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Abstract: While Computerised Tomography (CT) may have been the first clinical tool to study human brains when any suspected 

abnormality related to the brain occurs, the volumes of CT lesions usually are usually disregarded due to variations among inter-subject 

measurements. This research responds to this challenge by applying the state of the art deep learning techniques to automatically delineate 

the boundaries of abnormal features, including tumour, associated edema, head injury, leading to benefiting both patients and clinicians in 

making timely accurate clinical decisions. The challenge with the application of deep leaning based techniques in medical domain remains 

that it requires datasets in great abundance, whilst medical data tend to be in small numbers. This work, built on the large field of view of 

DeepLab convolutional neural network for semantic segmentation, highlights the approaches of both semantics-based and patch-based 

segmentation to differentiate tumour, lesion and background of the brain. In addition, fusions with a number of other methods to fine tune 

regional borders are also explored, including conditional random fields (CRF) and multiple scales (MS). With regard to pixel level accuracy, 

the averaged accuracy rates for segmentation of tumour, lesion and background amount to 82.9%, 85.7%, 85.3% and 81.3% while applying 

the approaches of DeepLab, DeepLab with MS, DeepLab with MS and CRF, and patch-based pixel-wise classification respectively. In terms 

of the measurement of intersection over union of two regions, the accuracy rates are of 70.3%, 75.1%, 77.2%, and 63.6% respectively, 

implying overall DeepLab fused with MS and CRF performs the best.  
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1. Introduction 

Computerised Tomography (CT) is the first imaging tool to study the brain and remains the first clinical 

scanner to undertake when any suspected abnormality in the brain, e.g., a tumour, occurs due to its prevalent, 

economical and easy to operate nature. The outcome of CT scans will then be applied to determine subsequent 

treatment planning. In the case of a tumour, not only its type and location, which can be ascertained by the 

digital brain Atlas and the procedure of biopsy but also its volume play a crucial role in making this clinical 

decision, for instance, whether to perform chemotherapy, or undertake Magnetic Resonance (MR) scan for 

further confirmation, or proceed with neurosurgery. Furthermore, accurate measurement of tumour size will also 

assist to establish the effectiveness of the treatment by assessing whether tumour decreasing or spreading under 

a certain treatment. While a CT image depicts clear structural information of the brain, it does not show 

boundaries as clearly as an MR image due to its low resolution at tissue level. In this work, the state of the art 

deep learning techniques are exploited to segment brain tumours and lesions (head injury, bleeding and 

swelling), in an attempt to realise accurate measurement automatically, leading to making the most of this 

valuable first-hand CT data to benefit both patients to receive timely treatment and clinicians in shortening 

prolonged tests.  

Segmentation of CT brain images has been conducted by a number of researchers applying clustering 

approach [1]. However, those work mainly has a focus on the structure of the brain, such as cerebrospinal fluid 

(CSF) and brain matter. In particular, the delineation of the boundary of abnormal regions is only mentioned and 

less fully addressed. On the other hand, accurate measurement can contribute significantly to the diagnosis of 

brain diseases, for example, Alzheimer’s [2]. Therefore, CT measurements can be of great value to the work-up 

of decision making processes for the brain. 

This work will fill this gap by automatically segmenting lesion sizes/volumes by employing the state of the art 

of convolutional neural network (CNN). The challenge with processing medical images with CNN remains that 

medical images tend to have small datasets while CNN works better with more training data, for  instance, in 

millions in the training of DeepLab [3], which will be addressed in the this work. 

Figure 1 illustrates four samples of various types of lesions (arrows on representative slices) in axial 

direction in this collection. 
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                Glioma                                      Tumour                         Bleeding                                 Head Injury 
Figure 1.  Examples of lesioned brain CT images pointed by arrows on selected slices of 3D datasets. 

 

2. Methodology 

2.1 Datasets 

Similar to [4], 115 lesioned datasets of 3D are collected from Navy General Hospital in China. Upon 

application, they are processed in 2D form, i.e. slice by slice rather than taking a dataset as a whole, since each 

dataset has relatively low resolution in z-direction (~0.5mm depth whereas a typical MR has ~0.1-0.2mm) and 

only contain a few lesioned slices (Figure 1). Another reason of applying 2D form instead of 3D is to increase 

dataset sizes. In total, 355 slices are selected. For each lesioned slice, a mask is created by a clinician to 

delineate lesion boundaries. For the tumours, in addition to their borders, the boundaries of edema are also 

delineated if there are any.  

 

2.2 Convolutional neural network (CNN) and DeepLab 

Deep learning models refer to a class of computing machines that can learn a hierarchy of features by 

building high-level attributes from low-level ones [5, 6] , thereby automating the process of feature construction. 

One of these models is the well-known convolutional neural network (CNN) [7]. Consisted of a set of 

algorithms in machine learning, CNN, stemming from human vision theory, comprises several (deep) layers of 

processing involving learnable operators (both linear and non-linear), and hence has the ability to learn and 

build high-level information from low-level features in an automatic fashion [8], hence achieving start of the art 

results in a number of computer vision fields, in particular in classification, localisation and segmentation. 

Since CNN based techniques apply the convolutional and pooling layers (down-sampling) to represent 

high-level features of input images, for segmentation, while the same CNN networks used for classification are 

applied, extra steps are in need to achieve pixel-level accuracy, including converting fully connected layer to 

convolutional layer and up-sampling using a deconvolutional layer. Another direction of research for pixel-wise 

prediction focuses on patch-based classification. Each pixel of input image is labelled by classifying the cropped 

patch centred on this pixel. In this way, a classifier is trained by using CNN on a set of cropped patches which 

locate on different classes of mask, edges of masks and background as well. 

To achieve accurate results, fused CNN networks are usually in need with the inclusion of refinement 

methods. Currently, the state of the art refinement approaches include superpixel [9] and Conditional Random 

Field (CRF) [10]. Superpixel intends to over segment, aiming at generating a coherent grouping of pixels, 

provides a convenient way to compute image features and reduces the complexity of subsequent image 

processing tasks [11]. Whereas CRF, through the application of a class of statistical modelling methods tends to 

provide structured prediction, hence achieving refinement of segmentation results.  

For instance, DeepLab [3, 12], a fully convolutional network (FCN) with integration of CRF, has achieved 

the best segmentation results on the challenge of PASCAL VOC 2012 images. The advantage of DeepLab over 

the other CNN networks is that DeepLab introduces an atrous (with holes) algorithm [13] to speed up the 

segmentation of feature maps by replacing the deconvolutional layers through the introduction of zeros to 

convolutional filters to increase their length (up-sampling) after the last two max-pooling layers. In this way, the 

Field-of-View (FOV) of the models can be arbitrarily controlled by adjusting the input stride, without increasing 

the number of parameters or the amount of computation. 

In this study, DeepLab framework [3] is investigated on segmentation of CT brain images through the 

fusion with Fully Convolutional Networks (FCN) [14] to realise pixel-wise prediction and Conditional Random 

Field (CRF) for definition of edges. In doing so, the pre-trained dCNN classifier [15] is firstly converted by 

replacing the last fully connected layers with fully convolutional layers to produce coarse output maps. Then, 

upon those blob-like coarse segmentations, a fully-connected pairwise CRF is applied to fine tune edge details. 

This is done by assembling neighbouring nodes by assigning same labels to spatially proximal pixels, which is 

realised by the energy function as formulated by Eq. (1). 
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In addition, 𝑃(𝑥𝑖) refers to the output from FCN, being the probabilistic label assignment at pixel 𝑖, and 

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗) the pairwise potential defined in terms of colour vector  𝐼𝑖 and 𝐼j and positions of 𝑝𝑖   and 𝑝𝑗 .  

In this research, two FCN models are trained on 309 CT images and evaluated on 46 testing images. All 

abnormal CT images were manually segmented to tumour and lesion by a medical doctor. To contend with the 

shortage of CT datasets, this study applies a pre-trained model of VGG-16 [15] on ImageNet. Specifically, the 

first FCN model with large field-of-view whereby sampling rate is set to 12 (i.e. 𝑟 = 12), is trained for pixel 

labelling.  Then the second FCN model is fine-tuned with multiple scales (MS) built upon the first model. 

Finally, CRF is annexed to the top of second FCN model to define edge details with parameter settings in Eq. (3) 

as: 𝑤1 = 5; 𝑤2 = 1; 𝜎𝑎 = 10; 𝜎𝛽 = 1; and 𝜎𝛾 = 3 . 

 

3. Results 

Figure 2 illustrates a number of examples of segmentation results applying the extended network of DeepLab 

fused with MS and CRF where red colour indicating the region being tumour or bleeding and green the lesions 

(e.g. edema). Quantitatively, the comparison results are presented in Table 1, including DeepLab, DeepLab with 

MS, DeepLab with MS and CRF) and patch based segmentation respectively, where DeepLab refers to with 

large FOV. With regard to patch-based segmentation approach, the simple AlexNet, a built-in model in Matlab 

software, is applied for patch classification. The training patches are rendered firstly by cropping regions to 

6464 pixel and then randomly selected with central pixels located in the masks of tumours and lesions, as well 

as edge of mask and background, similar to [16]. After merging edge patches to background, the training dataset 

with 3 labels (i.e. tumour, lesion and background) are generated. The classification accuracy for 3 classes is 

81.3%. For pixel wise prediction, each pixel of test image is labelled by classifying the cropped patch centred on 

this pixel. For all four methods, the measurement of the evaluation is conducted by using Intersection over 

Union (IoU) and Pixel Accuracy (PA) on each segmented class (Tumour, Lesion and Background) and the mean 

value of each class as formulated in Eqs. (4) and (5). 

𝐼𝑜𝑈 =
Truepositive

Truepositive+Falsepositive+FalseNegative
  (4) 

𝑃𝐴 = 
Truepositive

Truepositive+FalseNegative
   (5) 

Table 1. The comparison result between varying fused CNN network where DeepLab indicates with large field of view, i.e. =12. 

Method Tumour (%) Lesion (%) Background (%)  Mean PA (%) Mean IoU (%) 

DeepLab PA  

IoU 

85.10 

61.18 

64.75 

52.03 

98.88 

97.73 

82.91 

 

 

70.31 

DeepLab + MS PA  

IoU 

88.51 

70.01 

69.69 

57.31 

99.03 

97.97 
85.74  

75.10 

DeepLab + MS + CRF PA 

IoU 

88.07 

75.02 

68.65 

58.44 

99.24 

98.12 

85.32  

77.19 

Patch-based pixel-wise PA 

IoU 

78.64 

58.20 

68.55 

37.17 

96.83 

95.61 

81.34  

63.64 

  

 

 

 

 

 

 



 
 

Figure 2. Tumour segmentation results with large FOV DeepLab and patch-based deep learning networks. From top to bottom: original 

image, ground truth, DeepLab +MS+CRF, DeepLab+MS, DeepLab and patch-based deep learning, where different colours indicate 

difference regional classes. 

At pixel level, the best segmentation accuracy can be achieved by the approach of DeepLab coupled with 

multiple scales (MS), giving rise to the accuracy rate of 85.74%. All the methods perform well on segmentation 

of tumours with over 81% accuracy rate but less so for segmentation of lesions, which is expected as some 

lesion regions, e.g., bleeding in Figure 2 (row 4), are merging with health tissues. When judged based on IoU, 

the approach of DeepLab fused with MS and CRF delivers the best result, achieving 77.19% of accuracy rate. 

While patch-based deep learning network performs better for segmentation of brain tumour on MR images 

[17], it appears to be less so for CT images. Partly due to the fact that these CT images have not undergone pre-

processing stage to normalise intensity levels across all CT images as in the case of MR images. As illustrated in 

Figure 2, intensity distribution across different datasets varies considerably.  On the other hand, application of 

multi-scale to DeepLab can alleviate this challenge by increasing the accuracy of boundary localization, which 

is realised through the attachment of two layers of multiple layer perceptrons (MLP) to the input image and the 

output of each of the first four max pooling layers. 

4. Conclusion and discussion 

This research evaluates the current state of the art deep learning (DL) techniques for segmentation of brain 

lesions from CT images. It showcases that when coupled with fine-tuned techniques, e.g. CRF and MS, deep 

learning based approach can provide accurate and robust results without too much involvement of pre-

processing work. These findings will be taken forward in the future to the application to diagnosis of early onset 

of Alzheimer’s disease (AD) applying deep learning based segmentation approaches to measure atrophy factors 

between temporal horn radio and suprasellar cistern ratio, leading to revealing significant insights of AD. While 

the first scan of CT images undertaken by patients may have shown AD signature features, the manual 

delineation of atrophy in certain regions, for example, medial temporal lobe and left hippocampus, vary 

considerably between radiologists [2]. 

In medical field, patched-based segmentation is also widely applied, which appears to perform better in a 

number of modalities, e.g. MR or microscopy. In this study, patch-based segmentation techniques applying DL, 

as described in [16], is also evaluated, which delivers the average PA of 81.34%, less than the averaged PA 

(84.66%) of all 4 approaches applied in this work. At present, the 3D CT images are treated in 2D form, slice by 

slice. In the future, more datasets with higher resolution in z-direction will be collected upon which 3D based 

DL approaches of segmentation will be developed to take advantage of the information along depth-direction. 

To overcome the shortage of medical datasets, pre-trained network, e.g. VGG-16 [15] and Alexnet built on 

ImageNet, has been applied to lay a foundation for training, which appears to work well even this model is built 

upon natural images, e.g. bicycle, human, boat, etc.. 
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