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Abstract. Wireless Sensor Networks (WSNs) are embedded systems consisting of multiple distributed Sensor 

Nodes and usually one or more Base Stations, placed within an area of interest, to monitor and detect given 

behaviours and changes. Nowadays, WSNs are widely used in Safety-Critical systems where their 

dependability requirements are determined by the correct operations of the three primary properties: 

Connectivity, Coverage, and Lifetime of the network. These properties have been mostly considered 

independently of each other due to the complexity of addressing them simultaneously. This paper proposes a 

Perceptron-based Artificial Neural Network (ANN) analyser to analyse the performance of the Scheduling 

algorithms (e.g., where nodes alternate between awake (ON) and sleep (OFF) states) in WSNs using a 

MATLAB simulation environment. This approach uses a neural network to learn, train, and test the 

performance of such algorithms, to better the overall dependability of the network. The simulation results show 

possible ways to improve the lifetime of nodes using a more dynamic connectivity /coverage strategy. In 

particular, nodes that are switched ON more than four times were identified and classified. This has the benefit 

of improving network lifetime and hence its service availability and reliability attributes (dependability) by 

balancing the workload or the sleep schedule of those nodes, the network’s lifetime increases by avoiding 

unnecessarily depleting nodes’ energy.   

Keywords: Internet of Things (IoT), WSN, dependability, WSN optimisation, WSN duty cycle, (Artificial 

Intelligence) AI performance analysis 

1 Introduction 

In recent years, the use of WSNs in the field of Safety-Critical systems has increased considerably. Owning to 

their easy deployment and ability to operate in a sensitive, harsh, or dangerous environment seamlessly. Safety-

Critical systems are concerned with the safety of human beings and their assets [1]. In particular, their primary 

objectives are to avoid human injuries and deaths, economic loss, or environmental damage. A recent example, a 

WSN system has been deployed in the Fukushima nuclear plant in Japan, to help monitor the level of radiation. 

Another example is the use of WSNs in the outbreak of fire at Grenfell Tower in London, UK [2]. Therefore, 

ensuring dependability, during design time, and operability, during run-time w.r.t. the WSN objectives of such 

networks are important factors.  

As mentioned earlier, the WSN consists of multiple Sensor Nodes and a Base Station as illustrated in Figure 1. 

Typically, a WSN is deployed in a target area of interest, to maintain the correct functional properties; monitor 

and detect certain events, behaviours and changes, and report the detected events to the Base Station Therefore, 

these functional properties influence the three crucial factors of a dependable WSN; connectivity, coverage, and 

lifetime. Those three factors have not been addressed widely in the literature as part of a global multi-objective 

optimisation problem. They are often addressed separately due to their conflicting trade-off complexity. 

Therefore, this paper will examine and analyse them as a single optimisation problem w.r.t. achieving their quality 

of service (QoS) requirements [3][4]. While system dependability has been defined as the system's ability to 

provide a service that can justifiably be trusted [5]. The term “justifiably be trusted” is expressed in the context of 

security and/or system QoS verification and validation failures. On the one hand, a System failure is related to the 

system/devices, while a service failure is related to the application’s specific requirements. System failures can 

happen without forcefully causing a service failure, but this is not always the case. When a WSN communication 

link fails, this leads a node to use a different path such that data can still reach the Base Station. This is an example 

of when a system failure does not cause a service failure. On the other hand, a system failure can cause a reduction 



in QoS, i.e., service failure, where a link failure may cause a node to use a longer path which will cause a delay 

in reaching the Base Station [4].  

In order to ensure WSN dependability, a number of performance challenges such as coverage, connectivity, 

throughput, delay, reduced data in a network, and network lifetime must be addressed first. Utilising energy 

efficiently under these performance challenges is still an active research area [2] [6]. A well-known optimisation 

problem in the WSN community is “the m-covered and connected sensor networks’ multi-objective” problem 

[20] [21]. Node scheduling has been proposed in the literature to address the m-covered connected WSN w.r.t the 

network’s lifetime, hence improving the network’s dependability too.  

 

Fig. 1. The basic structure of the Wireless Sensor Network 

The dependability of a system is defined in many computer system contexts. In general, a dependable system 

means a trustable system with its operation to achieve the required service at the time specified by the application. 

According to Avizienis et al. in [5], the dependability of a system is "the ability of the system to avoid service 

failures that are more frequent or more severe than is acceptable". [5] presents a mechanism for building a 

dependable system, which includes three main factors; the attributes, means, and threats to system dependability. 

In brief, the attributes of dependability are achieved by the means of fault avoidance, to lessen the likelihood of 

faults being formed within a system, whereas the means are the techniques to counter the threats that affect the 

dependability attributes of a system. 

In principle, the threats to the dependability of the WSNs stem from the failures relating to energy efficiency 

[1]. Typically, it is unrealistic to assume that sensor nodes will not fail. In the WSNs, failures are expected to 

occur under certain conditions during the WSN run time. To succeed in deploying a dependable WSN, it is 

important to identify, analyse, and prioritise the different kinds of network failures based on their severity on the 

network performance. For example, in an application such as a fire detection system, sensor nodes must be 

powered on all the time to function and provide the level of service required. In this context, the most important 

dependability attributes are availability and reliability, given that if the system is not available during a fire, the 

fire will go unnoticed, and if the system is not reliable, it will not be able to detect the fire in an adequate time and 

manner. A relevant and recent example of how crucial these attributes are in the disaster that occurred in Grenfell 

Tower [2]. Had the system been more dependable, actions could have been taken faster, thus resulting in less 

damage to the building and more lives saved. 

 

In order to formulate the problem of dependability testing in WSNs one must demonstrate the failure that is 

linked to its components: 

 

Node failure: A node can fail due to a failure in one of its components, e.g., memory, processor, sensor, and 

battery. In this paper, the focus is on failure due to battery outages. This failure can cause other failures, namely 

communication failure and coverage failure. 

Communication (link) failure. A Link between nodes is considered lossy and can fail due to many reasons, e.g., 

radio interference, collision, or due to a node dying as a result of fully depleting its energy. 



 

Coverage failure: A coverage failure occurs when a node fails to collect data in its target area due to battery 

depletion. Coverage and communication go together. If a node covers an area but cannot communicate back to 

the Base Station, this is as if the area is not covered. Reciprocally, if a node can communicate back to its Base 

Station but there is no coverage, then detected events cannot be communicated, as if there is no communication. 

 

Consequently, to address the node scheduling problem and improve the dependability of Safety-Critical WSN, 

the paper will be structured as follows: section 2 provides a review of such scheduling approaches. While in 

section 3 a neural network is proposed to analyse the performance and behaviour of one node-scheduling 

algorithm. Section 4 illustrates the achieved results via the MATLAB simulator. Finally, section 5 concludes this 

work.   

2 Related Work 

   The reviewed work, confirms that the present problems within WSNs go beyond energy efficiency, other 

areas of focus should also include coverage and connectivity of WSNs. 

 

   Tian et al. [7]’s scheduling algorithm analyses how saving energy depends on how long a node takes to decide 

its eligibility to be turned off (asleep) - the faster the decision is made, the higher the energy saving. However, 

this approach suffers control message overheads as it requires the use of GPS for geo-location information of 

sensor nodes, which is convenient but expensive to utilise. As networks age in time, neither network connectivity 

nor coverage is preserved. When a node fails (i.e., as a result of depleted energy), the sleep nodes will remain 

asleep assuming failed nodes are active. As a result, the network becomes partitioned where some nodes are 

isolated. Tian et al.’s approach only focuses on network connectivity and energy efficiency but does not look into 

coverage. 

 

 Yet et al.’s robust energy-conserving protocol for long-lived sensor networks [8] PEAS tend to maintain 

network coverage by activating nodes that do not receive a reply to the probe message. This approach also suffers 

control message overheads due to broadcasting the probe messages periodically to maintain a set of active nodes. 

This solution also fails when a node is set to be active; it remains active till it fully depletes its energy and dies; 

consequently, a coverage hole appears in the network. This work does not ensure the original sensing coverage, 

and hence, important events may not be captured and reported to the Base Station. 

 

 An Adaptive Self-Configuring Sensor Networks Topologies (ASCENT) algorithm is presented in [9]. 

ASCENT has several drawbacks. First, it demands each node to be aware of the network state information 

resulting in control message overheads. Second, Cerpa and Estrin [9] did not consider network coverage in the 

design of this solution.  Finally, having two states (passive and test) to alternate between active and sleep states, 

requires additional waiting time and data collection in each of these states; consequently; this affects ASCENT's 

ability to adapt to network dynamics rapidly. In addition, once nodes become active, they stay active till they 

deplete energy, this results in portioning the WSNs.  

  

Viera et al. devised in [10] a scheduling algorithm based on the Voronoi diagram. The algorithm extends the 

network lifetime by exploiting node redundancy. Once a node is determined active and responsible for monitoring 

an area of interest it stays active until its energy is depleted. The work in [10] does not suggest when the turned-

off nodes will be on again and it is not mentioned how well the coverage is maintained. Even if nodes in a smaller 

area are labelled to be turned off the issue of the network coverage is not adequately addressed. 

 

 Xu et al. proposed in [11] a scheduling solution called GAF (Geographic Adaptive Fidelity). GAF saves energy 

by assuming sensor nodes always maintain a good level of connectivity. This assumption is a drawback because 

nodes’ communication links can be vulnerable to many factors that affect the performance of the scheduling 

algorithm. This renders their proposed solution inapplicable for safety-critical WSNs. Furthermore, GAF doesn't 

consider network coverage. This is mainly because nodes are turned off (scheduled to sleep) based on turning off 

their communication unit, causing a blind spot. 

 

In [12], Ha proposed a sleep scheduling algorithm based on spanning tree topology to manage energy 

consumption and extend the network lifetime of the WSN. The algorithm is susceptible to parent node failures.  

For example, the failure of a parent node would cut off the communication with its sub-tree nodes (children) 

affecting the end-to-end communication reliability. Such failure would partition the WSN even if it remains 

connected. The use of tree-based routing achieves energy efficiency but at the cost of delay because data will 



always be reported via a single route. This prevents promptness and timing performance of reporting data to the 

sink node at the appropriate desired time.  

 

 A solution called a Lightweight Integrated Protocol Suite (LIPS) was proposed by Tate et al [13]. The solution 

assumes that sensor nodes within a cell are able to hear each other and hence synchronise. In WSNs, the wireless 

links are subject to many sources of obstacles which makes it difficult to maintain connectivity. In a forest fire 

system scenario, as nodes are deployed in a harsh environment and surrounded by dynamic obstacles, this would 

have an impact on energy consumption and the time a WSN takes in order to converge to the ready stable state. 

 

 In [14], Yang addresses a sleep scheduling strategy at the application layer where a set of sensor nodes is 

selected and activated according to a cost function to extend the network lifetime of the WSN. Although the 

proposed selection strategy based on Senor Usage Index (SUI) seems to have achieved a near-optimal lifetime, 

the periodic broadcast of a beacon control message by the Base Station every half an hour to manage the WSN 

would lead to communication overhead which in turn leads to energy inefficiency. 

 

In [15], Ambrose proposed a distributed scheduling algorithm for composite events detection in WSNs to solve 

multi-objective problems concerning coverage and energy consumption. A composite event detection is an event 

that consists of two or more simple events. Ambrose’s solution tends to save energy by (1) scheduling nodes to 

sleep, and (2) minimising the transmission range between each node in the network while maintaining network 

connectivity. In [15],  Ambrose assumed that node locations are known either by GPS or other computation 

localisation methods. This assumption is unrealistic and cost-inefficient in large-scale WSNs. The deployment 

environment in [15] was a simple grid area, but large-scale WSNs usually consist of complex and dynamic 

obstacles. The distributed scheduling algorithm implies a complex computation process, especially when 

maintaining network connectivity, which causes an energy overhead. In a busy WSN, such a computation is not 

acceptable, hence the need for a simple computation algorithm is highly sought after in resource-constrained 

WSNs. 

 

  Chipara [16] proposed ESSAT algorithm which introduces a sleep schedule that considers both energy 

consumption and the application deadline. ESSAT consists of two main components: a traffic shaper and a sleep 

schedule. ESSAT addressed a challenging optimisation problem, but it depends on the prediction of the time 

properties of the workload information that is obtained from earlier message exchanges amongst sensor nodes. 

ESSAT is in turn vulnerable and dependent on time. However, an advantage is that the sleep schedule requires no 

time synchronisation algorithm and hence a node can sleep and wake up according to information made available 

by message communication. 

 

   Cardei et al. [17] proposed a scheduling algorithm that organises the network’s sensor nodes network into sets. 

Each set covers the target area at different time intervals. Finding the maximum number of sets can provide good 

network coverage and extend the network lifetime. Cardei ‘s approach has limitations; First, it requires the geo-

location of each sensor node which is very expensive. Many applications do not require the use of the GPS system. 

In addition, the solution in [17] focuses on providing good sensing coverage while omitting network connectivity. 

Thus, important events may be detected but not reported back to the Base Station for processing, which is 

meaningless. 

  

  Wu et al. [19] proposed lightweight deployment-aware scheduling for wireless sensor networks. In [19] Wu et 

al. assumes a sensor node maintains three states: on-duty, ready-to-off, and off-duty to improve the network 

lifetime as part of its scheduling algorithm. LDAS has managed to extend the network lifetime, but it didn't 

consider network coverage. 

  

  He et al proposed a distributed scheduling algorithm in [18]. It suffers from a control message overhead. Another 

drawback is in its reactive approach where sensor nodes may drift in time. As a result, sentry (master) nodes may 

not know for certain which nodes are asleep and which are awake. Hence, the non-sentry nodes will keep 

broadcasting multiple wake-up beacon messages to all non-sentries in the network. 

 

  In summary, most scheduling algorithms in the literature do not address the three requirements of the WSN 

altogether, i.e., coverage, connectivity, and network lifetime. Most works address each requirement in isolation 

and do not consider network coverage. Other works such as [17] and [7] consider network coverage but without 

ensuring a good level of network connectivity; and [7] uses a very simple WSN scenario lacking analysis and tests 

on realistic and complex WSNs. There are two published works that consider addressing the three objectives 

collectively: Randomised Coverage-based Scheduling (RCS) algorithm by C. Liu et al. [21]; and a Clique-based 

node scheduling by Lei Wang [20]. C. Liu et al. [21] have shown that partitions can occur further away from the 



Base Station as the death of subsequent nodes can result in live nodes attempting to compensate for the drop-in 

coverage and connectivity in the system. More details of C. Liu et al. [21] solution is presented in section 4. The 

Clique-based approach [20] relies on a complex node localization and clustering mechanism. While the Clique-

based algorithm in [20] guarantees maximum connectivity and coverage ratio, this comes at the expense of heavy 

computation, thus making the verification of the Clique-based algorithm more difficult. 

3 Proposed Framework  

     This section presents the proposed solution and the simulation of the RCS algorithm [21] in MATLAB. The 

elements of the simulation are the RCS scheduling algorithm, the Perceptron ANN-based analysis tool, and a 

generic WSN application. Figure 2 below illustrates the basic framework of the analysis of the Scheduling 

Algorithm:  

1. Initialise the Sleep/Wake up Schedule Algorithm via MATLAB, with randomised Node deployment.  

 

Fig. 2. Proposed Framework 

2. Apply a Neural Network Schedule Analyser to predict which Nodes are activated more often, given the 

number K of groups. 

 

3. Evaluate the data collected to ensure that the error rate (accuracy of classification) is withheld to a decent 

percentile: if the error is not within an acceptable range, another scenario is commenced to increase the 

sample size of data, as continuous testing allows the neural network analyser to predict with a higher level 

of accuracy.                

The initial experiment is to observe how a WSN would perform under classical configurations, which will then 

be compared to a similar experiment run with the inclusion of a scheduling algorithm, as displayed in Figure 3 

below. During the test-based portion of the experiment, a neural network will be supplemented into the system. 



3.1 problem formulation 

    Perceptron supervised learning algorithm is a simple version of artificial neural networks. The basic process 

is to train the given input X with the output Y mapping and then test it with some data samples. It is a supervised 

algorithm as it supervises the outputs mapping data Y. The main goal is to convert the data into two classes; class 

A and class B. Hence, a perceptron algorithm is known as a binary classifier as shown in equations (4) and (5). 

The following equation represents the data structure of the perceptron algorithm in the WSN scheduling algorithm. 

𝑅 = 𝑖1𝑛𝑋𝑖𝑊𝑖 + 𝑏 (1) 

Where R is the results, sigma is the summation of all intended X features and the associated weight W. n 

represents the number of features and b is the bias value. In the main problem of concern domain X represents the 

position of each sensor node in the network to the Base Station. Simplifying the above equation will give us the 

following result: 

𝑅 = 𝑋 . 𝑊 + 𝑏    (2) 

The following function called the activation function, takes the input of equation (2), R, and produces the binary 

classification.  

𝑭(𝒙) =
1

1+𝑒−𝑥 (3) 

The output of the activation function is of either 1 or 0. In the assumed scenario it is called class 1 or class 2.  

(𝑋 . 𝑊 + 𝑏) > 4 =  𝑐𝑙𝑎𝑠𝑠 1 (4) 

(𝑋 . 𝑊 + 𝑏) < 4 =  𝑐𝑙𝑎𝑠𝑠 2 (5) 

The above process of training goes through multiple iterations in order to reach zero error of the smallest 

possible error value. 

𝑊New = 𝑊Old+ ∝ (𝑌𝑖 − 𝑌𝑖) (6) 

The update function adds the new weight (Wnew) to, the learning rate, multiplied by the difference of the right 

Yi and  Yi wrong output which is the error rate. The weight is updated until the desired solution is achieved. Note, 

the value of the error rate which influences the learning time. 

 

Fig. 3. Perceptron-based Neural-Network Algorithm 

 

The following pseudocode summarises the proposed solution: 

Algorithm: Perceptron-based Neural-Network Algorithm 



 

4 Simulation Experiments  

   The result of the analysis is populated from both the classical configuration and the configuration with the 

scheduling algorithm's addition to compare the rate of improvement in efficiency between the two scenarios; 

before and after applying the neural network analyser, as displayed in Figures 4 to 10. 

 

 

Fig. 4. WSNs without the use of scheduling-based Neural Networks 

As illustrated in Figure 4, a WSN consists of 1 sink node and 150 nodes, where each node has a transmission 

range (R) of 3.5 meters on an area of interest of x = 100, y = 100, the initial energy consumption is 0.25 joules 

per node, whilst the energy required to receive and to transmit one bit is 1.0000e-09 joules per node, this is also 

the value of the data aggregation. The desired packet size of a cluster head per round is 3000 bits; all the data 

mentioned can be seen in the table below. As the simulation runs, the network's performance can be observed 

using the standard cluster routing algorithm, without the scheduling algorithm. Additional important parameters 

were considered in the simulated environment as represented in Table 1. 

Input: Set of sample data of Sensor Nodes 

Output: Set of sample Sensor Nodes of Class 1 or Class 2 

 

1: Initialize:  Sleep Awake Cycle (k to k+1); 

2: Read data from the data sample as ~x 

3: Train Neural Network () 

4: Choose an initial weight vector ~W 

5: Initialize the minimization approach 

6:  While the error did not converge do 

7:  For all (~x, ~d) € D do 

8:       apply ~x to the network and calculate the network output 

9:       calculate error (~x) 

10:  end For 

11:   calculate error (D) 

12:  For all weights summing over all training patterns 

13:   perform one update step of the minimization approach 

14:  end while 

15: if Threshold > 4 then 

16:      Class 2 

17:  Else 

18:      Class 1 

19: end if 

 



Table 1. Parameters set within the simulation of the WSN 

Simulation Parameter Description Value 

Coverage Parameters Distance from sink to sensor area 5 meters 

Node Parameters Energy of free space model amplifier 5.00e-08 joules 

Maximum Range of transmission per node (R) 15 meters 

Scheduling Algorithm Parameters Desired Percentage of Cluster Heads 5/100 

Packet Size for normal nodes per round 80 bits 

Simulation Parameters Number of Rounds 2000 

4.1 Experiment 1: WSN without a scheduling algorithm 

   The motivation behind this experiment is to observe the behaviour of the WSN without any supporting 

scheduling algorithm i.e., having the nodes “turned on” throughout the experiment time period. This will allow 

us to evaluate how nodes consume energy and behave in the deployed environment. 

 

   In the simulation, a Base Station is considered and 150 stationary homogeneous sensor nodes are distributed 

randomly in a 100 by 100 m2 field as the area to be monitored. The experimentation of this work is based on 

executing multiple simulation rounds. The number of rounds is set to 2000 as the upper bound. The simulation 

will halt execution once 95% of the nodes reach complete energy depletion i.e., nodes break point. The sensing 

range of each sensor node is set to 5 m. The maximum communication range per sensor is set to 15 m. The network 

lifetime is calculated by the consumption of communication (transmitting and receiving), and sensing units of 

each node. See Table 1 for a tabulated form of the aforementioned parameters. 

 

   At the beginning of the simulation, each node starts its operation with an initial energy of 3 joules. Every sensor 

node consumes 1.0000e-09 joules of its initial energy when transmitting or receiving one bit. 

 

   In addition, amplifying the signals i.e., digitising them for transmitting to/from nodes in free space consumes 

5.00e-08 joules of energy. The factoring in this specific energy consumption element has been absent in the 

literature. This adds more novelty and contribution to this paper in the WSN community. As the simulation 

progresses, there will be more energy consumption by the nodes which will have effects on network lifetime, 

connectivity, and coverage. 

 

4.2 Experiment 2: WSN with RCS scheduling algorithm 

    The motivation behind this experiment is to evaluate the behaviour of nodes when a scheduling algorithm is 

implemented to turn nodes ON and OFF w.r.t. optimisation objective(s). In this experiment, albeit using the same 

configurations of Experiment 1 above, a new parameter is added to the simulation, K, by the RCS algorithm. K is 

equal to the number of node subsets i.e., the division of the nodes into a number of K subsets of nodes. In this 

experiment, K is set to 2. 

 

 

On one hand, figure 5 represents the energy consumption of each node which is dramatically higher without 

the scheduling algorithm (Experiment 1), even managing to cease activity at 640 seconds. In contrast, when RCS 

scheduling is used (Experiment 2), each node uses substantially less energy and remains active for 1180 seconds. 

This shows that the WSN application is less energy-efficient in the absence of the RCS scheduling algorithm. 

 



 

Fig. 5. Energy Consumption Level 

On the other hand, figure 6 presents the number of nodes alive at any given round. The number of active nodes 

starts dropping at round 5, 50% of nodes have ceased to be alive at round 23, and 100% are dead at round 49. In 

contrast, in Experiment 2, 50% of nodes died at round 34, and 100% at round 85. 

 

Fig. 6. Lifetime of Sensor Nodes 

The throughput of the data passed through 100 sensor nodes over 1200 seconds. Figure 7 shows that the 

throughput is higher for nodes activated in the absence of a scheduling algorithm. 

 

 

Fig. 7. Throughput 



Figure 8 depicts the ratio of coverability for a sensor node to monitor, using a scheduling algorithm (experiment 

2) and in its absence (experiment 1). In conjunction with Figure 9, once the nodes cease to be connected, their 

coverage will drop off without a scheduling algorithm 

 

 

Fig. 8. Coverability throughout simulation 

 During 90 rounds, the nodes' connectivity was tested separately using a scheduling algorithm (experiment 2), 

and without using one (experiment 1). The results show that connectivity efficiency is dramatically reduced when 

the system is not supplemented with a scheduling algorithm, as the nodes cease to run after 50 rounds. The data 

provided in the graphic shows service availability is maintained for a longer duration when a scheduling algorithm 

is present in a system. 

 

Fig. 9. Connectivity 

4.3 Experiment 3: WSN with RCS scheduling algorithm supported by ANN 

   The motivation behind this experiment is to support the existing RCS scheduling algorithm [20] with the 

ANN algorithm proposed in this paper, by predicting the overworked (switched ON) nodes. Such nodes, 

highlighted in green circles in Figure 10, will be forced to be switched ON by the RCS algorithm more than four 

times. 

 



 

Fig. 10. Scheduling algorithm for WSNS with the use of neural networks 

Perceptron Artificial Neural Network Analyser. The purpose of the ANN is to analyse the performance of the 

scheduling algorithm by returning the number of nodes that are overworked. The ANN returns for each node if it 

is overworked (class B) or not (class A). The data collected from the ANN is used to further analyse and enhance 

the dependability of the WSN. The following are the new ANN parameters.   

Table 2. Parameter of the Perceptron Artificial Neural Network Analyser 

Neural Network Parameters Value 

NumToCreate (# of data sampled) 1000-2000 

R (Maximum Range of Transmission) 15 

S X(X-Axis Coordinates of Sink Node) -15 

S Y(Y-Axis Coordinates of Sink Node) 50 

Number of Input Variables 2 

Number of Functions to fit 1 

Ratio of Data used for creating model 0.85 

Error Rate @ 200th Iteration 4.990006e-01% 

Accuracy of Classification @ 200th Iteration 86.1302 

Training Progression. Figure 11 depicts the neural network's training progression, and the error rate changes 

across every consecutive iteration of the training, ending at 200. The error rate reaches an acceptable range during 

the 149th iteration, holding a value of 4.998903e-01%. The final stabilised error rate at the 200th iteration is 

4.990006e-01%. The accuracy of classification for the training is 86.1302, meaning the neural network could 

detect which nodes will be 'overworked', kept ON, in four or more occurrences throughout the 200 iterations of 

testing taking place in the training segment of the experiment. 



 

Fig. 11. Training Progression 

Neural Network Analysis. The experiment was undertaken to emphasise the scheduling algorithm's strengths; 

a simulation was performed using a pre-existing replicated RCS within MATLAB, which was built from the 

ground up as there is no open-source framework for this algorithm and one simulation in the absence of the RCS. 

The algorithm in question was chosen due to its ability to consider coverage, connectivity, and a lifetime of a 

network regarding wireless sensor nodes. Coverage, connectivity, and a lifetime of a network were used to 

measure the wireless sensor network's performance, as shown in the figures presented above as matrices. It was 

clear that the RCS's presence substantially increased a system's performance in the parameters mentioned earlier 

throughout every matrix.  

Evaluation of the ANN analysis. Following our experiment, the ANN algorithm returns 19 Nodes that died 

earlier than any other node in the network (Overused). Figure 10 shows all 19 Overused Nodes (Highlighted in 

green colour), which are situated in the 1-Hop area.  This will create a partition in the network whereby events 

will be detected in the subsequent k-Hop areas (k > 1) but will not be reported to the Base station, thus rendering 

the whole implementation of the WSN useless and undependable.  The ANN analysis hence confirms the initial 

hypothesis that nodes that are closer to the Base station are more likely to undertake more workload. However, 

the ANN analyser is limited to discovering the number of Overused nodes and where partitioning is more likely 

to occur in the network but does not provide a way to improve the existing algorithm in question (e.g. RCS in this 

case) or come up with a new suggestion to revive the 1-Hop area, e.g., by utilising nodes in the 2-Hop area instead. 

Given the result of the ANN analyser, it would be interesting to synthesize a new scheduling that would improve 

on the scheduling from the analysed algorithm (here RCS) or would return a verdict indicating that no further 

improvement is possible. We leave this question to future work. Alternatively, we could try and propose a new 

scheduling “manually”, however, approaches different from that used by RCS exist which can provide better 

results such as the Hidden Markov Model-based algorithm proposed by the authors in Alnader et al., 2023 [1]. 

5 Conclusion     

This paper addressed the lack of work done on the m-covered and connected sensor networks’ multi-objective 

optimisation problem in WSNs. While C. Liu had proposed an RCS algorithm to solve it, it was not clear how 

good the RCS solution is. To answer this, we have proposed a perceptron-based Neural Network Analyser which 

analyses the performance of RCS scheduling and returns the expected lifetime of every node. Applied to a network 

of 150 nodes, the ANN analyser detected that the first 19 nodes to die were all from the 1-Hop area. This suggests 

that RCS can be improved, although the ANN analyser does not say how RCS can be improved. In order to answer 

the question of improving C. Liu’s [21] work, the authors are exploring new techniques, e.g., the AI-based Hidden 

Markov Model, bio-inspired Bat model, Self-Organising Map Model, and Long-Short-Term Memory(LSTM) 

Model. Thanks to this, it might be possible to determine in the near future, which approach provides the better 

guarantees to obtain an optimal solution to the scheduling problem in WSNs. 
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