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Abstract—Multiobjetive optimization has gained a
considerable momentum in the evolutionary computation
scientific community. Methods coming from evolutionary
computation have shown a remarkable performance for solving
this kind of optimization problems thanks to their implicit
parallelism and the simultaneous convergence towards the Pareto
front. In any case, the resolution of multiobjective optimization
problems (MOPs) from the perspective of multitasking
optimization remains almost unexplored. Multitasking is
an incipient research stream which explores how multiple
optimization problems can be simultaneously addressed by
performing a single search process. The main motivation behind
this solving paradigm is to exploit the synergies between the
different problems (or tasks) being optimized. Going deeper, we
resort in this paper to the also recent paradigm Evolutionary
Multitasking (EM). We introduce the adaptation of the recently
proposed Multifactorial Cellular Genetic Algorithm (MFCGA)
for solving MOPs, giving rise to the Multiobjective MFCGA
(MO-MFCGA). An extensive performance analysis is conducted
using the Multiobjective Multifactorial Evolutionary Algorithm
as comparison baseline. The experimentation is conducted over
10 multitasking setups, using the Multiobjective Euclidean
Traveling Salesman Problem as benchmarking problem. We also
perform a deep analysis on the genetic transferability among
the problem instances employed, using the synergies among
tasks aroused along the MO-MFCGA search procedure.

Index Terms—Multiobjective Optimization, Transfer
Optimization, Evolutionary Multitasking, Cellular Genetic
Algorithm, Traveling Salesman Problem.

I. INTRODUCTION

Efficiently solving optimization problems driven by multiple
conflicting objectives has been a recurrent concern that has
been under active study by the research community. The
main rationale for this continued activity is the prevalence of
multiple objectives in real-world decision making processes,
each corresponding to e.g., different evaluation criteria for the
decision variables or interests/preferences imposed by different
stakeholders of the considered scenario. Addressing these
multiobjective optimization problems (MOPs) implies the
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discovery of a set of solutions which provides a balance among
the considered objectives [1]. In this strand of optimization
problems, one solution can be declared to be Pareto optimal
when there is no other solution better than it in all considered
objectives. This is the main reason why the presence of
objectives, when mutually competitive, do not lead to a single
solution, but rather to a set of solutions differently trading
among the objectives of the problem.

Over decades a myriad of solvers has been proposed for
efficiently dealing with MOPs. The adoption of meta-heuristic
algorithms relying on either Evolutionary Computation or
Swarm Intelligence has gained a remarkable popularity in
recent years [2], being nowadays one of the most preferred
alternatives for solving multiobjective problems. Among them,
the Nondominated Sorting Genetic Algorithm II (NSGA-II
[3]), the multiobjective evolutionary algorithm based on
decomposition (MOEA/D [4]) or the Speed-constrained
Multiobjective Particle Swarm Optimization (SMPSO [5])
stand out from the numerous algorithmic proposals in the field.

Although MOPs have been so far tackled via different
solvers, it has not been until recently when Transfer
Optimization [6] has emerged as a promising paradigm for
this kind of optimization problems. Transfer Optimization
is an incipient research field with a growing momentum
in the current research panorama [7]. The main inspiration
underneath this paradigm is the exploitation of the knowledge
generated during the optimization of one problem for
efficiently solving another related or unrelated problem.
Within Transfer Optimization three different branches can
be distinguished: sequential transfer, multiform optimization,
and multitasking. Among them, we focus our attention on
multitasking, which aims to simultaneous address different
optimization problems of equal priority by dynamically
exploiting synergies existing among them. Multitasking
is often approached through the lenses of evolutionary
computation, forging what is nowadays referred to as
Evolutionary Multitasking (EM [8]). EM deals with
multitasking environments by adopting concepts, operators
and search strategies drawn from evolutionary computation,
leveraging their design flexibility and adaptability to cope with
problems that potentially feature different search spaces.

To date, several studies have demonstrated that multitasking



optimization can efficiently solve multiple problems at once,
including MOPs [9]. Despite the efforts conducted to adapt
EM for solving MOPs, efficient multitasking solvers to
deal with problems comprising several objectives is still
scarce when compared to those designed for single-objective
problems. We assume this noted lack of contributions as
our principal motivation to adapt the Multifactorial Cellular
Genetic Algorithm (MFCGA) recently proposed in [10] to the
case where tasks are MOPs, giving rise to the Multiobjetive
MFCGA (MO-MFCGA). Briefly explained, MFCGA is an
EM metaheuristic algorithm inspired by the foundations of
cellular genetic algorithms [11] and multifactorial optimization
[12], the latter being a specific materialization of the EM
paradigm that has shown great efficiency when tackling
different practical multitasking setups.

We assess the performance of the proposed MO-MFCGA
approach over multiobjective multitasking environments by
designing an extensive experimentation using the well-known
Traveling Salesman Problem (TSP [13]) as the baseline
problem for benchmarking purposes. Specifically, we have
used 10 multiobjective Euclidean TSP (MO-ETSP) instances
for building 10 different multitasking use cases, whose
results are presented and discussed towards ascertaining
the competitiveness of MO-MFCGA with respect to
the Multiobjective Multifactorial Evolutionary Algorithm
(MO-MFEA [9]), which is arguably the standard algorithmic
bearer of this specific research area. Finally, another
remarkable contribution of this work is the analysis of the
genetic knowledge transfer emerged among the MO-ETSP
instances in use. According to the insights given recurrently
in the related literature (e.g. [14]), analyses of this kind are
required to fully understand the behavior of new algorithmic
proposals in regards to the exchange of knowledge among
tasks, posing a valuable addition to the state of the art and
providing insights for future follow-up studies.

The rest of this manuscript is structured as follows:
Section II reviews background related to EM, MO-MFEA and
MO-TSP. Next, Section III describes the main adaptations
made to the seminal MFCGA to tackle MOPs, leading to
the definition of the proposed MO-MFCGA. The experimental
setup and the discussion of the results are given and discussed
in Section IV. Section V finishes this paper by drawing
conclusions and outlining future work rooted on our findings.

II. BACKGROUND

This section provides a brief background on three specific
aspects connected to this work: EM and Multifactorial
Optimization (Section II-A), MFEA (Section II-B) and
MO-TSP (Section II-C).

A. Evolutionary Multitasking and Multifactorial Optimization

As mentioned in the introduction, multitask optimization
focuses on solving several optimization problems or tasks
in a simultaneous manner. However, a fundamental premise
to yield a more efficient search than solving each problem
in isolation from each other is that knowledge transfer

is held among related problems, so that the search is
expedited when such relationships are synergistic [6]. In the
multitasking mainstream, EM is often resorted for designing
search algorithms that implement such knowledge transfer.
The principal motivation for the adoption of concepts from
evolutionary computation in this area is twofold: i) the inherent
parallelism granted by a population of solutions, providing an
suitable framework for dealing with concurrent tasks, and ii)
the maintenance of a set of solutions over the search, which
eases the exploration of synergies among the tasks and the
exchange of genetic material among individuals [12]. Diverse
perspectives have been given over the years for formalizing
the EM concept, reviewed recently in comprehensive surveys
on the matter [7]. However, there is a clear consensus in the
literature around the capital role of multifactorial optimization
as a leader paradigm to realize EM [15], with MFEA [12]
as one of the most popular algorithms resulting from this
paradigm.

Multifactorial optimization can be described as an EM
scenario in which K concurrent problems or tasks (each
characterized by its search space) must be optimized in
a simultaneous fashion. The objective function of task Tk
is represented as fk : Ωk → R, where Ωk denotes the
search space of Tk. Assuming that all tasks are minimization
problems, the main goal of multifactorial optimization is
to reach a set of solutions {x1,x2, . . . ,xK} such that
xk = arg minx∈Ωk

fk(x). One of the differential features
of multifactorial optimization is that it pursues this goal
(i.e. finding {xk}Kk=1) by exploring a single and unified
search space Ω′, so that solutions defined in this unified
search space can be decoded to yield a task-specific solution
for any of the K optimization problems at hand. To this
end, algorithms embracing multifactorial optimization usually
maintain a P -sized population of individuals {x′i}Pi=1 (with
x′i ∈ Ω′), based on which several definitions are made:

Definition 1 (Factorial Rank): the factorial rank rki of
individual x′i for task Tk is the index of that individual within
the population, sorted in ascending order of the fitness value
fk(·) of its individuals over Tk.

Definition 2 (Skill Factor): the skill factor τi of individual
x′i is the task Tk for which it is assigned.

Definition 3 (Scalar Fitness): the scalar fitness ϕi of x′i is
given by ϕi = 1/rki .

Many interesting research works have been published in
the last few years around multifactorial optimization and its
forefront method (MFEA). Among them, it is interesting the
work in [16], where MFEA is firstly adapted for tackling
discrete optimization problems. This work is of particular
relevance for this work, since it introduces the unified discrete
encoding strategy that lies at the core of our proposal. It is
also worth highlighting the work conducted in [17], in which
the adaptive variant of MFEA is proposed. In [18], MFEA
is applied for dealing with multitasking environments under
interval uncertainties. Also valuable is the study in [19], in
which MFEA is used to solve several mobile agents path
planning problems at once. Further related contributions can



be found in the literature review offered in [7].
Focused on the specific context covered in this manuscript

(EM for MOPs), the multiobjective variant of the canonical
MFEA (MO-MFEA) was introduced in [9], posing an
inflection point in the literature that had gravitated on
single-objective problem formulations until then. Since its
inception, MO-MFEA has been employed in a heterogeneous
range of applications, such as electric power dispatch problems
[20], operational indices optimization problems [21] or
multiobjective pollution-routing problems [22]. Lastly, in [23]
an adaptive version of the MO-MFEA has been introduced by
the same authors that developed MFEA-II, an extension of the
seminal MFEA that allows for the estimation of the intensity
of knowledge exchange among tasks over the search.

B. Multiobjective Multifactorial Evolutionary Algorithm

MO-MFEA is a multifactorial optimization algorithm
designed for multiobjective EM environments that is largely
inspired by NSGA-II [3], which is the most popular
multiobjective metaheuristic algorithm. In fact, in the concrete
case of K = 1, MO-MFEA reduces to NSGA-II. Algorithm
1 describes algorithmically the main steps of MO-MFEA. We
refer the audience to [9] for further details. However, it is
worth mentioning that MO-MFEA has four main features that
are crucial for guiding the multitasking search process:

Algorithm 1: Pseudocode of MO-MFEA [9]

1 Randomly generate a population X of P individuals
2 Assign a skill factor τi for every x′i in X
3 Decode and evaluate each x′i only for task τ i

4 Calculate the scalar fitness ϕi of each x′i
5 repeat
6 Apply genetic operators on X to get offspring X∗

7 Determine the τi for each individual in X∗

8 Evaluate each individual in X∗ in its skill factor τi
9 Combine X and X∗ to yield Q = [X;X∗]

10 Update scalar fitness ϕi for each individual in Q
11 Build the next population X by selecting the best

P individuals in Q in terms of scalar fitness
12 until termination criterion reached
13 Return all individuals for each task Tk

• Unified solution representation: the selection of a suitable
encoding strategy for x′i is one of the most important
aspects to consider when dealing with multifactorial
optimization. A proper strategy is crucial for building a
unified search space Ω′ capable of fully representing the
search spaces of all the K tasks under consideration.
In this work we deal with MOPs whose solutions are
permutations of a range of integers. Consequently, we resort
to the well-known permutation encoding as the unified
representation for x′i [24]. Assuming K MO-TSP problems
are simultaneously tackled, each MO-TSP instance Tk has
its own dimensionality Dk equal to the number of cities to
be visited. In this way, an individual x′i is represented as

a permutation of the integer set {1, 2, . . . , Dmax}, where
Dmax = maxk∈{1,...,K}Dk, that is, the maximum problem
dimension among all the K tasks. Thus, if a solution x′i
has to be evaluated for a task Tk whose Dk < Dmax, only
the values lower than Dk are considered for building the
solution xk that can be evaluated as per fk(·). These chosen
values follow the same order as in x′i.

Algorithm 2: Assortative mating in MO-MFEA

1 Consider candidate parents x′1 and x′2
2 Generate a random real number rand between 0 and 1
3 if τ (1) = τ (2) or rand < rmp
4 (x′,∗1 ,x′,∗2 ) = crossover+mutation(x′1,x

′
2)

5 else
6 x′,∗1 = mutation(x′1), x′,∗2 = mutation(x′2)
7 end

• Assortative mating: this mechanism is built under the
premise that individuals are more prone to interact with
mates coming from similar cultural background [12].
Following this assumption, the search process of MO-MFEA
prioritizes mating solutions with the same skill factor τi.
We depict in Algorithm 2 the specific assortative mating
operator used by MO-MFEA. It should be noted that the
random mating probability rmp ∈ R[0, 1] is a control
parameter that must be set before the search is run.

Algorithm 3: Cultural transmission in MO-MFEA

1 Consider an generated offspring individual x′,∗1
2 if x′,∗1 = crossover+mutation(x′1,x

′
2) and rand < 0.5

3 x′,∗1 inherits τ1 from x′1
4 else if x′,∗1 = crossover+mutation(x′1,x

′
2) and

rand ≤ 0.5
5 x′,∗1 inherits τ2 from x′2
6 else if x′,∗1 = mutation(x′i) for any i ∈ {1, 2}
7 x′,∗1 inherits τi from x′i
8 end

• Offspring evaluation: this strategy guarantees the
computational scalability of the solver by imposing
that each produced offspring is evaluated only on one task.
More concretely, a generated individual is evaluated in the
task corresponding to the skill factor inherited from its
parents. The inheritance of the skill factor is driven by the
mechanisms known as Cultural Transmission via Selective
Imitation, which is described in Algorithm 3.

• Scalar fitness-based selection: this is the survival criterion of
MO-MFEA, which follows an elitist strategy. As such, the
best P individuals in terms of scalar fitness σi are the ones
retained in the population for the next generation. To this
end, individuals in the population must be sorted in terms
of their scalar fitness σi, which must reflect the quality of
the solutions in terms of Pareto optimality. To this end, in
MO-MFEA the computation of the scalar fitness relies on



the crowding distance and the first non-dominated front. We
recommend reading [9] for further details.

C. Multiobjective Traveling Salesman Problem

As mentioned previously, this study utilizes MO-ETSP
instances as the tasks evolved in a EM setting for measuring
the performance of our proposed MO-MFCGA. Formally,
the single-objective version of the TSP can be defined as a
complete graph G = (V,A), where V = {v1, v2, . . . , vN}
is the set of N = |V| nodes of the graph (cities), and
A = {(vi, vj) : (vi, vj) ∈ V × V for i 6= j} the group of
edges interconnecting these nodes. Furthermore, each edge
(vi, vj) ∈ V has an associated cost cij , which in the symmetric
TSP is the same in both directions, i.e., cij = cji. The main
objective of the canonical TSP is to find a complete path that,
starting and finishing at the same node, visits each node exactly
once and minimizes the total cost of the route. The TSP is one
of the most intensively studied optimization problems in the
history of the optimization field, attracting an interest of the
research community that lasts to the present day [25].

In this paper we deal with the multiobjective MO-ETSP
variant of the TSP, in which the minimization of the tour
cost must be done over M planes (networks) simultaneously
[26]. Each of such planes is characterized by different values
of the edge costs cij , resulting from the Euclidean distance
between every node of the network, each located in a different
position in every plane m = 1, . . . ,M . The fact that such
locations vary gives rise to a Pareto trade-off between the
paths minimizing the total cost of each of the M planes under
consideration. Several other formulations of the MO-TSP can
be found in the literature, but MO-ETSP is the most frequently
used one in the related studies. To cite a few, in [27] a
multiobjective Artificial Bee Colony is proposed for dealing
with the MO-ETSP. The work in [28] proposed a novel
method coined as MOEA/NSM, which integrates features
from NSGA-II, SPEA2 and MOEA/D. Chen et al. introduced
in [29] a multiobjective evolutionary method based on the
Physarum-inspired computational model. In [30], a genetic
algorithm was utilized to tackle the MO-ETSP. Multiobjective
ant colonies were also explored for this same problem in [31].

III. PROPOSED MULTIOBJECTIVE MULTIFACTORIAL
CELLULAR GENETIC ALGORITHM

As mentioned in Section II-B, MO-MFEA hinges on four
different concepts: unified solution representation, assortative
mating, offspring evaluation though the application of cultural
transmission via selective imitation, and scalar fitness-based
selection. We have considered and reformulated these
four concepts when designing our proposed MO-MFCGA.
Algorithm 4 shows its pseudocode, inspired by both cellular
genetic algorithms, MFEA and the optimization of MOPs.

Regarding the unified representation employed, the same
approach described in Section II-B for MO-MFEA has been
employed. Furthermore, classical mutation and crossover
mechanisms have been used as genetic search operators.
At each generation, every individual x′i of the population

undergoes these two operators (without mutation nor crossover
probabilities), producing two new solutions: x′,muti and
x′,crossi . On the one hand, x′,muti is produced by applying
the mutation operator to x′i. On the other hand, x′,crossoveri is
the result of crossing x′i with a random neighbor x′j from
the cellular neighborhood X~

i ⊂ X of x′i. The geometry
and neighborhood structure of the cellular grid is one of the
parameters of MO-MFCGA, which can be set to any of the
available options usually considered in the literature related to
cellular automata (e.g., Moore or von Neumann).

Algorithm 4: Pseudocode of MO-MFCGA

1 Generate a population X of P random individuals
2 Assign skill factor τi for every x′i ∈ X
3 Evaluate each x′i only for task τi
4 Let X~

i denote the set of neighbors of x′i
5 repeat
6 for i = 1, . . . , P do
7 Randomly choose a neighbor x′j ∈ X~

i

8 x′,crossi = crossover(x′i,x
′
j)

9 x′,muti = mutation(x′i)

10 Evaluate x′,muti and x′,crossi only for task τi
11 Add [x′i,x

′,mut
i ,x′,crossi ] to Qτi

12 end
13 for k = 1, . . . ,K do
14 Rank Qk by Fast Non-Dominated Sorting
15 end
16 for i = 1, . . . , P do
17 xi = bestRank(x′i,x

′,mut
i ,x′,crossi ) within Qτi

18 end
19 until termination criterion reached
20 Return all individuals for each task Tk

Once xmutationi and xcrossoveri are created, they are
evaluated by following the same procedure described
for MO-MFEA (Subsection II-B), which guarantees the
computational efficiency of the method. This way, x′,muti

and x′,crossi are only evaluated for task Tτi , where τi is
the skill factor of x′i. This is an essential difference to the
scalar factor inheritance mechanism of MO-MFEA (Algorithm
3), since each individual in the cellular grid is devoted to
the optimization of the same MOP during the entire search
of MO-MFCGA. Furthermore, as in MO-MFEA, the initial
assignment of skill factors ensures an equal proportion of
solutions allocated to each task.

Once x′,muti and x′,crossi have been created and evaluated,
they are appended to a temporary population Qτi , together
with the original parent individual x′i. As a result, the K
subpopulations {Qk}Kk=1 store the previous individuals in
X and all the offspring generated in a single generation
of the search process. In order to select which individuals
survive in the cellular grid for subsequent generations, we
adopt a local improvement selection mechanism. Through this
procedure, for each position i of the population X, the best
solution among x′i, x′,muti and x′,crossi survives to the next



iteration, whereas the other two individuals are discarded.
In this case, in order to decide the best of these three
candidates, the temporary population Qτi is ranked by using
the Fast Non-Dominated Sorting criterion from [3] over the
search space spanned by the objectives of task Tτi . Thus,
the best individual is the one positioned in the best ranking
position as per this criterion. Ties in this ranking are resolved
by prioritizing x′i (the solution is substituted only if it is
improved), followed by x′,crossi (sharing of knowledge) and
x′,muti (local improvement).

IV. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION

As mentioned in previous sections, the experimentation
described on this work comprises several test cases comprising
several two-objective MO-ETSP instances. Specifically, 10
different MO-ETSP instances have been designed, whose
composition is detailed in Table I. It should be noted that these
instances are the combination of 5 single-objective Euclidean
TSP instances retrieved from the Krolak/Felts/Nelson dataset,
which is part of the well-known TSPLIB repository.
KroBC100, for example, is the combination of KroB100
and KroC100 instances, involving N = 100 nodes (cities)
each. The combination of these Krolak/Felts/Nelson instances
for synthesizing multiobjective problems is common practice
in the MO-ETSP related literature. Our experiments using
these designed test cases is to compare the performance
of MO-MFCGA and MO-MFEA, but also to examine the
exchange of genetic material of MO-MFCGA over the search,
which is realized through its grid neighborhood structure and
crossover operator (lines 7 and 8 of Algorithm 4).

TABLE I
COMPOSITION OF THE MO-ETSP INSTANCES UNDER CONSIDERATION

Instance kroA100 kroB100 kroC100 kroD100 kroE100

kroAB100
kroAC100
kroAD100
kroAE100
kroBC100
kroBD100
kroBE100
kroCD100
kroCE100
kroDE100

Each of the 10 generated multitasking test cases requires
that MO-MFCGA and MO-MFEA should solve all its assigned
MO-ETSP instances. We summarize all these test cases in
Table II. As it can be seen, 5 different test cases are composed
of 4 MO-ETSP instances, 4 comprise 6 MO-ETSP cases, while
the last test case covers all the 10 MO-ETSP instances. The
main motivation for generating these test cases is two-fold.
On one hand, these 10 configurations ensures the heterogeneity
and variety of the test cases is assured, that is, each MO-ETSP
instance is considered in a similar number of test cases. On
the other hand, with these configurations we can explore
the capability of MO-MFCGA to exploit known synergies
between MO-ETSP instances that share a single-objective

Euclidean TSP problem. In other words, MO-ETSP instances
such as kroAB100 and kroAC100 can be placed under the
focus of our knowledge transfer study, as both instances have
in common the kroA100 TSP instance in their composition.

TABLE II
SUMMARY OF THE 10 DESIGNED MULTITASKING TEST CASES

Test Case MO-ETSP tasks involved

TC_4_1 kroAB100, kroAC100, kroAD100, kroAE100
TC_4_2 kroAB100, kroBC100, kroBD100, kroBE100
TC_4_3 kroAC100, kroBC100, kroCD100, kroCE100
TC_4_4 kroAD200, kroBD100, kroCD100, kroDE100
TC_4_5 kroAE100, kroBE100, kroCE100, kroDE100
TC_6_1 kroAC100, kroAD100, kroAE100, kroBC100, kroBD100, kroBE100
TC_6_2 kroAB100, kroAC100, kroBD100, kroBE100, kroCD100, kroCE100
TC_6_3 kroAC100, kroAD100, kroBD100, kroBE100, kroCD100, kroCE100
TC_6_4 kroAB100, kroAC100, kroAD100, kroBE100, kroCE100, kroDE100

TC_10
kroAB100, kroAC100, kroAD100, kroAE100, kroBC100, kroBD100,
kroBE100, kroCD100, kroCE100, kroDE100

In what refers to the configuration of the algorithms
under comparison, similar operators and parameters have been
considered for both MO-MFCGA and MO-MFEA for the sake
of a fair and rigorous comparison. Table III shows the specific
configurations used in the experiments. Parameter values have
been established based on those reported in previous work
related to cellular genetic algorithms, MO-MFEA and discrete
MFEAs [9], [16]. A further refinement phase was performed
based on a grid of values around typical configurations of these
solvers, reporting the results of the best configurations found
during this phase. Furthermore, we embrace methodological
guidelines for benchmarking metaheuristic algorithms [32] and
perform 20 independent runs for each multitasking test case
and algorithm involved in the experimentation. As stopping
criterion, both algorithms stop their execution after 750 · 103

objective function evaluations. Furthermore, all experiments
have been performed on an Intel Xeon E52650 v3 2.30 GHz
processor with 32 GB RAM. To ensure reproducibility of
these results and support future studies using MO-MFCGA,
a Java implementation of our proposed algorithm is available
in https://git.code.tecnalia.com/aritz.martinez/mo-mfcga.

TABLE III
PARAMETRIZATION OF MO-MFCGA AND MO-MFEA

Parameter MO-MFCGA MO-MFEA

Population size P 200
crossover(·) Order crossover
mutation(·) 2-opt
Crossover probability 0.9
Mutation probability 0.1
Grid, neighborhood 2D, Moore

A. Results and Discussion

Our discussion departs from Table IV, which depicts the
average and standard deviation of two multi-objective quality
indicators (hypervolume, HV, and inverted generational
distance plus, IGD+) reached by MO-MFCGA and
MO-MFEA in all the 10 multitasking test cases detailed
above. Results are reported for each MO-ETSP instance, and



TABLE IV
MEAN AND STANDARD DEVIATION OF THE HV AND IGD+ MULTIOBJECTIVE QUALITY INDICATORS ACHIEVED BY MO-MFEA AND THE PROPOSED

MO-MFCGA OVER EACH OF THE MO-ETSP INSTANCES OF THE TEST CASES UNDER CONSIDERATION

Test case kroAB100 kroAC100 kroAD100 kroAE100 kroBC100 kroBD100 kroBE100 kroCD100 kroCE100 kroDE100

MFEA MFCGA MFEA MFCGA MFEA MFCGA MFEA MFCGA MFEA MFCGA MFEA MFCGA MFEA MFCGA MFEA MFCGA MFEA MFCGA MFEA MFCGA

TC_4_1
0.580.02 0.750.01 0.580.01 0.740.01 0.60.02 0.760.01 0.570.02 0.750.01 – – – – – – – – – – – –
0.920.02 0.030.01 0.950.03 0.030.01 0.890.02 0.040.01 0.940.02 0.040.01 – – – – – – – – – – – –

TC_4_2
0.590.02 0.750.01 – – – – – – 0.560.02 0.730.01 0.590.02 0.740.01 0.60.02 0.740.01 – – – – – –
0.960.02 0.030.01 – – – – – – 0.970.02 0.030.01 0.960.02 0.030.01 0.920.02 0.030.01 – – – – – –

TC_4_3
– – 0.610.02 0.750.01 – – – – 0.620.02 0.760.01 – – – – 0.570.02 0.750.01 0.580.02 0.740.01 – –
– – 0.90.03 0.040.01 – – – – 0.870.03 0.030.01 – – – – 0.940.04 0.040.01 0.930.03 0.030.01 – –

TC_4_4
– – – – – – – – – – 0.610.02 0.760.01 – – 0.570.02 0.730.01 – – 0.610.02 0.760.01
– – – – – – – – – – 0.960.01 0.030.01 – – 0.950.02 0.040.01 – – 0.920.02 0.030.01

TC_4_5
– – – – – – 0.590.02 0.760.01 – – – – 0.590.03 0.730.01 – – 0.630.02 0.750.01 0.590.03 0.730.01
– – – – – – 0.910.02 0.030.01 – – – – 0.890.03 0.030.01 – – 0.840.02 0.030.01 0.920.03 0.030.01

TC_6_1
– – 0.640.02 0.820.01 0.620.02 0.810.01 0.660.02 0.850.01 0.650.02 0.840.01 0.640.02 0.810.01 0.660.01 0.830.01 – – – – – –
– – 0.660.02 0.030.0 0.710.02 0.030.01 0.640.03 0.030.01 0.640.02 0.030.01 0.70.02 0.030.01 0.640.02 0.030.01 – – – – – –

TC_6_2
0.680.01 0.850.01 0.620.02 0.790.01 – – – – – – 0.630.03 0.810.01 0.650.02 0.820.01 0.60.03 0.80.01 0.640.02 0.830.01 – –
0.620.02 0.030.01 0.670.02 0.030.01 – – – – – – 0.690.03 0.030.0 0.650.01 0.030.01 0.720.04 0.030.01 0.660.02 0.030.0 – –

TC_6_3
– – 0.620.02 0.810.01 0.610.03 0.820.01 – – – – 0.630.02 0.80.01 0.660.02 0.820.01 0.640.02 0.840.01 0.610.02 0.790.01 – –
– – 0.680.02 0.030.01 0.670.02 0.030.01 – – – – 0.680.02 0.030.0 0.630.02 0.030.0 0.660.02 0.030.01 0.70.02 0.030.01 – –

TC_6_4
0.620.03 0.810.01 0.640.02 0.820.01 0.60.03 0.790.01 – – – – – – 0.660.02 0.820.01 – – 0.640.03 0.820.01 0.640.03 0.80.01
0.660.02 0.030.01 0.650.01 0.030.0 0.70.02 0.030.01 – – – – – – 0.680.02 0.030.01 – – 0.680.03 0.030.01 0.660.02 0.020.0

TC_10
0.570.03 0.790.01 0.550.04 0.780.01 0.530.03 0.770.01 0.530.04 0.80.01 0.550.04 0.790.01 0.560.05 0.790.01 0.610.03 0.810.01 0.540.03 0.80.01 0.570.03 0.80.01 0.570.02 0.790.01
0.710.03 0.040.01 0.720.03 0.030.01 0.770.03 0.040.01 0.780.05 0.040.01 0.740.04 0.030.0 0.760.06 0.030.01 0.680.03 0.040.01 0.740.05 0.040.01 0.730.03 0.040.01 0.730.02 0.040.01

Note: The upper value meanstd in the cell corresponding to every (algorithm, MO-ETSP, test case) combination indicates the HV statistics, whereas the bottom value shows IGD+ statistics.

are computed over the 20 independent runs performed for
every test case. The HV is arguably the most widely used
indicator in the multiobjective community, and it evaluates
the solutions by simultaneously taking into account the
convergence and diversity. Thus, the higher the HV, the
better the algorithm can be declared to perform. The IDG+
measures both convergence and diversity of Pareto front
approximations, and it is a weak Pareto-compliance variant
of the basic IDG. In this regard, the lower the IGD+ is, the
better the algorithms performance can be considered to be.

The results shown in Table IV are conclusive: we confirm
that MO-MFCGA reaches better results when compared to
MO-MFEA in all the instances and over every test case
considered in this experimental benchmark. Gaps between
both algorithms are wide in term of both quality indicators,
which can be also stated to be statistically significant as
per the results of a Wilcoxon rank-sum test performed over
the results of every (MO-ETSP, test case) combination. The
p-value obtained by this test is lower than 1e − 3 in all
cases, determining that the differences noted between the
indicator values of MO-MFEA and MO-MFCGA are relevant.
To qualitatively inspect these results, we focus on the most
complex multitasking test case TC_10 and depict in Figure 1
the overall non-dominated set of solutions (aggregated over the
20 runs) obtained by both MO-MFCGA and MO-MFEA for
all the 10 instances that compose this demanding test case. The
visual assessment of these Pareto fronts reveals that indeed,
Pareto fronts approximations found by MO-MFCGA dominate
those of MO-MFEA, in terms of both convergence and spread.
This reinforces our conclusion that MO-MFCGA outperforms
MO-MFEA over each test case of our experiments.

B. Analysis of the Genetic Transfer between Tasks

In this last section of our experimentation, we analyze the
knowledge transferred between the 10 considered MO-ETSP
instances in the most complex test case (TC_10). This
study aims to i) analyze the positive genetic transfer among
considered tasks; ii) discover which instances can be declared
to be synergistically related and why; and iii) empirically
quantify the inter-task interactions produced by MO-MFCGA
along the 20 executions of the TC_10 test case.

As we have already discussed in [10], our single-objective
MFCGA was proven to be especially appropriated for
analyzing positive knowledge transfer held during the search.
This characteristic is directly inherited by the MO-MFCGA
presented in this paper, mainly by virtue of the local
improvement selection criterion used to retain the best
individuals in the cellular grid. As a result of this replacement
mechanism, an individual x′i of the population is replaced only
if any of the generated x′,muti or x′,crossi performs better as
per its assigned task (i.e., its skill factor). Therefore, if x′,crossi

replaces x′i, we can state that a positive transfer has occurred
from x′j ∈ X~

i to x′i (we refer to Algorithm 4 and Section
III for notation details). In the specific case of the MO-ETSP,
a positive genetic contribution of task τj towards task τi is
materialized through the insertion of part of x′j into x′i by
means of the crossover operator.

Bearing the above reasoning in mind, Figure 2 illustrates the
amount of positive knowledge transfer occurred between each
pair of MO-ETSP tasks along the 20 executions of TC_10
test case. The radius of each blue circle in this figure is
proportional to the average amount of times that an individual
featuring the skill factor shown in the column has shared some
knowledge with a solution whose skill factor is represented in
the row. For this reason, the wider the circle is, the more
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Fig. 1. Pareto Fronts obtained by MO-MFCGA and MO-MFEA in TC_10
test case. : MO-MFEA; : MO-MFCGA. Objective function values have
been scaled to the range [0, 1].

intense the relation between the pair of instances can be
thought to be. Circles placed in the diagonal of this matrix plot
depict the sum of all inter-task (blue portion) and intra-task
exchanges (gray portion), wherein intra-task exchanges stand
for those cases in which the genetic transfer has occurred
among individuals with the same skill factor.

Several interesting conclusions can be drawn by analyzing
this figure. First, we observe that intense synergies exist
among MO-ETSP cases that share one of their objectives.
In other words, the exchange of knowledge among the
pair (kroBD100, kroCD100), for example, is intense, mainly
because they share one objective: the minimization of
kroD100. Similar statements can be made – to a greater or
lesser extent – in other cases with shared MO-ETSP instances,
such as (kroAB100,kroBD100), (kroCD100,kroDE100) or
(kroBE100,kroBC100). The second conclusion is the fact that,
for pairs that do not share any of their compounding MO-ETSP
instances, the exchange of knowledge is almost nonexistent.
For this reason, the communication between these tasks
can be thought to be negative. These two conclusions fully

Fig. 2. Average intensities of genetic transfer between MO-ETSP instances
registered when tackling the TC_10 test case.

buttress the findings provided by some previously published
studies, such as [12] or [6], which state that some kind of
partial domain overlap should exist among different tasks in
order to efficiently harness the transfer of genetic material.
Finally, the amount of inter-task exchanges is found to be
significantly greater than that of intra-task exchanges, proving
the importance of the knowledge transfer for this specific case
of study.

V. CONCLUSIONS AND FUTURE WORK

This work has elaborated on the design and performance
assessment of a novel approach coined as Multiobjetive
Multifactorial Cellular Genetic Algorithm (MO-MFCGA) for
dealing with EM scenarios whose tasks are MOPs. This
method finds its main inspiration in the multiobjective variant
of the well-known MFEA, as well as in core concepts
of cellular genetic algorithms. Specifically, MO-MFCGA
arranges its population as a grid structure, where different
neighborhood relationships can be defined among individuals.
These defined neighborhoods impose a degree of locality in
the application of the evolutionary crossover operator, allowing
for a controlled dispersion – as per the size and structure of
the neighborhoods – of good solutions over the grid.

We have empirically measured the performance of
our proposed MO-MFCGA by comparing it to that of
MO-MFCGA over 10 different multitasking environments
(test cases), each consisting of a subset of 10 multiobjective
Euclidean traveling salesman problem (MO-ETSP) instances.
The experimental outcomes verify that MO-MFCGA largely
and consistently outperforms MO-MFEA in terms of the
convergence and diversity of the Pareto front approximations



discovered for every compounding task of the test cases.
Furthermore, an analysis of the inter-task genetic transfer held
during the search has revealed that MO-MFCGA effectively
promotes knowledge exchange between tasks that are a priori
known to be synergistically related as per the construction of
the MO-ETSP instances.

In light of the promising results reported in this manuscript,
further research lines are planned to extend the conclusions
drawn in this preliminary research. First, we intend to adapt
the inner search mechanisms featured by MO-MFCGA to
other paradigms and real-world problems in the optimization
field, with an emphasis on combinatorial and many-objective
optimization problems [33], [34]. Furthermore, we will deeply
analyze additional search procedures for the MO-MFCGA,
as alternative survival strategies, local search methods, and
the dynamic adaptation of the parameters of the cellular grid
during the search.
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