
Georgiadou Elli " GEQUAMO– A Generic, Multilayered, Customisable, 
Software Quality Model", Software Quality Journal, Volume 11, Number 4 ,  

313-323  November 2003  

 
 

GEQUAMO– A Generic, Multilayered, 

Customisable, Software Quality Model 

 

 

Elli Georgiadou 

Middlesex University 

School of Computing Science 

Trent Park Campus 

Bramley Road, London, N14 4YZ 

 

Tel: + 44 208 411 4331; Fax: + 44 208 411 5924 

email: e.georgiadou@mdx.ac.uk 

 

Abstract 

 

Software Quality Models have primarily been based on Top Down 

Process Improvement Approaches. Such models are based on the 

fundamental principle of empowerment of all involved and foster a 

questioning attitude through the active exchange of ideas and criticism 

ensuring that the most appropriate approach for quality improvements 

is adopted. The holistic view of systems enables the incorporation of 

many viewpoints held by different parties within the same organisation 
and by the same party at different stages of development. 

 

In this paper the GEQUAMO(GEneric, multi-layered and customisable)  

QUAlity MOdel is proposed. GEQUAMO encapsulates the 

requirements of different stakeholders in a dynamic and flexible 

manner so as to enable each stakeholder (developer, user or sponsor) to 

construct their own model reflecting the emphasis/weighting for each 

attribute/requirement. Using a combination of the CFD (Composite 

Features Diagramming Technique) developed by the author, and Kiviat 



diagrams a multi-layered and dynamic model is constructed. Instances 

of models are presented together with the algorithm for the computation 
of the profiles. Indications of future work conclude the paper. 

 

Keywords: software quality model, multi-layer model, customisable model, 

profiling, stakeholders’ worldview 

 

1. Introduction 

 

As software projects became increasingly large and complex it was realised 

that a controlled development process with defined stages, estimation and 

measurement of the resources and the effort involved became necessary.  

 

According to SWEBOK (SWEBOK Website) processes can be divided into 

primary, support and organisational processes. Primary processes are 

acquisition, supply, development, operation and maintenance. Support 

Processes are documentation, configuration management, quality assurance, 

verification, validation, joint review, audit and problem resolution. 

Organisational processes are management, infrastructure, improvement and 

training. Each process is decomposed into tasks and tasks are further 

decomposed into activities (Siakas, 2001). 

 

The Total Quality Management (TQM) movement uses the principles of 

empowerment and continuous improvement aiming to find a way of fitting 

the organisation’s goals with employees’ goals. TQM highlights the need of 

management commitment in the first place. Management as well as every 

employee have  to be made aware and adopt a quality policy and everyone is 

expected to commit to quality, without resistance. The software 

development process is called a life-cycle. The production of quality 

products depends on the quality of the process. Errors in the early stages of 

the life-cycle usually result in  more re-work and are more difficult to 



correct and, naturally, even more cost demanding (Burr & Georgiadou, 

1995).  

 

If quality is high, society will get benefit from the product. If the quality is 

low, our society’s current standards will decrease to cope with those bad 

products. That is the smaller the loss, the higher the desirability. The term 

‘social loss’ implies: 

 losses due to poor and varied performance of a product; 

 failure to meet the customer’s requirements of fitness for use or for 

prompt delivery; 

 harmful side-effects caused by the product 

 

Social loss (Logothetis & Wynn, 1989), (Barbor & Georgiadou, 2002) thus is 

not only financial but also  harmful  (examples: Arianne, Cancer treatment in 

Bristol - radiotherapy). Lost opportunities through lack of access to new 

technologies are immesurable for society.  

 



2 Software Quality Models, Factors and 

Attributes 

 

In the late seventies McCall (McCall et al.) and Boehm (1989) proposed 

software quality models which formed the basis for project managers to 

monitor risks and evaluate quality. By the early 90s ISO9126 (ISO-9126 

Website) put the emphasis on maintainability. Dromey (1995) formulated 

and defined a model for software product quality "by associating a set of 

quality-carrying properties with each of the structural forms that are used to 

define the statements and statement components of a programming 

language. These quality-carrying properties are in turn linked to the high-

level quality attributes of the International Standard for Software Product 

Evaluation ISO-9126. The model supports building quality into software, 

definition of language-specific coding standards, systematically classifying 

quality defects, and the development of automated code auditors for 

detecting quality defects in software. Dromey added Reusability to the six 

ISO characteristics possibly reflecting the more recent shift to OO and the 

emphasis placed on reuse 

 

All these models concentrated on product quality looking at attributes and 

criteria. Hyatt and Resenberg (1996) produced a critique of these models 

because of their static approach and also because of using “the terms 

criteria, goals and attributes interchangeably…….. Finally, the models do 

not give any guidance as to the use of the metrics and attributes in the 

identification and classification of risk.”   

 

Hyatt and Rosenberg proposed the SATC Software Quality Model (1996) 

to assist in the identification and definition of product quality attributes and 

risks which are “used to derive a core set of metrics relating to the 



development process and the products, such as requirement and design 

documents, code and test plans. Measurements for each metric are defined 

and their usability and applicability discussed. “ 

 

More recently the IEEE initiative resulting in then publication of the 

Software Engineering Body Of Knowledge which is the first major attempt 

to collect, classify and standardise the Software Engineering terms, models, 

methods and techniques [SWEBOK Website]. 

 

In Siakas et al (1997) we proposed an 'alphabet ' for software quality which 

provides indications of conflicts and compromises, synergy and opposition. 

In each case (each attribute) the stakeholders  ‘concerned’ are indicated 

together with the degree of their concern. What we attempted to emphasise 

[Appendix A] is that Software Quality is multi-faceted, difficult to define 

and even more difficult to achieve. Many of the attributes define the same, 

similar or interrelated aspects such as learnability and usability. Others are 

obvious by definition such as portability. Most are difficult to quantify.  

 

According to ISO-9126 software quality may be evaluated by six 

characteristics, namely functionality, reliability, efficiency, usability, 

maintainability and portability. Each of these characteristics is defined as a 

“set of attributes that bear on” the relevant aspect of software and can be 

refined through multiple levels of sub-characteristics. [ISO-9126]. 



 

2 A Multi-layered Quality Model 

 

2.1 Gradual decomposition of attributes into sub-

attributes 

 

An example of the the gradual decomposition into layers of characteristics 

and sub-characteristics is shown in Fig. 1 below where the required features 

of a CASE tool are depicted onto the branches of a tree-like structure 

showing up to three layers of primary attributes, sub-attributes (secondary) 

and sub-sub-attributes (tertiary) enables quality profiling. 

Functionality

Usability

Tool

Concurrency

Documentation

Generation

Method

Support

Support

Learnability

Document Update

GUI
On-line Help

Consistency

Understandability

User

Documentation

Design

Implementation

Testing

Re-engineering

Attributes

OMT
BOOCH

O2

? ? ?

 

Fig.1 Layering of Characteristics (Applied to a CASE tool) 

 



As can be seen each node is exploded into two, three or more sub-characteristics. 

The proposed Quality Model uses the CFD- Composite Features Diagram 

comprising a set of concentric circles showing increasingly lower details (sub-

characteristics).  

 

 

 

 

 

 

 

 

 

                Fig. 2 – A generic CFD 

 

 

For legibility’s sake we omit the labels from the characteristics in order to describe 

the technique. In the example shown in Fig. 2 (a generic CFD) we profile an item 

under evaluation (such as a method, a model, a CASe tool) as having three primary 

characteristics R1, R2, R3. R1 has two siblings (R1.1, R1.2) and R1.2 has three 

siblings (R1.2.1, R1.2.2 and R1.2.3). Similarly R2 and R3 are decomposed into 

three and four sub-characteristics respectively. The process may continue until 

simple and thus more easily measurable characteristics are identified. Hence the 

various branches may be truncated at any layer and any node.  

 

The CFD provides a qualitative platform for depicting a profile (absence or presence 

of features/characteristics/sub-characteristics. Quantitative information can also be 

captured at least for the outermost branches of the tree-like components of the CFD.  

 



At each node and depending on the number of sub-characteristics we can construct a 

polygon (triangle, rectangle, pentagon and so on). In the case of only two sub-

characteristics the average score of the two is propagated inwards (mother branch).  

 

These polygons are Kiviat diagrams examples of which are shown in Fig. 3 below. 

For legibility’s sake we omit the labels from the characteristics in order to describe 

the technique. Kiviat diagrams can represent quantitative information belonging to 

the same layer as shown below: It depicts three Requirements/characteristics with 

actual and threshold values (on a scale of 0-5 where 0 =absence, 1=poor, 

2=satisfactory, 3=good,4= very good and 5 excellent). 

 

Threshold values

R1

R2

R3

Tool profile

Tool A

R1

R2

R3

Tool B

3

3

5

4

3

2

 

Fig. 3 – Kiviat diagrams for the evaluation and comparison of 

two tools 

 

It can be seen that tool A satisfies the threshold criteria whilst tool B violates the 

threshold value for R3. Other criteria such as cost, availability, prestige of supplier 

etc., could be considered for further proposals to users.  

 

Working from the outer layers inwards we can quantify the strength of the parent 

branch by propagating the normalised values inwards. The initial version of the 



algorithm was presented in Georgiadou et al. (1998). At each branching point (node) 

we can construct a Kiviat Diagram and carry out the calculation. In the end, the 

innermost circle is itself a Kiviat Diagram which again provides the final measure of 

the overall quality.  

 

Kiviat diagrams can represent quantitative information belonging to the same layer 

in Fig. 5. Attributes are represented by radii of the circle. In the polygon (a triangle) 

is regular indicating that the weight of all three attributes is identical. The area of the 

polygon can be calculated by adding the areas of the three triangles. The maximum 

possible value of each attribute on say a scale of 0-5 can also be calculated. Other 

aspects that can be shown on the Kiviat diagram are threshold of minimum values 

 

The computation is simply using the formula for calculating the area of a triangle 

when the size of two sides are known as well as the enclosed angle. The algorithm 

assumes that the circle is divided into equal sectors. Variations of the technique 

allow for changes in the relative weights and hence to the angles.  

 

Area of triangle = 0.5 * length of side one*length of side two * 

sine of enclosed angle: 

 

Threshold area = 0.5 {(2*3) + (3*4) + (4*2)}sin 120o 

Tool A Area =  0.5 {(3*3) + (3*5) + (5*3)}sin 120o 

Tool B Area =  0.5 {(4*2) + (2*3) + (3*4)}sin 120o  

Maximum Possible Area = 3* 0.5 (5*5*sin 120o 

 

The value of the parent branch is thus obtained by the simple calculation:  

5*Actual Area/Maximum. 

 



This is propagated inwards and gradually the innermost circle of the primary 

requirements/features is reached. Thus the final calculation provides an indicator of 

quality as required, estimated or obtained empirically. 

 

 

2.2 A Customisable Model  

 

Software Quality according to the IEEE Glossary of Software Engineering 

Terminology [SWEBOK Website] is the degree to which software meets customer 

or user needs or expectations. A quality factor is an attribute of software that 

contributes to its quality. According to these two definitions it can be said that 

quality factors are attributes that customers or users expect to find in the software. 

Thus software quality factors can be said to be customer or user oriented. We argue 

that different stakeholders have different perceptions about quality attributes. 

 

As Functionality and Reliability are indisputably a common concern of all involved 

we will concentrate on three attributes namely Maintainability, Usability and 

Productivity which are likely to differ because developers, Users and Sponsors put 

different emphasis on each one. 

 

2.2.1 Stakeholders and their Viewpoints 

 

According to ISO-12207 (Website)there are five systems and thus quality 

views, namely: 

 

 1. The contract view  Acquirer, Supplier 

 2. The Management view  Manager 

 3. Operating view  Operator, User  

 4. Engineering view  Developer, Maintainer  

 5. Supporting view  Support Process Employer 



 

Users are the persons (internal and/or external to the organisation) who use the 

finished product (the software). If we  group together  Acquirers, Suppliers and 

Managers as Sponsors and all persons who are neither Sponsors nor Users as 

Developers we have three groups of Stakeholders namely Users, Sponsors and 

Developers. 

 

 

2.2.2 Software Attributes for Use, Modification and Re-use  

 

Software attributes can be grouped as shown in Table 1 adapted from models 

proposed by (Fenton, 1991) and (Dromey, 1995). Many software systems have a 

very high level of maintenance mainly due to changes in requirements. These can 

happen due to customer’s external circumstances change or because customers 

become more demanding. 

 

Maintainability is normally only of indirect interest to customer. According to 

Darrel Ince (1995) very few customers include directives about maintenance in their 

requirement specifications. Maintainability is important to the developer because 

there is a correlation between maintainability and the degree of rework. The same 

reason is relevant to the sponsor but in terms of costs. Portability and Productivity 

are normally of interest to the sponsor because of competitive reasons and only of 

indirect interest to the customer. If portability is of interest to the user it should be 

stated in detail in the requirements analysis. 

 

 

 

 

 

 



Table 1- Attributes grouped by Use, Modification and Re-use 

 

Use Modification Re-use 

Correctness Extendibility Compatibility 

Efficiency Flexibility Durability 

Integrity Maintainability Portability 

Reliability Testability Reusability 

Understandability   

Usability   

 

 

The customer’s concerns on quality factors are rather different from those of the 

developers and the managers.. Customers are mainly requiring a correct software, 

easy to use, ready in time to a price that gives value for money. Quality attributes 

considering the product is for the user of greatest interest. 

 

Developers are mainly interested in a structured software easy to maintain and to 

reuse. Sponsors are mainly interested in quality attributes that give satisfied 

customers to a low cost. Thus, the developer and the sponsor are concerned about 

quality attributes regarding the process rather than the product.  

 

Peter Checkland spoke of different and often conflicting worldviews are held by 

different stakeholders (Checkland & Scholes, 1990). 

 

 

 

 



2.3 The need for a customisable model 

 

As can be seen in Appendix A stakeholders are shown to work in synergy, conflict 

or compromise. The proposed alphabet (Siakas et al., 1997) did not make any 

attempt to rationalise or even group the attributes together. Figures 4, 5 and 6 reveal 

that Functionality and Reliability are common concerns to all stakeholders. 

However, we can safely assume that a software systems developer strives to produce 

reliable and maintainable systems with maximum functionality.  

 

Current System Problems Desirable System Characteristics 

Reliability: Errors, Faults, 

Failures (behaviour) 

Correctness, Consistency, 

Completeness 

Functionality  At worse - preserved functionality 

Maintainability Enhanced Functionality, reliability, 

maintainability 

 

Fig. 4 – The Developer’s worldview 

 

The user desires a system which is reliable, understandable, usable easy to learn and 

easy to use and with the necessary functionality. 

 

Current System Problems Desirable System Characteristics 

Reliability: Errors, Faults, 

Failures (behaviour) 

Reliability, Robustness 

Understandability and  

Usability 

Enhanced understandability and 

Usability 

Functionality At worse - preserved functionality, 

Enhanced functionality 

 

Fig. 5 – The user's worldview 

 



The sponsor is extremely interested in maximising productivity i.e. he requires a 

reliable system with the necessary functionality, produced within acceptable time 

limits and at the lowest cost possible.  

 

Current System Problems Desirable System Characteristics 

Reliability: Errors, Faults, 

Failures (behaviour) 

Reliability, Robustness 

Late Deliveries (Low 

productivity) 

Enhanced Productivity 

Costs (over budget) Reduced /minimised costs 

Functionality: Customer 

Complaints (Not meeting 

requirements) 

At worse - preserved functionality, 

ideally enhanced functionality 

 

Fig. 6 The Sponsor's Worldview 

Enhanced Reliability (usually achieved through testing, walkthroughs, reviews and 

inspections) will reduce productivity and will therefore increase costs. Both of these 

cause losses to the sponsor. Enhanced functionality increases costs (in the short 

term) and causes losses to the sponsor. 

 

Usability is enhanced through greater understandability which in turn is enhanced 

through design correctness and consistency and through training, on-line help and 

support all of which reduce productivity with the exception of CBD which makes 

extensive reuse of code and increasingly reuse of designs too. Specific quality 

attributes are selected based on their importance to the project and their ability to be 

quantified. Fig. 7 is an example of how a generic template CFD can be used to 

depict a customisable view of requirements by developers, users and sponsors. Fig.8 

shows the last part of the computation using Kiviat Diagrams. 

 

 



 

 

 

 

 

 

 

 

 
 

 

 
A Generic Multi-layered Quality Model 

 

 

 

 

 

 

                         

 

 
 

 

 
Attributes of central Interest to 

Developers 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attributes of central Interest to 

Users 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attributes of central Interest to 

Sponsors 

 

Fig. 7 – Multi-layered and Customisable View of Quality 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

The solid line triangle shows the maximum 

possible and the dotted line triangle shows 

the threshold values 

 

 

 

 

 

 

 

 

 

 

 

 

A quality profile from the developer's 

viewpoint 

 

 

 

 

 

 

 

 

 

 

 

 
A quality profile from the user's viewpoint 
 

 

 

 

 

 

 

 

 

 

 

 

 
A quality profile from the sponsor's 
viewpoint 

 

                                        Fig. 8 – Customisable Views of Quality 

 



5. Conclusion 

  

The GEQUAMO – generic and hence customisable, multi-layered software quality 

model has been presented together with the profiling/visualisation techniques 

Composite Features Diagram (CFD) and Kiviat diagrams for qualitative and 

quantitative representation.. It was demonstrated that developers, sponsors and users 

have synergistic but often conflicting requirements. It is a management decision how 

to reconcile conflicts for the overall benefit to the company. 

 

Future work will concentrate on the improvement of the prototype of the Profiler 

tool so that industry based surveys, trials and evaluations can take place in order to 

further formalise the proposed model.  

 

 

6 References 

(Barbor & Georgiadou, 2002) Barbor, N & Georgiadou, E. [2002] Investigating the 

applicability of the Taguchi Method to Software Development, Proceedings of 

Quality Week, San Francisco. USA, July 2002 

 

(Boehm, 1989) Boehm, B., Software Risk Management, IEEE Computer Society 

Press, CA 

 

(Burr & Georgiadou 1995) Burr A., Georgiadou E. "Software development maturity 

- a comparison with other industries", 5th. World Congress on Total Quality, India, 

New Delhi, Feb. 1995 

 

(Checkland & Scholes, 1990) Checkland P. and Scholes, J.: "Soft Systems 

Methodology in Action", Wiley 



 

(Dromey, 1995) Dromey, R.Geoff, "A Model for Software Product Quality", IEEE 

Transactions on Software Engineering, February, 1995, pp. 146-162 

 

(Fenton, 1991) Fenton N. "Software Metrics  - A rigorous approach", Chapman & Hall 

 

(Georgiadou et al., 1998) Georgiadou, E. & Hy, T. & Berki, E.:" Automated 

qualitative and quantitative evaluation of software methods and tools " Proceedings 

of The Twelfth International Conference of The Israel Society for Quality, 

Jerusalem, ISRAEL, December 1998. 

 

(Hyatt & Rosenberg, 1996) Hyatt, I, Rosenberg, L A Software Quality Model and 

Metrics for Identifying Project Risks and Assessing Software Quality, Website 

 

(Ince, 1995) Ince, D.: "Software Quality Assurance", McGraw-Hill 

 

(Logothetis and Wynn, 1989) Logothetis, N. and Wynn, H.P., [1989] ‘Quality 

Through Design: Experimental Design, ‘Off-line Quality Control and Taguchi’s  

Contributions’, Oxford Science Publications 

 

(McCall et.al, 1977) McCall, J. A., Richards, P.K., and Walters, G.F., ‘Factors in 

Software Quality’, RADC TR-77-369, Us Rome Air Development Center Reports, 

1977 

 

(Siakas et al., 1997) Siakas, K. , Berki, E.,Georgiadou, E., Sadler, C.[1997]: "The 

complete alphabet of quality software systems, 7th World Congress for Total 

Quality Management, New Delhi, India, Feb. 97 

 



(Siakas, 2002) Siakas K.  SQM-CODES; Software Quality Management –Cultural 

and Organisational Diversity Evaluation, PhD thesis submitted Nov. 2002 for the 

degree of PhD at London Metropolitan University 

 

Websites 

 

(SWEBOK, 2001)  http://www.swebok.org/documents/trial_Version1.00  

(ISO 9126) http://www.issco.unige.ch/projects/ewg96/node13.html 

 

(ISO 12207) http://www.sei.cmu.edu/activities/cmm/docs/standards-map.pdf 

(Hyatt & Rosenberg) http://www.di.ufpe.br/~inspector/relacionados/stc_qual.html 

 

Acknowledgements 

 

The author extends warm thanks to all the reviewers for the thorough comments on  

the earlier version of this paper (presented at the SQM 2003 Conference). In 

particular sincere thanks to Dr Witold Suryn for his incisive critical and constructive 

comments. 

http://www.swebok.org/documents/trial_Version1.00
http://www.issco.unige.ch/projects/ewg96/node13.html
http://www/


 

7 Appendices 

Appendix A  

A Software Quality Alphabet and Different Viewpoints 

 (from Siakas et al, 1997) 

The alphabet Sponsor Developer User 

Availability + 0 + 

Boundedness 0 0 + 

Correctness  + + + 

Durability + 0 + 

Functionality 0 0 + 

Flexibility + 0 + 

Genericity 0 + - 

Holisticness + 0 + 

Integrity + 0 + 

Justifiability + + - 

Know-how 

support 

0 0 + 

Learnability 0 0 + 

Maintainability  + + 0 

Novelty + 0 0 

Operability 0 0 + 

Portability + 0 + 

Quantifiability + + + 

Reliability + + + 

Simplicity 0 + + 

Testedness 0 + - 

Usability + 0 + 

Verifiability + 0 - 

Worldview + + + 

eXpandability + + - 

Y ? Yet-another 

unknown 

+ + + 

Zoticality + + 0 

 

Key :    + = Direct interest    0 = Indirect interest  - = No interest 



Appendix B 

 

Examples of Kiviat dagrams depicting 4 or more sub-characteristics (siblings of the 

same branch in a CFD node). The ratio of the polygon area (highlighted) to the 

maximum possible area (shown in dotted lines, regualr polygons) mapped onto the 

0-5 scale provides the collective strength of the sub-attributes propagated inwards 

onto the parent branch.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 


