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Output Sampling for Output Diversity in Automatic
Unit Test Generation

Héctor D. Menéndez, Michele Boreale, Daniele Gorla, and David Clark

Abstract—Diverse test sets are able to expose bugs that test sets generated with structural coverage techniques cannot discover.

Input-diverse test set generators have been shown to be effective for this, but also have limitations: e.g., they need to be complemented

with semantic information derived from the Software Under Test. We demonstrate how to drive the test set generation process with

semantic information in the form of output diversity. We present the first totally automatic output sampling for output diversity unit

test set generation tool, called OutGen. OutGen transforms a program into an SMT formula in bit-vector arithmetic. It then applies

universal hashing in order to generate an output-based diverse set of inputs. The result offers significant diversity improvements when

measured as a high output uniqueness count. It achieves this by ensuring that the test set’s output probability distribution is uniform,

i.e. highly diverse. The use of output sampling, as opposed to any of input sampling, CBMC, CAVM, behaviour diversity or random

testing improves mutation score and bug detection by up to 4150% and 963% respectively on programs drawn from three different

corpora: the R-project, SIR and CodeFlaws. OutGen test sets achieve an average mutation score of up to 92%, and 70% of the test

sets detect the defect. Moreover, OutGen is the only automatic unit test generation tool that is able to detect bugs on the real number

C functions from the R-project.

Index Terms—Unit Testing, Output Sampling, Output Diversity, SMT Solver, OutGen
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1 Introduction

In software testing, structural coverage of code is often
used to drive automated test set generation, particularly for
unit testing. It has been encapsulated in state of the art
search based tools such as EvoSuite [?] and CAVM [?] and is
regarded as an industry standard. However, there is evidence
that test sets constructed on the basis of branch or line
coverage have limitations on their ability to discover faults
in code [?]. For example, an empirical study discovered that
“Although the automatically generated test sets detected
55.7% of the faults overall, only 19.9% of all the individual
test sets detected a fault” (our emphasis) [?]. We could
improve the fault finding ability of coverage if we could “add
semantic information”and diversity to the test set, but what
can this mean in practice?

A useful clue can be found in the work of Alshahwan and
Harman on output uniqueness as a principle for selecting
test sets for web pages [?], [?]. Diversity, particularly input
diversity, for test sets has been widely studied in different
forms [?], [?], [?] but here the attention is drawn by the use
of outputs. Outputs capture“semantic information”by their
very nature. Inputs do not contain semantic information,
but any observation of a complete or partial execution of
a program on an input can be deemed an output of the
program.

Alshawan and Harman studied the correlation between
numbers of unique outputs in test sets and bugs detected.
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They defined a notion of observation (similarity/uniqueness)
on outputs; sampled inputs from a uniform distribution
on the inputs; executed the program on these inputs; and
evaluated how the number of unique outputs correlated with
the bugs identified in programs. They showed that output
uniqueness correlated highly (> 90%) with coverage and had
superior fault finding ability (+47%) over coverage [?]. Why
is this measure so efficacious?

One explanation can be found in the work of Clark
and others [?], [?]. A notion of observation/oracle defines
a “testing channel” in information theoretic terms. If the
program is deterministic, the maximum capacity of the
channel is given by log2 |O|, i.e. the logarithm of the number
of possible unique outputs. Assuming we have a set of inputs
that produces exactly all the unique outputs, adding addi-
tional inputs does not increase the capacity. So, identifying
a “channel adequate” set of inputs involves selecting one
input from the inverse image of each output. In general it
may be difficult or impossible to find a channel adequate
set of inputs which leads naturally to the highest output
uniqueness score, as Alshahwan and Harman remarked [?].
However, our work here creates a good approximation by
creating diversity on the outputs during the automatic unit
test generation process.

We focus on two questions: how can we automatically
generate unit test sets with a high output uniqueness count?
And can we show that this is useful? To answer these ques-
tions we develop a constraint solving approach and redesign
the XORSample’ algorithm of Gomes and others for finding
diverse witnesses (or models) for constraints [?]. Rather than
sampling diversely from the input space for a program, as did
Alshahwan and Harman, we adapt the Gomes’ algorithm to
sample diversely from the output space as a more efficient
route to high output uniqueness scores. To this aim, we
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develop the first automated and Output Diversity Driven
(ODD) unit test set generating tool, called OutGen. This
use of output diversity introduces a difference between our
work and that of Alshahwan. We characterise their work as
an Input Diversity Driven (IDD) approach to optimising a
test set’s output uniqueness score.

This difference turns out to be significant. Modulo size,
ODD test sets are evidently statistically better than IDD
test sets in two ways. ODD test sets have, on average, a 50%
higher output uniqueness score than IDD test sets. ODD
test sets also have a 63% higher correlation between output
uniqueness scores and ability to detect bugs when compared
to IDD test sets. This increased power in bug detection is
clearly manifested in our experiments on functions from the
R-project [?], where only ODD test sets were able to find real
bugs. We conjecture that sampling diversely from outputs
has more chance of identifying inputs corresponding to rare
software behaviours than sampling diversely directly from
inputs.

Our experimental effort was conducted on 8 mathemat-
ical C functions from the R-project [?], the tcas program
from SIR [?] and 100 C program pairs drawn from the
CodeFlaws repository [?]. Each pair consists of a program
with a defect (a real error) and the fixed version. For each
program pair, we generated a pool of 500 test inputs per ap-
proach to test set generation. We compared six approaches:
repeated solutions to constraints via CBMC’s solver, CAVM,
behaviour diversity, random selection of inputs using sam-
pling from a uniform distribution, as well as IDD and ODD.
The first four are merely sanity checks. Our main interest
was in comparing ODD and IDD (Section 6). Apart from the
above mentioned differences in average output uniqueness
scores and bug finding ability between ODD and IDD, we
found broadly similar correlations between output unique-
ness scores and coverage criteria scores for both methods;
this replicates and confirms Alshawan and Harman’s results
[?] in the (new) context of C programs.

ODD test sets were up to 4150% better at killing mutants
and 963% better at detecting faults than the worst approach
(Section 7). To ensure that this effectiveness is not time-
dependent, we produced an experiment fixing the same
amount of time to every generation tool. Our findings show
that OutGen outperforms every other tool. ODD test sets
are up to 1150% better than the worst tool at killing mutants
and up to 728% better at finding faults.

The chief contributions of this paper are

1) ODD test set generation, a novel, white-box ap-
proach to unit test set generation that adds semantic
information into test sets and is demonstrably supe-
rior to the existing IDD test set selection approach;

2) Theory that describes how the generation method
works and that provides a theoretical guarantee of
the quality of the diversity;

3) An open source tool, OutGen, that automatically
generates ODD test sets;

4) Non-trivial, rigorous, statistical experimental vali-
dation of the usefulness of ODD test sets in com-
parison to Alshahwan and Harman’s work as well

as more standard techniques such as heuristic con-
straint solving, search, execution trace clustering
and random input generation.

2 Background

While Alshahwan and Harman showed that output unique-
ness correlates better with fault detection by the test set
than any structural coverage metric, their control of the
output samples was highly indirect, via sampling diversely
from the input space. As the authors remarked in their future
work discussion [?], increasing the output uniqueness scores
of test sets is likely to lead to higher fault detection.

We aim at increasing the output uniqueness as much
as possible by creating a test set associated with a diverse
set of outputs. This means that our test set generator, con-
sidered as a random variable, will aim at having maximum
entropy. According to Cover and Thomas [?], this can only
happen when its probability distribution is uniform, i.e., by
definition, every output – including rare outputs – has the
same probability of appearing. As a consequence, this should
increase the number of unique outputs produced by any test
set generated by our generator.

To reach our generation goal, we develop a white box
method that gives us control on the generated outputs. This
novel method aims at reaching the maximum possible value
of output uniqueness for a test set. We can then evaluate
test set output uniqueness scores as generated via output
diversity and compare with test set output uniqueness scores
as generated via input diversity. Then we can compare
both types of test set with respect to fault finding ability.
To create our diverse outputs generator, we redesign the
XORSample' algorithm [?].

2.1 XORSample': Universal Hashing on SAT Constraints

OutGen repurposes the XORSample' algorithm from sam-
pling input diversity to sampling output diversity (Section 3)
and switches its application context from electrical circuits,
i.e. simple SAT constraints, to real programs represented as
SMT constraint formulas (Section 4). We start by presenting
the relevant background for this algorithm before giving the
modifications required in the following sections.

Let f be a satisfiable propositional logic formula in
conjunctive normal form. Let Σ = {0, 1} be an alphabet
for f ’s variables. For x,y ∈ Σn, f defines a relation on them
when f(x,y) = true [?]. We call witness any model of f , i.e.
any value for x,y satisfying this relation; let Wf denote the
set of all witnesses of f . We assume the variables x and y all
take values on a fixed domain D ⊆ Σn.

When f is submitted to a solver, we obtain a witness
that is the result of a heuristic process [?]. The heuristic
is deterministic and affects the witness generation process,
producing the same result for every query with the same or
similar parameters. This does not satisfy near-uniformity of
the generation. Indeed, since we aim at diversity, the deter-
ministic behaviour, embedded into the solver, is adversarial
for us. We want to get a different witness in every query and
to have these witnesses spread throughout the output space.
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Our approach repurposes the XORSample' algorithm [?].
This algorithm partitions the input space of f into cells,
near-uniformly chooses a cell and uniformly at random takes
an element of the cell. The first selection (cell) spreads the
witnesses through the whole space, reducing the adversarial
behaviour of the solver [?]. Once the cell is chosen, the
second selection is a uniform selection on every possible
witness, of which there are fewer depending on the cell size.
To guarantee that we are choosing the cell near-uniformly
at random, we employ so called r-wise independent hash
functions. To define this notion, here and in what follows, we
write a ∈u A to denote the uniformly at random selection of
the element a from the set A.

Definition 1. Let n, s and r be positive integers, with
n ≥ s. Then, the family H(n, s, r) contains all the r-
wise independent hash functions from Dn to Ds, i.e. all
the h : Dn → Ds such that, for each α1, . . . , αr ∈ Ds

and for each distinct β1, . . . , βr ∈ Dn, it holds that

Pr

[
r∧
i=1

(h(βi) = αi) : h ∈u H(n, s, r)

]
=

1

2sr

For selecting a cell near-uniformly at random, we uni-
formly choose a function h and a point α ∈ Ds. As s ≤ n,
several inputs of Dn will be projected onto α. The inverse
image h−1(α) describes all these inputs. From this subset,
the cell will be obtained as the restriction to the inputs that
are witnesses for fP . Figure 1 shows the projection schema.
On the left hand side, we have the original space Dn, where
the witnesses for fP are denoted by the ‘?’ symbol. On the
right hand side, we have the projective space Ds, onto which
h projects the original space. The cell is the set of witnesses
within the dashed square.

Within Dn, the r-wise independent hash function guar-
antees that: (1) for every α ∈ Ds, there is a pre-image
h−1(α); (2) the set of all pre-images defines a partition of
Dn; and (3) if we choose h and α uniformly at random, the
cell selection is near-uniform [?]. The issue is then to find a
family that is both efficient and able to generate and select
cells near-uniformly. We consider Hxor(n, s, 2) [?], that con-
tains all the 2-wise independent hash functions h : {0, 1}n →
{0, 1}s made up of a s-tuple of functions (h1, . . . , hs) from
{0, 1}n to {0, 1} that can be uniquely described by an

a ∈ {0, 1}s(n+1) as hi(b)
4
= ai,0⊕ai,1b1⊕ . . .⊕ai,nbn, where

i ∈ {1, . . . , s}, b ∈ {0, 1}n and ⊕ is the XOR operator.
Thus, the uniformly random selection of h fromHxor(n, s, 2)
can be simply done by uniformly choosing s(n + 1) random
bits.

3 Adapting XORSample' for output diversity

Our method considers a propositional formula fP , that
represents a deterministic program P , and aims at creating
witnesses whose outputs follow a uniform distribution. We
assume that fP (x,y) = true if and only if P (x) = y, where
x = (x1, ..., xn) are P ’s input variables and y = (y1, ..., ym)

are its output variables. We let the input space be X 4= Dn,

the output space be Y 4= Dm and the space of actual outputs

be O 4= {v ∈ Y : ∃u ∈ X . fP (u, v) = true},

Dn Ds

?
?

?

??
?

?
?

?

• α

n ≥ s

h ∈u H(n, s, r)

h−1(α)

Figure 1. Cell description and selection process. The r-wise independent
hash function h projects a set of inputs from Dn to a chosen value
α ∈ Ds. The inverse function h−1(α) defines the cell (viz., the dashed
square) when intersected with the set of all inputs that form a witness
for fP (denoted with ?).

where
4
= denotes “is defined as”.

W.r.t. Section 2.1, fP plays the role of f , and the
program P is the relation connecting its arguments.

Let F denote the set of all propositional formulae fP
associated to a deterministic program P . A generator G :
F → X × Y is a non-deterministic function that, given a
formula fP , returns a witness (u, v) for it. Our aim is to
create a near-uniform generator.

Definition 2. A generator G is near-uniform if there exists
c ∈ (0, 1] such that Pr [G(fP ) = (u, v)] ≥ c

|WfP
| , for

every fP ∈ F and (u, v) ∈WfP .

To create an output diverse generator, we adapt XOR-
Sample' [?] to the output domain in three steps: (1) we
randomly divide the set of actual outputs O into s cells of
approximately equal size and randomly select one cell C;
(2) we randomly select a pair (u, v) ∈ X × O such that
fP (u, v) = true and v ∈ C; and (3) the input part u becomes
the test case.

To deal with program variables, we also extend XOR-
Sample' from binary variables to bit-vector representations,
similarly to [?]. For floating point arithmetic, we use a mixed
abstraction to transform the floating point representation
into bit-vectors [?]. This allows us to use satisfiability mod-
ulo theory (SMT) solvers with bit-vector theory. To this aim,
let l = dlog2 |Dm|e and t(y,y′) be the formula saying that
y′ = (y′1, ..., y

′
l) is the binary encoding of y, i.e.

t(y,y′)
4
=

(
m∑
i=1

yi|D|i−1 =
l∑
i=1

y′i2
i−1

)
. (1)

To divide the space {0, 1}l into 2s cells, for a single random
cell we consider the conjunction of s XOR constraints

C(y′)
4
=

s∧
i=1

ci(y
′), (2)
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Algorithm 1 Output Diversity via XORSample'
Input: A formula fP (x,y), representing a deterministic

program P : Dn → Dm; a natural number s ≤ n
function sample(fP , s)

1. l← d log2 |Dm| e
2. Let y′ be the tuple of fresh binary variables y′1, . . . , y

′
l

3. ∀i = 1, . . . , s ∀j = 0, . . . , l .ai,j ∈u {0, 1}
4. Build F (x,y,y′) as specified in Equation (4) (and in (1)

and (2))
5. mc← SMT ModelCount(F (x,y,y′))
6. if mc = 0 return ⊥
7. Λ← ∅
8. for all (u, v, v′) model of F (x,y,y′) do
9. if v 6∈ {v̄ : (ū, v̄, v̄′) ∈ Λ} then

10. Add (u, v, v′) to Λ
11. (u, v, v′) ∈u Λ
12. return (u, v, v′)

where, for 1 ≤ i ≤ s:

ci(y
′)

4
=

(
ai,1y

′
1 ⊕ · · · ⊕ ai,ly′l = ai,0

)
(3)

with ai,j ∈u {0, 1}. Note that each cell will contain, on
average, the same number of actual outputs. The formula
we submit to the SMT solver is:

F (x,y,y′)
4
= fP (x,y) ∧ t(y,y′) ∧ C(y′). (4)

Even if F is a formula with variables x,y,y′, the XOR
constraints ci are relatively short, because they only involve
the binary variables y′.

In this way, we near-uniformly partition the space of
actual outputs. However, choosing at random one of the
witnesses of F does not ensure that the obtained input
generates an actual output with probability around 1

|O| (that

is the aim of our sampling procedure). To illustrate this,
imagine that one output value v has several pre-images
through P , i.e. many elements of the domain are mapped by
P into v. It is then clear that uniformly sampling the space
of witnesses of F will return an input value u that, with
high probability, will have v as image. Thus, the induced
probability distribution on outputs will be far from uniform.

For this reason, after having calculated all witnesses for
F , we keep just one model for every output value. Then,
uniformly choosing among these witnesses will yield a near-
uniform distribution over all outputs. The detailed pseudo-
code for the sampling algorithm adapts the algorithm XOR-
Sample' developed in [?] and it is given in Algorithm 1. The
main differences are:

• We work with an SMT solver instead of a SAT solver,
because our formula fP involves program values and
not simply boolean variables, and requires to deal
with more complex constrains (Section 4); for this
reason, we have to include in F also the formula t,
defined in (1).

• We do not uniformly choose one model of F , but
first select (in lines 8–11) a representative model
for every output value. Then, we uniformly choose
among these.

Original Program

1 byte func ( byte x )
2 {
3 i f (x>=0) return pow(2 , x ) ;
4 r e turn 0 ;
5 }

Program Constraints for P

FP (x, y, y′) = ∧



fP (x, y) = ∧
{

(x ≥ 0) =⇒ (y == 2x)
(x < 0) =⇒ (y == 0)

C(y′) = ∧
{ ⊕

j(a1,jy
′
j) == a1,0⊕

j(a2,jy
′
j) == a2,0

t(y, y′)

Potential Coefficients

a1,j = 00101111 | a1,j = 10000000
a2,j = 11110000 | a2,j = 00110000
ai,0 = 11 | ai,0 = 00

Related Cells

y′ = 00100000 x = 5 | y′ = 01000000 x = 6
| y′ = 00001000 x = 3
| y′ = 00000100 x = 2
| y′ = 00000010 x = 1
| y′ = 00000001 x = 0

Figure 2. Example of a program, the formula fP related to the program
constraints, and the manipulated formula including the hash functions
FP . The example also shows two potential set ups for the hashes
coefficients and the cells that they generate. The algorithm selects an
element of the cells uniformly at random to create an input.

Figure 2 shows an example of the whole process, illus-
trating the steps of Algorithm 1. It starts with the program
P consisting of the function func. Then, it creates the
program constraints defined as the formula fP (x, y). This
formula and the value of s that we assume as 2 in the
examples are inputs for Algorithm 1. In this example, there
are only two scenarios: x ≥ 0 and x < 0. Then, it sets
the XOR constraints, following equation 3 (lines 1 to 3 of
Algorithm 1). As s = 2, we only set two equations. Following
algorithm 1, to create each equation we only need to choose
the coefficients ai,j (line 3 of Algorithm 1). These coefficients
are chosen uniformly at random. This allows us to select the
cell near-uniformly. Once we have the hash equations that
construct C(y′), we can create FP (x, y, y′) combining C(y′),
t(y, y′) and fP (x, y). Once we submit FP to the solver, it will
provide all the valid witnesses inside the cell defined by the
hash functions, i.e., all the valid outputs of that cell. In the
example, as the output is a power of 2, the first cell (left
side) can only catch one solution (00100000), corresponding
to 25. This solution is the only one that satisfies the two
XOR constraints that define the cell. The second cell has
six solutions. In this case, the algorithm selects one of these
solutions uniformly at random (lines 8 to 10 of Algorithm 1),
and this creates the input.

Soundness of the algorithm is proved by the following
result.
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Theorem 1. Let |O| = 2s
∗

and 0 < s < s∗. Let v ∈ O and
p(v) denote the probability that sample(fP , s) returns a
model with v as output value (i.e., a model of the form
(u, v, v′)). Then,

p(v) >
c′(s∗ − s)

2s∗

where c′(·) is the function

c′(α) =
2α

2α + 1
· 2

α
3 − 1

2
α
3 + 1

Furthermore, sample(fP , s) returns ⊥ with probability
smaller than 1− c′(s∗ − s).

Proof Let C(y′) be the XOR constraint built by
sample(fP , s) in line 4. For every model σ = (u, v, v′) of the
resulting formula F , let Yσ be the binary random variable
whose value is 1 if and only if C(v′) = 1. Then, E[Yσ] = 2−s

and Var[Yσ] ≤ 2−s. Furthermore, if we call ` the random
variable

∑
σ∈Λ Yσ, we have that

E[` | Yσ = 1] = 1 +
2s
∗ − 1

2s
Var[` | Yσ = 1] ≤ 2s

∗ − 1

2s

(the proof of these results is the same as for Theorem 2 in
the appendix of [?]). Let us call µ the value of E[` | Yσ = 1]
and α = s∗ − s; then,

2α < 1 + 2α − 2−s = 1 + 2s
∗−s − 2−s = µ < 2α + 1 (5)

Let β ≥ 0; by Chebychev’s inequality and Var[` | Yσ = 1] <
µ, we have that

Pr
[
|`− µ| ≥ µ

2β

∣∣∣ Yσ = 1
]
≤
(

2β

µ

)2

Var[` | Yσ = 1] <
22β

µ

i.e.

Pr
[
(1− 2−β)µ < ` < (1 + 2−β)µ

∣∣∣ Yσ = 1
]
> 1− 22β

µ
(6)

Finally, notice that, if s > 1, then

(1 + 2−β)µ ≤ 2µ < 2(2α + 1) = 2s
∗−s+1 + 2 < 2s

∗
(7)

otherwise, it can be possible that (1 + 2−β)µ > 2s
∗
, but `

will never assume values in
(

2s
∗

+ 1, (1 + 2−β)µ
]

because

by hypothesis |O| = 2s
∗
.

To conclude:

p(v)
4
= Pr

[
sample(fP , s) returns some (u, v, v′)

4
= σ′

]
= Pr [Yσ′ = 1 ∧ σ′ is the p-th model of Λ]

= Pr [Yσ′ = 1] · Pr [σ′ p-th model of Λ | Yσ′ = 1]

= 1
2s∗
∑2s

∗

i=1
Pr[`=i | Yσ′=1]

i

≥ 1
2s∗
∑(1+2−β)µ
i=1

Pr[`=i | Yσ′=1]
i by (7)

≥ 1
2s∗
∑(1+2−β)µ
i=1

Pr[`=i | Yσ′=1]
(1+2−β)µ

= 1
2s(1+2−β)µ

Pr
[
` ≤ (1 + 2−β)µ

∣∣ Yσ′ = 1
]

> 1
2s∗ (1+2−β)µ

(
1− 22β

µ

)
by (6)

> 1−22β−α

2s∗ (1+2−β)(1+2α)
by (5)

= 1
2s∗
· 1−22β−α

(1+2−β)(1+2−α)

It can be proved that the second fraction gets its maximum
for β = α−1

3 . To write this second fraction with a simpler
mathematical expression, viz. c′(α), we use (like in [?]) β =
α
3 and have the final bound.

What we have just proved entails the final claim: if we
call ξ the output of sample(fP , s), it suffices to note that

Pr [ξ 6= ⊥] =
∑
v∈O

p(v) > c′(s∗ − s)
2

According to the theorem, Algorithm 1 implements a
near-uniform generator, due to c′(s∗ − s) ∈ (0, 1) whenever
s < s∗ and |O| ≤ |WfP |. This is the method by which we
generate inputs, i.e. a test set, that produces a near-uniform
set of outputs for a given program. The following section
explains the technical adaptation of the algorithm to real
programs.

4 OutGen: Output Diverse Generator for Unit
Testing

The output diversity method creates witnesses from con-
straints, and, therefore, can be instantiated for several dif-
ferent problems, insofar as these problems can be modelled
in an input/output fashion. This work instantiates it as an
automatic tool for the generation of output-diverse test sets
on C programs. We name this tool OutGen1.

OutGen uses CBMC [?] to generate a formula that
contains every possible program path to an output. This
formula represents the behaviour of the program in single
static assignment form [?]. Loops are handled in the usual
way for CBMC: unwinding them to a preset limit. Once the
formula is defined, we set the output. Initially, the output is
determined by the observationsO associated with the return
values of the software under test (SUT). OutGen parses the
CBMC formulae and translates them to expressions suitable
for the Z3 solver. These expressions are SMT expressions
in bitvector arithmetic, and mixed abstractions for floating
points [?].

Some programs employ scanf to get interactive inputs
and printf to set interactive outputs, during the program
execution. To identify inputs that are assigned during the
program execution, OutGen automatically instruments any
scanf calls and global variables, setting them as inputs
for the software testing framework. The parser controlling
the instrumentation is pycparser, a C parser for Python.
Once this step finishes, the fP formula is passed to the
XORSample' algorithm.

The next step applies the adaptation of XORSample'
to the output domain (Section 3). OutGen automatically
identifies the return expressions and propagates their val-
ues to the final state of a new local variable, defined as
the φ-function of all possible return values. The φ-function
selects the value, from all possible values, depending on the
chosen branch. In this way, we produce a single formula
that contains every output. Then, the hash functions are

1. You can find the open-source implementation and data of Out-
Gen in https://github.com/hdg7/OutGen . This will be published on
github after the reviewing process.
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included as additional constraints to this formula. We set
the observation from the outputs on the final states, and we
automatically include the final state of the expression con-
trolling the observable output, when this expression belongs
to, or controls, a branch containing printf statements.

Once the constraints are included in fP , OutGen asks the
Z3 solver for witnesses, generating the test set. The solver
generates inputs for the test set in such a way that they
attain a uniform distribution on the outputs. To evaluate the
resulting test set on the SUT, OutGen automatically creates
a harness for the SUT, and runs the test set. The instrumen-
tation limits the time allowed to run a test to 4 seconds, in or-
der to avoid non-termination. The Linux tool gcov measures
the coverage through an automatic instrumentation process.
The gcc compiler performs the instrumentation and gcov

measures the coverage during runtime. Once the harness
finishes, OutGen provides statistics about both uniformity
of outputs and coverage metrics. In the following sections,
we will use this information to evaluate succes in achieving
our aims (Section 7).

5 Research Goals

OutGen generates a set of program inputs with the property
of near optimal output diversity (Section 3). To evaluate the
usefulness of OutGen, we consider three questions. As The-
orem 1 shows, OutGen is near-uniform, but not completely
uniform. That means that our target for diversity might be
compromised, especially considering that universal hashing
only guarantees success of the algorithm on around the 80%
of the trials [?], therefore we want to know empirically “How
uniform is the set of outputs for a test set in practice?”.
As we mentioned in Section 2.1, we created an output
diverse generator to increase the output uniqueness measure,
making it more likely that rare outputs be produced. While
Alshahwan and Harman were able to find strong correlations
between output uniqueness, coverage and faults detected, by
applying input diversity, we want to know:“How does output
diversity affect the ouput uniqueness scores in comparison
with input diversity?”. Last but not least, we need to know
how output diversity driven test set generation compares
with other state of the art tools for automatic unit test
generation. In those terms we ask: “How effective is our test
set generation method?”. To answer the first question, our
evaluation uses a statistic that measures the proximity of the
outputs generated to a sample from a uniform distribution,
our benchmark for diversity. To answer the second question,
we evaluate the improvements on output uniqueness score
between input diversity driven (the approach of Alshahwan
and Harman [?]) and output diversity driven (OutGen),
measuring it in terms of correlations with coverage, mutation
scores and number of faults detected. For the effectiveness
question, we measure the abilities both to kill mutants and
to detect faults, and we also compare these with similar mea-
sures for four other generation approaches: pseudo-random
generation, CAVM, behaviour diversity and CBMC. In what
follows we elaborate these three questions into a set of
research questions.

RQ1: For each generated test set, do all the outputs have
the same probability of being generated?

According to Theorem 1, when OutGen generates an
output v, p(v) > c′(α)/2s

∗
. Knowing that 2s

∗
is the total

number of outputs, p would only be a uniform distribution
when p(v) = 1/2s

∗
, by definition. So uniformity depends on

the value of c′(α), that in turn depends on the chosen cell
α, and the choice of pairwise independent hash functions.
Here, we measure how much this α affects our goal, that
is, how close we are to a uniform distribution. We use the
L2-test to perform this evaluation [?]. Given an ε, the L2-
test passes when the distribution is ε-far from the uniform
distribution, using a collision-based approach. This test is
chosen because it is one of the few statistical tests that can
deal with non-continuous and heterogeneous domains, as the
output domain often is (Section 8).

RQ2: How do OutGen generated test sets affect the output
uniqueness scores in terms of correlations with: structural
coverage metrics (for line, branch and path coverage), mu-
tation score and fault detection, and how does this compare
with those for input diversity?

We measure the Spearman rank correlations between
both test set size and output uniqueness score with line,
branch and path coverage, mutation score and fault detec-
tion. This information measures the influence of a test set’s
output uniqueness score and size on these test set metrics.

We also compare this correlation between the test set
generated through output diversity (OutGen) and an equiv-
alent test set generated from input diversity (XORSample'),
via an adaptation of Alshawan and Harman’s method to C
programs.

For mutation testing, we create mutants, i.e. variations
on the original programs containing a single fault. Using
the corpus of mutants, our aim is to measure the mutation
score, i.e., the percentage of mutants that each test set
identifies (kills). The test sets run on both the program and
the mutant. The mutant is detected when the outputs of
the original program and the mutant are different. In that
case, we consider that the test set strongly kills the mutant.
Similarly, we detect a fault when the buggy version and the
fixed version of a program produce a different output. Here,
we investigate how often an OutGen test set covers a real
or artificial bug and produces different outputs in the buggy
–or mutant– and fixed versions of a program, using various
repositories.

RQ3.1: How effective is an OutGen generated test set at
killing mutants and detecting faults in comparison with input
diversity driven, CBMC, CAVM, behaviour diversity, and
a pseudo-random generation? RQ3.2 How does a restricted
time budget affect the performance and effectiveness of Out-
Gen in comparison to the other methods?

We compare correlation information to measure the rel-
ative effectiveness of OutGen. This evaluation measures the
mutation score of each approach and the overall ability to
detect bugs in different software repositories. For comparison
reasons, we include a pseudo-random generator, which is our
random baseline, CAVM [?] –the state of the art search-
based unit test generation for C–, a behaviour diversity
whitebox technique based on the Normalized Information
Distance of system traces [?], and the solver generation of
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inputs based on the constraints produced with CBMC. We
also measure time and memory consumption of the tools.

For the second part, we perform a similar evaluation pro-
viding the same amount of time to every tool and measure
mutation scores and fault detection. The amount of time
provided to each tool/method was 20 minutes, as this should
give random testing enough time to be competitive with the
other tools.

6 Experimental setup

This section discusses the dataset and evaluation details for
the evaluation of OutGen.

We created our first experimental dataset by collecting a
set of 8 functions from the R-project2 [?] written in C.

These functions are statistical functions that compute
floating point values on probability distributions.

They are affected by 5 real bugs. These bugs were re-
ported to the R-bugs repository3 during 2015 and 2018.
They had not been identified for at least 6 years after these
functions were created. They affect specific behaviours of
the floating point arithmetic of the functions. These were
chosen from a total of 8 bugs identified in the R-project sub-
version logs. The other 3 bugs were discarded as they affect
memory consumption and not input/output behaviour. We
generated the constraints for the fixed and the buggy version
of the functions, respecting their dependencies in the specific
repository version. The average number of dependencies
for each function are 25 files (14 files without headers),
the average function size is 1545 LoC. For reproducibility
purposes, we created a public repository from this data4.

We also used the tcas program extracted from the
Software-artifact Infrastructure Repository (SIR) [?]. This
program is an aircraft collision avoidance system composed
of 135 LoC and works with integer inputs and outputs. The
repository includes 41 seeded errors.

Finally, we included programs from the Codeflaws5 [?]
(CF) repository. This is composed of 3902 defects from 7436
C programs. These programs originate in the Codeforces6

competition, a web page setting C programming contests for
professional programmers. For our experiments we chose 100
defects from the numerical programs (integers and floating
point inputs and outputs), uniformly at random. We did
not consider any programs using pointers. This repository
provides real programs, each including a program with a
single defect and its fixed version. The average size is 50 LoC
(total LoC 35654). These programs are of a size comparable
to unit testing.

The evaluation itself has four parts. The first part is
the uniformity evaluation, performed with the L2-test [?].
For the first part, we created as many tests as the L2-test
requires to measure distance to a uniform distribution. The
second part determines how output diversity improves the

2. https://www.r-project.org
3. https://bugs.r-project.org
4. https://www.dropbox.com/s/2iqchfic2ougd5x/dataTSE.zip?dl=0
5. https://codeflaws.github.io
6. http://codeforces.com

strength of the effect of output uniqueness. In this part,
our experiments compare output diversity driven generation
with input diversity driven generation. Based on the work
of Alshahwan and Harman [?], we want to measure how our
output diversity driven test set generator (OutGen) affects
the Spearman rank correlation coefficients compared to an
input diversity driven generator, such as the one presented
by these authors. As Alshahwan and Harman’s work is a
methodology and not a tool by itself, we need to use a
diverse input generator to reproduce their experiments, for
that reason we use XORSample'. The next part measures the
effectiveness in terms of mutation score and fault exposure,
and the last part the performance of the test sets when
limiting the generation time.

For the second and third parts, the test pool size is 500
per program. We create pools for XORSample' and OutGen
in the second part and also for CBMC (with loop unwinding
of 20, s value of 3 and default parameters for the rest),
CAVM (using default parameters), the behaviour diversity
method based on NCD [?], and a random baseline, for the
efficiency comparison. For the NCD method, we generate a
set of 1,000 test cases using the random baseline. Then, for
each test case, we extract the program trace using gcov. This
trace contains information about the control flow graph,
method calls and number of times each part of the program is
visited. This serves as the VAT model (VAriability of Tests)
[?]. Then, NCD acts as the Universal Test Distance, creating
a pairwise comparison among the test cases. After, following
the methodology of [?], we create a hierarchical clustering of
the tests’ traces, and select the number of clusters as the test
set size. Using the dendrogram, we discriminate the clusters.
One element of each cluster is selected uniformly at random
to create the final test set.

From the test pools, we select 20 test sets and investigate
the rank correlations of line coverage, branch coverage, path
coverage, mutation score and percentage of faults detected
with test set size and output uniqueness (in the same way
as Alshahwan and Harman [?]). Each test set has a size
ranging between 10 and 500, and they are selected uniformly
at random without repetitions from the pools. This variation
on size is to avoid the effect of size on the evaluation, as
remarked by Papadakis et al. [?]. Every experiment was
repeated 30 times per program and the distribution for the
former measures are reported as medians. The last experi-
ment compares the generation performance and effectiveness
when restricting the amount of time for each generation
tool to 20 minutes. Similarly to the previous experiment, we
produce 30 repetitions per tool and evaluate the mutation
score and the faults detected of the generated test sets.

7 Experiments

We show that OutGen generates test sets whose output
distributions are close to uniform, improving the output
uniqueness measure of a test set. We evaluate the quality
of the generated test sets in terms of uniformity, output
uniqueness score, coverage, mutation score and fault detec-
tion, in the context of ODD and compare them with IDD,
CBMC, CAVM, the behavioural diversity method based on
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Table 1
Percentage of test sets generated with OutGen that pass the L2-tests.
We compare the three repositories (R, SIR and CF) for different values

of ε2, to evaluate how close we are to the uniform distribution.

Functions 0.1 0.05 0.01

R-functions 100.0% 87.5% 75.0%
SIR 100.0% 100.0% 100.0%
CF 100.0% 98.0% 97.0%

NCD, and a pseudo-random generator. Finally, we discuss
the limitations of OutGen.

7.1 Measuring OutGen Uniformity

The L2-test requires the generation of enough witnesses to
guarantee that we achieve a given confidence level (usually
95%) for the statistic. Following the study of Diakonikolas et
al. [?], we use their Lemma 5 to bound the number of samples
(m) as m ≤ 6n1/2/ε2, where n is the domain size and ε2

the proximity to uniformity. For this reason, we run our
evaluation on three levels of ε2: 0.1, 0.05 and 0.01, generating
an average of 6,000, 12,000 and 60,000 tests respectively for
each program, allowing repetitions in the output sampling
process.

Table 1 shows the proximity of the sampled outputs
to the uniform distribution, according to the L2-test. For
CF, the diversity of outputs is very close to the uniform
distribution (97% of the programs passed the test when
ε2 = 0.01). This also happens with the SIR repository. For
the R-functions, a 75% of them are 0.01 close to a uniform
distribution, which is still a strong percentage considering
that all are 0.1 close. We observed that the results are good
for large output domains and worse for small ones; however,
in small domains we are able to reach the maximum output
uniqueness score.

RQ1: OutGen is uniform for large domains and near-
uniform for domains with low channel capacity.

7.2 Improving Output Uniqueness Properties via OutGen

We start by measuring the output uniqueness score of the
output and input diversity driven test pools generated, as
described in Section 6. These two test pools are formed
by 500 tests per program. OutGen aims at improving the
score. This will show clearer correlations between output
uniqueness and other metrics, such as structural coverage,
mutation score and faults detected. The average output
uniqueness of the ODD pool for all programs was 28.92 and
for IDD pool was 19.23. On average, the ODD test sets have
a score value that is 50.39% higher than IDD.

Having a clearer vision of output uniqueness, we evaluate
its correlation with structural coverage. Figure 3 shows the
coverage results for input and output diversity driven gener-
ated test sets. The tool gcov measures the coverage in terms
of lines covered (L), branches covered (B) and paths taken
(P). We firstly compare the correlations between the size
and output uniqueness with the structural coverage metrics.
For ODD, the figure shows that size has a similar correlation
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Figure 3. Spearman’s rank correlation for all the test sets generated with
IDD (left) and ODD (right). Each plot compares line, branch and path
coverage with size and output uniqueness. The distribution corresponds
to all the experiments.

Table 2
Spearman’s rank correlation for all the test sets generated with input

(IDD) and output diversity driven (ODD). Each row compares the
correlations of size and output uniqueness with mutation score and
faults detected. The distribution corresponds to all the experiments.

The Nsymbol shows that there is a statistical significant improvement
according to the Wilcoxon’s test (p-value < 0.05) between output and

input diversity driven test cases.

Correlations IDD ODD

Size - Mut 0.541 ± 0.233 0.562 ± 0.211
Out - Mut 0.512 ± 0.189 0.551 ± 0.286

Size - Fault 0.478 ± 0.169 0.435 ± 0.151
Out - Fault 0.611 ± 0.234 N0.997 ± 0.302

with line (0.596), branch (0.521) and path coverage (0.622).
IDD has similar results, but the values are slightly higher
(line is 0.671, branch is 0.575 and path is 0.695). This is
really important because the coverage metrics in ODD are
less dependent on size than in IDD. Output uniqueness cor-
relates better than size with every single coverage metrics,
specially with line coverage. These results are similar to
those discovered by Alshahwan and Harman [?].

The output uniqueness correlation differs depending on
the coverage metrics and generation method. We can see
that, when the test sets are output diversity driven, the
line correlation (0.915) is better than branch (0.847) and
path (0.834). When the test sets are input diversity driven,
the correlation is also better for line coverage (0.993) than
for path (0.820) or branch (0.770) coverage. There are in-
teresting improvements in the coverage correlations when
the test sets are input diversity driven; nevertheless, these
improvements only affect line and path coverage.

For the correlations with mutation score, we have cre-
ated up to 100 mutants for each program with the aim of
evaluating how many mutants the test sets are able to kill.
All mutants are generated using Milu [?] with the default
parameters. We consider the original program as the oracle
and the mutant as a buggy version of the program. When
the test set distinguishes them by generating a different
output, we consider that the mutant is killed. For the defects,
we consider that an error is found when the output differs
between the fixed and the buggy program.
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Table 2 (top) shows the Spearman’s rank correlation of
the mutation score with the test set size and the output
uniqueness. The left side shows the results for IDD. The re-
sults show that neither the test set size (0.55) nor the output
uniqueness (0.51) have strong correlations with the mutation
score for the IDD test sets. Comparing these results with the
ODD test sets, we can see that they are similar for test set
size (0.56) and output uniqueness (0.54) correlations.

Table 2 (bottom) shows the correlation results for the
faults detected by the test sets. On the left side, the table re-
ports the results for IDD comparing the correlations between
detecting faults with size and outputs. The best metric is
output uniqueness (0.61). Size (0.48) obtains less correlation
as was originally reported by Alshahwan and Harman [?].
The right side of the table shows significantly different
results. Output uniqueness has a high correlation (0.997)
with fault detection, while size keeps a low correlation (0.44).
These results show that an ODD generated test set improves
the correlations for output uniqueness by 63%, while the size
correlation, connected with the inputs, is less significant.
This improvement shows that output diversity driven test
sets can exploit the advantages of output uniqueness better
than input diversity driven test sets and, as a consequence,
they will detect more bugs.

In order to evaluate whether there is statistical signifi-
cance on these correlation results, we applied the Wilcoxon
test [?] to the result distributions, following the guidelines
of Arcuri and Briand [?]. We consider the p-value for the
test to be smaller than 0.05 in order to consider that the
test is passed. The results show that there is only statistical
improvement on the fault detection abilities.

RQ2: Output diversity driven test sets improve the output
uniqueness score of the test set by 50% on average compared
to input diversity driven test sets. Although both techniques
correlate in a similar way with structural coverage and muta-
tion score, ODD excels producing a strong correlation between
faults detected and output uniqueness, reaching an up to 63%
improvement.

7.3 Evaluating OutGen’s Efficacy and Performance

We measure efficacy in killing mutants or detecting bugs
on the total number of mutants generated and bugs consid-
ered. We have also generated tests with CBMC constraints,
CAVM, behaviour diversity (NCD) and a pseudo-random
generator to compare efficacy with OutGen. During the
experiments, CAVM produced out-of-memory for 52% pro-
grams of Codeflaws (the results highlighted with * in Table 3
are restricted to the programs where the tool worked).
Constraining ODD to the set of programs where CAVM
works, the results are almost the same as for the general
ones. CAVM has type compatibility limitations that do not
allow it to generate inputs for the R-function. It produces
errors when it needs to work with abstract identifiers such as
‘Infinite’ or ‘not-a-number (NaN)’, as is the case for floating
points functions.

Table 3 (top) shows the median mutation score for every
approach during the experiments.The pseudo-random gener-
ator, behaviour diversity and IDD have similar results on CF

and the R-functions (84% and 46%, respectively). CBMC
achieves better results on SIR (37%), similar for R-functions
(46%), and worse for CF (69%). It is significant that for SIR
the random generator and the behaviours-based one are only
able to kill 1% of the mutants. ODD gets the best results in
all the cases, close to CAVM for CF (90% for CAVM and
92% for ODD), and showing a significant improvement for
SIR (59%). With respect to the second best technique, we
get an improvement of 2% in CF, 57% in SIR and 29% in R.
With respect to the worst, we reach an improvement of 33%
in CF, 4150% for SIR and 30% for R. All the results have
been tested according to the Wilcoxon test [?], and ODD is
significantly better in all the cases but on the comparison
between CAVM and ODD for codeflaws. The test is passed
considering a p-value smaller than 0.05.

Table 3 (bottom) shows the bug detection results. The
pseudo-random generator, behaviour diversity and IDD nor-
mally achieve the second position (for CF the random
baseline reaches a 67%, and, for SIR, IDD reaches a 43%),
while CBMC gets worse results in CF (49%) and SIR (17%).
Again, the pseudo-random generator and behaviours diver-
sity have problems in identifying the bugs from SIR (5%).
In every experiment, OutGen gets the best results (70% for
CF and 52% for SIR). The improvements with respect to the
second are 3% for CF and 21% for SIR, while they are 42%
for CF and 963% for SIR w.r.t. the worst. It is important
to remark that none of the tools are able to find the real
bugs in the R functions except OutGen (11%). These errors
are related to specifics of floating point types. Our system
is designed to work with abstractions of infinite, -infinite
and not-a-number (NaN) as possible input/output values
and the solver theory can reason about them, because we
use the bitvector arithmetic theory with mixed abstractions
for floating point (Section 7.1). IDD and CBMC use the
same theory, however, Rand, CAVM and NCD can not use it
because they do not use solvers. Considering that these bugs
were not identified for the first 6 years of their existence, this
makes ODD a human competitive approach, opening new
possibilities for detecting difficult floating point bugs.

Similarly to the former case on mutation score, we ap-
plied the Wilcoxon test to evaluate whether the improve-
ment for ODD is significant and we discover that it is in all
cases except for the comparison with CAVM for codeflaws.

As regards the generation performance of the techniques,
Table 4 shows that IDD and ODD perform worse than
random and CBMC. This is a consequence of their depen-
dence on CBMC to generate constraints. Nevertheless, they
perform significantly better than CAVM, the state of the art
search-based generator, especially for memory consumption
and compatibility with different types of complex programs.

RQ3.1: Output diversity driven test sets perform better at
detecting mutants than CBMC, CAVM, the pseudo-random
generator, behaviours diversity and input diversity driven.
They improve the mutation score up by 4150%. For finding
bugs, OutGen performs up to 963% better. Moreover, for the
R-functions, it is the only technique that can detect bugs,
detecting bugs on the 11% of the test sets. However, CBMC
and compression based techniques are slower to generate test
sets than random or pure CBMC.
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Table 3
Mutation score (Mut) and bugs detected (Defs) for the pseudo-random generator (Random), CBMC, CAVM, input (IDD), behaviour (NCD) and
output diversity driven (ODD). Each row compares the median mutation score and bugs detected from the whole set of test sets generated for

each tool. It breaks down by repository: the R-functions (R), SIR and CodeFlaws (CF). The (*) represents a reduced set of programs. The
Hsymbol shows that the results of each technique are worse than ODD with statistical significance according to Wilcoxon’s Test (p-value < 0.05).

Data Rand CBMC CAVM IDD NCD ODD

Mut R H46.0% H46.2% - H46.5% H46.2% 60.0%
Mut SIR H1.4% H37.8% H4.1% H22.0% H1.5% 59.5%
Mut CF H84.0% H69.2% *90.4% H84.1% H83.9% 92.1%

Defs R H0.0% H0.0% - H0.0% H0.0% 11.0%
Defs SIR H4.9% H17.1% H12.2% H43.2% H5.1% 52.1%
Defs CF H67.1% H49.5% *68.3% H52.5% H66.9% 70.2%

Table 4
Time and memory consumption for the pseudo-random generator (Random), CBMC, CAVM, input (IDD), behaviour (NCD) and output diversity
driven (ODD). Each row compares the median time and memory consumption from the whole set of test sets generated for each tool. It breaks

down by repository: the R-functions (R), SIR and CodeFlaws (CF). The (*) represents a reduced set of programs.

Data Rand CBMC CAVM NCD IDD ODD

Time R 29 s 16 m - 21 m 52 m 19 m
Time SIR 31 s 2 m 6 m 4 m 11 m 4 m
Time CF 35 s 31 m *28 m 39 m 63 m 35 m

Mem R 42 M 97 M - 155 M 3.1 G 171 M
Mem SIR 38 M 61 M 130 M 113 M 170 M 111 M
Mem CF 32 M 56 M *128 G 110 M 2.5 G 122 M

7.4 Comparing OutGen’s Scalability

Comparing performance in a fixed time, in this case 20 min-
utes, we compare the results for all the different generation
methods. Table 5 shows these results. Similar to the previous
results in Table 3, ODD dominates the detection of faults in
every repository and it is still the only methodology that
can identify bugs in the R functions. It is important to
remark that the random sampling increases the number of
inputs generated by three orders of magnitude with respect
to the previous experiment (from 500 to 500,000) and it
still struggles to detect particular bugs such as the ones in
SIR or the R-functions. Also, the execution time of these
large randomly generated test sets is significantly higher
(from 5 milliseconds, on average, to 10 seconds). For the
rest of the tools the performance is similar, but for IDD
performance reduces drastically on CF and the R functions
for the mutation score and the fault detection rate for CF.

Clearly, in certain cases random testing does better than
OutGen, given the same time budget: this likely happens
when the inverse images of outputs for the program or
function are well balanced, i.e. roughly the same size. In
cases where they are highly unbalanced, this cannot be the
case (these issues and related examples are also discusse in
Sections 6-7 of Boreale and Paolini [?]).

RQ3.2: Output diversity driven test sets, generated with the
same amount of time, perform better at detecting mutants
and faults than the other techniques. They improve the muta-
tion score by up to 1158%. For finding bugs, OutGen performs
up to 728% better. Moreover, for the R-functions, it is the
only technique that can detect bugs, detecting bugs with 11%
of the test sets.

7.5 Threats to Validity

During these experiments, we have identified two potential
threats to validity: the solver and the definition of diversity.
The solver limits the program size (in terms of scalability)
and forces us to apply the approach in a unit testing way
for bigger functions, such as the R-functions. This limitation
is a consequence of the complexity of the constraints. The
solver has difficulty solving some constraints such as MD5
hashes. This current limitation does not allow us to apply
our tool to a project of the size of the R-project, for instance.
We want to extend it to bigger programs in the future. For
this reason, our plan is to focus on memory models [?],
so we can consider the whole output buffer for OutGen.
On the other hand, our notion of diversity is based on the
uniform distribution. Without the spread generated during
the cell selection process (Section 4), this might generate
redundancy between outputs, with respect to any notion of
similarity.

Other external threats are: the limitations of CBMC,
mostly related to the loop unwinding process, and the SMT
solvers limitations to deal with complex programs. The main
problem related to the loop unwinding is bug masking, i.e.,
the error might not manifest itself in the approximation of
the program produced by the constraints. Another relevant
limitation of CBMC that affects our generality is the conver-
sion between floating point and integer which is currently not
implemented in the tool. Nevertheless, our methodology can
be extended to other languages if the analyst can extract the
program constraints from them. It is important to remark
that our methodology does not need to discard tests for
improving diversity on outputs, as output-uniqueness [?];
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Table 5
Mutation score (Mut) and bugs detected (Defs) for the pseudo-random generator (Random), CBMC, CAVM, input (IDD) and output diversity

driven (ODD), using the same amount of time (20 minutes) for every generator. Each row compares the median mutation score and bugs
detected from the whole set of test sets generated for each tool. It breaks down by repository: the R-functions (R), SIR and CodeFlaws (CF). The
(*) represents a reduced set of programs. The Hsymbol shows that the results of each technique are worse than ODD with statistical significance

according to Wilcoxon’s Test (p-value < 0.05).

Data Rand CBMC CAVM IDD ODD

Mut R H55.5% H46.8% - H28.6% 61.0%
Mut SIR H5.3% H42.6% H6.8% H34.5% 66.7%
Mut CF H86.6% H62.4% H*85.1% H55.2% 88.7%

Defs R H0.0% H0.0% - H0.0% 11.0%
Defs SIR H6.8% H23.5% H16.9% H45.1% 56.3%
Defs CF H68.2% H41.3% H*67.2% H33.1% 69.9%

furthermore, the faults in our program corpus are real faults
rather than seeded.

8 Related Work

The method we present is an automatic test set generation
method based on output diversity. This section discusses our
innovations with respect to the state of the art, focusing
on automatic test set generation, diversity of tests sets, and
output diversity or uniqueness.

8.1 Automatic Test Generation (ATG)

Generating proper test sets with no human intervention is an
open problem. As per the Anand et al. study [?], the main
areas contributing to automatic test generation are: sym-
bolic execution, model-based, combinatorial testing, adap-
tive random testing and search-based testing. These tech-
niques aim at achieving some coverage criteria. Shamshiri et
al. showed that, overall, coverage-based techniques only find
55.7% of their corpus faults, while, individually, only 19.9%
of coverage based test sets expose a fault [?]. One prob-
lem is a faults’ failure to propagate to observable outputs.
Generating inputs with a higher output diversity propagates
the behaviour to observable outputs better than coverage
techniques, as we show in Section 7.4.

Indeed, this problem affects several ATG strategies.
Some examples are search-based tools (like CAVM [?] or
OCELOT [?]) and model checkers with testing abilities
(like CBMC [?]). These techniques lack diversity during the
test generation process, which is the main requirement of
our automatic generation tool. Our inspiration parts from
the idea of testing a specific program point. Alipour et
al. [?] and Gotlieb and Petit [?] combined this idea with
search algorithms and solvers, respectively. Their aim was to
increment the number of generated tests passing through
a specific program point, or their probability. In analogy
with our case, that point has every output. We consider all
potential outputs for a function and unify them in terms of
constraints (Section 4). Nevertheless, this output extension
alone does not alleviate the problems of coverage. Output
diversity is needed in the test set generation process.

8.2 Diversity

Diversification parts from the assumption that every test is
equally likely to activate or detect a bug [?]. In the literature
there is much work aimed at diversifying test sets [?], [?],
[?], [?], [?], [?], [?], [?], or using diversification as a filter
[?], [?], [?]. In this area, Chakraborty et al. generated a
methodology to create uniform inputs for testing electrical
circuits. They modelled the circuit as a conjunctive normal
form (CNF) formula and applied a SAT solver to generate
inputs [?], [?]. This approach needed to face up to the
adversarial behaviour of the solver and that in turn forced
the authors to add universal hashing functions to improve
the spread of witnesses on the input space. They extended
the XORSample' algorithm [?] with the BGP algorithm [?]
to achieve this goal. The authors also extended their method-
ology to SMT solvers [?] but with the aim of creating a model
counter. Dutra et al. [?] presented a competitive adaptation
of Chakraborty et al.’s sampling method based on fuzzy
testing. In our case, we extend it to deal with real programs
using bit-vector arithmetic. Similarly to Chakraborty’s, our
approach generalizes through theHxor hash family, but their
approach focuses on input diversification. However, highly
distributed inputs might not activate all the behaviours
of the programs: it is important to include the semantics
of the program in the diversification. For this reason, we
also include the program behaviour, through adding extra
constraints in the generation process.

A natural methodology of diversification is adaptive
random testing [?], which diversifies the inputs using a
random search, but it does not necessarily include semantics
during the generation process. Other improvements combine
coverage and diversity, for example, Fraser and Arcuri [?]
extended the search process of EvoSuite to a multi-objective
approach, where each objective is a coverage criterion.

There is no concrete measure of diversity. Some authors
proposed to apply metrics from information theory. Those
with better results used the normalized compression distance
(NCD) [?], and entropy [?]. These metrics aim at improving
the test set diameter [?], that describes, in terms of the
metric, the average differences among the tests inside the
test set. Other authors use search based approach to select
diverse test sets based on their behaviours, using the infor-
mation from the execution trace, specially function calls [?],
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[?].

In our case, we consider diversity in terms of uniformity
and entropy, because every search for diversity leads to the
uniform distribution that is considered in Information The-
ory as the most informative distribution for sampling pur-
poses [?], [?]. Entropy and uniformity are connected, because
entropy is maximal when the data distribution is uniform
[?]. However, measuring uniformity is itself challenging and
it is the main evaluation weakness that we identified in the
related work [?], [?], [?], [?], [?]. This evaluation requires
statistical tests. Our approach includes it (Section 7.1). We
studied different methodologies for evaluating the output
distribution in order to identify whether our technique is
generating uniform witnesses or how close we are to a uni-
form distribution. We studied statistical tests for continue
uniform distributions [?], but they all assume that there
are no sequence gaps between output values, which is not
the case. We also researched discrete statistical tests [?], [?],
[?], [?], [?], but they suffer from the same limitations. Only
collision-based test statistics guarantee an appropriate eval-
uation for our scenario, and also give us a notion of distance
[?]. The main problem with collision-based statistical tests
is the high number of samples that are needed to guarantee
the test confidence [?]. Nevertheless, our corpus allowed us to
generate sufficient witnesses from the solvers and use them
in the tests for uniformity.

Diversification can assist in dealing with some problems
such as Failed Error Propagation [?], which is related to the
entropy loss problem. Poulding and Feldt aimed at creating
diversification by construction, applying a technique named
Gödel testing [?]. Nevertheless, their approach relied on
input driven diversity and they needed to create a manual
test generator per program. Our technique uses the solver as
a general purpose generator. Another application of diver-
sification is test prioritization, as Henard et al. studied [?].
The authors discovered that the test set diameter approach
performs better in a black box scenario, and they found
little performance differences between black and white-box
testing. In our work, we aim at improving the diameter of
the output set, also known as the channel capacity of the
output channel.

8.3 Output Diversity

The problem of using output diversity in ATG is open.
One of the main problems identified by Alshahwan and
Harman was the development of an automatic output diverse
generator, such as the one that we present in the current
paper [?], [?]. These authors developed an input diversity
filter based on output-uniqueness, as a post-preprocessing
step. They showed that their measure, output uniqueness,
correlates better with fault detection than structural cover-
age. Nevertheless, the effectiveness depends on the definition
of output. In their work, they define the output as textual
or structural aspects of HTML code, and the difference as
not equality. This makes the system too sensitive to small
changes. Rojas el at. [?] introduced an output-uniqueness
criterion in EvoSuite called output coverage. It aims at
incrementing the number of different outputs during the
search, but an output’s selection probability depends on

input sampling. In our system all possible outputs have the
same probability for being chosen. This guarantees that rare
outputs are as likely as frequent outputs to appear.

Matinnejad et al. studied output diversity in Simulink
models [?]. Their main goal was to diversify the output sig-
nals produced by the automatic generated test sets. In their
case, the outputs are distinguished by the shape of the signal
output, introducing a notion of similarity. They showed that
diversity on outputs improves the results of random testing
using signal diversity in finding faults. Without this notion
of similarity, it is not possible to reduce the cost function
that the clustering algorithm needs. In order to be more
general, we prefer to have a diversity notion that does not
depend on a similarity definition, as this requires seman-
tic knowledge about the output itself. Moreover, our new
experiments, which introduce a generic notion of similarity,
the Normalized Compression Distance, show that use of such
with input diversity does not necessarily improve the output
sampling process (Section 7.4).

All the previous methodologies, including ours, assume
determinism on outputs. However, as Gao et al. studied [?],
the output might be affected by three different factors: code,
behaviour and external interactions (system configuration).
For this reason, we fixed the system, compiler and tools
interacting with the test sets, to reduce this effect.

9 Conclusions

Output diversity is a large and unexplored front in testing,
but one with a huge potential. This work has opened new
horizons by introducing an output diversity driven gener-
ation method that improves the output uniqueness score
of the test sets. This optimization, aiming at maximizing
output uniqueness for a given test set, outperforms input
diversity on fault detection and mutation score. This is in
part a consequence of adding semantic information to the
generation process.

Although output diversity is extremely valuable for its
fault finding abilities, it is not a replacement for coverage.
Combining coverage and output diversity could further im-
prove the detection of faults. Combining ODD with IDD
is also an open problem, as is developing a search-based
method to replace the adaptation of XORSample', perhaps
using uniformity tests as fitness functions. FGödel Testing
[?], a search-based generator, will be less deterministic than
an SMT solver-based approach, but will be able to deal
with bigger programs. There is a need for new methods for
maximising output uniqueness, especially those using differ-
ent sampling techniques. We want to evaluate the effects of
clustered, stratified and systematic sampling, for instance,
on the output uniqueness.
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