly translates into a reduction in
the number of qubits, that is a desirable characteristics for
practical quantum applications. Ensembles of quantum neu-
ral network can also help addressing some of the toughest
challenges associated with noise and decoherence in NISQ
devices, as well as to mitigate barren plateau effects. These
can be key considerations in the development of quantum
machine learning models, particularly when working with
limited resources on modern quantum systems.

Moreover, bagging models were found to be extremely
robust to learning saturation, being able to effectively capture
the underlying patterns in the data with high generalization
ability. This makes them better suited for tasks where general-
ization is important, such as in real-world applications. As in
the classical case, the increase of the ensemble size in case of
bagging also helps to achieve better performances for QNNss.
However, it is important to notice that the effectiveness of
bagging quantum models diminishes with a decrement in the
number of features, which suggests that complex bagging
models are still needed to obtain satisfactory results. Using
only a subset of the features can reduce the computational
complexity of the model and help in the optimization process,
but it may also result in a loss of information and a decrease
in performance. On the contrary, the number of training sam-
ples do not seem to have a deep impact on bagging quantum
models, hence this bagging strategy may be used when exe-
cuting quantum neural network instances on real hardware
in order to deal with long waiting queues and job scheduling
issues. In this regard, having a low number of training data
leads to faster training procedures and quantum resource sav-
ings. The training of ensembles can also be done in parallel on
multiple QPUs in a distributed learning fashion. Therefore,
it is important to strike a balance between model complexity
and performance to achieve the best possible outcomes.

Additionally, the fact that the bagging models outperform
FM and AdaBoost at low number of layers suggests that the
former models are better suited for low-depth quantum cir-
cuits, which have limited capacity and are prone to noise
and errors. For quantum machine learning tasks with NISQ
devices, using bagging models with a low number of layers
may be a good strategy to achieve good generalization per-
formance while minimizing the impact of noise and errors in
the circuit.

Overall, our results suggest that ensembles of quantum
neural network models can be a promising avenue for the

@ Springer

development of practical quantum machine learning applica-
tions on NISQ devices, both from a performance and resource
usage perspective. A careful evaluation of the trade-offs
between model complexity, performance, quantum resources
available and explainability may be necessary to make an
informed decision.

In a future work, we plan to further investigate the rela-
tionship between ensembles and quantum noise, which is
a key consideration when developing quantum neural net-
work models. In addition, it would be relevant to discuss
how our proposed approach compares to classical ensembles
for real-world applications; it would contribute to a more
comprehensive and insightful understanding of the poten-
tial advantages and limitations of our approach. To sum up,
our findings could potentially contribute to the development
of more efficient and accurate quantum machine learning
algorithms, which could have significant implications for
real-world applications.

Appendix A: Detailed plots

We provide some additional plots of the simulated experi-
ments. In particular, we compare the different configurations
of bagging and boosting techniques and their variance.
Figures 12, 13, 14, and 16 shows the results for the Linear,
Concrete, Diabetes, and Wine datasets, respectively.

Here we also report the training MSE and Accuracy for
Experiments I-III and IV, respectively. The error trends are
similar to the ones on the test sets and confirm the good
convergence of all the models.

Appendix B: Correlation analysis

In order to assess the relationship between MSE or Accuracy
and ensemble size, we calculated the Spearman correlation
coefficient. It is a non-parametric measure of the strength and
direction of monotonic association between two variables.
With this analysis, we aimed to quantitatively determine
whether changes in the ensemble size were associated with
consistent trends in either the MSE or Accuracy values.
In particular, the Spearman correlation provides a value
between -1 and 1, where -1 indicates a perfect negative
monotonic relationship, 1 indicates a perfect positive mono-
tonic relationship, and 0 indicates no monotonic relationship.
Tables 7, 8, 9 and 10 illustrate the results of this analysis for
the Linear, Concrete, Diabetes, and Wine datasets, respec-
tively. The correlation observed in the tables indicates that
larger ensemble sizes tend to result in lower MSE or higher
Accuracy, although more tests should be conducted to further
study such a phenomenon and obtain statistically significant
results with more samples.
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Fig.12 Comparison of the
performance of the baseline
model and ensemble systems on
the Linear Regression dataset. It
exhibits the MSE and standard
deviation, with a
semi-transparent area, of the
ensemble schemes in
comparison to the baseline
models. The top-left image
shows ensembles with Random
Subspace at 30% of the features,
top-right shows ensembles with
Random Subspace at 50%,
bottom-left displays ensembles
with Random Subspace at 80%,
and bottom-right illustrates
AdaBoost

Average Mean Squared Error

Average Mean Squared Error

Fig. 13 Comparison of the
performance of the baseline
model and ensemble systems on
the concrete compressive
strength dataset. It exhibits the
MSE and standard deviation,
with a semi-transparent area, of
the ensemble schemes in
comparison to the baseline
models. The top-left image
shows ensembles with Random
Subspace at 30% of the features,
top-right shows ensembles with
Random Subspace at 50%,
bottom-left displays ensembles
with Random Subspace at 80%,
and bottom-right illustrates
AdaBoost

Average Mean Squared Error

Average Mean Squared Error

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

220

200

220

— FM
—— Bag 0.3.0.2
—— Bag 0.3 1.0
1 2 3 4 5 6 8 9 10
Layers
— FM
—— Bag 0.8 0.2
—— Bag 0.8_1.0
1 2 3 4 5 6 8 9 10
Layers
— FM
—— Bag 0.3 0.2
—— Bag_0.3_1.0
1 2 3 4 5 6 8 9 10
Layers
— FM
—— Bag_0.8_0.2
—— Bag_0.8_1.0

Layers

Average Mean Squared Error

Average Mean Squared Error

Average Mean Squared Error

Average Mean Squared Error

e
~

o
w

e
Y

e
e

0.0

0.4

0.3

0.2

0.1

0.0

220

200

180

160

140

120

220

200

180

160

FM
—— Bag 0.5 0.2
—— Bag 0.5_1.0

-
[N}
w
=~
o
=Y
~
©
©
-
o

Layers
— FM
—— AdaBoost
1 2 3 4 5 6 7 8 9 10
Layers
— FM
—— Bag_0.5_0.2
—— Bag_0.5_1.0

Layers

FM
AdaBoost

Layers

@ Springer



39 Page200f24

Quantum Machine Intelligence (2023) 5:39

Fig. 14 Comparison of the
performance of the baseline
model and ensemble systems on
the Diabetes dataset. It exhibits
the MSE and standard deviation,
with a semi-transparent area, of
the ensemble schemes in
comparison to the baseline
models. The top-left image
shows ensembles with Random
Subspace at 30% of the features,
top-right shows ensembles with
Random Subspace at 50%,
bottom-left displays ensembles
with Random Subspace at 80%,
and bottom-right illustrates
AdaBoost

Fig. 15 Comparison of the
performance of the baseline
model and ensemble systems on
the Wine dataset. It exhibits the
average accuracy and standard
deviation, with a
semi-transparent area, of the
ensemble schemes in
comparison to the baseline
models. The top-left image
shows ensembles with Random
Subspace at 30% of the features,
top-right shows ensembles with
Random Subspace at 50%,
bottom-left displays ensembles
with Random Subspace at 80%,
and bottom-right illustrates
AdaBoost
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Fig. 16 Training MSE of M M
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Table 7 Spearman correlation coefficient between MSE and ensemble
size in Experiment I (p-value < 0.05)

Layers

Table 9 Spearman correlation coefficient between MSE and ensemble
size in Experiment III (p-value < 0.05)

Layers Layers

Model 2 4 6 8 10 Model 2 4 6 8 10

Bag 0.3_0.2 —1.00 —1.00 —1.00 —1.00 —1.00 Bag 0.3_0.2 —1.00 —1.00 —1.00 —1.00 —1.00
Bag 0.3_1.0 —1.00 —1.00 —1.00 —1.00 —1.00 Bag 0.3_1.0 —1.00 —1.00 —1.00 —1.00 —1.00
Bag 0.5_0.2 —1.00 —1.00 —1.00 —1.00 —1.00 Bag 0.5_0.2 —1.00 —1.00 —1.00 —1.00 —1.00
Bag_0.5_1.0 —-1.0 —0.95 —-0.95 —0.95 —0.79 Bag_0.5_1.0 —0.80 —1.00 —1.00 —1.00 —1.00
Bag 0.8_0.2 —0.40 —0.40 —0.40 —0.40 —0.40 Bag 0.8_0.2 —1.00 —1.00 —1.00 —1.00 —1.00
Bag 0.8_1.0 —0.63 —0.80 —0.80 —0.80 —0.80 Bag 0.8_1.0 —0.80 —1.00 —0.80 —0.40 —0.40

Only even number of layers are reported for brevity

Table 8 Spearman correlation coefficient between MSE and ensemble
size in Experiment II (p-value < 0.05)

Layers

Model 2 4 6 8 10

Bag 0.3_0.2 —1.00 —1.00 —1.00 —1.00 —1.00
Bag 0.3_1.0 —1.00 —1.00 —1.00 —1.00 —1.00
Bag_0.5_0.2 —1.00 —1.00 -0.79 —1.00 —1.00
Bag 0.5_1.0 —0.80 —0.80 —0.80 —0.80 —0.80
Bag 0.8_0.2 —1.00 —0.80 —0.80 —0.74 —0.80
Bag 0.8_1.0 —1.00 —0.60 —0.60 —0.60 —0.60

Only even number of layers are reported for brevity

Only even number of layers are reported for brevity

Table 10 Spearman correlation coefficient between Accuracy and
ensemble size in Experiment IV (p-value < 0.05)

Layers

Model 2 4 6 8 10
Bag_0.3_0.2 1.00 0.95 0.95 1.00 1.00
Bag 0.3_1.0 1.00 1.00 1.00 1.00 1.00
Bag_0.5_0.2 0.80 1.00 0.94 1.00 0.80
Bag 0.5_1.0 0.80 1.00 0.89 0.95 0.89
Bag 0.8_0.2 0.80 1.00 1.00 0.80 0.80
Bag 0.8_1.0 0 0.32 0.80 0 0

Zero values indicate that the alternative hypothesis is rejected, i.e., the
coefficient is 0 and hence there is no correlation. This outcome was
observed exclusively with the more complex ensemble, and can be
attributed to its ability to attain favorable Accuracy values even when
employing a relatively small number of estimators. Only even number
of layers are reported for brevity
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