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Abstract

The purpose of this thesis is to present a comprehensive and practical approach for the time-optimal
motion planning and control of a general purpose industrial manipulator. In particular, the case
of point-to-point path unconstrained motions is considered, with special emphasis towards strategies
suitable for efficient on-line implementations. From a dynamic model description of the plant, and
using an advanced graphical robotics simulation environment, the control algorithms are formulated.
Experimental work is then conducted to verify the proposed algorithms, by interfacing the industrial
manipulator to the master controller, implemented on a personal computer. T,
The full rigid-body non-linear dynamics of the open-chain manipulator have been accommodated into
the lmodelling, analysis and design of the control algorithms. For path unconstrained motions, this
leads to a model-based regulating strategy between set points, which combines conventional trajectory
planning and subsequent control tracking stages into one. Theoretical insights into these two robot
motion disciplines are presented, and some are experimentally demonstrated on a CRS A251 industrial
arm. : o

A critical evaluation of current approaches which yield optimal trajectory planning and control of
robot manipulators is undertaken, leading to the design of a control solution which is shown to be a
combination of Pontryagin’s Maximum Principle and state-space methods of design. However, in a real
world setting, consideration of the relationship between optimal control and on-line viability highlights
the need to approximate mauipulator dynamics by a'piécewise linear and decoupled function, hence
rendering a near-time-optimal solution in feedback form.

The on-line implementation of the proposed controller is presented together with a comparison between
simmlation and experimental results. Furthermore, these are compared with measurements from the
industral controller. It is shown that the model-based near-optimal-time feedback control algorithms
allow faster manipulator motions, with an average speed-up of 14%, clearly outperforming current
industrial controller practices in terms of increased productivity. This result was obtained by setting
an acceptable absolute error limit on the target location of the joint (position and velocity) to within
[2.0E-02 rad, 8.7E-03 rad/s), when the joint was regarded at rest.
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'Chapter 1

Introduction

1.1 Motivation

An industrial robot is defined by the U.S. Robot Industries Association as a reprogrammable, mult:-
functional manipulator designed to move material, parts, tools, or specialised devices through variable
programmed motions for the performance of a variety of tasks. Similar definitions are adcpted by
the British Robot Association and the Japanese Robot Association [I]. In short, a robot is a repro-
grammable general-purpose manipulator with external sensors that can perform various assembly tasks.
With this definition, a robot must possess intelligence, which is normally due to computer algorithms
associated with its control and sensing devices [2]. The first robotic patents were by G.C. Devol for
parts transfer machines in the mid 1950’s. Further development of this concept by G.C. Devol and J. F
Engelberger led to the first industrial robot introduced by Unimation Inc., in 1959 1.

When first introduced commercially, robotic manipulators were used in dedlcated mass production
activities such as antomobile or printed circuit board assembly. These are volume manufacturing
operations with economies of scale that justify a robot’s high cost. Robots have also proved useful
in performing tasks that require extraordinary strength, endurance, dexterity and for operating under
conditions that might threaten the health of a human worker, such as nuclear environments. And, of
course, for carrying out repetitive or monotonous tasks that are associated with high levels of fatigue,
accidents and human error.

More recently, flexible antomation systems [3] (those which are capable of producmg a variety of
products with virtually no time lost for changeovers from one produnct to the next) bave extended the
range of activities for which robots can be cost-effectively employed to a multitude of lower volnme
operations. Laboratory automation is one of these areas, where a manipnlator designed to perform
tasks such as sample preparation or drug analysis must incorporate many of the traits common to the
most advanced industrial robots within the framework of an analytical laboratory, i.e.:

¢ Shorter turnaround time, resulting in overall cost reduction and increased productivity.

o The same or better precision and accuracy than existing manual methods with improved quality
and reliability of measurement.

¢ The freeing of trained laboratory staff to do more creative and productive work.

o Reduced, As Low As Reasonably Practicable (ALARP {4]) human contact with biological or
chemical hazards.

s Lower consumption of sample and/or reagents used in antomated analysis.

An automated radiopharmacentical dispenser {5] developed at Middlesex University 2 is a clear
example of this new field of research which is, nnderstandably, attracting the attention of industry.
The system prepares precise individual patient prescriptions with the required dose of radio-isotope
delivered either in shielded syringes or vials. This is automatically accomplished by the nse of a

1 These and other robotic-related resources can be found at the Frequently Asked Questions list for the internet robotics
newsgroups comp.robotics.misc and comp.robotics.research, at http://vww.frc.ri.cmu. edu/robotics-fag.
?In a collaborative link with British Nuclear Fuels Plc. and St. Bartholomew's Hospital {London).
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number of computer controlled workstations around a general purpose manipulator at the heart of the
system.

The origins of the work covered in this thesis stem from the broad objective of making this system
operate in a more productive way according to the first of the aforementioned geals. Since the robot
subsystem can he easily regarded as the key element to maintaining an operative and flexible robotic
antomated laboratory, the focus of this work has heen on designing ‘(and implementing) new control
strategies that could improve the performance of the robotic arm. 1t is this general aim that spurred
the author’s interest in the theory of optimal control systems. As early as 1965 Dorf [6] wrote:

“It is the high-speed computer that has ollowed the solution of optimal control problems.
Perhaps, more realistically, it is the expected high-speed and large memory computers in
the nezt generation of development and improved programming techniques that will allow
control theorists to consider the solution of realistic problems.”

Optimal control thecry applied to the area of rohotics has heen the subject of rather extensive research
which dates back to the early 1970’s when Kahn and Roth [7] puhlished their paper. Despite the interest
" that the paper generated, very little effort has heen dedicated to employing the “next generation”
technology envisaged by Dorf to find practical sclutions applicable to present industrial manipulators.
. The theory and experimental work developed in this dissertation is intended 2s a step forward in
practical optimal control of the robot moticn problem. '

1.2 Overview - The Problem within its Context

One of the basic problemsin robotics is planning motions to solve some spectfic task and then controlling
the response of the rohot to achieve those motions. 1t is common practice to refer to the path as the
curve in space that the manipulator end-effector must follow during the motion with central atteation
on collision avoidance. The path is a time-invariant function of one parameter. S, the amount of the
curve traversed. However quite often the description of the desired path is simply provided in terms of
the path’s end-points and possibly a set of intermediate via points or corner points to avoid obstacles
in the workspace. The trajectory is defined as the time seqnence of intermediate configurations of
the arm ¢;(t),4# = 1,2,...n (where n represents the number of Degrees of Freedom - DoF - of the
manipulator) along the programmed path. These configurations, possibly together with their first
and second time derivatives, are then fed to the servo mechanisms controlling the actnators that
actually move the arm. These steps, schematically depicted in Fignre 1.1, are followed hy most current
industrial manipulators to accomplish a specified task because the overall motion process could become
fairly complicated if considered in its entirety [8]. '

For current rohots, path planning and programming is usually accomplished by human operators
who rely on expensive, time-consuming and semi-empirical methods to construct the programs which
will carry out the desired task. These include off-line programming, the use of a teach pendant, or
mannallyleading the robot through the desired path first [9]. Considerahle research has been reported
into path planning techniques that can incrementally antomate robot programming. The methods
have the advantages of eliminating programming costs for new paths, reducing down-time and set-up
time and allowing robots to he nsed for changing tasks in changing environments. Plaoning can be
improved in several ways: the world models nsed in planning can be refined (with particular attention
to the space nsed for their representation), optimal path planning methods for sclving a given task
can be geaerated, and the ability ta specify the rchot motions required to achieve a task in terms of
high-level task commands can be iovestigated. However, much of the research in this area has been
devoted to devising methods to automatically plan collision-free paths, which has led to two competing
techniques. One of the methods solves the problem by forming a connected graph representation of the
free space and then searching the graph for a collision-free path [10]. Unfortunately this technique has
exponential complexity in the number of joints in the device. A second approach is based on creating
artificial potential fields arcund obstacles which cause the manipulator(s) to avold the ohstacies while
they are drawn towards an artificial attractive pole at the goal point [11]. Unfertunately, this method
generally adopts a local view of the environment and is subject to the manipulator hecoming stuck
at local minima of the artificial field. As a result, systems that plan collision-free paths are not as
yet available commercially. In general, path planning processes are normally independent of improving
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Figure 1.1: Traditional manipulator motion block diagram.

execution time of a given path and will not be addressed in this dissertation. For a good review of
recent developments in the area of automatic programming and motion planning the reader may refer
to [9). .

As will be examined in later Chapters, traditional trajectory planning strategies such as low degree
polynomials, cubic splines, linear functions with parabolic blends, critically damped or hang-bang [12]
perform some sort of interpolation between control set points to obtain the time course along the desired
path. These are entirely based on kinematic considerations to satisfy a specified set of constraints on
the position, velocity and/or acceleration of the arm along the path. These algorithms are meant to
he efficient in the sense of minimising computational expense. Hence, simplified constraints are often
assumed along the segments that define the path [13, 14].

Practically all industrial manipulators currently in use are based on classical linear feedback con-
trollers with proportional and derivative (PD) or proportional, derivative and integral (PID) algo-
rithms [15] to track the desired trajectory. However, it is well known that mechanical manipulators
are multibody systems whose dynamic hehaviour is described by strongly non-linear differential equa-
tions [16]. Non-linearities are associated both with position and velocity variables, and also payloads.
While a few advanced rmodel-hased industrial controllers [12, 17] compensate for some of the position-
dependent non-linear terms, such as gravity, they very often neglect the velocity-dependent terms in
the controller design. Although industrial trackers can generally keep the manipulator fairly close
to the desired trajectory (18], this simplistic division of robot motion into trajectory planning and
tracking often results in mathematically tractable solutions which do not utilise the manipulator’s full
capabilities. The source of such underutilisation lies in the fact that both maximum speeds and ac-
celerations/decelerations are limited for a given rohot structure by the torque capacity of the joint
actuators which vary across the workspace. Yet when trajectories are planned, constant maximum
hounds along each DoF are assumed [13, 14]. As a consequence, these specifications must he chosen
conservatively in order not to exceed the actual capahilities of the device, possibly forcing the robot to
. be underutilised [19]. o o S

To overcome these drawhacks, the trajectory planning problem is often reformulated as an optimal
control problem with state and control constraints, thus taking into account the dynamic character-
istics of the manipulator in the optimization procedure [20]. In doing this, the traditional inefficient
division of trajectory planning and control as two separate motion stages is removed. The resulting
algorithms yield optimal/suboptimal trajectories with respect to some performance index (e.g. time,
control action, acceleration) along with an approximation to the open-loop optimal /suboptimal control
torques that would generate such trajectories. However, they all suffer from the same shortcomings:
they result in impractically complicated schemes, most of them solved via iterative numerical algo-
rithms, hence at a large computational expense. 1n fact, resvlts to date have heen demonstrated only
in simulations and very few anthors have discussed implementation issues or presented experimental
results. Exceptions are [21, 22, 23] who demonstrated the merit of time optimal control, and showed
the significant contribution that the often ignored motor dynamics have in the optirmization process.
However, practical limitations have restricted the work to motion along specified paths and as stated
in [24], to date, no practical method has been developed for the on-line time-optimal feedback control
of manipnlators with non-linear dynamics.
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1.2.1 The novel approach

The aim of the work presented in this investigation is to go beyond computing a trajectory that is
' optimal with respect to a timing performance index and to study the problem in a manner that allows
for an on-line, practical implementation of the solution. With this goal in mind, the approach taken
departs from the usual solutions (described later in this work) which either assnme an initial given
path, or otherwise fit the optimal solution to a piecewise polynomial function. In contrast, the work
developed here is based upon the fact that many robotic applications do.not require manipulators
to strictly follow a presci-ibed trajectory. This is particular true when specifying gress motion of the
rohot arm when it operates in a collision-free space 3. Hence, the manipulator contro! problem can be
formulated in a more general form in which the robot is given freedom to move along any trajectory
between any two given intermediate or end-points. “Pick and place” routines in most laboratory
antomated environments fall within this group. The latter can usnally be described as highly compact
enclosures where a large number of via points are necessary to avoid collision with obstacles during the
execntion of a particular task. Yet an effort can he made to design trajectory planners between set
points to operate the manipulators at their maximum efficiency.

A practical algoritihm for the on-line point-to-point nnconstrained optimal motion of rohot manip-
ulators is proposed in this investigation which results in an improvement over the commercial joint-
interpolated approach and does not need pre-programming of the trajectory. The proposed scheme,
which takes the full rigid-body dynamics of the manipulator into account, resnlts in a two-point
boundary-valne (TPBV) problem in joint space which is analytically solved in real-time using Pon-
tryagin’s Maximum Principle (MP) assuming bang-bang control for each robot joint. Unfortunately,
the solution has not been achieved without a compromise. The difficulty of analysing non-linear systems
led to the need to locally linearise the dynamic model to avoid an iterative and compntationally expen-
sive solntion. This was a deliberate choice that restricted the solution to near-time-optimal control to
enahle a practical implementation. However, it will be shown how this mathematical shortcoming with
regards to optimality did not significantly degrade the performance of the solution under the normal
operating conditions of the manipulator. The idea of the averaged dynamics, first proposed by Kim
and Shin [25], was adopted in this inveétigat{on becanse it provides a twofold advantagecus mechanism
for the purpose of this dissertation:

1. 1t is a simple solution to the piecewise linearisation of the complex robot dynamics on the basis
of current and goal state, hence suitable for a real-time solution.

2. It results in a feedback form controller, and is therefore appropriate for direct implementation
without the need for a secondary trajectory tracking controller; moreover, the feedback structure
also accounts for modelling errors and the implicit errors due to the dynamics approximation.

With the nltimate goal in mind of implementing the proposed approach in a real industrial manipnla-
tor, to some extent the most salient feature of this work, some other unique features of the investigation
_ undertaken here are stated helow: :

e The consideration of the manipulator electro-mechanical characteristics in the overall design of
the optimal controller, in particular during the testing of the algorithm.

e A refined approach to the represeﬁtation of the overall dynamic behaviour of the manipulator .
during motion. This is accomplished hy the use of a weighting factors for the dynamic performance
of each honndary condition. :

e An investig;'ition into the stability of the scheme.

1.2.2 Aims and objectives

The aims of this work are to investigate and develop a feasible time-optimal control algorithm in
feedback form for the general point-to-point nnconstrained motion of rohot manipulators. Research
objectives are:

¢ Review of the published literature describing previous relevant contributions.

30therwise, some sort of collision avoidance can be assumed at task level to specify appropriate collision-free control
points.
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o Identification and development of the dynamic model characteristics (incluciing the electro-mechanical
parts) of the industrial manipulator employed in this work {CRS A251).

o Development and simulation of an optimal control strategy in an advanced graphical simulation
environment (Deneb’s TELEGRIP).

¢ Design and implementation of hardware necessary to interface the master controller implemented
on a PC with the industrial robot contrcller.

o Controller performance testing on the real system.
o Comparison and analysis of the results.

e Recommendations for further work.

1.2.3 Statement of originélity

The material in this thesis is the original work of the author. Contributions made by undergraduate
students were under the supervision of tbe author, who conceived and proposed the project concepts.

1.3 Outline

The general outline of the contents of this dissertation is as follows:

Chapter 2 reviews basic strategies widely applied to the description of manipulator motion in terms
of trajectories through space.

Chapter 3 is concerned with methods of controlling the robot arm sc that it tracks the desired tra-
jectories or follows a prescribed path through space. An exhaustive examination is not aimed
for. Instead, tbe emphasis is on placing optimal control within the context of general control
strategies, and on understanding their basic principles by reference to specialised literature where
detailed information can he obtained.

Chapter 4 is a discussion of the relevant research literature on optimal trajectory planning and control
of rohot manipulators, mainly focused on time-optimal strategies. An ad-hac classification based
on whether the manipulator is constrained to move along a specified path or not, gives rise to the
fundamental nature of the alternative proposed in this work. Special emphasis is also placed on
reviewing optimal robot control approaches which are feasible far implementation on-line.

Chapter 5 deals with the derivation and validation of the electro-mechanical manipulator equations
of motion, based on a Lagrangian mechanics point of view.

.Chapter 6 covers tbe analysis and design of the (near) optimal control strategy, which is_.hased on
" Pontryagin’s MP. It is shown how the proposed strategy can he seen as an extension of the
fundamentally simpler “double integrator” prohlem, and an investigation of the assumptions
needed to make the method viable for an on-line implementation is treated in depth. Extended"
considerations about the stability of the controller are also discussed.

Chapter 7 describes the (graphical) simulation environment where the control strategy was first
tested, and the test-rig developed to implement the controller. Results obtained from the real
system in moving the manipulator between a large number of configurations in the workspace
are presented and compared with the widely employed PID linear control of industrial manipula-
tors. It is shown how the proposed (pear) time-optimal approach can be used as a planning and
control tool to determine fast rohot movements with good dynamic properties, demonstrating
specific improvements over more traditional linear motion schemes.

Chapter 8 summarises the work presented in this thesis, and draws some conclussions about the
practicalities of the proposed solution to real rohot manipulatars. Furthermore, a number of
ideas are suggested to improve the strategy presented.
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Appendix A presents the derivation of the mampulator equations of motlons deferred from the main
body of text.

Appendix B provides the source code for the time optimal controller implemented on the test-rig.

Appendix C shows the circuit diagram and schematics of the interface printed circuit board (PCB)
designed for the implementation of the new control strategy.

Appendix D displays some of the reference polynomial trajectories employed during the validation
of the manipulator dynamic model in Chapter 5.

Appendix E corresponds to the video included with this thesis, which shows the real-time and simu-
lation setup described in'this work.

Appendix F is a collection of the papers published so far as a result of this work.
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Chapter 2 ,

Fundamentals of Robot Trajectory
Planning

2.1 Introduction

This Chapter will examine basic obstacle-free trajectory planning strategies widely used on most current
industrial manipulators. It is not self-contained, as it is assumed that the reader will be familiar with
most of the mathematics and terminology. General references are cited which contain fuller expositions
on these topics. In Section 2.2 the formalisms of the two usual approaches for specifying and planning
trajectories, i.e., joint interpolated and Cartesian space, are discussed in the framework of the work
presented here. The fundamental properties of the most common parameterised joint-interpolated
trajectories are reviewed in Sections 2.3-2.7, each Section building on the foundations laid in the
previons one. Finally, a discussion of the deficiencies of the approaches described 1s presented in
Section 2.8, to provide the necessary background for understanding the solutions propesed by other
researchers, surveyed in Chapter 4, and also the approach’ presented in this work.

2.2 General Considerations on Trajectory Planning

Trajectory planning scbemes generally interpolate or approximate the desired path and generate a se-
- quence of time-based control set-points for the control of the manipulator from the initial location to its
destination. Path end-points can be specified eitber in joint coordinates or in Cartesian coordinates.
However, they are usually specified in Cartesian coordinates because it is easier for the nser to visnalize
the correct end-effector configuration. If, on the other hand, the trajectory is to be generated from con-
straints on the path specified in joint coordinates, then the inverse kinematics transformation must be
computed first. This is customarily an ill-defined non-linear transformation because of its one-to-many
mapping characteristics. Thus, except for manipulators with a proper kinematic structure, it can not
be expressed analytically and is, in general, problematic.

Two common approaches are then used to actnally generate the manipulator trajectory which are
also based on the distinction between joint and Cartesian space.

1. In the first of these approaches, the user implicitly describes the path and trajectory followed
by the arm by specifying, in joint coordinates, a set of constraints on its position, velocity and
acceleration at selected locations (called knot, via, or interpolation points) along the desired
trajectory. The trajectory planner then chooses one of a class of parameterised trajectories
(described below) that satisfies these constraints.

2. In the second approach, the nser ezplicitly specifies the path that the manipulator must traverse’
by an analytical function, such as a straight line or a circular path in Cartesian coordinates, and
the trajectory planner determines a desired trajectory either in joint or Cartesian coordinates
that approximates the desired path.

In the first approach, the constraint specification and the planning of the manipulator trajectory are
performed in joint coordinates (the former migbt be the result of the inverse kinematic conversion from
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some specified Cartesian points as mentioned ahove). In the second approach, path constraints and the
path itself are specified in Cartesian coordinates, but hecause servoing is performed in the joint-variahble
space, Cartesian positions must be converted into their corresponding joint solutions. This is generally
accomplished in two steps. First, a number of knot points or intermediate configurations in Cartesian
. coordinates along the Cartesian path are selected. The path segments defined by two adjacent knot
points are then approximated by specifying a class of functions according to some criteria. To achieve
the latter step, two major approaches emerge: the Cartesian space-oriented method and the joint-
space method. In the former approach, most of the computation is performed in Cartesian coordinates,
which are then converted to their corresponding joint solutions by the inverse kinematic transformation.
The resulting trajectory is a piecewise straight line between adjacent knot points and the subsequent
control is performed at the hand (end-effector) level [I]. In the joint-space oriented method, a low-degree
polynomial function in joint space is employed to approximate the Cartesian path segment. bounded
hy the two adjacent Cartesian knot points {which are initially transformed into joint displacements).
The resultant Cartesian trajectory is not a piecewise straight line as hefore, and the resultant control
is completed at the joint level [2]. ' '
The Cartesian space-oriented approach has the advantage of being a straightforward concept, and
a certain degree of accuracy is assured if the desired path is a straight line. Moreover, it is easier to
. determine the locations of the various links and the hand during motion, a task that is nsually required
to guarantee chstacle avoidance and physical realisation along the trajectory. On the other hand,
trajectory planning in the joint-variable space (either directly or as an approximation to Cartesian
paths) has a number of advantages:

o The trajectory is planned directly in terms of the controlled variahles during motions.

s Trajectory planning can be performed in real-time since the inverse kinematic solution routine
and the Jacobian transformations do not have to be called upon to make the conversion at each
control point along the trajectory, as would be the case for Cartesian space-oriented methods.

o For this same reason, degeneracies such as position redundancies and velocity singularities of the
manipulator are not a problem.

o Joint trajectories are easier to plan.

There is yet another advantage in using joint interpolated trajectori$ that will be readily apparent
later in the dissertation when manipulator dynamic constraints are introduced. However, with regard
to the choice of the coordinate system, it can be noted now that physical constraints like actuator
torque/force, velocity and acceleration are bounded hy joint coordinates. Thus, in adopting Cartesian
based trajectory strategies the resulting problem would have mixed constraints in two different coor-
dinate systems, an undesirable characteristic from the efficiency point of view. Because of the various
advantages mentioned above, trajectory planning in joint coordinates is the widely used strategy in
current manipulator control and the work described in this thesis will he restricted to the study of
trajectories in the joint space. Further reading about the topic of Cartesian trajéctories can be found
in [1, 3, 4].

There is a general consensus about what criteria can be identified for evaluating trajectories and
trajectory planners, and most authors presume the following characteristics for a well posed trajectory [5]:

+ Efficiency, both to compute and execute.
e Accuracy and predictability. Trajectories should not degenerate unacceptably near a singularity.

o It is also generally desirable to design the trajectory as a smooth function of time, i.e., one which
is continuous and ideally has a continuous first derivative.

The trajectories reviewed in the following Sections fulfill most or all of these characteristics, and also
represent strategies implemented in most current industrial manipulators. Some authors [4, 6, 7] have
also suggested a continuous second derivative since high jerk motions tend to cause increased wear on
the mechanism and cause vibration hy exciting resonances in the manipulator. An introduction to one
such class of trajectories is presented in Section 2.7 where spline trajectories are introduced. On the
other hand, non-continuous acceleration is sometimes cited (8] as a desirable alternative since it can lead
to minimum-iime trajectories as further described in Section 2.6 helow. This generic form of trajectory

9
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Figure 2.1: Position (left) and velocity for first order polynomial trajectories.

is of great importance in the work undertaken in this investigation, as will be readily apparent in future
Chapters. ' :

2.3 First Order Polynomials

The simplest description of a trajectory is a parametric speciﬁcation of the initial (¢;) and final (i;)
position constraints ¢(f;) and ¢(t;) where ¢ is the joint generalized coordinate, which can be satisfied

q(t) = f(t)a(ty) + (1 - F(thalt:) (2.1)

where f:[0,1) = [0, 1] is any continuous function satisfying f(0) =0, f(1) = 1. The simplest such
function is f(t) = ¢ in which case g(t) is a linear polynomial combination of the end-points ¢(t;) and
glty), e, '

by a trajectory of the form

gt} = qlti) + (g{ts) — qlt:))t (22)
Although simple, the joint velocity ¢(t) is constant throughout the motion (namely ¢(t) = ¢(t:) —
g(ty)), as seen in Figure 2.1, and therefore acceleration §(t) = o0 is required at the boundary times,
t; and t;, to satisfy this constraint. Although mathematically correct, this is not physically attainable.
" Yet another drawback is that there is no guarantee that the joint solution g¢(f) always lies in the
workspace. )

2.4 Cubic Polynomial

Suppose the trajectory is further constrained by specifying its initial and findl velocities g(t;} and g(tz),
satisfying the continuity in velocity. The four constraints on position and velocity can now be satisfied
by the following cubic polynomial trajectory

g(t) = a0 + ayt + agt® + agt® (2.3)

Assurming time is normalized between [0, 1], coefficients can be easily derived from the constraints as

ap = g¢(t) |
a = q'(t.-)

ay = —3q(t:) — 24(t:) +3¢(ts) — g(ts) (2.4)
a3 = 2¢(t:) +q(t:) — 2g(ts) + d(ty)

Furthermore, in point-to-point motions initial and final velocity conditions are null, so that the
expression above can be simplified as

ag = g(t;)

a = 0

& = alty) = alts) 29
az = —2(q(ty) — q(t:))

10
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Figure 2.2: Position (top), velocity (middle) and acceleration for third (left) and fifth (right) order
polynomial trajectories. ’ )

Just as the linear function that satisfies positional constraints, the cubic polynomial is an over-
~— -— — -—--gimplification that-does-not-take-into account-the-fact.that-there-is. a.maxirnum. attainable. velocity.-.— . _.
Furthermore, acceleration is a discontinuous function that grows linearly with time. This can he easily
seen in the acceleration profile of Figure 2.2 (left}), obtained hy simulating trajectory (2.3) with the
coefficients given by (2.5).

2.5 Quintic Polynomials

If it is desired to specify the acceleration at both ends of the trajectory as well as the velocity and
position, there are a total of six constraints to be met. A quintic polynomial suffices

g(t) = ap + a1t + azt® + ast® + agt® + ast® (2.6}

Workiné with the same assumptions as those ahove in (2.5) and also initial and final nuill acceleration

11
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the following coefficients are obtained

a = q(t;)

a = 0

az = 0

s = 10(g(ts) - q{t:)) (2.7)
6 = —I5(g(ty) — a(t:)

as = 6(qft;) —gq(t:))

Figure 2.2 (right), shows this trajectory obtained at the same sample rate as for the cubic trajectory
on the left. Note that the acceleration profile is no longer linear, adding continuity to the overali
trajectory.

2.6 Other Primitive Polynomials

Besides the simple function f{¢) = ¢, other bases can be chosen that satisfy the continuity conditions
expressed in Section 2.3, for example a function of the form f() = cos(w/2(1 ~t)). The initial and
final position and velocity constraints satisfied by the cubic polynomial given in (2.4) are also achieved
by the following cosine trajectory

@ = 0?51 - t)atty) - E cos(T) 4 oty ta0) + 2 s -1} (29

Restricting attention to the peoint-to-point motion constraints of nul! initial and final velocity, plus
initial and final acceleration that is either null or of maximum value, a comparison of several polynomial
trajectories is illustrated in Figure 2.3. The parameters can be chosen so that the resulting trajectories
can be reasonahly similar [8]. Of particular attention for future reference in this report is the bang-bang
trajectory, consisting of a period in which the maximum acceleration is applied to move the arm from
rest, followed by an equal period of maximum deceleration to stop it.

) = { 9(t7) + (§maz /2)2 if0<t<1/2

9(tf) = (Gmaz/2)(1—1)? if1/2<t <L (2.9)

Mutjaba [8] found that the trajectories based ou a fifth degree polynomial, a cosine, and a sine added
to a linear ramp are about 10-20% slower than the bang-bang trajectary. It was also observed that
the critically damped trajectory - consisting of a sum of decaying exponentials of the form €% - is the
principal mode of operation of a large number of industrial manipulators, yet it was estimated to be
about three times slawer than the other trajectories, as shown in Figure 2.3.

2.7 Splined Low-order Polynomials

The polynomial interpolation schemes proposed so far enable the manipulator to follow trajectories
which are smooth functions of time. However, a.trajectory description may include constraints other
than those that derive from the initial and final configurations of the arm as shown in Figure 2.4.
In particular, knot points could be added o the terminal constraints to prevent the arm colliding
with an object in the workspace. Complete coverage is beyond the goal of this thesis and will not
be considered any further. Furthermore, as shown in Figure 2.4, knot peints could also represent
important trajectory coufigurations that would guarantee admissible departure and approach directions,
or contribute to drive the manipulator at the ertrema conditions, i-e., maximum recommended speed
and/or acceleration. _

By continuing the development of previous Sections, it is always possible to satisfy an arbitrary
number of constraints by a polynemial trajectory of sufficiently high degree [5]. However, a number of
drawbacks to this approach have been state:-d in the literature:

o The difficulty of checking a pclynomial trajectory of degree n for violation of physical constraints
(i.e., positions within the workspace) during an arm movement increases rapidly with n.

¢ 1t has been suggested [9] that high degree polynomials “have an unfortunate tendency to overshoot
and wander”.

12
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Figure 2.3: Position, velocity and acceleration for different polynomial trajectories [5].
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_Figure 2.4: Point-to-point trajectory constrained by 2 knot points [3].

¢ The numerical accuracy to which a polynomial can be computed decreases as n increases.
¢ 1t is expensive to compute the parameters of polynomial trajectories.

An alternative approach is to split the entire joint trajectcry into several trajectory segments run-
ning hetween knot points. Different primitive interpolating polynomials of a lower degree, like those
described in previous Sections, can then he used to spline the trajectory segments together.

Definition 2.1 A spline function of degree n, with knot poinés tg < §; < ... < tmm, is an {n-1)-time
differentiable function f(t) which is equal on each interval [t;,ti11] between knot points to a polynomial
of degree less thon or equal to n [10]. '

According to this definition, the most common methods employed to spline a joint trajectory and
guarantee continuity of position, velocity and acceleration at the polynomial boundaries use a minimum.
of third-degree polynomials. In general [3], two knot points may be specified as indicated in Figure 2.4:
one near the initial position (lift-off) for departure and the other near the final position (set-down) for
arrival which will coniribute to.safe departure and approach from/to the end-points. Each knot point
imposes fonr constraints: two position consiraints, as each of the splines is required to pass through the
consecutive knot points, and two constraints to guarantee continuity of velocity and acceleration (or
specify initial/final velocity and acceleration conditions in the initial/final points). The approaches to
splined trajectory planning described next are, for the most part, equivalent in the sense that all satisfy
the continuity constraint. However, depending on how these constraints are met, different trajectories
arise:

2.7.1 3-5-3 spline

Four constrainis can be satisfied by a cubic, so cnbics can he nsed as the primitive trajectories in the
first and last segment of the move. The mid-trajectory segment is a fifth-degree polynomial specifying
the trajectory from the first to the secand kuot point which satisfies the six continuity constrainis

14
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- imposed upon them. The constraints can be snummarised as:

4

First 3rd degree polynomial

' ( Initial position, g(t;)

Initial velocity, ¢{t;) (normally zero)

Initial acceleration, §(t;} (normally zero)

. . First knot point position , g(f1)

Mid 5th degree polynomla.l :

' ( Continnity in position at ¢, ¢(t7) = ¢(¢])
Continnity in velocity at t1, ¢(¢7) = ¢(t])
Continuity in acceleration at #1, §(t7) = §(¢T) (2.10)
Continuity in position at 3, ¢(t7 ) = q(tg'] '
Continuity in velocity at t3, ¢(¢3) = ¢(3)

| Continuity in acceleration at t5, §(t7) = §(t3)
Last 3rd degree polynomla.l

( Last knot point position , g(ta)

Final position, g(t;)

Final velocity, ¢(¢;) (normally zero)

| Final acceleration, §(t;) (normally zero)

constraints =

constraints = {

constraints = <

\

where ; and t; represent the time to arrive at the first and last knot points respectively.

2.7.2 4-3-4 spline

This trajectory, proposed in [11], relaxes the requirement that the interpolating polynomial must pass

through the knot points exactly. Only the velocity and acceleration continuity constraints at the knot’

points are imposed. The new boundary conditions that this set of joint trajectory segment polynomla.ls
must now satisfy are:

4

First 4th degree polynomial

( Initial position, g(t;)

Initial velocity, ¢(¢;} (normally zero)
constraints = < Initial acceleration, §(#;) (normally zero)
Continuity in velocity at 1, ¢(t7) = ¢(t7)

| Continuity in acceleration at 1y, §(t7) = §(¢F)
Mid 3rd degree polynomial

( Continuity in velocity at ¢y, §{t7) = ¢(¢])
Continuity in acceleration at 1, §(7) = §(t7) (2.11)
Continuity in velocity at ta, ¢(t7) = ¢(tF)

| Continnity in acceleration at ¢, §(t7) = §(t3)
, "Last 4th degree po]ynomlal

Final position, ¢(t;)

Final velocity, ¢(t;) (normally zero)
constraints = {. Final acceleration, §(f;) (normally zero)
Continuity in velocity at f3, §(¢7) = ¢(t)

L | Continuity in acceleration at 2, §(t; ) = §(t3)

constraints = 4

where, as before, t; and £, represent the time to reach the first and last knot points respectively. It
can be seen that the trajectory is now formed out of three trajectory segments: the first segment is
a fourth-degree pélynomial specifying the trajectory from the initial position to an initial knot point.
The mid-trajectory segment is a third-degree polynomial from the first knot point to the second, whilst
the last trajectory segment is a fourth-degree polynomial specifying the trajectory from the last knot
point to the final position.

2.7.3 5-cubics spline

An alternative approach has been used at Stanford University [9). Further knot points are introduced
into the motlion as “virtual” knot points. Unlike the two already specified which mark important inter-
mediate confignrations along the trajectory, the extra knot points are for mathematical convenience.
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Fignre 2.5: 5-cubics spline trajectory [3].

A

They increase the total number of constraints, which means that all the segments are cnbic spline
functions, the lowest degree polynomial function that allows continuity in velocity and acceleration..
This approach reduces the effort of computation and the possihility of numerical instabitity.

Therefore, in using five-cuhic polynomials an additional knot point is required to reduce each of the
end-point fourth order polynomials to a cubic, generating a total of five trajectory segments and six
knot points (inclnding initial and final positions) as shown in Figure 2.5. These two extra knot points
can he selected hetween the lift-off and set-down positions. As in (2.11), it is not necessary to know
these locations exactly; it is only required that the time intervals be known and that continunity of
velocity and acceleration he satisfied at these two locations. Thus, the boundary conditions that this
set of joint trajectory segment polynomials must satisfy are:

First 3rd degree polynomial

( Initial position, ¢(1;)

Initial velecity, ¢{¢;) (normally zero)

Initial acceleration, ¢(¢;) (normally zero)

| First knot point position , ¢(t1)

Second, third and fourth 3rd degree polynomial

[ Continuity in velocity at tj, ¢(t;) = ¢(t])
Continuity in acceleration at t;, §(t;) = ij(t;-*) : (2.12)
Continuity in velocity at t;41, §(t7,,) = §(tf,,)

. Continnity in acceleration at ¢;41, §(t;,) = @'(t;-*'ﬂ)
Last 3rd degree polynomial )

( Last knot point position , ¢(2)

Final position, g(¢;)

Final velocity, ¢(t;) (normally zero)

| . Final acceleration, §(ts) {normally zero)

constraints = ¢

constraints = ¢

constraints = ¢

where t; = t,...14 represent the time to arrive at the first, second, third and fonrth koots respectively.

The placement of the two additional knot points has received some attention in the past. Some
authors [9] have claimed that “the hest placement of the new knot points is so close to one end of
a segment that nothing happens hetween the knot and the end-point”, but a precise analysis of the
problem has yet to be given. Some recent alternatives are reviewed in Chapter 4.

For further details of the calculation of the coefficients for the 4-3-4, 3-5-3, and 5-cubics spline
trajectories the reader may refer to (3, 10].
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Figure 2.6: Position (top), velocity {middle) and acceleration for hang-coast-hang parabolic spline
trajectory.

2.7.4 Linear polynomial with parabolic blends spline

" Another choice of polynomial spline is that in which the trajectory scheme is hased on a linear in-
terpolation as described by Equation (2.2) in Section 2.3. However, to overcome the drawback of
discontinuous velocity and acceleration at the trajectory definition points, straightforward linear inter-
polation is smoothed by adding a parabolic blend region at each knot point [4].

During the blend portion of the trajectory, constant acceleration is nsed to change the velocity
smoothly, which then remains constant during the linear portion of the motion. The linear function
(first order polynomial) and the two parabolic functions (second order polynomials) are splined together
so that the entire path is continuous in position and velocity {see “spline” in Section 2.7).

In order to construct the trajectory, the maximnm accelerations +§nq. that the joint can generate
are assumed to be independent of the arm configuration {12]. As has already been stated, this is a
conservative estimate since the maximum acceleration of the joint depends, in general, ‘on the configura-
tion, and hence the dynamics of the arm. This assumption leads to trajectories that are approximately
bang-coast-bang, namely the acceleration is either +¢mq- or zero (see Equation {2.9) for bang-bang
trajectories).
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First Parabolic segment Mid Linear segment = Last Paraholic segment

Lty it <t <tia 2 <t <1y
Q(t) = Q'(ti) + Q.‘(ti)t + (‘IIImaz/g)t? Q(t) = Q(tl) + ‘jmczt Q(t) = ‘I(t2) + dmazt - (‘Ijmnx/g)t? (213)
g(t) = Gmast . §(t) = dmaz §(t) = dmazr — fmart
Q(t) = Jmaz Q(t) =0 Q(t) = —fmaz

During the parabolic segments, hoth of the same duration, the acceleration is kept constant +§mqz,
the velocity is a linear function of time and the position follows a quadratic polynomial, whereas position
varies linearly with time in the middle segment.

Equation (2.13) above shows one such trajectory which further assumes that the joint reaches maxi-
mum velocity during the acceleration phase, remaining at that speed during the linear segment (thus
describing a trapezoidal velocity profile). Figure 2.6 shows the position, velocity and acceleration pro-
files for this motion. The switching knot points g(t,) and g(¢2) can he easily obtained from all these
constraints, and in this particular case correspond to those that can make near-full use of the capabili-
ties of the joint actuator. However, slower speed constraints or more relaxed time constraints governing
the overall duration of the motion would lead to different switching intermediate knot points.

It is worth noting that in a multihody manipulator with a number of DoF, the execution of a point-to-
point parabolic spline trajectory, such as the one just described, is normally executed in a coordinated
manner. Hence, the motion of the joints is synchronized so that they all start and stop simultaneously.
This means that only the joint that takes longer to perform the motion will run at the maxirmum speed
as described by trajectory {2.13). The rést of the joints will accordingly have their own timings and
velocity constraints.

2.8 Summary and Discussion

The trajectory plaaning strategies discussed so far have a number of points in.common:

¢ They are meant to be efficient with a fast computation time, thus generating the set points that
the manipulator must follow in real-time.

+ Time considerations are normally either provided hy the user or based on an estimated maximum
velocity and acceleration of the joints.

o There is no attempt to maximise/minimise any parameter (namely time) along the trajectory.

¢ They require the unique determination of the parameters of a function which satisfies some given
boundary conditions.

¢ The houndary constraints are entirely hased on kinematic considerations, i.e., they must fall
within a default maximum velocity/acceleration.

These points raise the following issues for consideration:

o Firstly, the amount of acceleration that the manipulator is capable of at any given time is a
function of the dynamics of the arm and the actuator limits and, accordingly, vary across the
workspace [6]. Furthermore, most actuators are not characterised by a fixed maximum torque, hut
rather by a torque-speed curve [4] and a continuous stall torque. Therefore, in order net to exceed
the actual capabilities of the device, the houndary conditions in the trajectories planned hy the
methods described must be chosen conservatively, possihly forcing the robot to be underutilised -
by not making full use of the speed of the manipulator [13, 14]. Otherwise, large tracking error
may result in the servo control of the manipulator.

¢ Secondly, the parameterised constraint satisfaction approach to trajectory planning presented
here has the advantage that it works from simple descriptions. However, modern optimal control
theory [15, 16, examined in the next Chapter along with other control strategies, provides a more
general approach to constraint satisfaction as will be seen, even when the number of constraints
and parameters is different.
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These issues, which reflect the attention that has been given in recent work to dynamic cansiderations
and actuator limitations in search of superior trajectory generation methods, are also addressed in this
thesis.
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Chapter 3

Fundamentals of Robot Control
Strategies

3.1 Intro duction

In the preceding Chapter several approaches to the design of manipulator trajectories have been pre-
sented. In this Chapter, issuing the commands to the joint actuators that will cause the manipulator
to track the specified nominal trajectory i1s considered. Development of control algorithms for robot
manipulators is very much an active area of research and numerous techniques have been explored. The
material herein is not intended to be an exhaustive review of current robot control methods because
many of the algorithms proposed in the literature are still under active development and/or rely on
tecbniques bevond the scope of this dissertation. Instead, an overview of robot control theory, with a
bias toward industrial practice and well established manipulator control algorithims is presented. More
specialised applied strategies will be surveyed in the next Chapter, when results taken from the lit-
erature are presented. Given the nature of the topic, it is assumed that the reader is familiar with
elementary differential equations and the basics of linear control systems, including the Laplace trans-
form and transfer functions, so they will not be listed in full here. Most introductory linear control
texts should be sufficient; see (for example) K. Ogata [1] or R. Dorf [2].

The works reviewed in this Chapter are concerned with the design and analysis of control systems
for regulation of manipulator end-point position or for tracking of a pre-planned trajectory. It is
also possible to design controllers that operate when the (end-effector) tocl is in contact with the
environment, these are referred to by terms such as compliance, force or impedance controllers. A
review of these methodologies can be found in [3, 4)].

The fundamental properties of the two alteruative approaches to controlling a robotlc arm, i.e.,
closed-loop and open-loop, are analysed in Section 3.2. The conditions under which one is advantageous
against the other are examined as a basis for later developments, since hoth are the ohject of study in
this work. As the theory developed in this thesis relies heavily on state-space control techniques, some
of the basic notation associated with modern control system theory is contrasted in Section 3.3 with
the conventional control framework.

In Section 3.4 the simplest approach to feedback control, single-axis linear PID control, common
in most current commercial robots is considered. The deficiencies of this scheme with regards to
compensating for the non-linear manipulator dynamics gives rise to a number of model-based or dynamic
control strategies, some of which are discussed in Sections 3.5-3.8. Feedforward control, i.e., a feedback
controller supplemented by feedforward information about the manipulator, is discussed in Section 3.5.
It is noted that in the specific configuration where the linear feedback control law sends its output
through the dynamic model, the exact knowledge of the manipulator parameters leads to a complete
cancellation of the non-linear dynamics. However, some degree of adaptive capacity is sought in the
frequent case when it is known that manipulator or environment will be subject to variations or the
knowledge of the manipulator is not ‘complete. Although various degrees of adaption fall within the
rather ill-defined area of Adaptive control, some general techniques are examined in Section 3.6, whereas
an alternative robust control approach particularly suited to robotic arms, Variable Structure control,
is presented in Section 3.7. In Section 3.8 the type of modern control known as QOptimal control is
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Figure 3.1: Manipulator control block diagram.

analysed. The generic form of this discipline is of extreme importance throughout the analysis methods
employed for the remainder of this dissertation. For this reason the framework is quite detailed, and care
has heen taken in the presentation of the theory nnderlying the Maximum Principle in Section 3.8.1.
This strategy, when applied to the point-to-point manipulator problem forms the class of genera]ly
non-linear TPBV problems which is the focus of study in this dissertation.

The analysis of the control problem in Cartesian space is introduced for completeness in Section 3.9,
although it is not pursued further. Finally, in Section 3.10, some brief concluding comments are
presented.

3.2 General Considerations on Robot Control

in planning the actuator torque commands that will prodnce the desired motion, the use of information
ahout whether and/or how a particular joint is actually moving will dictate the class of control to be -
used. Those cases in which the axis output has no effect on the control action are said to be operating
in an open-loop manner, whereas the term closed-loop or feedback control applies in the opposite case.
The basic feedhack control block diagram for a robot- manipulator is depicted in Figure 3.1, where
Ty corresponds to the time between trajectory set point updates in the outer loop, and T3 represents
the faster control update inner loop. Typically; the feedback information is compared against the
desired position (and maybe velocity also)- to compute an error signal. The control system will then’
calculate the drive torque action to the actuators as a function of the error. This is usually a linear
function, as described by the independent joint control in Section 3.4, but need not be, and some
other alternatives will be introduced in this Chapter. Feedback control is useful and necessary to
compensate for unpredicted disturbances. In particnlar, when linear feedback control is used alone,
the rigid body dynamics of the manipulator are considered as perturbances. These dynamics will in
general canse substantial trajectory errors for faster motion, unless gains in the feedback control are
made correspondingly higher in an adaptive fashion as described in Section 3.6. Yet there are practical
limits as to how high gains can be set, given actuator saturation and stahility problems. These problems
will be discussed in more detail in Section 3.5.

With regards to open-loop schemes, the common approach is to use a dynamic model of the manip-
nlator to predict actuator torque commands corresponding to the desired joint motion. Such a control
technique is termed feedforward control. If the model was a complete and accurate representation of
the manipulator and no “noise” or other disturbances were present, continuous use of the dynamic
equations of motion of the arm along the desired trajectory would realise the motion. In practice,
unfortunately, the manipulator dynamics are not known exactly and there is an inevitable presence
" of unexpected disturbances which make feedforward control imperfect. Hence, the sole use of such a
scheme is not practical for use in real manipulator applications and a feedback controller is also in-
cluded to compensate for unpredicted disturbances and modelling errors. The two common alternatives
of this form of modei-hased control with feedback compensation will be examined later in the Chapter:
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the “feedforward controller” and the “computed torque control” described in Sections 3.5.1 and 3.5.2
respectively, which differ in how the dynamic model is used in conjunction with a feedback loop.

It is important to understand that the term “closed-loop”, as applied to manipulators, does not
mean that the loop is closed around the master computer (the trajectory planring computer in Fig-
ure 3.1). In reality current control practice requires that information ahout the axis is fed back only to
the corresponding joint processors performing the actual higher-bandwidth inner control loop [5, 6, 7.
The master is informed only when the move is completed or if an emergency situation arises (e.g., an
obstacle). This control hierarchy means that current manipulators plan trajectories with very little
information fed back from the robot and environment, thus severely limiting the capabilities of the
trajectory planner to yield improved or optimal trajectories in real-time. This, a direct consequence of
lack of processing power in the past, should be expected to change in future generations of rohots as
more powerful microprocessors are hecoming availahle at reduced cost. Likewise, it is also reasonable
to expect that more modern control techniques (some of which are reviewed here) will become increas-
ingly feasible for this same reason. These two remarks will feature strongly in the remainder of this -
dissertation.

3.3 Modern and Classical Control System Analysis. Preliminary
Definitions

The control systermns engineering field is a relatively new technological area, with little organised theory
existing prior to 1940 and virtually none at all only ten years before that. During the decade of the
1940s, frequency-domain methods made it possible for engineers to design linear closed-loop control
systems that satisfied performance requirements. The Laplace transform was utilised to convert the
linear differential equations representing the system into an algebraic equation expressed in terms of a
complex variable s = ¢ + jw. By use of the Laplace transform, the transfer function representation of
the input-output relationship could be derived. The solution to the differential equation model could
then be obtained from the transfer function in s by means of the inverse Laplace transformation, which
is made comparatively easy by the use of look-up tables. Moreover, when the differential equation is
solved in this fashion; both the transient component and the steady-state component of the solution can
be obtained simultaneously. From the end of the 1940s to early 1950s, the root-locus method (due to
Evans) and other s-plane methods were fully developed, thus allowing the use of graphical techniques for
predicting the system performance without actually solving system difierential equations. Furthermore,
the alternative frequency . response approach which studies the steady-state representation of the system
in terms of the real frequency w was also developed, and several useful techniques for analysis were
studied (e.g., Nyquist and Bode}. °

The frequency-domain approach, in terms of the complex variable s (root-locus methods) or the real
frequency variahle w (frequency-reponse methods) constitute the core of classical or conventional
control theory. Such an approach generally yields satisfactory (bhut not optimal) results for single-input
single-output (SISO) control systems. However, the limitations of the frequency-domain techniques to
meet increasingly stringent requirements on the performance of control systems, the increase in system
complexity, and easy access to large-scale digital computers has shifted the emphasis in control design
prohiems to modern state variable control theory since around 1960. It is nevertheless worthwhile
keeping in mind that old general-purpose analogue computers provided a convenient method to solve
high-order nonlinear differential equations by rewriting the system dynamics into a set of ordinary
differential equations, readily implementable and solvable by the old analogue form of computation [8].
While these early differential analysers were superseded by digital computers, the use of analogue
computers to solve algebraic.equations was, implicitly, an early form of state variable formulation.

3.3.1 State-variable control iheory

Time-domain formulation, analysis and synthesis using state variahles constitute the foundations of
modern control theory. Moreover, modern control is contrasted with classical control in that the
former is applicable to complex multiple-input multiple-output (MIMO) systems, which may he linear
or non-linear, time-invariant or time-varying, while the latter is applicable only to linear time-invariant
SISO systems. The model equation representation in modern control systems is a differential equation,
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but written as a set of n first-order coupled state differential equations, usually in vector form. The
advantage of this representation is that, in addition to the inpot-output characteristics, the internal
behaviour of the system (state) is also represented. Some additional advantages of this formnlation are
" as follows:

o Computer-aided analysis and design of state models are performed more easily on digital com-
puters for higher-order systems, while the transfer function tends to fail becanse of numerical
problems.

+ In state-variable design procedures more information (internal state variables) about the manipu-
lator are fed back; hence a more complete control of the system is possible than with the transfer
function approach.

¢ The time-domain representation of control systems is an essential basis in the field of optimal
control, as well as the adaptive and learning control of complex systems. Now that digital com-
puters are becoming cheaper and more compact, they are heing used as integral parts of these
control systems.

o Even if some state-variable designs are not practical or feasible from the implementation point of
view, they still provide a “hest” system response which can then be approached nsing classical
design procedures. '

State-variable models are generally reqnired for simulation, that is, digital computer solntions
(approximations) of differential equations.

Some state-related definitions used thronghont the remainder of this thesis will now be given.

Definition 3.1 The “state” of a dynamic system is the smallest set of variables (called state variables)
such that the knowledge of these variables at £ =ty together with the knowledge af the inputs fort > 1y
* completely determines the behaviour of the system for any time t > tq.

Definition 3.2 If n state variables ore needed to campletely describe the behaviour of a given system,
then these n variables can be considered the n components of a vector z. A “state vector” is thus a
vectar that determines uniquely the systeiﬁ stale z(t) far any time t > 1y, once the states at t =ty are
given and the inputs u(t) fort > tg are specified.

Definition 3.3 This smallest number of variables n required to define the state vector is the “order”
of the system, and then a conceptual n'* order state space exists, in which the state trajectories are
traced by the state variables with increase in time. The simplest multivariable representation is for the
two dimensional state and this state-space is referred to as the “phase-plane”.

Remark 3.1 Although the number of independent state variables (order) required to adeguately descride
o system will be fired, the chaice of the state variables is not unigue. [t is convenient to chaose state
variables that can be directly cbserved and measured, ond maybe associated with energy storage system -
components, although this is not always possible. )

As indicated above, the general system behavionr representation in state-variable contrel is a high
order (n) differential equation, which may be then reduced to a set of n first-order differential equation
by the selection of suitable state variables. These may contain non-linear equations hnt they may still
be written in vector-matrix form. The time derivative of each state variable is expressed as a function
of all state variables and system inputs. Hence, for the state variables x;, ¢ = 1,...n and inputs u;,
i=1,..m _

z; = fi(z1, ., Tai iy, 0, B t) (3.1

or for all tﬁe state variables the function vector f is used so that
& = F=,u,i) (3.2)

The actnal cutpnt of the manipulator, y;, t = 1,...p (p < n) , although dependent on the state
vector, need not be identical to the chosen state of the manipulator. Thus, a relationship is also
required between the state vector and the outpnt vector

/ Vi = gi(Z1, ., Ty B1, ooy Umj L) - (3.3)
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Figure 3.2: Block diagram of LTT control system in state-space representation.

which in function vector form is represented as
y =gl=z,u,t) (3.4)

If vector functions f and g do not involve time t explicitly, then the system is time-iuvariant, i.e.,
the system parameters do not vary with time. In that case Equations (3.2) and (3.4) can be simplified
to

€= f(z,u) (3.5)
v =g(=,u)
If £ and g in Equation (3.5) are linear functions of # and u then the following state and output
equations (state equations in general) of a linear time-invariant (LTT) continuous system arise

= Az + Bu

y=Cz + Du (3.6)

where A € B" x R is called the state or system matrix, B € R* x R™ is the input matrix, C
€ B? x ®" is the output matrix and D € R? x ™ represents direct coupling between input and output
and is called the direct transmission matrix. A block diagram representation of Equation (3.6) is shown
in Figure 3.2.

3.4 Independent Joint PID Servomechanism

Practically all industrial manipulators currently in use treat each joint of the rohot arm as a simple
servomechanism ' based on classical linear feedback control theory [9, 10]. The proportional-plus-
integral-plus-derivative compensator (PID) is probably the most commonly used compensator in feed-
back control systems [1I]. The basic struciure of this controller for one manipulator joint is shown in
Figure 3.3. With e(t) the compensator input (or error) and 7(f) the output torque (or control action),
" the PID compensator is defined by the equation

T

r(t) = Kpe(t) + K,-/ e(t)dt + I\’d% (3.7

0 .

In this control scheme the feedhack gains K, K; and K4 are constant and prespecified, usually tuned
to perform as a critically damped joint system at a predetermined speed. The “P” coutro! is a pure gain
{no dynamics) and gives the controller output a component that is a function of the present state of
the system. The “I” control is used to reduce the steady-state error of the system. Since the integrator
output depends upon the input for all previous times, that component of the compensator output is

! Although this term was originally applied to a system'that controlled a mechanical position or mation, it is now often
used to describe a control system in which a physical variable is required to track some desired time function. This is
in contrast to a regulator control system, where the physical variable is to be maintained at some constant value in the
presence of disturbances.
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Figure 3.4: Feedfofward control.

determined by the past state of the system. The “D” action is a type of phase-lead control and improves
the system transient response. The output of the differentiator is a function of the slope of its input
and thus can be considered to be a predictor of the future state of the system. Hence the derivative
part of the compensation can speed up the system response by anticipating the future. Overall, this
type of controller can then be viewed as yielding a control action that is a function of the past, the
present, and the predicted future, being employed in control systems in which improvements in both
the transient and the steady-state response are required.

3.5 Feedforward Control

It has already been pointed out at the opening discussion of the Chapter that one of the deficiencies
of single-axis P1D control is that it does not account for the effect of robot dynamics. Consequently,
these must be compensated as if they were disturbances. This sets severe limitations in the design
of stahle feedback controllers. Many proofs of stability for various robot feedback contrellers amount
to infinite actuator arguments, since it is presumed that actuators do not limit the ahility to increase
gains to the point where disturbances can be overcome-and errors reduced to a desired level. Although
this greatly simplifies the controller analysis and design stages by assuming linearity throughout the
system, in reality, actuator saturation prevents this easy solution. Moreover, gains cannot be increased
to high levels to reduce errors because of potential instahilities that may arise from medelling error,
parameter variation, and measurement or command noise {I12]. .

Feedforward control is an approach adopted to reduce the errors that need to be corrected by feedhack
control. In general control terms, feedforward control is a useful method of cancelling the undesirable
effects of disturbances on the manipulator output provided they can he measured by a sensor. By
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Figure 3.5: Feedforward controller.

approximately compensating for the anticipated disturhances, the corrective action starts hefore the
ontput is affected, a clear advantage over the usual feedback control where the control action starts only
-after the ontput has been affected. Feedforward control can minimise the transient error, but since it is
an open-loop strategy, there are limitations to its functional accuracy as outlined hefore. Feedforward
control will neither cancel the effects of nnmeasurable disturhances nnder normal operating conditions
nor compensate for any imperfections in the functioning of the feedforward section (mainly the fidelity
of the dynamic model of the manipulator € to the real manipulator dynamics ¥). It is,therefore
necessary that a feedforward control system include a feedhack control loop, as shown in Figure 3.4.

In robot manipnlator control this translates to equating disturbances to the manipulator dynamics.
Hence, based on the desired position, velocity and acceleration provided hy the trajectory planner, the
dynamic equations of motion ? are used to predict the outpnt to the actuators that will “cancel” these
robot “dynamic disturbances”. Note that the trajectory planner must specify not only the desired
position and velocity, but the desired acceleration @4 also. Depending on bow the independent-joint
~PD is comhined with the feedforward control scheme two particular kiuds of feedforward control arise,
which are discussed next.

3.5.1 Feedforward controller

The feedforward controller, depicted in Figure 3.5, drives the robot actuators according to the following
sum ;N o . ‘
T= (Gd,ed,ed)+Kp(9d—9)+K¢(9d—9) (38)

where K, and Kg are now diagonal matrices. The feedforward compntation has normally compen-
sated for the dynamics of the robot fairly well, and only small perturbations or unmodelled dynamics
remain for the feedback controller to compensate. Hence, the gains of the PD controller can be kept
low to avoid stability prohlems. An important issue to he noted is that the computation of the dy-
namics is made on the basis of the planned trajectory, and hence can be done off-line according to the
control hierarchy of current manipulators. This may have been in the past an important advantage
over the computed torque technique examined next, bnt it is much less of one today due to increasing
compntational power of real-time control systermns. ]

A disadvantage of the feedforward controller is that the PD portion acts independently of the dynam-
ics and prodnces perturbations at neighhouring joints, hence degrading system performance. That is
to say, a corrective torque at one joint perturbs the other joints, whereas ideally the corrective torques
wounld take these effects into consideration and decouple joint interactions. It is to this latter problem
that computed torque control is addressed. - .

21n f?ct. it is the inverse dynamic problem that will solve for the actuator torques for a given desired joint configuration,
e, 07 ’
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Figure 3.6: Computed torque control.

3.5.2 (Non-linear cancellation) computed torque ¢ontrol

1n computed torgue control, the linear feedback controller sends its ontput throngh the dynamic model
as depicted in Figure 3.6. This contrasts with the straight feedback of the linear control portion in
the feedforward contraller (see Figure 3.5). The feedback control law comprises an independent-joint
PD as before, plus the desired acceleration. This yields a corrected nominal acceleration which is then
input to the inverse dynamic model, that is.,

6" = B4+ Kp(04—9) + Ka(B4—6) 39)
r = 07666 :

A close examination of Equation {3.9) will reveal the aforementioned drawback of this control tech-
nique with regards to computational requirements. Since the feedforward computation is done on the
basis of the actunal trajectory, the dynamics computation must be on-line.

It is of interest to observe what happens when the model estimates of the robotic arm parameters
are exact, i.e., £ = §2. In this case, the non-linear dynamic perturbations are exactly cancelled, leaving
a system linear in the position error that can be controlled according to standard linear techniques 2
Moreover, if the gain matrices K, and K4 are diagonal, then the closed-loop equations of motion are
not only linear, but are also decoupled from one another.

Theorem 3.1 Let T, computed according to the computed-torque control law in Equation (3.9), be the
control signal of a robotic system with dynamics represented by §1. Assuming that the dynamic model
in Equation (8.9) is eract (£ = §1), then the solution of the positional error (e = 84 — 8) reduces to a
_linear second-order system that is independent of the robotic arm parameters.

1t is this feature that makes the Computed Torque control a form of control called Non-Linear
Cancellation or Non-Linear Decoupled Feedback Control [14]). In general form, this non-linear
contro] concept leads, through a sunitable partition of the manipulator plant dynamic equations, to
explicit non-linear control laws for all subsystems of the plant that correspond to the different variables
of motion. The application of these control laws, which are in feedback form and entirely based on
the mode] representation of the manipulator, provide for overall system behaviour in which all outputs
of the system are completely decoupled. This, in the case of an industrial robot, yields second-order
input-output * egnations whose characteristic coefficients can be chosen arbitrarily according to lin-
ear methods. Unfortunately, non-linear cancellation is not a property inherent to the Feedforward
Controller as has already been indicated. Under the same assnmption of perfect modelling, the error
egnation of the system results in a coupled non-linear equation which is a function of both the de-
sired and current state dynamics [I13]. Still, some anthors consider the Feedforward Controller as a
form of non-linear cancellation control strategy [15] because the Feedforward Controller will effectively
compensate for a good deal of the manipulator dynamics, thus achieving good trajectory tracking.

3Nate that this is not the case in the Feedforward Controller, where the dynamic compensation is performed over the
desired trajectory, not the current state [13].

4The input would be the new input to the overall system, which consists of the physical model of the robot in
combination with the feedback non-linear control (similar to the block diagram in Figure 3.6).
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Figure 3.7: Adaptive computed torque control.

3.6 Adaptive Control

In the discussion of model-referenced control, the emphasis has been given to non-linear compensation
of the interaction forces hetween the various joints. Such control systems are established on a knowledge
of the manipulator, whose dynamics are presumed accurately modelled. It has been noted, though, that
.often parameters of the manipulator dynamics are not know exactly and therefore these methods suffer
from high sensitivity to errors in the estimates of these parameters. This is particularly tfuejor rohot
manipulators, where changes in the payload could be significant enough to render these feedback control
algorithms ineffective. The result is increasing servo error, reduced servo response and damping, which
limits the precision and speed of the end- effector. A numher of approaches, some of which are discussed
next, have been proposed to develop countrollers that are more robust so that their performance is not
sensitive to modelling errors. One of the solutions examined is the Adaptive Controller which assesses
mampulator and environmental variations and then adapts the control algorithm accordingly so as to
ma.mtaln a satisfactory response, which is usually judged by some performance index (i.e., maintaining
a critical damping over a range of operating velocities and robot configurations). It is important to note
that an adaptive controller is a parameter-adjustment loop which is appended to the normal master
controller used to control position, velocity and the like. Adaptive control is thus an effort to extend
the fixed controller configuration ¥ to a time-varying system hy adjusting one or more of its parameters
(gains, time-constants, etc.).

Probably the most intuitive self-organising scheme corresponds to the block diagram depicted in
Figure 3.7. This is essentially an Adaptive Computed Torque controller [16] where the master controller
is in itself a model of the real manipulator. This is supervised hy an adaption process which, based
on ohservation of manipulator state and servo errors, readjusts the parameters in the non-linear model
until the errors disappear. Hence, such a system would effectively learn its own dynamic properties.

Note, however, that this approach to adaptive model-based control need not be the case for general
adaptive controllers. The concept of model-referenced adaptive control (MRAC) is applied not to
adaptive systems where the master controller is based on the dynamic equations of the manipulator
heing controlled, hut to adaption algorithms driven hy the errors hetween the output of a selected
reference model and the actual system outputs [17]. A geueral control hlock diagram of the MRAC
is shown in Figure 3.8. This form of adaptive control uses a linear time invariant (LTI) second-order
differential equation as the reference model for each DoF of the manipulator (where the mass of the
payload in taken into consideration by combining it into the final link). The manipulator employs a
simple independent joint feedhack controller, whose feedback gains are adjusted in an attempt to make
the robot respond like the reference model. As a result, this adaptive scheme requires only moderate
computations and an a prier: accurate model of the system dynamics is not necessary. This fact,
however, makes stahility considerations of the closed-loop adaptive system difficult, as shown in [17],
where the stahility analysis was carried out using a linearized model. Furthermore, the adaptability of

*Which may or may not be in feedback form.
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Figure 3.8: Model-referenced adaptive control (MRAC).

the controller can become questionable if the interaction forces among the various joints are severe.

A self-tuning controller for a robotic arm based on an autoregressive model that uses a least-squares
criterion to obtain the best fit to the manipulator input-output data has also been proposed [18]. The
estimates of the autoregresive model parameters are then used in the design of the control strategy,
which assumes that the interaction forces among the joints are negligible. '

An alternative adaptive strategy to track a desired trajectory hased on the non-linear model of the
manipulator dynamics was developed by Lee and Chung [19]. Here, the overall controlled system is
characterised by a feedforward component and a feedback component. The former computes the nomi-
nal torques from the Newton-Euler (N-E) equations of motion which will supposedly compensate for all
the interaction forces between the various joints, hence linearising the control problem along the nom-
inal trajectory. The latter is based on perturbation theory to calculate the perturbation torque which
will provide control effort to compensate for small deviations from the nominal trajectory. The design
of the feedback law is then based on the linearised perturbation equations, but because it is extremely
difficult to obtain analytically the elements of the linearised equation from the N-E equations, a least-
squares identification scheme is used to identify these unknown coefficients. With the identification
of these parameters, the computation of the perturbation torques is then based on a one-step optimal
control law which finds optimal weighting matrices at control rate. As a result, the parameters and
feedback gains are updated at each sample period to obtain the combined controt effort. A computer
simulation of the strategy carried out by the authors to evaluate the performance of this controller with
a constant gain PD has compared favourably with the adaptive controller.

3.7 Variable Structure Control

The development of effective adaptive controllers represents an important step towards versatile ap-
plications of high-speed and high-precision robots where sensitivity to parameter uncertainties and
variations is especially severe. The control of direct-drive rohots, for which no gear reduction is avail-
able to mask effective inertia variations, is a particularly active area of applied research in adaptive
control [20]. However, adaptive methods are based on the assumption that the parameters of the system
being controlled do not change too rapidly in comparison with the system time constants. These tech-
niques have proved quite effective when applied, for example, to chemical processes where the process
parameters undergo gradual change. In contrast, for rohotic manipulators, the system parameters, such
as inertia and the effects of gravity, tend to change rapidly as the arm moves from one configuration
to another. Although this difficulty has been decreased through advancements in microelectronics,
the application of adaptive control methods to robotic manipulators has thus far enjoyed only limited
success and is still very much in the research stage [4].

The theory of Variable Structure Systems (VSS) [21] offers a different approach to robust control
that appears well suited for the control of rohotic manipulators. This is so because VSS are a class of
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Figure 3.9: Slide made control state-space trajectories [21].

systems with discontinuous feedback control for which it is not necessary to know the exact robot arm
pararneters, insiead ouly bounds on these parameters. Hence, Variable Structure Controllers {(VSC)
are robust in the sense that they are insensitive to errors in the estimates of the parameters as long
as reliable bounds on the parameters are known. The salient feature of VSS is the so-called sliding
mode on the feedback switching surface. A dyuamic systemn is said to exhibit sliding mode when all of
its trajectories converge (locally) to a fixed manifold of the state space. The syunthesis of the prohlem,
as presented hy Young [21], is ta choose the discontinuous dynamic feedback controls so that the
manipulator system is forced into sliding mode and is also kept there. That is, when in sliding mode, if
the system trajectory deviates from the manifold, the control law switches hetween two discontinuous
values, 7+ and'7—, of equal magnitude but opposite sign, to return the system to the manifold. This
process continues as the solution “zigzags” back and forth across the switching surface, as shown in
Figure 3.9 for a two-link manipulator (as described in [21]). 1t is from the inequalities necessary to
guarantee that the state-space trajectaries move towards the surface and continue on it after reaching
it that the control actions 7+ and 7~ to he applied are derived [21], aud it is due to the inequality
nature of these conditions, which are functions of the manipulator dynamics, that only haunds on the
manipulator dynamic coeflicients are necessary.

To formulate a VSC law, it is helpful to first recast the state vector in terms of the tra.ckmg error
and its derivative as £ = [e v], where e = 8 — 8y andv = é = 6 — 64. For the regulator problem
presented here 84 = 0, thus v = 8. A general hlock diagram of a VSC for a rohot manipulator is
depicted in Figure 3.10. Even though the natural manipulator dynamics are second order, they can be
forced to follow simpler, more well-hehaved first order trajectories, s, specified independently for each
jont i =1, .., nin the form .
' si=cie; +v, =0 (3.10)

where ¢; is a design parameter called sliding gain. Hence, to slide down this trajectory towards the
origin means e — 0 as t — o, thus reaching the desired end state. Choosing the appropriate control
actions that will keep the manipulator in the switching trajectories implies that, when in sliding mode,
the original system is governed hy a reduced-order system equation of the form

é.‘ = —C;{€{ (3.11)

This is called the equation of sliding mode. Equation {3.11) represents n uncoupled first-order linear
systems, each one of them representing the dynamics of a siugle DoF when the manipulator is in
sliding mode. Clearly, the overall non-linear interactions in the manipulator dynamics are eliminated
completely if the manipulator system is forced into sliding mode. Furthermore, the dynamics of the
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manipulator in sliding mode depend only on the sliding gain ¢;. The manipulator system in sliding
mode 1s therefore insensitive tc interactions between the jcints and load variations. Recognising that
~¢i, i = 1,..,n are the eigenvalues of (3.11), the simple choice of positive ¢;’s in (3.10) guarantees
asymptotic stability of the system in sliding mode. Furthermore, the rate at which the errcr decreases
can be controlled through the specificaticn cf this design gain.

It shculd be empbasised that while the the control bound inequalities necessary to gnarantee that the
trajectories bit the surfaces and remain on them are difficult to'analyse, the simulation examples in [21]
illustrate that they are not difficult to achieve. In general terms, the inequalities define an (off-line)
non-linear programming problem which may be solved by a variety of numerical techniques. It should
also be noted that while VSC produces a chattering discontinuous feedback signal that changes sign
rapidly (similar to a pulse amplitude modulated signal), stimulaticns carried out in [21] indicate that.
the joint-position trajectories are ohserved to be smooth. Hence, although ideally the VSC is switcbed
at an infinite frequency, in reality the manipulator itself acts as a low-pass filter with respect to each
* variable structore control signal. Other anthors have replaced the two discontinucus centrol actions
by some continuous appreximation with large slope, hence gradually switcbing tbe contrcl signal in a
small band around the switching surface, rather than right at the surface [22]. '

3.8 Optimal Control

The potential advantages of sliding mode contrel are many, but it is especially the rcbustness of the
method tbat enccurages. its adoption to manipulator control problems. However, the VSC method
does have its drawbacks. One is that there is no single systematic procedure that is guaranteed to
produce a suitable control law. A second is the chattering of the discontinnous control law in sliding
mode as discussed above. In addition, it is impertant to realise that the switching planes are chosen
5o as to decouple and linearise the dynamics of the manipulator, bence simplifying controller design
and improving closed-loop stability. Yet such design methodolegy does not aim to yield the best
phase trajectories along which the manipulator is meant to slide. The control strategy described next
accomplishes this task hy applying a direct approach especially suited for the synthesis of complex
systemns called Optimal Control theory.

The idea behind optimal control (or dynamic optimisation, as it is referred to by some authcrs)
is fundamentally different to that pursued by the strategies described in the foregoing portions of
this Chapter. 1n those methods, emphasis is placed upon determining the design parameters of an
“acceptable” system that will, customarily, drive the tracking or regulating error to zero. Acceptable
performance 1s generally defined in terms of time and/cr frequenicy domain criteria snch as rise time,
peak cvershoot, gain and phase margin, bandwidth and the like, and various integrals of the error are
usvally employed as the basis of determining the quality of the control. These performance indices
are all similar in that no penalty is included for the cost of the control itself or cther parameters like
the state or time. Radically different performance criteria must be satisfied, however, by the complex
MIMO systems required to meet the demands of mcdern technclogy. For example, the design of a

31



J. Valls Miré 1997 3.8. Optimal Control

manipulator control system that minimises the expenditure of control energy or the period of time
necessary in performing a task with bounded control input are not amenable to solution by classical
metbods. In that respect, dynamic optimisation can be best described as a control design methodology
concerned with obtaining the best possible response of a process thol sctisfies the physical constraints
imposed and at the same time minimises (or mazimises ®) some scalar indez of performonce “IP” which
maybe a function of all the state ond contrel voriobles of the system.

All standard dynamic optimisation techniques depend in sorne sense upon classical calculus of vari-
ations methods to derive a set of necessary conditions that must be satisfied by an optimum control
law. These conditions for optimality lead to the (generally non-linear) classical TPBV problem that
must be solved to determine an explicit expression for tbe optimal control. In fact, until 1957, classical
calculus of variations methods provided essentially the only approach to TPBV problems. It was about
then when Pontryagin [23, 24], motivated by an interest in problems with bounded control or state
variables, postulated the Maximum Principle (MP}, and almost simultaneously Bellman [25] suggested -
Dynamic Programming (DP) based upon the principle of optimality. Although these techniques pro-
vide an analytical expression for thbe optimal control law, their applications are essentially limited to
linear time-invariant systems with quadratic form 1P’s. Even in such cases, analytical solutions are
prohibitively complex for high-order systems (n > 3).
~ Computational solutions, made available shortly after 1957 by a number of researchers (fundamentally

mathematicians), introduced iterative computational procedures based upon small-scale linearisation,
and development of numerical procedures has been extremely rapid since 1960 in parallel with the
advent of digital computers. These methods are readily applicable to a wide range of boundary-
value problems, including cases where the state equations are non-linear and/or time-varying; the
1P is analytically intractable (non-quadratic in form or dependent upon time-varying coefficients); or
constraints are functionally dependent upon siate and time, often non-linearly so. Moreover, even
when analysis is relatively straightforward, computational solutions are often less expensive. In these
so-called “direct methods” for solving the TPBV problem, the procedure is to generate a sequence of
solutions, each superior to those preceding it as measured by the IP, converging toward the desired
optirnum solution. Some of these techniques include the steepest descent, variation of extremals and
quasi-linearisation [26], all of which determine an open-loop optimal control associated witb a specified
set of initial conditions. ' :

Realistically then, the MP or the DP approacb must be viewed as a starting point for obtaining
numerical solutions to optimal control problems. From these, knowledge of the form of the optimal
control (if it exists) is obtained and a statement of the TPBV problem which, when solved, yields an
explicit relationship for the optimal control. Furthermore, if the optimal control law is in feedback form,
oll of the states must be first available for measurement (or estimation). Therefore, it is understandable
that optimal control theory does not, at the present time, constitute a generally applicable procedure
for the design of simple controllers, even more so if real-time constraints are an issue in the design of
the controller, as in the case of robot manipulators. These limitations may preclude implementation of
the optimal control law (they certainly bave in the past); however, the theory of optimal control is still
useful because:

1. Knowing the optimal control law may provide insight helpful in designing a suboptimal, but easily
implemented controller.

2. The optimal control law provides a standard for evaluating proposed suboptimal designs, 1.e., a
quantitative measure of performance degradation caused by using a suboptimal controller can be
establisbed.

There are many techniques that could be presented here. lu the interest of clarity and the concern
of this research work, bowever, the fundamental concepts of Pontryagin’s MP will be presented next,
along with a general discussion about Bellman’s DP and Kalman’s solution for linear systems.

8 Any optimisation problem which can be represented 2s a maximisation problem (i.e., maximise A) can equally well
be represented by a minimisation problem {minimise —A). Throughout this dissertation, any results obtained for a
' minimisation apply also for a maximisation.
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3.8.1 Pontryagin’s Maximum Principle

In 1956, the Russian mathematician Pontryagin and his coworkers Boltyanskii and Gamkrelidze, hy-
. pothesised the MP as a generalisation of the calculns of variations to study the optimal control of
systems in which there is a constraint of some kind oun the instantaneous value of the control in-
put [23, 24]. A complete derivation of the MP involves extensive detail and is beyond the scope of
this thesis. This section concentrates instead upon development, rather than proof, of a general' MP
statement, while its practical application to the manipulator control problem under investigation here
will be presented later in Chapter 6. For a more rigorous presentation the reader may refer to [26, 27].
The problem is that of finding an optimal control u(t) for a system described by Eguation (3.2)
which takes the system from an initial state ®(ty) to a specified final state () while minimising a
general IP of the form t ‘
i = [ G, uid (3.12)
to
where the IP integrand G is referted to as the loss function, and represents a measnre of instantaneons
loss change from ideal performance. Therefore, the IP is interpreted as the cumulative loss. The
typical problem which can be solved by the MP is one in which the cantrol vector, with components
u;, i = 1,.../m, is constrained so as to lie in a closed bounded admissible region U in the m-dimensional
vector space of the control inputs by the relation
U.

Smin

Su; < U;

Smex

(3.13)

It is possible that the admissible region may vary with time, but it will be considered fixed here for
simplicity. This will be later reviewed in Chapter 6 during the actual design of the optimal controller
when practical issues are taken into consideration. The artificial state variable z; is added to the
original problem with n-state variables (and hence becoming (n + 1)-order) to force the problem into
the MP framework. ‘This variable is the performance index 7 itself, i.e., zg = J | 2o(0) = 0, so that
#p = G(z,u,t). The MP regnires a set of auxiliary dependent vanables or Lagrange multipliers &
pi(t), defined by the following linear and homogeneous form

_ T
ng‘: i=0...n or ﬁ:—(g—i) D (3.14)

j=0

where B_f ts the same Jacobian matrix discussed later in Section 3.9.2 to show the relationship
x
between manipulator Cartesian and joint velocities.

The extended state equation and the Lagrange multiplier vector are then combined into a new scalar
function H, called the Hamiltonian for its analogy to Hamilton’s equation of motion of a mechanical
system, and defined as

" kg
’H,(z,u,p,t]=pT_f(:n,u,t)=Zp,-ﬂ(:n,u,t) . (3.15)
i=0 b
The MP states that:

Definition 3.4 The control inpuf u which, while remaining in the permissible closed bounded region,
minimises J, must mazimise at each time instant the Hamiltonian H.

i.e., the MP sets a general requirement npon u according to ¥
'}imat(z:u:plt) = ggg?{(m’u:p,t) ! (316)

where the subscript u indicates the variable which is varied in order to achieve the maximisation
of H for given =, p. Hence, rather than providing a direct solution to the optimal control problem,
the MP produces the result in terms of the solution of another set of differential equations, that is,
Equation (3.14). Whether this system of equations in terms of the auxiliary variables can be solved

"Notation (t) for time-variant parameters will be dropped for simplicity since that applies to all variables involved
unless otherwise stated or when required for a more comprehensive exposition.

2 Also commeonly referred to as costate, adjoint or auxiliary variables in the literature and hereafter.

97This restriction in the control variable would not apply in the general unconstrained problem treated with classical
variational methods.
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depends upon the existence of initial conditions for the differential equations. The design of the optimal
control law requires the control u to be in terms of the state vector = and time t. However, according
to definition 3.4, maximising H with respect to u resnlts in a control law in terms of the auxiliary
variables p. This coupling between the state and the Lagrange multiplier can be accomplished by nsing
Equation (3.14). Differentiating the Hamiltonian, Equation (3.15) with respect to p, we obtain

.g_"'i__f.(zut) i=0..n - (3.17)
and with respect to =, we ohtain

o N0 . - .

517_ 31: pJ t=0...n . (318)

Substltutmg Equatmn (3.17) into the (n + 1)-order state Equa.tlon (3.1

L

. _ oH
;= :'=0...n or = —-— 3.19
aP: dp ( )
And substituting Equatmn (3.18) into the anxiliary var1ab1e Equnation (3.14) we have
=g i=0...n or = -5 (3.20)

Equations (3.19) and (3.20) are written in the Hamiltonian canonical form and relate the auxiliary
variables to the original state variables , hence completely stating the MP in terms of #. In view of
this fact, the partial Pontryagin’s MP stated in definition 3.4 may be extended as follows

Definition 3.5 Let u be an admissible control input to o system characterised by Equation (3.2) such
thot it is desired to transfer the system state from on initial state x(tg) to a specified finol state z(iy)
(where some of these components moy not be constrained to fized values and might be missing). If u is
optimal, in that it minimises the value of the variable J defined by Fquotion (8.12), then there exists @
nen-zero continuous vector p which optimolly satisfies Equattons (3.19) and (8.20) for all t € [to,ts].
In oddition, H(z,u,p, ) = Hmaz(Z, u,p,t) 1°

The answer to this problem requires the solution of 2n + 2 first-order differential equations, (3.19)
and (3.20), which in turn require the specification of an equal number of bonndary conditions. Since
these boundary conditions are split, i.e., some are given for to, and some for t;, such problems are called
two-point boundary-value (TPBV) problems, and as stated in the introduction to this section, they are
in general rather difficnlt to solve. Unless the system is of low-order, time-invariant, and linear, there .
is little hope of solving the TPBYV problem analytically [26]. Hence, iterative methods are frequently
employed. Typically the initial and final conditions are known for the state variables hut are often
not known for the Lagrange multipliers. Thus, iterative methods are usually based on generating good
guesses of the initial auxiliary variables to converge a solution for the state and costate differential
equations (some will be presented later in Section 4.3.3).

Furthermore, Pontryagin has shown that a necessary condition for optimality (obtained from the
calculus of variation’s Transversality Condition [28], introduced to find all t.he bonndary conditions
which are required for the solntion of the problem) is that !

po(ty) = -1 (3.21)

From Equation (3.20) we see that the time derivative of pg is zero, so that pp is constant and
Equnation (3.21) is satisfied at every instant ¢ € [tp,#;]. Hence, the zeroth term of Equation (3.19)
and (3.20) is superfluons, and the canonical form of these equations can he restricted to 2n expressions,
le,for ¢ = 1...n. If asolution can be attained, then the full specification of the boundary conditions
described by initial and final state suffices to obtain it.

It should be emphasised that the MP conditions described by definition 3.5 constitute a set of
necessary conditions for optimality; these conditions are not, in general, sufficient. Further to these
conditions, Pontryagin also derived other necessary conditions for different problems (e.g., #; fixed or
free, z(t;) partially or completely specified, etc.). However, since they are not relevant to the work
described in this dissertation, they will not he stated here. For a fuller exposition see, for example, [26].

12 This condition is sometimes expressed as H(z",u,p", t} < H(z", u",p*,t) where * indicates optimal values.

11Because Equation (3.14) is linear and homogeneous, pp(ts) can be taken to be any negative value and the other
components of p will be scaled up or down to suit. If the minimum principle was in use instead, po(ty) is taken to be 0
or +1 {or in general any other positive value}.
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3.8.2 Other optimal control strategies

The basic concepts of DP and the “Principle of Optimality” upon which it is based were introdnced by
Bellman [25) in 1957. ln its most general form, DP is a tool for determining optimum solutions to multi-
stage decision problems, 1.e., a process where a choice is required between two or more alternatives at
discrete intervals in time. The basis for the best decision taken among those available at each stage is
again a performance index. In essence DP finds the optimum solution by testing all acceptoble decision
sequences at each stage to determine the optimum one, usnally working backward from the final stage
to the iitial one. Bellman originally stated the principle of optimality in this manner:

Definition 3.6 An optimal polz'cf; has the property that whatever the initial state ond initial decision
are, the remaining decision must constitute en optimal policy with regord to the stote resulting from the
first decision.

By employing the principle of optimality, DP provides an organised approach to such a problem, and
obtains a considerable reduction in the number of calenlations necessary compared with the complete
direct ennmeration of all the possihilities. However, even when efficiently organised, this procedure
often requires extensive and sometimes prohibitive storage locations (what Bellman calls the curse of
. dimensignality) and computational capahility, limiting the problems for which DIP provides a practical
solution. The derivation of DP also reveals another important concept - the “Imbedding Principle”.
Bellman placed the emphasis on determining the optimal decision to be made at any stage of the
system, rather than at some fixed state.- The desired optimal trajectory is a path which is a function of
the desired starting point #(0). This imbedding process is accomplished at the (N — k)** stage by not
simply determining the optimal path from the state (N — k), but rather obtaining the optimal path
from all possible states of the (V — k)" stage. This means that the optimal policy and minimum costs
for a k-stage problem are also contained (or imbedded) in the results for an NV-stage process, provided
that N > k. .

The principle of optimality can be mathematically formalised in terms of the multi-stage deci-
sion process. Assume an N-stage decision process with fixed initial and final conditions and an [P
Ji ke +1(z(k), w(k)) for evaluating decisions, where index & denotes the current stage, z(k) is the current
state at stage k and Ji k41 is the cost incurred in moving to the next stage by applying a (k) control
_ action. The principle of optimality leads to work this problem backwards by considering the last stage,
N, first. -Optimum decisions are determined for each possible state at the last stage. Next, all possible
states and decisions at the N — 1 stage are tested, the optimum decisions are stored for each possible
state, and the procedure is repeated backward to the first decision stage. The recurrence relation of
DF becomes ’

C v (@(k), u(k))
I w (2(k))

Jep41(z(k), u(k)) + Ji gy w(z(k+1))
gl(lkl; Ci(z(k),u(k)) (3.22)

which is ideally suited for digital compnter solution but is extremely demanding on computational
resources. Repeated application of (3.22) allows development of the optimal policy one stage at a time
backward through the N stages. The end resnlt is a family of optimum solutions for all possible starting
conditions. That member of the family corresponding to the given initial conditions (0} is the desired
optimum solution. The presence of state and control constraints generally complicates the application
of variational techniques; however, in DP, state and control constraints reduce the range of values to
be searched and thereby simplify the solution.

Few engineering problems involve n-stage decision problems directly, although many can be con-
structed as such if desired. For example, a TPBV problem may be treated nsing DP by quantising
time, state and control into a grid and solving this near-equivalent discrete problem. Accuracy of
the mathematical model depends upon quantisation increments in those variables. Decreasing grid
size rapidly increases the number of combinations to be checked, so a compromise is reqnired. On the
other hand, application of the optimality principle to the continuons TPBV problem provides necessary
conditions for an optimal solution in the form of a partial differential equation, genei‘ally non-linear
and time-varying, called the Hamiltonian-Jacobi-Bellman {H-J-B) equation. This is stated, without
proof [26, 29], as '

- 0= J; (2(t).) + H(=(t), u*(2(t), I3, 1), Jz.1) (3.29)
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where Jy = %i— and J; = %IT and A is a Hamiltonian defined similarly as in the case of the MP.

Although this equation is directly solvable for linear systems with quadratic-form 1P’s '2 (i.e., the
linear regulater problem), in general (non-linear plant or non-quadratic-form IP’s) the H-J-B egna-
tion must be solved by numerical techniques similar to those employed in finding an answer to the
MP. However, the MP solution was reduced to the solution of two non-linear ordinary differential
equations, (3.19) and (3.20), which are casier to solve than the non-linear partial differential equation
obtained using DP. Furthermore, it is important to point out that DP applies directly to non-linear
‘systems with arbitrary constraints on control or state, hut the H-J-B equation for continnous systems
was not derived in any such generality. Of the continuous variational methods, only the MP applies
to such systems. Although contrel can be held within bounds by inclusion of sufficient penalties in
the IP, this solution modifies the problem and tends to yield suboptimal performance relative to the
original objectives. 1t is also interesting to point out that the necessary conditions of the MP can, in
some cases, be obtained from the DP by a change of variables [30], although this derivation assumes
the existence of some derivatives that in many cases do not exist. ‘

The last of the solutions presented is actually an important suhclass of optimal control problems - the
Linear Quadratic Regulator (LQR) problem. 1t has already heen mentioned that for linear systems with
quadratic IP’s the solution using DP leads to a differential equation of the Riceati type. Kalman {31}
reached the same equation by the use of variational methods. Quadratic IP’s are used since they lead ta
convenient mathematical operations in the determination of the optimal controller. Kalman considered
a general quadratic IP of the form

J=; Tt Pa(ty) + / [T (O)Q(t)2(t) + wT ()R (t)u(t)dt (3.24)

which can be physically interpreted as the desire to maintain the state vector close to the origin
withont and excessive expenditure of control effort. The matrices P, Q(t) and R(?) are symmetric,
and the inverse of R(t) must exist. For the linear system of this general form, Kalman asserts that the
optimal control function is a linear function of the state vector. In fact, Kalman proposes the negative

feedback function _ ,
u"(t) = —RN )BT @)K (t)x(t) = F(t)«(t) (3.25)

Notice that even if the plant is fixed, the combined feedback matrix F(t) is time-varying. In addition,
measurements of all the state variahles most be available to implement the optimal control law (3.25).

The matrix K (t) must satisfy the same matrix Riccati differential eqnation mentioned earlier which
has the following form :

K(t) = KOBOROBTOK @) - KOAQ) - ATOKE) - Q@) (3.26)

where A(t) and B(t) are the matrices describing the linear plant as expressed by Equation (3.6) but
in a time-varying fashion, and K (t;) = P. Although the optimal control law for the linear regunlator
prohlem has been shown here to be a LTI function of the system states, under certain conditions the
control law hecomes time-invariant [26]. A generalisation of the linear regulator problem to the linear
tracking problem can also be found in {26).

3.9 Cartesian-based Control

It was already discussed in Chapter 2 how the contirol strategy used in most rohots is hased on the
_ability to govern the position of the joints, where the most natural reference frame for a rohot is defined
by its joints. Hence, planning trajectories in joint-space is an é.dva.nt.ageous approach and is the most
widely used (also employed in this investigation). However, very often the manipulator end-effector is
required to follow straight-lines and other path shapes which are readily described in terms of Cartesian
(tool) coordinates without the need to consider the particular geometry of the robot until the joints
positions are required. Furthermore, since joint-interpolated strategies are not generally well-defined
to follow a Cartesian path, the resultant joint trajectories can only approximaite the Cartesian path
(see Section 2.2). In the following sections two basic techniques to achieve Cartesian-based control
are introduced. Although such approaches are not currently used in industrial robots, mainly due to

1215 that case, the H-J-B equation leads to a differential equation of the Riccati type.
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Figure 3.11: Joint-based control with Cartesian trajectory conversion.

analytical complexity and computational demand, they are nevertheless an interesting and active area
of research. As the schemes rely heavily on the specification of the Cartesian knot points, a preliminary
discussion about the representation of the end-effector in Cartesian space is first given.

3.9.1 Representation of tool configuration

1t is generally assumed that the tool configuration is represented by the pair {r,R}, where r € %2 rep-
resents the tool position and R € ® x R* represents the tool orientation, both relative to a rectangular
coordinate frame at the base of the robot. The pair is usually combined into a R* x R* homoge-
neous matrix T' for conceptnal representation although, from the computational point of view, this is
evidently wasteful of computer memory and they are actually stored separately [3]. Specifying the po-
sition of the end-effector with a translation three element vector r is natural and convenient. However,
specifying tool orientation with a 3x3 rotation matrix R is, at best, awkward, because two-thirds of
the information that must be provided is redundant. An orthogonal set of three -unit vectors can be
.completely specified by three angles such as the Eunler angles associated with Cylindrical representation
or the Roll-Pitch-Yaw linked to the Spherical coordinate system {7]. Another compact approach of
specifying the rotations with only three angles is the Tool-configuration vector [4]. Thus, independent
of the method chosen, tool position and orientation can then he specified in a mare convenient way as
a vector w € R® where the first three components represent the tool position r, while the last three
angles represent the tool orientation. Although Cartesian trajectory algorithms usually provide control
set points as T, it might be more suitable to the controller to transform this representation to the more
compact w as described in the following sections.

3.9.2 Joint-based control with Cartesian trajectory conversion

The architecture for this scheme is shown in Figure 3.11. The basic feature of this approach is the
conversion of the tool-configuration trajectory T'(t) generated by some Cartesian trajectory planner
to a corresponding joint-space trajectory 8(t) € R™ (where n represents the number of DoF of the
manipulator) through the non-linear inverse kinematic transformation A~%, that is,

8(t) =A~L(T(¢)) (3.27)

This is then followed by some kind of linear joint-based servo scheme as described in Section 3.4.
Although for simplicity, velocity feedback or acceleration reference are not shown in Figure 3.11, they
might also be part of the controller. In that case, further kinematic transformations are required to
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determine tbe rates 8(t) and #{t) at which the individnal joints should be driven

60) = 1Ly (328
)

b@t) = JTHO@)w)+I 1 (0()B()

The matrix J relating the hand (tool) velocities to the joint velocities is called the Jacobian. Essen-
tially, it allows the computation of a differential change in the tool coordinate frame due to a differential
change in the position of the manipulator’s joints. If the matrix is invertible (it might not he square

- and/or non-singnlar) then it is possible to calculate joint velocities and accelerations given the hand
velocities and accelerations according to Equation (3.28) above. Note the compact representation w(t)
required for this transformation. The trajectory conversion process is quite difficult if it is to be deter-
mined analytically. Moreover, for efficiency reasons, joint velocity and acceleration, if considered at all,
would actually be computed numerically by first and second differences of the solution w(t) obtained
using A~!. However, such numerical differentiation tends to amplify noise and introduce a delay. A
different solution in which this transformation is not needed is presented next.

3.9.3 Resolved motion rate control (RMRC)

RMRC, or the Inverse Jacobian Cartesian control [13), is essentially a closed Joop control in which
the sensed joint pdsition is immediately transformed by means of the kinematic equations A into the
equivalent Cartesian position!®. As shown in Figure 3.12 this Cartesian description (converted to its
equivalent six-entry vector w(t)) is then compared to tbe desired Cartesian position wgqlt) to form an
error de(t) in Cartesian space. ‘

This error, which may be presumed small under tbe action of the controller, may be mapped into a
small displacement in joint space by means of the inverse Jacobian. These differential errors in joint
space, essentially the derivative of the joint vector, are then multiplied by a diagonal gain matrix and
fed into the velocity servos that control each joint [32]. Alternatively, a straightforward velocity loop
topology might be used where the error is directly the difference from a Cartesian velocity setpoint
and the measured Cartesian velocity [7]. The latter would be determined from a joint velocity sensing
device (e.g., a tacbometer), which is then converted to the hand velocity by means of the Jacohian. The
hardware availahle will dictate the approach implemented. While the one-to-many Cartesian-to-joint-
space trajectory conversion process implemented in Section 3.9.2 is replaced by some kind of one-to-one

'3 Recall that, as opposed to A™1, this is not an ill-defined mapping but a one-to-one transformation.
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coordinate conversion (A and J) inside the servo loop, the RMRC carries a heavy computational burden
due to these kinematic transformations which need to be executed at servo rate. This drawback,
common to otber Cartesian-based control methods, like the Resolved Motion Acceleration Coutrol
(RMAC) [33], would, in general, degrade the stability and disturbance rejectmn capabilities of the
system compared to joint-based systems.

3.10 Summary and Diécussion

This Chapter has reviewed the most common forms of rohot cantro) in use today with tbe aim to set
forth the fundamental control framework on which the approach examined in this dissertation builds
upon. The straightforward linear independent-joint position servos implemented by most current robot
manipulators work relatively well in many elementary industrial tasks and are, at present, more reliable
and maintainable than multivariable methods. However, the performance of such controllers decreases
rapidly when dynamic effects become significant (e.g., at high speeds or with varying loads). Hence,
if the a.ss"umption of linearity in the manipulator 1s removed, this technique behaves satisfactorily only
over a limited range of operation.

Dynamic control has produced model-based non-linear dynamic decoupling techniques and‘adaptive
coutrol methodologies that can, ideally, overcome such drawbacks. The poteutial advantages of VSC as
a robust method for manipulator coutrol has also been stated. However, the more and more stringent
demands of complex MIMO systems, such as high-performance aerospace vehicles or advanced robotic
systems, have prompted the seeking of alternative methodologies for their associated control systems.
That is, control strategies which can naturally lead towards a system which can be regarded as the
best possible system to accomplish a desired task, with respect to a standard performance index (e.g.,
time). In other words, optimal control. A survey of the two classical optimal contrel approaches to
the non-linear MIMO time-varying TPBV problem being investigated in this work, the MP and DP,
has been presented, along with an optimal technique specific for linear plants, the LQR controller. It
has been made clear from the expositions on these Sections that most of the published work ou this
subject is at high mathematical levels, beyond the reach of applicability to real conirel problems. In
fact, numerical solutions are normally the only option even for simple control problems. However, the:
“natural” aim of obtaining a “better” system will lead in the following Chapters to review this theory
and propose a compromise between optimality and applicability as an approach to develop feasible
optimal control strategies. '
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Chapter 4

Survey of Alternative Robot Motion
Schemes

4.1 Introduction

The concluding remarks drawn in the previous three Chapters have suggested that the manipulator
trajectory planning and tracking problem could be conveniently regarded as tightly conpled if the rigid
body dynamics of the robot are taken into consideration. This featnre, along with advances in corrent
processing technology, has naturally led to the consideration of optirmal control methods in search of a
sclntion to improve manipulator performance and/or meet more rigorous constraints. ‘

As previously pointed out, this idea is not new and a number of researchers have attempted different
methods to integrate dynamics with an IP {and maybe actuator limits) to obtain better trajectory/control
solutions that can utilise the capabilities of the manipulator in full or nearly in full. This Chapter is a
survey of resnlts taken from the literature on optimal trajectory planning and control of robot manipula-
tors. Some of the strategies reviewed will be for generic optimal control problems, but most concentrate
on what is widely acknowledged as the primary measure of optimality, i.e., tbe time required by the
manipulator to reach the desired location — also the focus of concern in this dissertation.

It should be noted that since the trajectory planning problem is reformulated as an optimal control
problem with control and possibly state constraints, the resnlting algorithms yield optimal /snboptimal
trajectories along with an approximation ! to the (generally) open-loop control torques that generate
such trajectories. In view of this fact, the topic is referred to in the literature as elther the optimal
trajectory planning problem or the optimal control problem 2.

The fundamental nature of the different alternatives to the time-optimal robot motion problem
‘has already suggested an initial division based on whether the dynamics are contemplated in tbe
optimisation or not. A brief summary of several trajectory optimisation approaches which employ
constant global estimates of the joint velocities, accelerations and maybe jerk limits is first described
in Section 4.2. Given their geometric nature, the solutions proposed by these methods underlie, to
a large extent, much of the trajectory planning theory described in Chapter 2. However, some kind
“of time-optimisation procednre - usually iterative in nature - is also added. When the minimnm-time
trajectory planning problem is further constrained by the details of the robot dynamics, a long-standing
problem with vast appeal to finding practical schemes to improve robot motion performance emerges.
Because of the importance of the problem, several approaches have been reported in the literature
which have their roots in a paper publisbed in 1971 by Kahn and Rotb [1]. However, a rather simplistic
classification imposed by the various levels of complexity of the given starting path is presenied in
Section 4.3. Finally, in Section 4.4, some comments are made regarding the general advantages and
drawbacks of the different stra.tegles presented and the reasons for opting for the approach nndertaken
in this dissertation.

1Exact manipulator dynamics are never fully known.
2Sometimes also as the optimal path planning problem, but the author believes this is misleading given the general
remarks in Section 1.2,
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4.2 Geometric Optimal Approach

This class of problems invariably assume an unconstrained desired motion given by the path end-points,
and a set of intermediate knot points hetween path end-points. The trajectory through the knot points
is therefore generated to ideally satisfy continnity and physical hounds. In addition, some sort of
performance index is also (explicitly or implicitly) considered. Since dynamics are not examined here,
the resulting optimal trajectory is then assnmed to be followed by one of many well-known on-line
tracking algorithms, like those described in Chapter 3, to drive the manipulator along the prescribed
trajectory.

The trajectory suggested by Panl [2] can be essentially regarded as an extension of that described in
Section 2.7.4, mostly focused on multi-point-to-point paths hut applicahle also to simple point-to-point
trajectories with strategic mid knot points. It was hased on a simple approach that eliminates stopping
at each transition from one segment to another by looking one knot point akead. The acceleration
time to allow the manipulator velocity to change from maximum to minimum and vice versa was
fixed, although smooth acceleration transitions were granted. A quartic polynomial was defined over
the transitions between trajectory segments, whereas a linear polynomial, as the one used in the mid
segment of Equation (2.13), sufficed after the transition. Further details of this approach can also he
found in Panl’s book [3]. An adaptation to Cartesian trajectory planning is also described there, which
1s shown to he conceptunally simpler than the joint scheme hut, as expected, computationally more
expensive.

Luh and Lin [4] mv&tlgated the minimum-time path planning problem, where they derived a method
for ohtaining a time history of positions and velocities along a pre-specified path with a minimum trav-
elling time under the constraints of Cartesian limits on linear and angular velocities and accelerations.
A large-step gradient technique was attempted to shorten computing time, but its iterative nature still
renders an off-line solution. -

As described in Section 2.7.3, the addition of two extra knot points with nnspecified joint displace-
ments provided enough freedom for solving the trajectory planning prohlem under continuity conditions.
This solution was adopted by Lin et al [5] where the transformed joint displacements for a number of
pre-specified Carteslan points minns two were interpolated hy piecewise cuhic polynomials after adding
the unknown two extra knots. The resulting spline functions were expressed in terms of tir_ﬁe intervals
hetween adjacent knots so that minimizing the total travelling time reduced to adjusting the time in-
tervals hetween each pair of adjacent knots. In the paper, a non-linear iterative search algorithm was
adopted which minimised the total travélling time by assuming the knot points to be the vertices of a
flexible polyhedron. Basically, a new and hetter knot ohtained in the search would replace the cnrrent
worst knot to construct a better polyhedron for the next search. As a result, the flexible polyhedron
will he moved closer to the optimal solution step by step. It is evident, however, that the calculations
required to compute the optimum time-intervals and then spline the functions together need to be
performed off-line.

Cao and Dodds [6] suggested, in a recent paper, a new approach for smooth and time-optimal joint
trajectory planning hy constraining the path defined hy the knot points to a trajectory template based
on Lin ef al’s [5] piecewise cubic spline trajectory, along with a suitable objective function. The
optimization process presented was divided into two phases. The first was to minimize the objective
function by changing the positions of the joint knots in the piecewise cuhic polynomial with initial time
intervals suitably chosen so that a smooth path was obtained. A vector of Lagrangian multipliers (see
Section 3.8.1) was introdnced here to convert the constrained optimisation problem back into a linear
uncanstrained one which was then solved. The authors noted that the resnlting linear systems conld
yield no solution or infinite solutions, yet a unigue solution was assumed without proof. The second
" was to scale the time intervals for the time-optimal paths hy contracting the travelling times so that
the resulting joint velocities and accelerations or jerks at some knots of the paths were maximal with
their limit constraints. This was again carried out iteratively by the One Dimensional search method
until some minimum error houndary was achieved.

4.3 Dynamic Optimal Approach

The research reported in this group can he conceptually separated into three categories:
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4.3.1 Motion constrained to specified geometric path

In the first method, the geometric path that the manipulator must follow is first assumed to be given in
the form of a parameterised curve, g; = f(s), where ¢; is the position of the #** joint and S is the path
parameter (see Section 1.2). This transformation reduces the 2n dimensional state space (position and
velocity of each joint of an n DoF manipulator) to a two dimensional state (phase) space regardless of the
number of joints in the robot. The time derivative of the parameter and the parameter itself completely
describe the current state of the robot, and the constraint on input forces/torques is also converted to
that of the path parameter by reducing it to bounds on the pseudo-acceleration, that is, the acceleration
along the path. Hence, position, velocity and acceleration (thus torques) of the various joints are then
related to one another through the parameterization of the path. Furthermeore, giveu the value of the
parameter ajong the path, its velocity and acceleration - if known, fully determines the input torques for
all the joints. With this interpretation of the problem, the determination of the time-optimal solution
becomes the selection of the pseudo-acceleration that produces the largest pseudo-velocity along the
path. This is achieved by studying the effects that the constraints on the pseudo-acceleration (derived '
from the torques) impose on the values of the pseudo-velocity. The intersection of the regions determined
by the pseudo-acceleration inequalities naturally lead to a region in the spatial pseudo-velocity versus
spatial pseudo-acceleration phase plane which is referred to as the admissible region outside of which
the phase trajectory must not stray.

Since it is very often necessary to specify the path the manipulator must follow (for example to
avoid obstacles, or in welding, painting and like applications), several researchers have adopted this
approach in the past. It is interesting to note that Shin and McKay (7}, Bobrow et al [8] and Pfeiffer and
Johanni [9] independently came to similar conclusions by following the saime formulation, although their
numerical algorithms and miotivations were slightly different. Analogous non-standard numerical search
procedures in the parameter phase plane have been employed by Shin and McKay (7] and Bobrow et
al [8] to compute the maximum/minimum pseudo-acceleration along the path that produced the largest
pseudo-velocity without violating the dynamic constraints. The authors note in their work that the
new control variable - the psendo-acceleration of the end-effector along the path - always takes the
value on the hounds. It is interesting to note that in both papers the authors regard the problem as
naturally suited for a solntion in the langnage of optimal control with the employment of Pontryagin’s
MP (see Section 3.8.1). However, both discard it for the difficult closed-form or numerical solution on
behalf of a simpler reasoning numerical algorithm.

An interesting addition to these methods with an experimental essence has recently been provided
by Dahl [10] by proposiug the idea of a path velocity controller (PVC) for modification of the velocity
along a pre-specified path when the torques saturate. In his work, the path velacity controller acts as
an outer feedback loop cutside the ordinary robot controller, and modifies a nominal optimal velocity
profile obtained according to {7] to achieve a reference trajectory which does not require more torque
thau is available (due, for instance, to disturbances or modelling errors). The computational overhead
caused by the PVC is shown to be conceptually small and the necessary parameterisation of the main
controller is also shown to be of the same complexity as the un-parameterised controller. However,
experimental results are restricted to an oversimplified linear decoupled model of each joint of the
manipulator, possibly for real-time computational reasons.

The same geometrical interpretation of the torque constraints leads to a similar search method |
confined by the field of acceleration/deceleration extremals in Pleiffer and Johanni [8}. The approach,
however, proved more illustrative and additionally, the technique of dynamic programming was also
’ applied to optimize trajectories according to criteria other than minimum time. Although, as pointed
out in Section 3.8.2, this technique is impractical for solving the path unconstrained TPBV problem
as it would imply a search over 2n variables for an n DoF- manipulator, if the path is specified the
problem reduces to a search over a scalar parameter and its time derivative, thus minimising the “curse
of dimensionality” referred to in Section 3.8.2. However, the numerical complexity still increases rapidly
with respect to the (discrete) number of states. Another drawback of the application of DP to this
problem is the non-smoothness of the trajectory due to the discrete grid representation. In addition, the
DP approach does not offer any ¢ priort insight into the structure of the optimal controller. Shin and
Mckay also applied a dynamic programming search technique in another paper [11] by first discretising
the phase-plane into a rectaugular grid in which the cost of going from one point on the grid to
the next spanmed from the dynamic constraints of the manipulator and the performance index. This
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algorithm was extended by Singh and Len [12] to paths that did not need to be parameterised by a
‘'scalar parameter, but could simply be a sequence of points. The solution in this case was obtained in
joint space by first solving for the inverse kinematics if the path points were initially specified in the
hand coordinates. An additional constant constraint on joint velocities, independent of the available
forces/torqu&s was imposed also to avoid instability at hlgh speeds. The fact that the path is given
enables tbe determination of the positions of all the other links if the position of one is known. Hence,
the proposed algoritbm reduced the problem to a search over the velocity of any one moving manipulator
link. Although 'this ensured synchronisation of the links along the path, the optimality of the chosen
“controlling” link was not proved. A recursive refinement scheme was employed to assure a faster
convergence of the solution.
1t was already noted when reviewing {7, 8] above, that the computational complexity of manipulator-
dynamics and the existence of state dependent constraints have always posed a major drawback in
deriving a direct optimal solution to the (path constrained or not) TPBV problem by using Pontryagin’s
MP. However, the consideration of path constraints has only recently produced a solution to the problem
as described in Shiller [13]. Rather than obtaining analytical closed-form solutions, a numerical solution
is proposed with a gradient search that iterates over the initial value of one costate. The selection of
this unknown is, essentially, a line optimization problem that is guite computationally inexpensive
_compared to the optimal DP search algorithms proposed previonsly.' The solution presented, however,
is still limited to low (2) DoF manipulators given the complexity of the solution. Chen and Chien [14]
had previously employed a variation of Pontryagin’s MP, the Extended Pontryagin’s MP, which differs
from the original only in the costate equations (see Equation (3.14)), to make some general remarks
about the properties of the solution to the time-optirmnal control problem. They came to the conclusion
that the existence of a time-optimal control requires either:

¢ One, and only one actuator be always in saturation on every finite time interval along the optimal
trajectory.

o At least one of the actuators takes on values at limnits if there exist singular critical points along
the maximum velocity curve (points which represent a discontinnity in the psendo-acceleration).

Altbough no results are given, a few existing numerical results from the literature reviewed here are
cited to verify the theoretical resnlts. These solutions just examined embrace a cornmon factor with the
majority of those described in Section 4.3.3 by proposing the direct use of Pontryagin’s MP, although,
as will be seen, no path is initially assurned given.

All these algorithms, though, rely heavily on an initial near-optimurmn path between end-points.
Althougb some guidelines indicating how to generate these paths have been provided in Shin and
McKay [15], the problem of specifying tbis path is very much an open problem for research.

4.3.2 Point-to-point path unconstrained motion with initial feasible trajectory

A more general approach to the truly minimum-time problem allows also for the shape of the path to he
optimised in the process. This scheme combines the use of an initial feasible trajectory with an iterative
numerical algorithm to determine the optimum parameters that minimise the path traversal time.
Thus, the resulting optimal control problem, constrained by initial conditions, terminal conditions,
control, state and the performance index is once more converted to a one-dimensional problem by
parameterization with the proposed initial trajectory. Now though, a parameter optimisation technique
is employed to search for the minimum-time path and trajectory. Uniform cubic B-spline polynomials
bave efficient computational properties and are 2-time differentiable functions, which make them an
ideal candidate for smooth manipulator motions. These are splines (see definition 2.1) with tbe added
properties of having the knots uniformly spaced in time and being egual on each time interval to a
cubic polynomial composed in tnrn by four cubic basic functions. Hence, in approximating the angular
displacement g(t) with cubic B-splines, all the parameters involved in the problemn become a function
of the unknown coefficients of the cubic B-spline in S.

Polynomials of this form were employed hy Bobrow [16] to represent the geometric path in the form
of a set of spline vertices in a workspace containing obstacles. A parameter optimization technique was
then used to search for a minimum-time path. For each iteration of path parameters, the time-optimal
velocity profile along the path was.obtained using the general-purpose non-linear constrained optimi-
sation algorithm presented-in [8]. A similar method was developed by Shiller and Dnbowsky [17], hnt
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additional manipulator end-effector constraints were also considered. As an alternative to parameter-
ising the motion of each joint first in space (the spline parameter S) and then in time, Gilbert and
Johnson [18] used B-splines to parameterise the motion of each joint directly as a function of time.
Althongh similar in nature to the other methods described, the solution resulted in trajectories that
were compntationally less efficient. The solution proposed hy Chen [19] was along the same lines. In
this work, the numerical algorithm proposed to solve the resnlting non-linear programming problem
was an implementation of the sequential quadratic programming (SQP).

A parametric model in S based on a concatenation of cubic splines defined piecewise hetween given
reference points was also employed hy Wapenhans et ol [20] for non-contact robot movements. The
prohlems of minirum-time and a mixed cost fanction of minimum-time-energy were evaluated to de-
termiue the optimal path velocity along the path. The former was solved with an optimal algorithm
that utilises the property described in (7] that an optimal solution must lie on the hounding surface of
coustraints in the phase plane. For the evalnation of the latter, the method of DP is used. The main
novelty of the paper, thongh, is that it presents a complete procedure that encompasses hoth simula-
tion and the implementation of a custorn controller on an industrial manipulator. It is shown that for
reasons of computational efficiency, dynamics equations are linearized around pre-determined points
of the nominal trajectory. Furthermore, the cutput of the trajectory optimisation, i.e., the optimised
trajectory reference values and the motor torques at each time interval, are calculated off-line before
trajectory execution and employed in a feedforward controller (see Section 3.5.1) during execution.

Auother proposition was presented hy Kim and Shin [21] where the path was assumed to be given as
a set of intermediate knot points. The algorithm was developed around the specific pre-requisite that
an absolnte tolerance in the path deviation at each corner point can’ be specified, allowing for the path
to be optimized around the knot points. A set of local optimization problems - one at each corner point
- was employed to optimize the problem, hased on local upper bounds on joint acceleration derived
from the manipulator dynamics. _

The optimality of the majority of the solutions proposed under this scheme depends, however, on
several factors, such as the initial guess for the unknown spline coefficients and, in some cases, the
traveling time as well. The initial parameterisation of the problem with some piecewise polynomial
spliue allows for the infinite-dimensional optimal control problem to be approximated by a finite-
dimensional one. Although this provides a way of finding an exact numerical solution, thus avoiding
the complicated (and very often impossible) numerical integration of the manipulator dynamic equations
of motion, the success of the approach still depends on how well the finite-dimeusional problem can be
solved. There is always a risk that the solutiou obtained may he a local minimum. However, above
all, it depends on how well the exact solution can be approximated by uniform cubic B-splines or any
other form of a polynomial spline trajectory. Obviously, this is not the case for all control laws, e.g.
the class of bang-bang control laws. - ‘

In recent years several neural network (NN) architectures have heen proposed to deal with the
constrained optimisation problem presented here. This approach, presented for instance by Simon [22],
overcomes, to some extent, the drawback that the path must fit some pre-specified form. However, in
view of the many different network architectures which can he used for optimisation, the anthor stresses
that the purpose of the approach is to demonstrate the applicability of NN’s to the problem, rather than
finding the best path planning network. While the paper presents a method to find the best interpolating
curve with minimum joint jerk through an arbitrary set of kuot and end-point constraints, there are
no theoretical limitations to applying the method to cther IP functions. The author also emphasises
that an ‘annealing-type technique, used in conjunction with the network to climb out of local minima,
prevents the algorithm from being appropriate for real-time use, althongh it significantly improves the
guality of the final solution by finding the hest among many local minima solutions.

4.3.3 Point-to-point path unconstrained motion

The most general and truly optimal approach to trajectory planning addresses the category of robot
manceuvres in which the path of the end-effector is free, i.e., point-to-point unconstrained motions.
This is particnlarly useful for specifying gross motion of the rohot arm when it operates in a collision-free
space. Otherwise, some sort of collision avoidance can be assumed ai task level to specify appropriate
collision-free control points. The manipulator control prohlem can then be addressed in a more general
form in which the robot is given relative freedom to move along any trajectory hetween any two given
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intermediate or end path points. Removing the set of path constraiots from the problem specification
does not simplify the minimum-time problem as it might at first appear. While the optimal control
problem for specified paths is a one-dimensional optimisation, optimising motions between given end-
points has proved more difficult and compntationally expensive because of the increased dimension of
the problem. As indicated in the early solutions to the minimum-time problem in general, Pontryagin’s
MP is the natural choice for studying the optimal control of systems in which there is a constraint or
limitation of some kind on the instantanecns value of the input signals. The minimum-time problem,
subject to control hounds with no constraints on the path, can be considered as a special case of the

- more general optimal control problem. Moreover, if the two end-points are prescribed, the standard
TPBYV problem is obtained as outlived in Section 3.8.1. It was stated there that unless tbe system
is of low order (first or second), time-invariant and linear, there is little hope of finding the solution
analytically. Therefore, the highly non-linear manipnlator equaticos of motion very often require the
use of numerical methods to solve the problem. Along these lines, a number of algorithms have been
proposed in the literature.

An extension of the gradient method based on an adjustable control-variation weight {ACW) matrix
algorithm was used by Weinreh and Bryson [23] to indicate that most solutions tend towards bang-
bang control. Because the ACW program, based on a steepest descent algorithm, was a continuouns
function optimization code, it was unable to achieve sharp discontinnities in the controls, and it was
compntationally intensive. A more efficient numerical optimization algorithm for small-size problems,
the sequential gradient and restoration algorithm (SGRA), was employed by Lee [24] to obtain similar’
curves, also involving smooth transitions between control hounds. An interesting result with regards
to the path unconstrained problem was chtained in this work which is in sharp contrast to the general
remarks about the optimal solution to the path constrained problem made at around the same time
by Chen and Chien [14]. Lee indicated that at least one of the two controls (since results were for
a 2 DoF manipulator) was at its limits at any time instant, a result that seemed to be confirmed by
other researchers. The switch time optimisation (STO) algorithm, propesed by Meier and Bryson [25],
was also based on the steepest descent method for parameter optimization but, because it assumed

* that the trajectories are exact bang-bang solutions, it not only achieved sharp discontinuities in the
controls but also large computational saviogs. The ontput of the program indicated that the bang-bang
assumption was justified. Although very similar in pature to the point-to-point problem, Meier and
Bryson concentrated efforts on minimising the time required to force a manipulator to travel a specified
distance, i.e., open initial and terminal states. The results, however, are also applicable to the problem
where initial and final states are specified. In Geering et al [26], a parameter optimisation algorithm
was employed first to obtain the switching times for the bang-bang controls and an initial guess for
the Lagrange multipliers. This was followed by a shooting method (originally proposed in {27]) for
solving the TPBYV problem for different initial conditions. It was found that in a singular arc, the
corresponding control is not necessarily bang-bang. Fundamentally the same approach was described
hy Fotouhi-C and Szyszkowski [28], although the Forward-Backward Method (FBM) of integration was
proposed to generate a sufficiently good guess for the initial costate vector and final time. A multiple-
point shooting method was employed by Oberle [29] to obtain bang-hang and singular controls without
usiog parameter optimization. ' o

In all the aforementioned exact numerical approaches, the resulting time-optimal solutions are in
open-loop form; i.e., the optimal controls are known as functions of time only, rather than as func-
tioos of the instantaneons manipulator state vector. Hence, they do not accoupt for any unexpected
disturbances which'may act on the systern. An alternative procedure was suggested in the key paper

- of Kahn and Roth {1], that of approximating the coupled non-linear equations of motion hy a linear
system around the final target point. The solution to the resnlting linear system could therefore be
obtained analytically, resulting in a suboptimnal feedbhack control of the manipulator torques. However,
this method is only valid when manipnlator motion is restricted to a small region, since the linearized
equations of moticn would not he valid if the manipulator was located away from the final target point.
The paper by Wiens and Berggren [30] was also based upon this idea. They applied optimal control
theory to solve the unconstrained point-to-point motion problern, although their main concern was to
minimise the energy and non-linear dynamic effects (inertia, centripetal and Coriolis forces) during the
trajectory planning. A linearised inertia sensitivity index was used in the cost function to quantify
the robot’s non-linear behavior over the whole workspace. Hence, an algorithm formulated in terms of
the TPBV prohlem was presented that kept the energy consumption under control while minimizing
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the non-linearities. In order to overcome the difficulty associated with solﬁing the non-linear TPBV
problem, the system equations were linearised and decoupled in feedback form at the beginning of
every controller sampling interval, following the idea of averaged dynamics first proposed by Kim and
Shin [31] for the general time-fuel suboptimal control problem. This is a simple approach to linearise
the manipulator dynamics around the current and end-state, hence allowing for a feedback countroller
to be implemented. The authors point out that although the calculation of the complex inertia sensi-
tivity index had to be performed at each sample interval, thus relegating the algorithm to off-line use
only, with the use of a priori knowledge of the robot’s kinematic and dynamic models a map of the
inertia sensitivity index over the whole workspace can be generated and used a posteriori for on-line
use. Simplified linear and decoupled robot dynamics have been assumed by Krejnin et af [32] in order
to avoid the complex solution of the TPBV problem. Simulation and implementation results on an in-
dustrial rohot seem to confirm the assumptioun that large gear reduction ratios driving the manipulator
effectively decouple the individual joints from one another. The solution, however, can not be made
extensive to other manipulators, e.g., high inertial robots such as direct or semi-direct actuated robots.

Some alternative techniques to the formulation of the minimum-time problem as a TPBV problem
according to Pontryagin’s MP have also beeu presented in the literature. For example, a search tech-
nique, in many ways similar to DP, was attempted by Sahar and Hollerbach [33] which involved joint
tesellation, a dynamic time-scaling algorithm and a graph search. A very simple example with large
computational requirements was presented, and the authors recognised that the primary benefit of the
solution would be as a means to provide a first idea of what the minimal-time path looks like. Another
_alternative technique, digital in nature, to the task of computing the state switching curves was pre-
sented in [34], motivated by deadbeat control. The method proposed a digital state feedback algorithm
to compute the wear-minimum trajectory by placing the poles of the closed-loop system, linearised
around the final state, in the Z-plane, without violating the coustraints ou the actuator torques. A
time-variant state-feedback gain matrix was enip]oyed to force the location of all the poles of the system
towards the origin if the torque bounds are not violated, or inside the unit circle of the Z-plane such
that all constraints are satisfied and at least one of the joint torques is equal to either its maximum or
minimum value. The authors state that the algorithm yields the required feedback masrix off-line and
that, despite being time-variant, it is assurmed constant during each sampling period, due to its digital
character.

4.4 Summary and Discussion

While the methods described above are attractive in that they yield optimal/suboptimal sclutions
to the rohot motion problem, the great majority suffer from the same shortcomings: they result in
impractically complicated schemes, most of them solved via iterative numerical algorithms, heunce at
a large computational expense. In fact, research in time-optimal trajectory planning and control to
date has been demoustrated almost exclusively by simulation and very few authors have discussed
implementation issues and presented experimentals results. Undoubtedly, simulation has an important
place in the development of coutrol algorithms, for example in the analysis of stability or in checking
the proper use of numerical methods. However, the real world is hard to simulate and it is crucial
that extensive experimental evaluation be made too. This is of particular importance if the claims of
increasingly complex model-based modern control techniques for MIMO systems, such as optimal or
adaptive control, are to be taken seriously and hecome routine in robhotics practice. From the papers
reviewed ahove, the few exceptions which include practical results correspond, understandably, to some
of the most recent papers, i.e. [10, 13, 20, 32, 35] which demonstrated the merits of time optimal control,
and showed the significant contribution that the often ignored motor dynamics have in the optimization
process. However, practical limitations due to the dimensionality of the problem stated before, have
restricted the work to motions along either explicitly specified paths or an initial feasible trajectory
to obtain exact optimal solutions. Another practical issue, that a closer examination of the proposals
show, is that the the vast majority of the trajectory planning schemes yield an optimal control strategy
in au open-loop fashton. Hence, when it comes to actually tracking the desired optimal trajectory two
apparent alternatives are at hand: ;

o The resulting trajectory is then followed using a feedback control tracking algorithm, which could
or could not account for the effect of the dynamics. Since the trajectory has been designed to he
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optimal and within physical and dynamic constraints, a proper controller design would guarantee
the optimal motion.

¢ Employ the torques obtained from the dynamic equations of motion and the optimal trajectory
as an approximation to the control action.

Due to modelling inaccnracies and unknown disturbances in the control of real manipulators, the
actual optimal trajectory may deviate substantially from the planned trajectory if the control loop is
noi closed. A feedback controller is therefore needed to direct the manipulator back to the planned
trajectory when deviation occurs. The advantage of planning a trajectory before actually controlling the
plant, i.e. off-line, is that all non-linearities in the manipulator dynamics can be taken into account in
the off-line computation of control forces/torques without overwhelming the control computer, as would
be the case for on-line control with computation of manipulator dynamics such as using the computed
torque control of Section 3.5.2. This solution has heen invariably adopted in all the experimental results
presented to date except [32]. Some implemented a simple PD controller [10, 13, 35], while others opted
for a feedforward device to make use of the optimal forces/torques previously calculated off-line and
saved in a look-up table [20].

The solution implemented in this dissertation studies the viability of the second alternative, in
particular as applied to the point-to-point unconstrained problem. It is an attempt to perform optimal
motions with respect to a timing performance index in an on-line fashion with regards to both trajectory
and control. Furthermore, full rigid-body dynamics are taken into account, hence generalising the
solution to a wide range of manipnlators. The author, however, understands the serious hazards and
limitations that a pure open-loop approach involves, and in view of this fact this work is loosely based
on the optimal feedback controller idea initially described by Kim and Shin [31] and, specifically, the
simple concept of averaged dynamics also employed by Wiens and Berggren [30]. The process ntilises
all available dynamic information of the current (sampled) and the final states to update the dynamics
continually at each sample interval, implicitly compensaiing, to some extent, for dynamic approximation
errors. The update of the manipulator dynamics at each sample interval and the averaged dynamics are
hoth simple, and therefore considered suitable for real-time implementation. In addition to adopting
this idea, the work described in this dissertation eéxplorés further alternatives iowards an efficient on-
line implementation of the algorithm. In particular, a close look at the manipulator electro-mechanical
mechanisms and an enhanced general form of the dynamics linearisation approach provides a more
realistic solution ta the design of a truly on-line near-optimal unconstrained trajectory generator and
controller, With these issues in mind, a practical algorithm for the general point-to-point unconstirained
motion hased on an elementary dynamics linearisation method is developed for the on-line near-time-
optimal feedback control of robot manipulators. The resulting TPBV problem in joint space has been
solved analytically in real-time using Pontryagin’s MP formulation and assuming bang-bang control for
each robot joint.

Sundar and Shiller [36] recently stated in their paper that:

“To date (1996}, no practical method has been developed for the on-line time-optimol feed-
back control of manipulafors with non-linear dynemics.”

The work undertaken in this thesis is an attempt to fuifill that goal within the limits imposed hy
current technology.
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Chapter 5

Dynamic Modelling and Simulation

5.1 Introduction

This Chapter examines what might be regarded as the first step in any contraller design — the accurate
-modelling of the plant to be controlled. This is a preliminary stage to the design of the optimal
control solution adopted, which is described in the following Chapter. The importance of manipulator
dynamics stems nat only from its use in model-based control strategies, such as those described in
Chapter 3, but also in simulation and analysis. It has heen stated that, in practice, this modelling step
may occupy greater than 80-30% of the effort required in control systems analysis and design [1, 2].
Consequently, the significance of understanding the dynamic structure of the plant is found to be
particularly important, and the framework is quite detailed.

Since the mathematical representation of the dynamic behaviour of a general robot manipulator can
be complex, the modelling of the mechanical structure and that of the joint driving motors have been
studied separately: in Section 5.3, the mechanical equations of motion of the robot device, under the
assumption (taken from the physical robot available for testing) of n rigid links joined together serially
by n revolute joiuts, are derived. The decision to opt for the Lagrangian formulation of mechanics is
also discussed, whilst the actuator characteristics of the DC servomotor driving each robot joint are
described in Section 5.4. Although the dynamics of the joint actuators are, very often, overlooked in
the manipulator controller design, the inability to specify joint torques in the typical servomotors of
- commercial arms would deem most advanced control strategies unsuitable, since almost all of them are
invariably based on the capability to control joint torques. Hence, modelling the actuators is not only
aimed at accurately simulating the most significant motor and driver dynamics, but to allow driving
the actuators in torque mode, as specified by the controller design. It is, however,'not enough to
come up with a nominral model structure for the robot arm, and the validation procedure followed to
measure the reliability of both models is outlined in Sections 5.3.4 and 5.4.3 for the mechanical and
electro-mechanical models respectively.

The rapid development of computer hardware and graphics software during the last decade has added
a new dimension to systems study through modelling and simulation. Features such as colour graphics,
solid 3D objects and animations have been incorporated to give way to graphical programming as the
natural approach to plan complex robot motion safely, quickly and easily. The potential major role that
advanced computer graphics are starting to play in the practice of (robot} modelling and simulation,
and in particular its important contribution to the simulation of the novel control algorithms presented
in this thesis, is outlined in Section 5.3. Finally, in Section 5.6, some concluding remarks are extracted
from the results presented in this Chapter.

5.2 System Modelling

There are many conceptually different ways in which the components of the mechanical manipulator
that need to be modelled, namely the motor characteristics, the kinematic parameters and the inertial
{and maybe load) parameters, can be obtained.

Both kinematic and inertial characteristics can be determined from design blueprints. Because ma-
chining has limits of precision and assemhly may be imperfect, there will always be slight variations in
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kinematic parameters — link lengths that are a little off nominal values or neighbouring joint axes that
are not quite so parallel. Since striving for even greater precision can he costly, “kinematic calibration”
has come to be recognised as a necessary process for any rohot to avoid the resulting tip inaccuracies
and miss-locations of the robot with respect to external reference frames [1].

The geometric information, in the form of Computer Aided Design (CAD) models of the parts,
can he further combined with specific densities of materials to estimate the inertial parameters. This
approach requires intensive human involvement and is, as before, subject to modelling errors. Link
inertias can also be determined experimentally hy disassembling the robot, and then weighting the
pieces for mass, counterbalancing for center of mass, and swinging for moments of inertia [3].
addition to requiring intensive human involvement, as in the previous method, this procedure introduces
considerable measurement difficulties.

Another approach, applicable to the chara.cterlsa.t.mn of all three types of unknown parameters, is
System Identification, i.e., the determination of parameters values from the analysis of mput/output
sensory data. The particular class of system identification thatf estimates parameters of a known model
structure is termed Parameter Estimation. 1n general, the system identification approach sacrifices,
for convenience, the precision that can be obtained by some. of the above techniques, since minimal
human involvement is required. Various system identification approaches bave been suggested and a
good review is provided in [1, 4].

Ultimately, the easiest way to obtain the robot parameters is from the manufacturer. This is, how-
ever, an unusual situation hecause the information is often unknown even hy the robot manufacturers
themselves. Furtbermore, provided that restricted information is known, they are normally unwilling
to make it widely available, both for proprietary reasons and also becanse of safety issues. For the
work presented here an agreement was signed with the commercial rohot manufacturer, CRS Rohotics
Corporation !. As a result, a large number of the parameters necessary to model the rohot arm were
provided. This meant that the physical laws and relationships that described the system could be
exploited to obtain the model structure. Kinematic and dynamic parameters, as well as most of the
motor characteristics, were supplied, to which the structure of the dynamic equations of motions and
motor model described in this Chapter were accommodated. Although some calibration would have
heen needed for precise positioning, because the control solution developed in this work is focused on
gross motion, these unavoidable miss-alignments and imperfections were not of much céncern here and
the parameters were incorporated into the model structures for validation.

5.3 Mechanical Modelling

There are a number of procedures for generating the dynamic equations of motion for a robot arm,
i.e., the equations which relate joint forces and torques ? 7(t) to positions 8(t}, velocities @(t) and
accelerations é(t), in terms of the specified kinematic and inertial parameters of the links. At present,
a number of ways have been proposed for this purpose, such as:

s Lagrange-Euler(L-E) method [5]

e Newton-Euler(N-E) method [6]

o Recursive Lagrangian method [7]

. Il{ane’s method [8§]

e Appel’s method [8]

¢ Generalised D’Alambert principle method [6]

In one form or another, the models are obtained from known physical laws such as the law of
Newtonian mechanics and Lagrangian mechanics. These methods are “equivalent” to each other in
the sense that they describe the dynamic behaviour of the same physical robot manipulator. However,
the structure of these equations and, particularly, the computational efficiency of the equations may

15344 John Lucas Drive, Burlington, Ontario, Canada L7L 6AS.
2g5ince the class of robotic manipulators considered in this work is assumed to have only revolute joints, from now on
only torques will be referred to without loss of generality.
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differ, as they are obtained for various reasons and purposes, such as suitahility for simulation, real-time
control, parameter significance, controller design, etc.

Among these methods, the L-E and the N-E formulation have been generally used. These methods,
hased on the Lagrangian and Newtonian mechanics respectively, have their own advantages and disad-
vantages. The advantage of the N-E method, which might he said to he-a “force balance” approach to
dynamics, is that the amount of computation necessary to ohtain the joint generalised torques is quite
small. On the other hand, it is messy to derive and difficult to apply to the design of motion control
strategies of the robot manipulator hecause it is a recursive algorithm and, consequently, no insight
into the structure of the equations is provided. In order to design control strategies and to perform
dynamic simulations, an explicit set of closed form differential equations in state-space form is often
useful, so that the coupling reaction torques can be easily identified.

The L-E formulation of mechanism dynamics, which might be said to be an “energy approach”
to dynamics, is a relatively simple, elegant approach which yields a set of differential equations in
symbholic form where the physical meaning of each term in the equations is clear. The most significant
drawback of the L-E formulation arises from the computational inefliciency of its general form, which
has traditionally heen a bottleneck for model-hased control. However, as was already outlined in
Section 3.8 — where optimal control was introduced, and will again be discussed in Chapter 6 — when
the specific controller is designed, a single closed-form state-space expression of the plant dynamics is
a requisite for the convenient analysis and design of the optimal controller, and in general any model-
based controller. Hence, the L-E formulation will be the preferred dynamic model in the design of the
motion controller.

5.3.0.1 A note abc;mt the N-E and L-E computational issne

The author would like to emphasise a couple of observations with regards to the form and computational
efficiency of these two common formulations which further support the decision to employ the L-E
dynamics approach:

1. The N-E formulation provides a computational scheme as a set of recursive equations in which a
hackward recursion propagates the kinematic information, including velocities and accelerations,
and the forward recursion propagates the torques exerted on each link of the robot. Although,
as previously stated, these equations result in an efficient numerical computational algorithm
applicable to any robot, it is interesting to note that they can he further developed analytically
to ohtain the same set of closed form symbholic equation on q,q,§ which is directly obtained
with the I-E formulation. An example can be found in Craig [9]. For the general derivation
of this additional transformation, presented in Brady et al [10], the closed form N-E equation
is shown to he of the same complexity as that of the L-E, O(n*), while the work proposed by
Hollerhach [7], also reviewed in [10], shows how the L-E equations can be recast into an O(n)
recursive form identical with the N-E formulation. Therefore, it is concluded that the emphasis
on computational complexity should rest on the structure of the computation rather than on the

. derivation from the Lagrange or the Newton-Euler formulation.

2. While it is true that the N-E iterative scheme is quite efficient as a general means of computing the
dynamics of any manipulator, several authors have published articles showing that for any given
manipulator, customised closed form dynamics are more efficient than even the best of the general
schemes [9, 11]. The reasoning behind this is that a fair amount of computational load can he
eluded by eliminating operations with zero-valued factors or reducing the number of operations,
either by gathering common factors or by introducing simplifying trigonometric substitutions, or
both. For a good review on current automatic symbolic manipulation tools, the reader may refer
to [12].

The treatment of rohot arm dynamics presented here is patterned primarily after discussions found
in Fu ef al {6], Brady et al [10], Craig [9], Sanders [13] and Rivin [5], to which the reader may refer for
further details. It is out of the scope of this hrief introduction about manipulator dynamics modelling
and, in general, the work presented in this dissertation, to explore the details of how the different
derivations of robot dynamics are carried out, but to find a suitable scheme appropriate for the control
problem being studied. Thus, no further insight into the general problem of robot arm dynamics will
be provided and the focus of attention herein will be on deriving the I-E formulation of the CRS
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A251 general purpose industrial manipulator. The reader may refer to any of the above references
or [8, 14, 15] for more details on other alternatives. It will become apparent in the following Chapter
how, despite customising in this work the equations of motion of the manipulator available for testing
for computational efficiency, the controller is designed for the general form of the closed-form dynamic
equations of motion of a robotic arm, thus generalising the algorithm to practically any manipulator.

5.3.1 Lagrangian formulation of the equations of motion

The derivation of the dynamic equations of an n DoF manipulator (excluding the dynamics of the
electronic actuating devices, described in Section 5.4) is based on the understanding of the Lagrange-
Euler energy equation, described as

d (8L 8L .
T;—E(BE)-EJ-; for i=1...n . (5.1)

where L, the Lagrangian function, is defined as the Kinetic energy minus the Potential energy of the
manipulator, that is, L = K — P. .

It is therefore necessary to properly choose a set of generalised coordinates g; to describe the system.
Generalised coordinates are used as a convenient set of coordinates which completely describe the
location (position and orientation) of objects in the mechanical system with respect to tbe reference
coordinate system (usually located at the fixed base of the robot). For a manipulator with rotary joints
the angular positions of the link joints, #, provide a natural choice for the generalised coordinates, g,
because they are readily available from sensing devices like encoders and potentiometers. Hence, they
will be used interchangeably hereafter.

As shown in Equation (5.1), the L-E formulation requires knowledge of the kinetic energy, K, of
the physical system, which in turns requires knowledge of the velocity of each joint. Likewise, gravity
loading effects are accounted for in the potential energy P. In both cases, manipulator’s kinematic
parameters are required in the derivation. Having obtained the Lagrangian function L of the arm, the
L-E formulation can then he applied which yields the necessary torque to drive the manipulator in a
matrix-vector equation form as:

D(Q)§+H(q,q)+G(g)=T (5.2)

where D(g) € R™ x R" denotes the inertia matrix associated with the distribution of mass, H(q, §) €
R x R! is a vector containing all interaxial velocity-dependent coupling terms arising from centripetal
and Coriolis forces and G(g) € ™ x R! represents the gravity force terms. Joint torques are included
in vector T € " x N1,

Equation (5.2) is a highly conpled, non-linear, second order symbolic differential equation. The
dynamic equation is a closed form expression, in the sense that the dependence of a joint torque
on movements at all joints is made explicit. In the above general expression in closed form, most
terms are re-evaluated many times, which is the main reason for the inefficiency of this formulation,
and the reason why recursive forms of the dynamics have been proposed to avoid this duplication
(see, for instance, Hollerbach {7]). Moreover, the common use of R* x R homogeneous coordinate
transformation matrices ® to describe the spatial relationship between neighbouring link coordinate
frames in Equation (5.2), further limits the computational efficiency of the formulation, despite resulting
in a convenient and compact algorithmic description of the manipulator equations of motion.

In what follows, an expression for the expanded terms that form the closed form Equation (5.2) for
the CRS A251 robot manipulator is presented. A cunstomised closed form of the dynamics has been
developed, which is derived from the vector representation of the Cartesian coordinates of a point-mass
inertial distribntion for each link, as can be seen in the kinematic sketch of the robotic arm shown
in Figure 5.1, thus avoiding the inefficient use of homogenecus matrices. This simplifying mass-point
approximaiion of the link inertias in the design of the robot equations of motion was imposed by the
structural and dynamic analysis information provided by the manufacturer, which assumed, for some
links, a single point-mass at the inertial center of gravity, whereas others were described by two mass-
point inertial locations. In any case, this dynamically simple approximation to the manipulator mass
distribntion implies that the inertia tensor at the center of mass for each link is the zero matrix [9].

3Normally based on the standard Denavit-Hartenberg link coordinate representation {6].
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I

Figure 5.1: 3D model of the CRS A251 industrial manipulator with point mass approximations.

[ Joint | Range |
& {£175°}
62 | {-110%,0°}
65 | {—40°,90°}
64 {£110°}
fs {£180°}

Tahle 5.1: CRS A251 workspace.

Because the link products of inertia are difficult to measure and are frequently taken to he zero, based
on assumed symmetry, this approximation is not so severe, and validation results shown in Section 5.3.4
have confirmed this assumption.

The arm is constructed of high temsile aluminium alloy components. 1t features side panels held
rigid by crossmembers and linked by a stressed aluminium skin. This construction technique gives .
light weight while contributing to the rigidity of the arm, which in part allows for the high speed
and accuracy of the system. Since the gravity forces are not counterbalanced, motors for vertical
joints are equipped with automatic hrakes to prevent the collapse of the manipulator configuration
if the power supply to the joint motors is interrupted. As seen in Figure 5.1, the CRS A251 robot
system is a 5 DoF open-chain articulated arm: the waist {8, ), shoulder or upper-arm (f;), elbow or
fore-arm (f3), wrist hend — or pitch (f4) and wrist roll (f5). The following analysis, however, relates
only to the principal manipulator structures performing regional or gross motions (major linkage). The
orientation links (wrist) and possible tooling devices {(end-effectors) will be considered as single inertias.
This is so because, in comparison with the other links, wrist joints are usually dominated by inertias,
with gravity and inertial coupling effects in the range of one or two orders of magnitude down [12].
Therefore, the gross motion links considered for optimisation hereafter are the two main movable links
in the gravitational field — upper-arm and fore-arm, and the rohot waist.

The range of motion for each joint is presented in Table 5.1. This has been chosen according to
the range of the encoder pulses for each motor joint instead of the range employed by the industrial
controller 4, because the control will he later implemented at the pulse level for simplicity. Thus, the
rohot kinematic conﬁgﬁration shown in Figure 5.1 corresponds to (0°, ~90°,0°,—90°,0°), for joints
i=1,..5.

Since the customised closed form equations of the dynamics of the CRS A251 arm are quite involved,

1Although, of course, the absolute rotational range is the same,
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|| Parameter I Description l Value | Units (S.1.) [[
m point mass | 4.35 kg
ma point mass 0.84 kg
mg point mass 0.89 kg
my * | point mass 0.62 kg
mg point mass ° | 0.59 ke
im, m; radii 0.135 m
Imag ms radii 0.114 m
Im3 . ma radii 0.254 m
lmy my radii 0.127 m
ims mg radii 0.254 m .

Table 5.2: CRS A251 kinematic and dynamic characteristics.

only the expressions for the torques are presented next. The derivation of these symbolic expressions
can be found in Appendix A. To simplify the equations, the following standard notation is used:

s; = sin(f;) ¢ =cos(6i) si; = sin(6; +6;) cij = cos(f; + ;)
The equations of motion are then found to be:

n = [{milm?+ (malm? 4 {(m3 + ms 4+ ms)imé)c} + (mylm? + mgim)cos?
+2imz(myims + msims)czq]él]
+[—2{(mzlm§ +{m3z + mq + m5)1m§)52C2 + (malmg + mslms)lmssgca}gl 8,
-—2{(m4lm§ + mslmg)sar:a + (mglmy + mslm;,)lmasacg}éléa]

2 = [{malmi+ (mz+my+ ms)lmg}ég — {lmz(malm, + msims)cn}és}
+[{(mglm§ + (ma —+ my4 -+ ms)lmg]32c:2 + (m4lm4 -+ msfms)lmasgca}éf (53)
+{(m4lm4 + msfﬂis)lmaszs}ﬂgl )

—[{(maimy + (ma + ms + ms)imz)ca}yg]
™ = [—{Ims(m4lm4 + m51m5)023}92 + {mﬂmﬁ + msimg}ﬂg]
( .
[+{(m41mi =+ mslm§)53c3 + (m41m4 + m51m5]1m3 5362}5f
(m4lm4 + msims)lmg 523}9%] '
[{({malmy + mslms)ea}g]

where the set of terms enclosed in [. . ] for each joint actuator corresponds to the inertial, centripetal
and Cortolis, and gravitational components respectively, while the kinematic and dynamic parameters

of the CRS A251 are presented in Table 5.2.

Final torque expressions (3.3) are in hybrid form, in the sense that product terms comprise numerical
coefficients (constant kinematic and inertial parameters), as well as symbolic functions of manipulator
generalised coordinates and trigonometric functions. General-purpose symbolic algebra tools, such as
Mathematica and MAPLE, could have been used for a quantitative significance analysis and symbolic
simplification of the general-form dynamic terms, such as those carried out by Corke [12). This would
have been a necessity under real-time constraints for typical 6 DoF robot manipulators, where there are
many thousands of terms for each torque expression in closed form. However, the assumptions made in
this work led to “relatively” simple robot torque expressions for which simplifications were carried out
manually during the derivation, and it was not found necessary to further manipulate the equations.

It is important to be aware of the large computational savings that the above customised dynamics
for the CRS A251 bave represented with respect to the general closed form dynamics. If Equation (5.2)

is expanded for the first 3 DoF of the manipulaior, the following matrix structure in general form
results:

! Dy D2 Dz 6 Gy
| = Da1 Daz Dy b2 1+ | G2 | g
3 D3y Dsz Dss b3 Gs

®This value accounts for the end-effector load, not shown in Figure 5.1, and would alsc account for the payload, if any,
up to the specified maximum of 1 kg.
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" which, for the customised dynamics given hy Equation (5.3) hecomes:
n Dy .0 0 6y 0
T2 = 0 D D3 b |+ | G2 |4
T3 0 Diz Dj; b3 Gs
6
8,6,
6105
0 Hn2 Hus Him 0 0 Hyp 00 égél
+ | Han 0 0 0 0 0 0 0 Hoas 9-‘2, (55)
Hz;y 0 0 0 Hzp 0 0 0 0 8263
' 836,
8362
63

This significant simplification of the closed-form dynamic equations is also due to the particular
kinematic design of the manipulator, which has contributed to the elimination of some of the dynamic
coupling (D;; and Hij«) between the joint motions. Furthermore, some of the velocity-related dynamic
coefficients have only a dummy existence, since they are physically non-existent. In particular, the
centrifugal force will not interact with the motion of the joint which has generated i, i.e., H;;; = 0. It
is of interest to notice also the symmetry of the acceleration-related inertia matrix, as well as the partial
symmetry of the velocity-related coefficients for each separate joint {H;jx = Hixj), general properties
of the L-E formulation which, combined, halve the necessary computations in customised form and
provide also an initial symbolic validation of the derivation. For a numerical validation of the model,
it is important to place the rigid hody forces just described within a wider framework, which considers
also the contribution of other effects neglected by this model - at least approximately. This is described
in Section 5.3.3, yet some notation related to the mechanical transmission system will be first provided
that will aid in the understanding of the residual effects.

5.3.2 Motion transmission

The actual components employed in the construction of a robot arm joint usually consist of an actuator
(e.g., motor), coupled to the physical joint by a mechanical transmission system. Strictly speaking,
the drive train is part of the electro-mechanical subsystem described later in Section 5.4. However,
as there is a close affinity between the terminology employed in the following Section, where residual
forces are introduced, and the hasic definitions of gear trains, it was thought convenient to introduce
the fundamental notation first, and not postpone it until that Section.

The iransmission is used to direct the actuator motion to the arm joint in order to provide such
characteristics as a change of rotational direction, a change of axis, torque multiplication, and speed
reduction. The word “transmission” is used to define all the components from the actuator to the
physical joint. These components may consist of shaft couplers, belt-and-pulleys, lead screws, etc .
Gears, single or as part of a multiple set, are used in almost all industrial manipulators mainly due
to the necessity of amplifying the limited torque capability of the majority of industrial motors. The
gears amplify the motor torque by a factor N equal to the gear ratio, hence allowing the robot designer
to use smaller motors. Referring to Figure 5.4, page 65, an ideal gear train formed by N, and N,
Ny > Npm, would define a coupling ratio of:
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N = N/Nm " (5.6)

thus, N turns in the inpnt (motor) shaft would produce a single rotation in the ouf,put (link) shaft,
ie.,
gm = Ngq . {5.7)

and, provided the torgue on the motor shaft is known, the torque on the link shaft can be computed
by
T=7mmN - (6.8)

However, real-world components do not necessarily behave like their ideal models. In fact, they
rarely do so. Efficiency 5, 0 < 5 < 1,'is defined as the ratio of the work output to the work input over
the same period of time, with the difference being dissipated in friction. This is a dynamic coefficient
which is normally assumed constant for simplicity. In this work, a single time-invariant parameter is
also employed, as supplied hy the manufacturer. The avthor 1s however aware that further investigation
into the dynamic properties of the gear efficiency is needed, and that will he highlighted as a further

"issue of research at the end of Chapter 8. For the ideal gear mechanism of Equation (5.8), the efficiency
is 1. However, for the case of a real gear train,

r=1aNn (5.9)

This equation reveals that any efficiency less than 1 (100%) will increase the torque required to
accelerate a given inertial load. It is important to note that efficiency does not affect the actnal
transfer ratio of the gears in terms of displacement, velocity, or acceleration, but greatly affects any
torque related property. : '

Gear ratios and efficiencies are collected in Tahle 5.5, along with the rest of actuator and transmission
train characteristics. '

5.3.3 Residual dynamic effects

The dynamic equations of motion previously derived in Section 5.3.1 do not encompass all the effects
acting on a manipulator. They account only for those strnctural forces, associated with kinetic and
potential energy, which arise from rigid body mechanics. In order to make the dynamic equations
reflect the physical device as accurately as possible, it is important to investigate the contribution of a
numbher of residual forces exerted on the arm.

In practice, some of these effects are extremely difficult to model and even if an approxxmate mode]
can be found at all, some of its parameters are completely vnidentifiable (this is, for instance, the
general case for some of the inertial parameters [I}). For a well-designed geared manipulator, the most
important source of these forces can be characterised by rotor mnertias and friction. The former, obtained
here from the technical specifications, can be a very significant characteristic of geared manipulators
becanse a gear ratio of N multiplies the motor’s rotor inertia by N2, as will become readily apparent in
the following exposition. The effects of friction can also be modelled as a generalised force applied to the
Joint of the arm. Friction is a complex non-linear force that is difficult to model accurately, yet in many
cases it can have a significant effect on rohot arm dynamics. According to An et af [1], for the PUMA
600 manipulator at the MIT Artificial Intelligence Laboratory, it was measured that the friction terms
accounted for as much as 50% of the motor torques. Craig [9] provided a more conservative estimate
of 25% to move a manipulator in typical sitnations.

Assummg the dynamics of the motor simply described by a rigid load rotating about the shaft axis ©
the equation describing this system is given by (refer to Figure 5.4):

Tm = JmGm ) (510)

where J., is the motor’s mass moment of inertia throngh the axis of rotation (kgm?), given in Table 5.5
with the remaining actuator’s electro-mechanical parameters, and ¢r, is the angular acceleration of the
motor (rad/s?). When a load is attached to the output gear as in a robot manipnlator link, then the

SWhere any motor friction is considered included in the link friction coefficient.
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Joint | B (Nms/rad) | F,(Nm)
8 0.5 1.0
83 0.8 1.0
05 0.3 0.7

Table 5.3: CRS A251 friction coefficients.

total torque developed at the motor shaft, Tocat, is eqnal to the sum of the torques dissipated by the
motor 7, and its load referred to the motor shaft 7* as in

Ttotal =Tm + 7" (511)
Where 7 is, according to Equation (5.9)

c_T+f
Tt = o ) (5.12)

7 represents the link load torque of.each joint as given by the general manipulator equation of
motion (5.2), or Equation (5.3) for the CRS A251 in particular. Joint friction is included in f (Nm).
Although friction might depend on such factors as velocity and position of the joint, to keep the dynamic
model simple, its analysis was broken down into velocity dependent viscous friction and starting static
friction (or stiction), as given hy:

f=B¢xF, e e (5:13)

where B is the viscous friction coefficient (Nms/rad), and F, represents the starting friction (Nm).
Since the contribution of these forces is restricted to a single joint, a simplified decoupled version
of model (5.3) for each joint was implemented in MATLAB/SIMULINK. These models where then -
employed to identify the friction parameters by exploiting the physical insights into the properties of
the plant already known,.i.e.,.the dynamic coeflicients provided hy the manufacturer, to a step input.
The magnitude of the "best-fit” coefficients are collected in Table 5.3. The suitahility of the parameters
and the simplified friction model structure employed is discussed .when the overall mechanical model is
validated in Section 5.3.4. . I e e e e

Combining Equations (5.2}, (5.10), (5.11) and (5.12), the following manipulator equation of motion.
in matrix form arises:

Il + (N7)H{D(@)d + H(g,4) + Gla) + FlQ)} EFiciar = (5.14)

where Jp, N, n and f are treated here as diagonal matrices for proper operation. Further manip-
ulating this equation, the following expression for the manipunlator equations of motion results:

{JmN?n+ D(q)}d + H(q,9) + G(q) + f(§) = Teota N7 (5.15)

where the inertial term represents the comhined motor plus load reflected inertia, as “seen” hy the
motor shaft. This is referred to as the “eftective inertia matrix”, and it is now evident the importance
that rotor inertias can play in the overall dynamics of gear manipulators. This explains why some
commercial robots are designed with gear ratios that cause rotor inertia to match or dominate link
inertias, so that non-linear rigid body dynamics can be neglected altogether in the controller design,
bence making control easier [1].

In the following Section, steps are taken to validate this mechanical model, but it is worth noting
first that actnal manipulator designs are characterised by other side effects which, in some cases, have
a significant effect on robot arm dynamics. Some miight include:

1. Gear backlash, mainly caused by preloading, tooth wear, misalignment and gear eccentricity,
can cause angular displacement of the links. 1t is extremely difficult to model, but has heen
assumed greatly minimised in this work hy the use of harmonic drives gear trains, and discarded
for simplicity.

2. Non-uniform pressure distribution on the contacting surfaces as well as contact deformations of
hoth joints and link surfaces are other factors that can also be taken into account. However, defor-
mations can be assumed to be small enough not to create noticeable changes in the manipnlator
geometry [5].
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Figure 5.2: Waist {tofa left), upper-arm (top right) and fore-arm joint frequency response (Hz).

3. Gearing, shafts, bearings and the driven link flexibility. All these elements have finite stiffness,
and their flexibility, if modelled, would incur a spring effect that would deflect by varying amounts
depending on the load and link configurations. This is particularly true for harmonic drives which
have an in-built flexibility due to the flexible-spline. Joint flexibility, if present, will cause loss of
accuracy at the end-point, particularly complicating kinematic calibration [1). The argument for
ignoring flexibility effects is that, provided the system is sufficiently stiff, the natural frequencies
of these unmodelled resonances are very high, and can he neglected for control system analysis
and design, compared to the dominant poles of the system [9]. To validate this assumption, Bode
analyses were carried out independently for each joint by means of a Schlumberger Instruments
frequency response analyser, the Solartron 1170. The procedure involved opening the feedback
loop of the uncontrolled system, and applying a range of sinusoidal signals with varying funda-
mental harmonics and amplitudes. Measurements of the input-output positional gain magnitudes
are illustrated in Figure 5.2 for the waist, upper-arm and fore-arm joints. The lack of resonant
peaks, in particular in the low frequency range, reveals a stiff frequency response for each ma-
nipulator joint. This was an expected result given the rigidity of the light weight construction
technique. Since the support of the moving arm — which is part of the waist, consists of a solid
cast aluminium foundation for the arm, the response of the waist joint shows a highly stiff charac-
teristic. Furthermore, it can be seen how most of the energy of the system is concentrated within
the ivitial 10 Hz region for all three arm links, hence coinciding with the mechanical resonant
frequency of most manipulators, normally around 5 to 10 Hz {6]. The fore-arm and upper-arm
joints exhibit a low magnitude higher order effect in the range 15 — 40 Hz, which is not present in
the waist joint, and has been partially attributed to the stressed aluminium construction of these
links, but mainly to the more néticeable physical coupling between these two joints (despite keep-
ing one stationary while exciting the other). In summary, given the low magnitude of the system
flexibility, this effect, although always present in any mechanical structure, has been ignored and
the arm construction will be assumed that of an ideal rigid hody.
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5.3.4 Mechanical model validation

Validation of the manipulator mechanical model is the process of examining and assessing the quality
and reliability of the model, possibly rejecting its use for the purpose in question. Under the “tra-
ditional” system identification approach to building a model, briefly outlined at the begiuning of the
Chapter, a mathematical function would have been constructed based ou a “training” set, in turn ob-

- tained from measurements on the real system. Ljung [4] has provided the following reasoning to single
out hasic validation teckniques for the identification process:

1. The most ohvious and pragmatic way to decide if a model is good enough, is to test how well
it 1s able to reproduce validation data, i.e., data that were not used to estimate the model, in
simulation. The user can then, “by eye” inspection, decide whether the fit is good enough. This
is reported hy Ljung [4] as the primary validation tool.

2. To determine how far the true system is from.the model, that is, to determine model parameter
error hounds. If a probabilistic setting is adopted, and the true system is assumed to he found
within the chosen structure, it becomes a matter of seeing how much the stochastic disturbances
(in essence, the model parameter errors) might have affected the model. Ljung suggests the
covariance matrix of the (error) asymptotic distribution as a classical probabilistic measure used
for the error hounds [4]. Hence, the predicted model can be assumed to be accurate to within
some probabilistic error limits. The fundamental assumption that the true system parameters
can be represented in the chosen model structure is normally validated in itself according to 3.

3. To test if the data and the model are cousistent with the model structure assumption. This is
hasically a numerical extension of point 1, where a measurement of the residnals between the
model output and the validation data set is obtained. This can be performed “deterministically”,
where the residual is proved to bhe always within some hounds, or “probahilistically”, where a
residual statistical analysis can be performed. For instance, studying whether the residual error
signal and the input to the system are independent random variables.

Further insights into the role of model validation for assessing the size of the unmodelled dynamics can
he found in another recent paper by Ljung [16]. Although the derivation of the mechanical model (5.15)
had not been carried out from observed data, these basic validation features could also be applied
to a newly measured input-output validation data set. While other techniques, such as comparing
frequency responses of the model and real system in motion, could have been theoretically employed, a
combination of point 1 and 3 was regarded as a representative and practical measure of how consistent
the model was with the real system. The reason heing the frequency analyser available for testing
could only measure 1 DoF at a time, thus dramatically limiting the possibility to discern coupling
effects hetween joints. Other techniques include standard software packages for control analysis and
design, such as MATLAB/SIMULINK and ACSL. These tools, however, extract a linearised state-space
model from the non-linear manipulator model around an operating point, which is then manipulated
hy linear frequency response routines, such as Bode or Nyquist charts. Given the complexity of the
model, where saturations need also to he taken into account for proper operation, the results were, in
general, far from satisfactory.

The following procedure was then followed in the analysis:

1. Each joint of the manipulator was made to track a simple cubic polynomia! in joint space, as
described hy Equation (2.3), with polynomial coefficient derived from {2.5), and normalised time
€ [0, 1]. The configuration data used for estimating the torques was sampled while the manipulator
was moving from (0°, —90°, ~45°) to (30°, —57°,—90°).

2. A Feedforward controller, Equation {3.8), was implemented to track the desired trajectory.

3. Motion speed, determined by a prespecified time (in seconds) to track the polynomial from the
initial to the final point, was varied from fast (0.5), down to medium (0.7) and slow (0.9) motion,
thus covering a wide range of speeds and accelerations that could asses the validity of the model
within a large configuration spectrum.

4. Measurements of the currents flowing through each motor joint were taken, which according to the
motor-torque proportionality relationship, described in the following Section where the actvator
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Joint T0.5 s motion ’ 0.7 s motion | 0.9 s motion ||
61 0.965 © 0.965 0.955
8 0961 |. 0.98 0.983
f3 0.892 0.866 0.862

Table 5.4: Correlation coefficients between model and measured torque at different motion speeds.

model is derived {Equation (5.20)), can Ee assumed linear with the torque exerted at the motor
shaft.

5. The torque was then compared to that obtained from (5.15), and a correlation analysis of both
sets of data was also undertaken as a residual analysis test. This coefficient, calculated across
measurement data tests is obtained as follows:

$(di —d)(0; —B) E’:—l- N Y 3 16
\/Z(d,-—E)zE(o;—a)z - Nz,.: ° N'Z (5-16)

where N= measurement data set size, d; represents the torque ontput calculated from the model,
0; 1s the actnal measured torque, and the summations are over the measurement data set. This
is a simple, normalised overall measure of how well desired and actnal ontpnts correlate:

1 =. perfectly correlated
0 = completely nncorrelated

—1 = perfectly uncorrelated

The CRS A251 rohot arm has an optical encoder on each of its five joints for the feedback of
positional information, but lacks tachometers. Therefore, it was necessary to numerically differentiate -
the positions and resnlting velocities to obtain the robot configurations. Positions were sampled at 250
Hz, while velocity and acceleration were filtered using a digital low-pass filter with cnt-off frequencies of
28 Hz and 4 Hz respectively, determined empirically to provide the best (smoothest) results. Because the
chosen cnbic polynomial is discontinuous on the acceleration (see Section 2.4), a low cnt-off frequency
had to be chosen in the experiments to avoid exciting unmodelled dynamics. The resulting smooth
configurations for each joint along the three propesed trajectories are not substantially relevant and
thns are presented in Appendix D, for completeness. A non-intrusive Hall effect current transducer was
employed to measure the torques. This is a fast response current sensor 7, having virtually no effect on
the circnit loading. Figure 5.3 shows a comparison of the measured torque and the computed torqne
generated by the manipnlator model for the three joints at the different speeds, while the corresponding
correlation coefficients for these sets of data are collected in Table 5.4. The three sets of figures for
each joint match fairly well, hence verifying qualitatively the accuracy of the model, which is further
validated by the quantitative residuals analysis. This suggests that, for the purposes of this work, even
a poor approximation of the mass moment of inertia parameters will allow good estimates of the tatal
torqne necessary to achieve a desired trajectory.

5.3.4.1 Sources of error

A model structure is always too simple to fully describe a real system. Sources of error are numerous
and their importance should, at least, he considered:

1. The nltimate source of error is the random noise inherent in the sensing process itself. The
noise level on the position sensing was negligible, with a maximum & of around +4.6%, and
was not increased by thé digital circuitry designed to interface the industrial controller with the
measurement,/controller PC. The design is described in further detail in the next Chapter as part
of the controller implementation.

"Response time < lusec which can accurately follow signals of > 50 A/us, exhibiting a frequency range of up to 100
kHz.
8This was measured over a fitted smooth moving average curve of period 3.
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Figure 5.3: Waist (top), upper-arm (middle) and fore-arm measured (thin curve.) and computed (bold
curve) torque responses, for tracking fast, medium and slow polynomial trajectories.
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2. In addition to unavoidable random noises, there might be more unmeasurahle input signals that
could affect the output. These signal sources that can not be traced are called “disturbances”,
and we simply have to live with the fact that they will have an adverse effect on the comparisons.

3. A further source of noise is unmodelled dynamics, or “bias error” {4]. It has already been pointed
out that robot links are not perfectly rigid hodies. However, the structural analysis of the CRS
"A251 showed that compliant effects could he safely overlooked. Moreover, the contribution that
non-linear frictional effects might have had in the torque halance have been neglected in the linear
frictional model (5.13).

‘4. Torque in an armature-controlled DC motor is, theoretically, a linear function of the armature
current, and correspondingly, the armature voltage, as will he described in the following Section.
However, due to hearing friction at low torques and saturation characteristics at high torques,
the actual current(voltage)-torque curves are not linear [6]. For these reasons, motor current, as
obtained from Equation (5.20), can only but approximate joint torques. The solution at hand is -
a conversion of computed torque to required input current {voltage}, which can he accomplished
via lookup tables or calculations from piecewise linear approximation formulae. This alternative,
though, is problematic and time-consuming to set up, thus seldom employed, while the linear
motor current-torque relationship is the widely adopted approach, despite the possible errors.

5. Finally, the need to {twice) differentiate the position numerically to find velocity and acceleration,
greatly amplifies whatever noise is present. Differentiation of a signal always decreases the signal-
to-noise ratio because noise generally fluctuates more rapidly than the command signal, and should
be avoided when possible [17]. Two methods are readily av‘a.ilable to estimate these unmeasured
state variahles without an explicit differentiation process:

a. Integrating the manipulator equations of motion, given by (5.15). This derivation would
only be required once in order to obtain the velocity, since the acceleration could then be
calculated by simply rearranging Equation (5.15). An example of this method can be found
in An et-al [1]. ‘

b. Design a state observer that could estimate, or observe, the state variables based on the
measurement of the output and control variables. A few examples of this method can be
found in Ogata [17). '

Both methods would take the manipulator model into account in the first place, hence introducing
a good deal of extra computation in the loop. Moreover, in reference to the first method, An

et al point out that since an integrator is an infinite gain filter at zero frequency, large errors
can result from small low frequency errors, such as offsets. Therefore, in their experiments, the
estimated results were not as good as expected. In view of these facts, and in order to make
the on-line implementation more straightforward, a numerical differentiation was the preferred
solution, coupled with low-pass filters as descrihed earlier on page 62, to limit the effect of the
introduced noise.

5.4 FElectro-mechanical Modelling

The previous Section has described how the motor torques required to drive the manipulator arm can
be obtained from known physical laws such as the Lagrangian formulation of mechanics. The control
law expression, Equation (5.15), computes the mechanical torque set point that serves as the input
to the robot arm actuators. However, the inability of commercial rohots to control joint torques is a
well known prohlem [1, 18]. Commercial motor servos are typically position controllers, to which one
can only send positional set-points (see Section 3.4). Yet virtually all advanced control strategies are
designed on the capahility of controlling joint torques, as shown hy the majority of control strategies
presented in Chapter 3, including the optimal control strategy developed in this work. Having computed
a nominal command torque. signal for some specific motion, two alternatives are at hand to implement
it on an industrial manipulator:

1. It can be integrated, as will be described in Section 5.5.1, using the derived model of the rigid
hody dynamics, to produce the joint positions, which can then be used as a reference trajectory
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Figure 5.4: Schematic diagram of permanent magnet DC servomotor, gear train and link load.

to the position controllers fitted in the manipulators. An example of such an approach, where
an optimal control trajectory is computed to track a specified end-effector path, can be found in
Shiller [19]. Ignoring motor and driver dynamics are the main reasons noted by the author to
explain the noticeable bias between nominal and actual torque and trajectory.

2. To directly control the motor currents, so that the torque can be employed as the command signal.
Although this approach can, thecretically, compensate for the transient actuator dynamics, it
also poses an implementation problem, since it becomes then necessary to reverse engineer
the motor structure and drive amplifier to derive the physical driving signal. This is often a
difficult problem, related to the unwillingness of robot manufacturers to provide specifications to
assist in this endeavour for proprietary and safety issues.

Apart from the obvious advantage of the second alternative to compensate for the dynamics of the
underlying physical actuator system, there are two additional practical issues which explain why this
was the preferred solution for the work presented here:

1. For the derivation of an optimal controller, the torque profile should first be computed in order to
obtain the optimal input trajectory to the positional servos. An exact numerical method should
then be employed to solve the TPBV problem, as described in Chapters 3 and 4, which would
prevent the solution to be implemented on-line.

2. In order to meet the demands of a real-time application, the derivation of the control signal as
the output of a SISO system (single actuator/driver) is also faster to compute than the forward
integration in time of the mechanical mampulator rigid body MIMO model required by the first
approach,

Therefore, in this Section, the dynamic characteristics of the actuators actually driving the joints
of the robot arm shall be modelled. These will be employed to convert the computed mechanical
control torque into the applied motor control signal, as just mentioned, as well as to conduct accurate
simulations.

Industrial manipulators are generally driven by either DC, AC or stepper electro-motors, hydraulic, or
pneumatic actuators. Robots with a closed-loop control system are usually driven by permanent magnet
DC electro-motors, as is the case of the CRS A251 actuators, driven by EG & G Torque Systems M2110
series motors. Thus, in the following, the modelling of these actuators shall be considered. However,
these considerations might be easily extended to hydraulic actuators [20).

5.4.1 Permanent magnet DC servomotor

Although motor models can be quite complicated, they are in some sense simplgr than rigid link
dynamic models, because motor dynamics are typically confined to a single joint. This reduces motor
modelling to a SISO problem, rather than the more difficult MIMO problem. Motor models generally
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Waist Electro-mechanical Subsystem (6;)

Parameter Description | Value | Unit {S.1.)
I Motor lnertia 9 2.81E-05 kgm?
K Motor Torque Constant 0.0657 NmjA
Kyemy Motor hack e.m.f. Constant 0.0657 Vs/rad
T Motor Time Constant 1.9E-0.3 s
Rm Motor Resistance !° 2.32 2
Lon Motor Inductance !? 4 41E-0.3 H
N Gear Ratio 72
7 Gear Efficiency 0.75

Upper-arm Electro-mechanical Suhsystem ()
Parameter | Symbol Value | Unit (S.1.)
Jn Motor lnertia ° 2.81E-05 kgm?
Kn Motor Torgne Constant 0.0657 NmfA
Kiemy Motor back e.m.f. Constant 0.0657 Vs/rad
T Motor Time Constant 1.9E-0.3 s
R, Motor Resistance !9 92.32 Q
Lm Motor Inductance 11 4.41E-0.3 H
N * Gear Ratio 72
n Gear Efficiency 0.75

Fore-arm Electro-mechanical Subsystem (#3)

Parameter Symbol Value | Unit {S.1)
I Motor Inertia ° 2.81E-05 kgm®
K Motor Torque Constant 0.0657 Nm/A *
Kbvemy Motor hack e.m.f. Constant 0.0657 Vs/rad
T Mator Time Constant 1.9E-0.3 s
R, Motor Resistance 19 2.32 Q
Lm Motor Inductance ! 4.41E-0.3 H
N Gear Ratio 72
n Gear Efficiency 0.56

Tahle 5.5: Actuator and gear train electro-mechanical characteristics.

include not only the structure of the motor and amplifier, but also properties of the drive train. The
reader is referred to previous Section 5.3.2, where the mechanical transmission gearing was intentionally
presented as part of the mechanical arm subsystem for convenience in the flow of the presentation.

In essence, a permanent magnet DC motor is an armature excited, continuous rotation actuator
incorporating such features as high torque-power ratios, smooth, low speeds operation, linear torque-
speed characteristics, and short time constants. Use of a permanent magnet field and DC power provides
maximum torque with minimum input power and minimnm weight [6]. A schematic linear circuit model
of a permanent magnet armature-controlled DC servomotor, gearbox and mechanical load is shown in
Figure 5.4. ' .

The electro-mechanical characteristics for the actuator driving each joint are collected in Table 5.5.
To develop a dynamic mode] for this actuator, Kirchhoff’s voltage law was applied around the armature
windings which yields:

Vrp = Lmjm + Bl + Viemy (5.17)

9This value accounts also for the Harmonic Drive’s wave generator inertia of 3.27E-0.6 kgm?2,

10This value was measured to around 4.6{! at the point where the control signal is injected into the motor. This
is probably so because in addition to the provided armature resistance, terminal resistance and that of the armature
magnetic losses increases this value. Also, because of its very low magnitude, contributions made by wiring should also
be considered.

110Obtained according to the inductive circuit relationship Ly = TmBm.
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Viemny is called the back electromotive force voltage, and is an internal voltage that counteracts Vi,
and is produced when the armature rotates in a DC magnet:c field. This voltage builds up linearly as
the motor shaft angular speed ¢, increases, that is:

Vbemf = Kbequ-m (518)

where Kyemy (V's/rad) is referred to as the back e.m.f. constant of the motor.

Having derived the mechanical characteristics of motor, gears and link for each joint, the relationship
hetween the electrical and mechanical components of the system needs to be established in order to
relate the control torque action to the underlying physical control variables which actually excite the
actuator. The electrical and mechanical subsystems are coupled to one another through an algehraic
torque equation. Tn general, the torque developed at the motor shaft is proportional to the product of
two currents, the armature winding current I, and the field winding current I; through the air gap
flux 1 :

Teotal = WK Iy = Kp It K0 Iy, . (5.19)

Where K is the flux constant, and K, is also a constant. However, in an armature-controlled DC
motor, the field winding current is constant, so that the flux also becomes constant. Consequently,
the torque developed at the motor shaft is assumed to increase linearly with the armature current,
independent of speed and angular position, according to:

Tzat.n! =Kmln (520)

where K, is called the motor-torque constant (Nm/A) which provides the required relationship. As
seen in Table 5.5, Ky, and Kpemy cotrespond to the same physical constant under compatible units.

5.4.2 Amplifier stage

r

A servo amplifier must be used to convert the low-power command signal that comes from the controller
to levels that can be used to drive the joint motor. In general, two drive source configurations are widely
availahle: pulse width modulated (PWM) and linear amplifiers. The latter, in turn, can incorporate
either voltage or current feedback (or both). Despite the more cost-effective solution provided by the
PWM approach, where the power dissipation is only a fraction of that with linear amplifiers, the CRS
A251 is fitted with voltage (or velocity) linear amplifiers as the analogne driving source. This is a
disadvantage with respect to the simpler (from the control point of view) current amplifiers, since the
issue of deriving the analogue contral signal from the commanded torque must take into consideration
the full electrical hehaviour of the motor, as given hy Equation (5.17), whereas only the motor torque
constant would have heen necessary to model the entire motor dynamics in current-driven DC motor
configuration 12, with the consequent reduction of possible error sources.

The overall block diagram for a single joint, ohtained fram Equations (5.15), (5.17) and (5.20),
combined with the linear voltage amplifier, can then he depicted as shown in Figure 5.5, where Kamp
is the gain of the amplifier, calibrated with a voltage gain stage of 2 (£10%) for all the joints, and Vi,
represents the voltage command signal from the controller.

5.4.3 Electro-mechanical model validation

The same methodology employed in Section 5.3.4 to validate the mechanical model was also applied
here to assess the validity of the motor/driver model. In this case the “inverted” electro-mechanical
model was studied to compute how closely it could derive the voltage command to the driver as a
function of the desired nominal output torque applied at the motor shaft. Or, in other words, how
adequate was the model to “emulate” the operation of a current-driven motor, so that the motor/driver
could be commanded in torque mode.

As hefore, the nominal torque command was computed from a Feedforward controller, implemented
to make the manipulator follow a cubic trajectory from initial to fina] peint. Since the actuator model is
not as dependent on configuration as the full rigid body dynamics, only the average speed polynomial
(i.e., that taking 0.7 seconds to be completed, as described in Section 5.3.4) was employed as the

12This type of amplifier gives a constant output current for a given input voltage.
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Figure 5.6: Waist (Joint 1), upper-arm (Joint-2) and fore-arm commanded torque (bold curve) and
measured torque response from actuator model, for tracking medium speed polynomial trajectory.

reference trajectory 1. This demand input torque, Tieq, denoted in bold in Figure 5.6, was then
applied to the inverted joint actuator model, derived by equating (5.17) and (5.20) to eliminate 7, and
obtain the corresponding control voltage, given by:

1 o _
Vm = (Rmrtotat -+ Lm"total) + Kbem]?m (521)
m

The measured torque response, depicted by the thin curve in Figure 5.6, corresponds to the actual ac-
tuator torque, sensed again by the Hall effect transducer, which resulted from applying the commanding
voltage signal obtained from Equation (5.21) to the motor driver.

Despite overlooking some unmodelled actuator dynamics, commanded torques are shown to be in
close agreement with the measured actuator model torques, as the correlation coefficients in Table 5.6
also prove. The mzajority of the error sources found to affect the accuracy of the rigid body dynamics in
Section 5.3.4.1 are also applicable to the electro-mechanical subsystem, and will not be repeated here.
Additional non-linear effects not considered in the motor/dnver model might include deadzone for small
torques, cogging, and imperfect commutation circuitry and consequent position measurement errors.
Special mention should be given to the magnitude of the armature resistance, a complex and difficult .
parameter to mode] which is notoriously prone to drift under the effects of temperature variations. In
order to minimise this effect during the experiments presented in this Chapter, data were taken after
the controller had been left ou for a while to warm up, thus providing consistent results in successive
runs.

13Faster motions are also shown and discussed in Chapter 8, when the electro-mechanical model is emplayed with the

proposed optimal cantroller.
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“ Joint Actuator l Correlation Coefficient
0, 0.993
& 0.992
03 0.922

Table 5.6: Correlation coefficients between commanded torque and measured model torque.

Other alternatives to account for the motor/driver dynamics have been proposed. For instance,
Shiller et al [18] developed a simplified empirical linear model, called the “viscous friction model”, as
a substitution for the comprehensive mator model, which was shown valid for the speeds encountered
in their experiments. An et al [I], on the other hand, proposed the reduction of the motor non-linear
effects by implementing an additional torque feedback loop at each joint. For the purpose of the work
undertaken in this project, the validation results presented suggest that torques could he commanded
accurately at each joint by deriving the voltage command to the driver according to Equation (5.21).

5.5 Dynamic Simulation

The dynamic models developed in this Chapter were employed not only in the design of the optimal
controller, described in the following Chapter, but also to simulate the behaviour of the robot manip-
ulator. The purpose of systems study through modelling is to aid the analysis, understanding, design,
operation, prediction and/or control of systems without actually constructing and operating the real
process [2I]. Models play the role of the real objects whose analysis by real experimentation could be
expensive, risky, time-consuming or even physically impossible [22]. Simulation models have tradition-
ally been approached by textual-based computer simulation languages, both discrete (GPSS, SIMULA,
etc.) and continuous (ACSL, CSMP, etc.) some of which provide, at most, the capability to plot some
simulation results in a simple graphical environment. However the rapid development of computer
hardware and graphics software during the last decade has added a new dimension to the practice of
modelling and simulation. In this work, traditional numerical simulation techniques have been coupled
with advanced graphics to get the mast out of the simulation process.

5.5.1 Numerical simulation

When dynamics are to be computed for the purpose of performing a mumerical simulation of a robot *
manipulator, the issue reduces to solving the arm dynamics model, Equation (5.15), for the current
acceleration of the manipulator link, given current state (g, ¢) of each link of the robot manipulator,
and commanded control action r. This, in turn, can then be integrated numerically over the simula-
tion interval Af to compute future position and velocities. In this work, two of the best well-known
algorithms were implemented, Euler and multi-step Runge-Kutta order four [23], the former being only
used for fast simulations due to its simplicity and limited accuracy.

5.5.2 Graphical simulation

The novel environment of advanced computer graphics in contral design was explored to simulate the
response of the new controller. It is generally accepted that humans can relatively easily assimilate
complex information from pictorial images. As Confucius once said,

“A picture says more than a thousand words.”

Undoubtedly, colour graphics and animation are considered a highly desirable feature in understanding
the dynamics of system behaviour via simulation software. Indeed, this is found particularly attractive
in robotics where graphical programming has emerged as the natural way to plan compiex robot motions
safely, quickly, and easily [24].

For the development of the new motion strategy described in the next Chapter, a suite of tools a.nd
technologies capable of matching the capabilities of the human user to the requirements demanded
by the application was sought. Deneb’s graphical robot simulation software, TELEGRIPTM [25, 26],
provided the virtual reality environment required (see Appendix E). Desktop virtual reality is an -
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advanced concept for graphical design, prototyping and systems simnlation which makes the designed
objects’ bebaviour more accessible and nnderstandable to the user. The attributes and associations
between objects in a virtual environment permit an approximation to the nature and bebaviour of snch
objects and/or processes which do not yet exist, thns providing the sort of front-end with which the
nser feels comfortable and accelerating the overall testing and-development process.

The design process takes place in three stages:

1. A solid object is first represented in a CAD package using primitive solids such as cubes, cones,
wedges, spheres, etc. which are added, subtracted, cnt, etc. to form desired shapes for the robot
parts and its operating environment.

9. These are then fed into the graphical simulation package where further non-geometric attributes
such as meotion definition, joint limits and speeds, inpnt/output, dynamic characteristics, etc. are
attacbed to the solid model of tbe manipnlator and devices in its surroundings.

3. Traditional rmmerical simnlation algorithms, such as those mentioned in the previous Section 5.5.1,
can then be linked to the software to visualise the dynamic response of the system.

‘The stand-alone CAD solid model of the CRS A251 industrial robot used for the controller simulations
in this work is shown in Figure 5.1. This was employed, along with a number of other workstations, to
simmlate and improve the antomated radiopharmacentical dispenser mentioned at the beginning of this
thesis as the main motivation behind this work. Althongh an exciting and new area of development,
this dissertation would go off the.main track by getting into more detail about advanced compnter
graphics and control. Hence, the reader is referred to Mird et al [27] for more details on the actual
graphical simulatian implementation.

5.6 Summary and Discussion

The work reported in this Chapter has presented the derivation of the dynamic model of the CRS
A25]1 industrial robot manipulator from known physical laws and relationships. This was not limited
to the body structure dynamics, which experimental results showed appropriately approximated by
Lagrangian rigid body mechanics, but also to the often ignored motor and driver dynamics, which were -
reverse engineered to be able to drive the actnators in torque mode. To decide whether the model
and the data were indeed consistent with the assumptions made about the model structure, a visnal
comparison coupled with a gqunantitative residual error analysis demonstrated that the predicted ontput
could snbstantially account for tbe most significant plant dynamics. This work, thongh, might be
regarded as preliminary in that an adequate statistical characterisation of the errors between measured
and predicied torques has not been attempted. Nevertheless, some insights were gained into the sources
of snch errors.

While experimental results proved the adequacy of the model for joints 1 and 2, the unmodelled
dynamics of the lighter third link, including motor dynamics and residual friction, were shown to
be dominant and yielded larger torgue errors than the other two joints. Detailed inspection of the
robot revealed that a preloaded roller chain was used to transmit the rotational motion to the joint
link, thus allowing the actuator to be positioned closer to the base. The result is a design with lower
inertia associated with the moving parts, thns allowing faster robot motions. Additional positive effects
included increased stiffness, the virtnal elimination of backlash, and the enhancing of rotational accuracy
because of more nniform loading of the rolling bodies. However, some unmodelled negative effects can
also be associated with the gear chain, such as higher loading of the bearing components, possibly
affecting friction and, associated with it, higher working temperature and energy losses [5). Although
these effects were not included in the model, the overall snccessful match of model and measured data
suggested that, far control purposes, the proposed model could provide good estimates of the real
system, with correlation coefficients € [0.86, 0.09) depending on the joint and speed of motion.
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Chapter 6

Controller Design and Analysis

6.1 Introduction

The different aspects of the core research work developed in previous Chapters are employed in this.
Chapter to describe a practical example showing how optimal control theory can be applied to the
problem of unconstrained point-to-point manipulator trajectory planning and control.

The preference in previous Chapters was to examine the theoretical developments behind the various
optimal strategies, with some explanatory remarks. This Chapter, on the other hand, is devoted to
the practical analysis of Pontryagin’s Maximum Principle {MP) applied to the design of a controller
for an industrial manipulator. This prohlem is first represented in the phase-plane space in Section 6.2
because, as will become readily apparent during the remainder of the Chapter, the controller is implicitly
designed by means of the phase-plane technigne. A key remark about the variability of maximum
actuator bounds is given in Section 6.2.1.

In Section 6.3, the formulation of the open terminal-time control problem, in which the objective
is to transfer the system from an arbitrary initial state to a specified target set in minimum time, is
briefly placed in context within the general framework of classical optimal control problems. Before
tackling the complex problem of designing an optimal controller for a rohotic manipulator, a detailed
" exposition of the double integrator problem is given in Section 6.4. The problem might he regarded as
the simplest possible non-trivial manipulator system, where the model is a simple inertial mass, yet it
displays many of the important theoretical peculiarities of the general class of optimal control problems
solved via the MP. This is then followed hy Section 6.5, where a complete treatment of the design of an
optimal controller for the coupled non-linear manipulator plant, whose dynamic equations of motion
were developed in the preceding Chapter, is given. It is shown there haw, under certain assumptions,
the problem can be treated as a quasi-double integrator .problem, whose dynamics need updating at
each sample interval. While these conjectures render the controller as a “near-optimal” strategy, they
nevertheless allowed an analytical solution which is feasible to be implemented on-line, as shown in the
following Chapter. '

The full structure of the controller is then presented in Section 6.5.1, while the implications of the
hypothesis undertaken, along with the significance of other issues such as its feedback form or piecewise
linear dynamics, are extensively studied in Section 6.5.2.1. Finally, an analysis of the stability of
the controller along the derived trajectory is presented in Section 6.5.3. The final remarks drawn
in Section 6.6 about the design of the near-optimal trajectory planner/controller with the proposed
strategy conclude the Chapter. |

6.2 Phase-Plane System State Représentation

From the equations of motion of the plant, derived in Section 5.3.1 and 5.3.3, it was shown that the
robot manipulator could be described by a non-linear second order multi-variable expression, as given by
Equation 5.15. As pointed out in Section 3.3.1, state-space constitutes the fundamental representation
for optimal control theory, thus the analysis of the plant should commence by appropriately selecting
the state variahles to he employed. In this work, system variables were chosen equal to the phase

variables, namely the system output and its first derivative (see definition 3.3}, both for simplicity in
5
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Figure 6.1: Experimeutal setup for the verificatiou of admissible controls.

the formulation and synthesis of the controller, and because the “Phase-Plane” analysis tools [1, 2] for
the study of non-linear systems will feature strongly in the remainder of this Chapter.
Hence, the following 2n-dimensional state vector will be used to rewrite the dynamic equations:

|-91-
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With this state representation, Equation 5.15 can be rewritten in the following state-space form:

z = A(z) + B(z)u (6.2)
where
Tz _ 0
Ale) = — D (z1)[H (21, 22) + G(21) + f(22)) l B(=)= [ D} (=1) ] (6.3)

and Dgf! = Jmsz]‘{- D, De_ff ER" x B*.

For compatibility with the formulation employed in Chapter 3, © = Teotar V1, u € R* x R1, while,
for proper matrix dimensioning operation, the upper null submatrix in B € ®" x ™.

The optimal control of the well-known class of systems represented by Equation (6.2), such as the
general robot manipulator under review, will be the suhject of analysis hereafter.

6.2.1 A note about admissible controls

As discussed in Section 5.4.1, each joint of an industrial manipulator is normally driven hy separate
actuators and, therefore, it is only natural that any attempt to design a control strategy for the rohot
arm, and in particular an optimal controller, must be synthesised under the constraints imposed on the
maximum torque bounds that can be independently exerted by the actuators 1. Incidentally, the closed
bounded admissihle region of control inputs, U, is widely cousidered fixed to minimise computational
effort, as shown by Equation (3.13), and the overwbelming majority of published work in optimal
control is hased on these simplifying premises (see, for example, [3, 4, 5]).

While it is true that the ahsolute upper and lower hounds for each motor actuator under continuous
operation are known design constants 2, it is also true that their instantaneous value for coutinuous
operation is furtber limited by the maximum constant value of the driving actuator voltage +Vpn,
and the motor speed ¢, as related by Equation (5.21) for a DC motor [6, 7]. The experimental
test rig depicted in Figure 6.1 was set up to illustrate this limitation. Here, the upper-arm rohot joint
actuator was driven (open loop) by a constant maximum torque step input 7oeat™, providing the results
illustrated in Figure 6.2.

1 An important characteristic too often overlooked by classical control analysis and design techniques. -
2Traditionally referred to as Continuous Stall Torgue or Continuous Hated Torgue {(Nm), in the motor technical
specifications.
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* The response link torque r shown in the top graph is the result of applying Equation (5.21) to the
commanded maximum torque, Tiotqt T, given the measured state (only link speed g, in this case) which
is depicted in the hottom graph. Note that the corresponding link speed z; is displayed in the graph
instead of the motor speed, for uniformity with the link torque graph. If the desired torque exceeds
the voltage/current capabilities of the driver, the limiting factor of the maximum driving voltage will
set the new maximum torque Tiorq; by which the rohot joint can be driven. This limiting voltage is
depicted in the middle graph. :

It can be seen how, for the maximnm load specified by the manufacturer (1.0 kg) the torque exerted
hy the actuator is also close to the continuous rated torque characteristic of the manipulator, corre-
spondingly drawing the maximum current that the driver can deliver. This is achieved at the expense of

. slower maximum speed in comparison with carrying a lighter load, represented by the curves with load
= 0.5 kg and no load at all. In those cases, the joint is accelerated faster to its maximum speed, which
is also higher, but when reached, the exerted torque then drops to lower continuous values. The reason
for this is that on reaching the turning point, i.e., when maximum driving voltage is reached (aronnd
0.12 s for the unloaded case and 0.15 s for the 0.54 kg load case), no more current can be drawn (or
torque exerted) for the given motor speed. It is precisely at this point that the control bounds shonld
be adjusted to reflect the truly maximum torque available to the controller, which will be the specified
maximum rated only when fully loaded, a sitnation not commeon during normal operation of a rohot
manipnlator. It shonld be noted that joint speeds can be further increased on reaching this point as
long as the driving voltage is within the constant physical limitations'set by Equation (5.21).

In view of these facts, it is then clear that the set of admissible controls &/ for each joint actuator is then
limited by the current speed and the constant maximum driving voltage, which can be mathematically
formulated by the following state-dependant inequality constraints:

- Ui(mzi’ _an) S Uu; S +Ui($2n +Vm.) (64)

which show that, for each joint i, the true control constraint at every instant can be obtained hy
satisfying Equation (5.21) on both sides of the inequality, given maximum possible driving voltage
and current speed. In essence, then, Equation (6.4) is shifting the limiting control variable back to the
physical driving voltage, another consequence of reverse engineeringthe actuator to design the controller
in its natural torque domain, as discussed in Section 5.4.1. As a result of this, the controller design
is simplified, while the real-time implementation is slightly more elaborated hy having to recalculate
time-variable torque limits. Other authors [8, 9] have preferred to carry ont the design of optimal
controllers in the electrical domoin, hence complicating the synthesis of the controller, but enhancing
the clarity of the implementation hecause in that case the truly constant maximum driving voltage is
the limiting factor directly employed in the design.

-6.3 Problem Statement

The problem nnder review, initially outlined in Section 1.2.1, can be now summarized as follows:

Statement 6.1 Utilising the state-space closed form of manipulator Jynomics derived in Section 6.2,
it is desired to find an allowable control u(t) € U that transfers the controlled robot plant to the desired
region of the state-space ond for which the IP J(t}, of the form described by (3.12}, is minimised.

A number of classical problems have been treated in the literature and can be formulated in terms
of this fundamental control problem, depending on which parameters are weighted in the cost function
J(t). A compilation of some of these problems is listed in Table 6.1, to which the array of optimal
control techniques introduced in Section 3.8 are applicable.

In the work described in this thesis, the time required by the manipulator to achieve the desired
location, i.e., the optimal time problem, is considered. Mathematically, the problem of transferring the
system from a given initial state at time #; to a specified final state in minirmum time can be expressed
by ohbtaining the minimum possible value of the following performance index:

J) = /: o (6.5)

where ¢y is the unspecified optimal final time.
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I Problem . Description . |

Terminal Control Bring system as close as possible to given terminal state
within a given period of time [10]

Minimum-time Control : Reach terminal state in the shortest possible period of
time (11, 12]

The Regulator Problem Keep system in equilibrium state so that IP is
minimised [10]

The Tracking Problem 3 Cause the state of the system to be as close as possﬂ:de

to a desired state time history. This is a generalisation
: of the regulator problem [10]

Minimum-energy Control Transfer system from initial to final state with a
minimum expenditure of control energy (fuel) [13]

Minimum-time-energy Control | Transfer system from initial to final state with a

combined minimum expenditure of control energy in
shortest allowable time [14, 15]

Minimum Acceleration Problem | Transfer system from initial to final state with a minimum
' expenditure in accelerating the system [I6]

Table 6.1: Classical optimal control problems.

In view of these remarks, the minimum-time control problem becomes a special case of the more
general optimal control problem defined above, which can be formulated as: -

Statement 6.2 Assuming the manipulator characterised by the state-space equations of motion (6.2),
it is desired to find the optimal trajectory (ond associated optimel control policy u(t) € U ) that the robot
tool centre point (TCP), and consequently each joint, should follow to move (in joint space) from the
initiol position ®1(t;) to the final position x1(ts), while minimising the performance indez J(t) given
by (6.5).

Despite the simplistic formulation of the problem (in essence, the equivalent to the system specifica-
tions of classical control analysis and design techniques), it is important to understand the complexity
that the direct application of the MP brings to its solution. By applying Pontryagin’s MP, Equa-
tion (6.2) should be substituted into the Hamiltonian functional, Equation (3.15), to derive the neces-
sary conditions for optimality as given by the Hamiltonian canonical form, Equations (3.19) and {3.20).
Having the problem prescribed by the two end-points, the necessary 2n boundary conditions required
for the complete solution of the 2n first order differential equations describing the system, represented
in matrix form by Equation (6.2), are readily available. However, as stated in Section 3.8.1, the analyt-
ical solution to this TPBV prablem is extremely difficult in the majority of cases due to the inherent
non-linearity and coupling in the manipulator dynamics.

It is beyond the scope of this dissertation to attempt any such numerical solution, and t.he reader
is referred back to Section 4.3.3 where some of the off-line computational methods proposed in the
literature are reviewed. The implicit problematic will be otherwise illustrated by finding an analytical
solution to the relatively simple problem of the “Double Integrator” plant. The decision to study this
particular example is not arbitrary. Beyond providing the means to illustrate the difficulty in designing
optimal control strategies, it will be shown in Section 6.5 how the manipulator control problem being
treated here can be reduced to the solutiou of a quasi-double integrator problem, bence providing a
suitable approach to the on-line time-optimal control of a robot manipulator.

6.4 The Double Integrator Plant

The double integrator problem [10, 17] is a classic example to illustrate the use of the MP (and, in
general, any other optimal control technique) in a variety of optimal control problems, such as the
time-optimal control problem being considered here. The problem can be applied when the dynamic
behaviour of the plant can be approximated by a second order single unitary-inertia systern, and can

3 Also referred to as the Servomechanism Problem.
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therefore be described by the following set of ordinary differential equations:

)y = 22
.a""..‘g u

(6.6)

It can be shown by applying Pontryagin’s MP, that a necessary condition to transfer the system
from a specified initial point z(f;) to a specified end-point z(¢;) in minimum time is to let the control
variable u take one or other of its extreme values, +U/ < u < —U, or simply |u}f < U, which are
considered fixed here in order to increase the clarity of the exposition. This requirement upon u can he
easily demonstrated by deriving the Hamiltonian H defined by Equation (3.15), which for the double
integrator plant can be described in the following form:

H==1+p122+4psu (6.7)

By inspecting Equation {6.7), it follows that for a given set of values p;, p2 and z2, the Hamiltoninan
H takes on its maximum value when the sign of the control signal u takes one or the other of its extreme
values, +U if p; is positive, —U if pz is negative. Mathematically, this can be expressed by assigning
a value to the optimal control signal u that has the same sign as that of ps, and its magnitude is the
maximum allowable value U:

u = Usgn(pa) | ' (69)

where the sgn function is defined as
f +1 if ps>0
sgn(p2) = 0 if p;=0 (6.9)
-1 if po<O

This type of control is often referred to as bang-bang or relay control in the literature [10, 18]. It is
apparent from Equation (6.8) that the solution to p; must he found first in order to implement this
controller, and this is precisely where the major difficulty lies. By utilising the Hamiltonian canonical
Equation (3.20), the costate equatious can be derived, which for the simple case of the double integrator
problem result in the following expressions:

= —8H/8z = 0

. 6.10
o = —OH[0z, = -m (6.10)

Thus the following set of 4 equations, 2 for the states and 2 for the adjoints must be solved simulta-
neously for the optimal control input :

.’J..Tl = I3z

&z = Usgn(pz) '

. 6.11
o= 0 (6.11)
P2 = —p

where u has been eliminated by substituting the optimal control action obtained from Equation (6.8).
The four boundary conditions required for the corhplete solution of this optimisation problem are
provided by the two specified initial and final values of the state varnable =.

As an alternative procedure to the custornary numerical solution to the TPBV prohlem, it is relatively
easy in this case to find an analytical soluticn. To this end, the form of the costate variables can be
found hy integrating (6.10), which result in:

n = a
p2 = —at+b (6.12)
where a and b are constants of integration which, in general, must he chosen to satisfy the boundary
conditions on =. However, because the costates are, in this case, independent of the state variables, the
exact costate solution is unknown at this stage. It is interesting to note that if the initial conditions of
- the costate functions were known then the problem could be completely sclved. Indeed, it is precisely a
“good guess” of the costate’s initial values the preferred approach that is employed by a large number
of the numerical methods proposed in the literature for the solution of the problem (see Section 4.3.3
for more on this matter). Despite this shortcoming, a close examination of Equation (6.12) indicates
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Figure 6.3: Douhle inf:egra-tor state trajectories for u = +U/.

T xp/rad sec™

xy/rad %
Figure 6.4: Double integrator state trajectories for v = —U.

that, as  varies over any range whatever, p changes sign not more than once, depending on the value
of the constants a and b. In view of Equation (6.8), therefore, it can he immediately seen that the
optimal control input %, during the minimum-time transition from any specified initial state to any
specified final state, takes on only the values +U' and —U, and changes sign at most once during the
_ transition.

This conclusion can be then incorporated to study the form of the optimal trajectories. It will be
first assumed that the desired final state z(¢;) is located at the origin (0,0). This is a straightforward
transformation which can be easily achieved by a trivial change of state variable values. Thus, segments
of optimal trajectaries can be found by integrating the state Equation (6.6) assuming one or the other
of the the optimal control actions +I7. The state trajectories of the system under the influence of +¥/
become: ‘

£, = Ut+e (6.13)
= %t2+ct+d (6.14)

where ¢ and d represent new constants of integration. Time ¢ can he eliminated by squaring the first
equation, and comparing with the result of multiplying Equation (6.14) by 2U, to obtain:

=2z +e (6.15)

where e = ¢ — 20 d, thus another constant. This equation can be rearranged to obtain the following
equation for u = +U/, the so-called “phase-plane” relationship hetween z; and z:

I = "'—3.7% _—— - (616)
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xllrad-

Figure 6.5: Double integrator state switching boundary and typical state trajectories.

For different values of e, Equation (6.16) defines the family of parabolas shown in Figure 6.3, where
the arrows indicate the direction of increasing time. By similar reasoning, the relationship between z;

and z5 under the influence of u = —U is of the form:
z2 = ~Ut+é ‘ ' (6.17)
S
:1 —_— -—2U $2+ 2U (618)

where ¢ = & + 2Ud, and ¢ and d are new constants of integration. The family of parabclas for
Equations (6.17) and (6.18) under different values of é can be seen in Figure 6.4.

Recalling that the optimal input takes ou only the values +U/ and —U, and changes sign at most once,
several factors are apparent from Figures 6.3 and 6.4. Only one member of each solution family passes
through any given point in state-space, and all optimum trajectories to z(t;) = 0 must eventually follow
one of the two trajectories passing through tke origin. Combining the two sets of trajectories into one,
the family of time-optimal trajectories can easily be seen to be as depicted in Figure 6.5, where it is
apparent that all optimum trajectories approach the origin from either the second or fourth quadrant.
The two trajectories through the origin can be interpreted as a switching boundary in the phase-plane,
as shown by the bald curve AOB in Figure 6.5. All initial states below the boundary curve require
u = +U until the switch curve is reached, followed by u = —U, which effectively slides the state along
the switching curve towards the state origin. Initial states above the boundary require v = —U followed
by u = +U. An example of each of these conditions is also shown in Figure 6.5. It is interesting to
note the symmetry of the optimal curve AOB with respect to both axes given thke time-invariability of
the double integrator plant. Therefore, it is easy (o see that typical optirnal trajectories consist of two
consecutive segments, and only for initial conditions on the boundary AOB, no switching is required.
In any case, it is possible to reach the origin from any initial state whatever with, at most, one sign
change in the control input.

By assigning e = é = 0 in Equations (6.16) and (6.18) respectively, the mathematical description of
the switching curve AOB, as a function of the instantaneous state of the system, can be found to be:

1
zy = “Wﬂ:zlmgt (6.19)

Hence," the time-optimal control law at any time ¢ can be easily deduced in accordance with the

following logical rules:

(6.20)

(1) = +U(t) if (t) lies below AOB or on AQ
~ | =U(@) if 2() lies above AOB or on BO

From the above exposition, it should be canceptually clear now that even for a simple representation
of the plant, such as that of the double integrator problem described by Equation (6.6), obtaining the
optimal control law is not a straightforward procedure. The simple solutions for the state and costate
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equations in this case allowed some general characteristics of the system to be drawn, which ultimately
lead to the optimal control policy sought by an analytical method.

Unfortunately, although it is satisfying to think of minirmum-time problems in this fashion, it is
generally not a feasible approach to determine the solution of more dynamically complicated plants.
It is increasingly difficult in those cases to extract amenable conclusions about the form of the siate,
costate and control patterns given their high non-linearity and coupling characteristics, as in the case
of the manipulator plant considered hete. In general [10]:

» For higher-order systems (n > 3), it is generally difficult, if not impossible, to obtain an analytical
expression for the switching hypersurface.

» The procedure is generally not applicable to non-linear systems, because of the difficulty of ana-
Iytically integrating the differential equations.

However, a near-optimal sclution along the lines of that derived for the double integrator plant
could also be adopted for a robotic arm, provided the manipulator dynamics could be approximated
by a simpler and decoupled (in control input} system similar to (6.6) for each joint, while still being
representative of the non-linear coupled plant dynamics.

Given the manipulator dynamics as represenied by Equation (6.2), the iuntuitive methodology to
achieve such a goal is that of linearising the manipulator dynamics around an operating poini, usually
the goal point, and then employ, if necessary, a linear transformation to a canonical form in which
the controls are uncoupled, such as the Luenberger’s transformation employed in [19]. When non-
linearities are not severe, local linearisation in the neighbourhood of an arbitrary operating point is a
valid strategy. Unfortunately, the manipulator control problem is, in general, not well suited to this
approach because robot arms constantly move among widely separated regions of their workspace, such
that no linearisation for all regions can be found [20]. .

The alternative solution is tben to move the operating point with the manipulator as it moves, ef-
fectively resuliing in a linear but time-varying system. Although the technique, referred to as mouing
linearisation by Craig [20], introduces a fair amount of additional computation caused by the substitu-
tions and series expansion that need carrying out, it bas the advantage cf being far more representative
of the time-variant non-linear plant dynamics, as they are linearised at each sample interval. However,
an additional transformation, as mentioned above, is still required if a decoupled system is desired. 1n-
cidentally, the transformation, as proposed by some researchers in the past such as Kahn and Roth [19],
neglects the time-variable inertia components of the linearised equation of motion, effectively reducing
the overall robot arm system to a single time-invariant uncoupled double integrator for each joint.

In the following Section, an alternative strategy, to some extent similar to the latter solution, is
presented to ultimately reach the same goal. That is, obtaining a plant structure for which a simple
optimal control strategy, such as that of the double iutegrator problem, can be synthesised analyti-
cally. This can be made possible by the method of the averaged dynamics, first introduced by Kim
and Shin [14], a strategy which can effectively approximate the coupled and non-linear manipulator
dynamics by a piecewise linear simpler plant as it moves towards the goal point, but is still able to
represent the overall dynamic characteristics of the plant. Consequently, the result is a near-optimel
robot arm coutroller, yet applicable to real-time control environments. A number of issues are raised
that justify the validity of the approach for coupled non-linear plants, in particular with regards to the
suitability of the method for an on-line implementation in feedback form, as the practical results shown
in the following Chapter will readily illustrate.

6.5 Ne.ar-Optimal Trajectory Planner/Controller Deéign

In order to understand the proposed strategy, it is useful to rewrite the manipulator equations of motion,
as given by Equation (§.2), for each individual joint axis z;. Assuming the same state variables, but

now for each joint, i.e., '
:a.'=[:il]=[q.i] for i=1...n (6.21)

Zi2 9
the 2-dimensional state-space system representation for each axis can be now extracted from Equa- -
tion (6.2) as follows: |

v ;= Alz) + B(z)u for i=1...n . (6.22)
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where

Tia 0 .
Alz) = —D7 N z1)[H (%1, %2) + G(=1) + f(zi2))] ] Bl=) = l D Y(z) ] for i=1...n
_ (6.23)
and D 1 € R! x R" represents the ith row of the inverse of the effective inertia matrix, D.yy €
$" x R*. For proper matrix operation, the upper null component of B is now dimensioned as a vector
in € R! x B, -

It can be clearly seen from the structure of Equation (6.22) that motion at joint i is being affected
by the control action on the other joints, a common characteristic of MIMQO systems which too often
impose limitations in the design of a suitable controller, as addressed hy the Computed Torque control
strategy described in Section 3.5.2. As well as couplings in the torque, via the cross inertia terms in
D, it is also easy to notice the non-linear interaxial reaction forces induced by velocity terms, H, and
gravity forces, G, which also make a contribution to the dynamics of each joint.

It is interesting to note here that the application of non-linear cancellation control could, in theory,
achieve the desired decoupling and linearisation of the plant. However, as shown in Figure 3.6, the
trajectory to be tracked should be generated first, while, by the definition of the optimal unconstrained
point-to-point motion problem presented here, there is no trajectory to be followed between the end-
points. .

In order to obtain a deconpled closed-form of the joint dynamics, Equation (6.22) can be rearranged
into a form where the relationship between the acceleration of joint i and the actnal actuator torque
driving the joint becomes clear:

z=[:;]=[”0’ 2]“]+[§] for i=1...n (6.24)

where

n

ai(z1) = D3 (z1) and Bi(zy,%2,u) = Z: D;jl(xl)uj—z D,-'jl(:u)[Hj(xl,a:z)+G_,-(a=1]+fj(z1)]

i=1,3#i j=1
- (6.25)
and Dj;' denotes the (i, j)th element of D" '
Coefficients «;(21} and §;(z1,%2,u) are time-variant 4 non-linear functions of the manipulator po-
sition, velocity and control input, the latter collecting the coupling control effects from the other joints
on joint i. However, Equation (6.24) conld be regarded as an uncoupled time-invariant system for each
robot arm axis by incorporating the following assumptions:

1. Providing the sampling interval, At, is small enough, the continuons control signal can be digitally
approximated by a piecewise constant function which changes value only at time instants ¢ =
0, At, .., (N —1)At. This would effectively allow the variable inertial couplings in the joint at the
current sample time t., included in §;(21, 22, u), to be estimated using the last control input at
time {.—At, with a minimal overall error. This can he intunitively perceived from the characteristic
of optimal control by which the value of the control is proved to be always on the boundary of
the admissible region.

2. Additionally, non-linearities in a;(z,) and f;(#1, #2, u) can also be incorporated into the model
at each sample interval, provided information from the plant state is fed back to the controller.
The consequence of this update, as far as the optimal controller is concerned; is that of essentially
transforming the uon-linear model of tke manipulator joint, Equation (6.24), into a piecewise
linear singie-inertia plant for each feedback state, at ench sample interval. Since the dynamic
model is npdated witb state feedback information at the beginning of each interval A¢, the errors
derived from the conpling and non-linear approximations can he, to a large extent, implicitly
compensated. '

4Not in the broad term of explicit time-dependency in the equation, but meaning “not constant” over time, given the
state-dependency.
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3. Furthermore, at present time, ?., the optimal control strategy should be determined based on the
dynamic behaviour of the manipulator over the period [t.,t;]. Yet the model dynamic coefficients
are known for t. (as a result of the update described above) and #;, but not for the period in
between. It is therefore necessary to find a way to describe the overall dynamic hehaviour of
the system for the remaining of the present motion on the basis of the current state and the
final state. Some methods have been devised which propose an approximation of the dynamic
coefficients. Particularly simple is the arithmetic average, as proposed in [14]:

[a;(tc),_ﬁ;(tc)] = [ai(tc):ﬁ.i(tc)] '*2' [ai(tf)s ﬂi(tf )] ] for i=1...n (6.26)

A more general form, similar to the one implemented in {13], has been adopted in which the overali
dynamic behaviour of the manipulator is defined by a factor A for each dynamic coefhcient. This
is shown in Equation (6.27). The inclusion of A offers the flexihility to weight each boundary
condition’s dynamic performance separately in the estimated final value. The influence of this
parameter will be studied in the following Chapter, Section 7.5.2.4, when controller simulation
and implementation results are presented.

{ Ti(te) = (1= XNaifte) + Aau(ty) Aef0,1)
Bi(te) (1= XN)Bi(te) + ABilty) for i=1...n

The combination of these conjectures can conveniently transform the original system into a suitable
form for the analysis and design of the optimal controller, which was the original aim. Although a more
detailed analysis of these approximations will be given in Section 6.5.2, it is important to understand
the implications that the proposed transformations bring to the design of the controller:

(6.27)

1]

1. Firstly, the decoupling approach is a simple methodology well suited to optimal cantrol in a real-
time environment which, despite the likelihood of introducing error, it is shown in Section 6.5.2
to be minor.

2. Secondly, the averaged dynamics adaption mechanism, while undoubtedly an approximation to
the real plant, still preserves the overall non-linear and time-varying nature of the system, as
given by the model of each manipulator joint, Equation (6.24). Hence, a completely different
picture altogether from the traditional local linearisation method is obtained.

3. Thirdly, the simplicity of the averaged dynamics approach is shown to represent a good deal
of computational savings in comparison with the moving linearisation and decoupling approach
previously described.

In summary, thus, these assumptions allow the non-linear conpled manipulator plant to be regarded
as a decoupled time-invariant system for each joint, updated in feedback form at the beginning of each
sampling period with the manipulator present and final states {averaged dynamics) and decoupled by
the last control action applied to the remaining joints. The resulting model equation for each link at
each update interval can be now described bLy:

ii=[:§;]='[”62 a"][t}]+[£] for i=1...n (6.28)

Hence, a similar model to that represented by Equation (6.24) is ohtained where the coefficients &;
and §; are now constant parameters representative of the overall manipulator dynamics, as derived from
the averaged dynamic procedure given by Equation (6.27). Incidentally, the problem is then reduced
to the solntion of a qnasi-douhle integrator problem for each joint, that must be solved in real-time at
each sample interval. The structure of the optimal controller for such a sysiem is descrihed next.

6.5.1 Controller structure

The derivations described in Section 6.4 for the double integrator plant can now be extended to solve the
trajectory planning and control of the uncoupled quasi-douvhle integrator manipulator plant problem,
as represented hy Equation (6.28). The Hamiltonian for each joint can be now obtained as:

H = =1 + p1Zi2 + pa@itiy + PaB; (6.29)
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Since @; represents the joint effective inertia, which is always positive {20], a close examination of
H shows that, as with the double integrator plant, for any given value of py, ps, zis, G; and §;, the
Hamiltonian takes on its maximum value when the magnitude of the control signal is at the boundary,
and has the same sign as po, i.e.,

u = Usgn(p2) (6.30)

where the sgn function is defined by Equation (6.9). Following the mechanism previously described
for the double integrator, the same costate variahles are derived, as given by Equation (6.12), and
therefore the same conclusion is drawn: the control input changes sign at most once during the current
motion, given the current dynamics of Equation (6.28). The expression for the phase parabolas can
be found without difficuity by integrating Equation (6.24) after substituting the control action by its
maximum value, and then eliminating time from the expression. For u = 4{/:

ziz = (HU+Bt+c (6.31)
1 2 ¢
iy = =iy — = 6.32
? 2(&:U +.8;) . 2@V +B;) (6:32)
where ¢ and e are constants. Equally, the phase-plane trajectory under the influence of u = —U can
he obtained as:
Tiz = (—EiU +E'-)t + é ‘ (633)
] .
21 = : : (6.34)

2-zU + By) T 23U + B))

where ¢ and € also denote constants.

When the douhle integrator problem was presented, it was shown how the orientation of the paraholas
relative to z; was uniquely determined hy the control action: upright along z; when +U (Figure 6.3),
and inverted when —U (Figure 6.4). Moreover, given the symmetry of the parabolas in both cases,
a unique formula for the switching curve sufficed (Equation (6.19)). For the quasi-double integrator
problem, a different scenario arises. As can be seen from Equations (6.32) and (6.34), for a given state,
the orientation of the parabolas is dependant not only on the value of the control variable, but on the
combined value &;u; + E,-. Hence, for a given set of values of &; and E,—, the resulting parabolas could,
in principle, be oriented either way under the action of any of the two possible control actions. A little
thought will show that, in real terms, that is not the case. For a given state of the system, the response
for all the possible cases of @; and B; can be aualysed under the influence of applying both control
actious, that is: '

aU<B = B8;>0 = parabola upright
case +{/ is applied = — = B;>0 = parabola upright
sU>p = Bi<0 = parabola upright
. {6.35)
= B; <0 = parabola inverted
case —U is applied = aU<p = { B: >0 = parabola unknown
-sU>6 = B; €0 = parabola inverted

It can he seen that, except in one case, the result of applying the maximum and minimum control
action provide the same intuitive result as that of the double integrator prablem, i.e., +U generates
upright parabolas where speed increases over time as a result of the positive control action, and —U
inverted paraholas, thus reducing speed over time as a result of injecting a negative control action.
The exceptional case arises because two alternatives appear, depending on whether | — &U| > B; or
" | =@U| < B;. The former case generates inverted parabolas, just like the general case of appying ~U.
However, the latter implies that the contribution of all forces other than the effective inertial joint force
can he larger than the purely inertial torque under the application of ~U, in turn generating an upright
parabola under its influence. Although this effect can physically happen, depending on the significance
of the dynamic parameters, the contribution of the inertial parameter has been determined to be the
most significant of all parameters [21], even more so under the effect of the maximum input conirol
action. Therefore this case would rarely occur, if at all. But even in those cases when it could happen,
the effect of applying ~U would, despite still increasing the speed of the manipulator joint, take it
to ohvious slower thresholds, which is not a desirabie objective for optimal motions. Therefore, +U/
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Figure 6.6: Quasi-Double Integrator State Switching Cnrve.

will he the preferred strategy on such occasions. On the basis of these facts it can be concluded that,
as for the donble integrator problem, the result of applying U generates phase parabolas as shown
in (Figure 6.3), while those in (Figure 6.4) are the resnlt of —U/. However, for a given set of values
of @; and B;, the paraholas resulting from applying the two possible controls need not he symmetric
anymore. In fact, they will only be when &U + §; = —&;U + §;, which is rarely the case.

As hefore, by assigning e = ¢ = 0 in Equations {6.32) and (6.34) respectively, the formulation for
the switching curves that all optimal trajectories must eventnally follow to pass throngh the origin
can be easily found. However, now, the value of &;U + B; and —&; + f; need not necessarily be of
equal magnitude and opposite sign, so that the optimal switching curve at each time ¢ can not he
described hy a unique equation, and therefore the control law needs to he considered for two separate
cases depending on the velocity of the joint: :

[ if -“:2,'('!) >0
U if o) < 2l
ui(t) = v 2(~a;U + B;)
—U  otherwise .
if 2;(t) < 0 for i=1...n (6.36)
U ifen(t) < a8
ui(t) = M= owmU + B;)
. U  otherwise '

The hehaviour of such a control law is depicted by the near-optimal state switching curves shown in
Figure 6.6. The phase-plane graph represents the evolution of the system state, along with some of the
switching cnrves generated during a typical run, and clearly shows the two distinctive features of the

new near-optimal control law : ,

o The parabolas that define the switching curves (AOB curves) are not time-invariant anymore,
but they need to he recalcnlated at each sample time, according to Equation (6.36). While only
a number of the curves generated are shown in Figure 6.6 for clarity, it can he seen that they are
not distant from each other, hence proving that the averaged dynamics method can accomodate
for the changing dynamics, on which the computation of the switching curves is grounded as given
by Equation (6.36).

o The application of the two optimal control actions, U and —U, generates non-symmetric optimal
cnrves for positive and negative speeds, as discussed ahove. This is opposed to the symmetric
parabolas shown in Figure 6.5 for a linear plant. :

“The evolution of the system state for the case when the initial state is located in the first quadrant
is also shown in Figure 6.6 with a thin line. :

The resnlting algorithm that yields the minimum-time trajectory and control action the rohot should
follow to move, nnconstrained, from an initial to a final state can be formulated as follows: "

1. Derive the manipnlator dynamic model in the form of Equation (6.24).

2. Given desired initial and final states, compute the corresponding control actions from Equa-

tion (5.15). The initial control action will act as the estimated control input into the algorithm.
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Figure 6.7: Chattering effect. Phase-plane (left) and expanded phase-plane representation.

3. Given current state, calculate the maximum permissible control actions which satisfy inequal-
ity (6.4).

4. Calculate current state's dynamic behaviour for each joint simultaneoisly. This is described by
ai(x1) and 5;(x1,x2,2) in Equation (6.25), where the coupled inertial terms are decoupled by
the effect of approximating the current control action exerted by the joist with the last control
applied, as formerly described. :

5. Average the dynamic coefficients according to Equation (6.27) to achieve the overall dynamic
performance of the manipulator, somewhat representative of the whole motion from the current
state to the final goal state. A constant value of 0.4 for the coefficient A has been found to provide
the hest experimental results, as will be shown in Section 7.5.2.4, thus assigning slightly more
importance to the desired curreat state in the overall dynamics.

6. Employ the current estimated dyparic model to update the switching curves according to the
control law described hy Equation {6.36) and compute the optimal control action.

7. Calculate the driving vo]ta;g;c.orresﬁondiug to the demanded near-optimal input torque according
to Equation (5.21).

8. Go back to point 3 if final state has not been reached.

The application of this algorithmic controller will drive the manipulator to the origin of the phase-
plane as desired. However, a well-known problem with any bang-bang method is control chattering in
the vicinity of the target state caused by frequent switchings of the control input, as shown ip the phase-
plane representation of Figure 6.7, left. The graph oo the right is another representation of the same
curve, where the positional state has been expanded with time to clearly show the chattering arousd
the origin. Different altexrnatives to alleviate this undesirable effect have been proposed in the literature,
e.g., the use of a smoothing function [8) or switching to a linear coaotroller when the masipulator is
within a prescribed range of the goal steady-state [14]. In the work presented here the possibility of
applying a Feedforward Controller has been tested with successful results, as will be presented io the
following Chapter. This means that, when the phase portrait reaches some specified state threshold
near the origin, the corresponding control is calculated according to Equation 3.8 around the desired
end position, effectively exerting the steady-state holding torque of the joint. Therefore, point 8 of
the algorithm is further extended to compare current state with target state. If the difference is less
than some state bounds specified hy the user, set experimentally to 0.27 rad/s and 0.027 rad for best
results, the control switches into a Feedforward Controller. Motion is completed when all the joints
have reached the desired goal position.

6.5.2 Controller analysis

Haviog derived the algorithmic siructure of the unconstrained near-optimal controller, a number of
issues about its design should be taken into consideration.
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6.5.2.1 Approximations-related issues

It has been consistently stated that the main reason behind the various approximations taken to solve
the optimal control of coupled and non-linear plants, such as robot manipulators, lies in obtaining. a
practical solution to the problem. The implications on the optimality of the solution derived from the
assumptions described in page 82 are twofold:

1. By employing the old (t— At} control action in calculating the dynamics of the plant for the current
(t) state, no error is introduced in the calculation of a;(z1), but the inertial coupling terms in
Bi(®1,22,u) are somewhat approximated to their real optimal values at time . lncidentally,
this may introduce an error in the calculation of the switching curves, as this takes place on the
basis of the current dynamics of the plant. However, the application of bang-bang control, as in
the case of time-optimal motion, implies that only when there is a switch in the control input
as a result of the optimal switching curves, would an error in the coupling term arise. Under
normal operation of a robotic arm, particularly for unconstrained point-to-point motions, there
are usually two changes in control, that is, during the acceleration and deceleration phase (see, for
instance, {18], [19}, [22] or [23], and also results in the following Chapter), therefore, the influence
of such an error can be deemed insignificant.

2. The other issue is that of estimating manipulator dynamics by the method of the averaged dy-
namics. Similarly to any linearisation method, errors are introduced which, for the case of the
optimal control of a robot manipulator problem, are particularly difficult to measure given the
complexity in obtaining an exact analytical ® or numerical solution. However, nnlike (local) lin-
earisation techniques, the averaged dynamics method preserves the overall non-linearities of the
plant by representing the dynarmics as a piecewise linear time-invariant plant around the current
state at the current iteration. This permits for the error generated by the'averaging technique
at the current sampling time £ to be implicitly compensated at the following iteration ¢ + At by
the new state feedback, essentially making the system less sensitive (more robust) to parameter
variations, showing once again the viability of the controller for on-line purposes.

6.5.2.2 Feedback issues

Having referred to the robustness introduced by the state feedback feature of the near-time-optimal
algorithm, it is important to nnderstand the general advantage that closing the loop brings to any
control strategy. Feedback operation makes use of the most recent information on the state of the
plant, in this case to calculate the switching surfaces at each iteration, and therefore the optimal
control. As a result, if a disturbance was to occur within the feedhack system, the controller would
optimally operate on the latest measurement, rather than attemipting to return to the original trajectory
or follow a pre-programmed input, as wonld he the case for open-loop systems. This is one of the main
cbjections to optimum trajectories obtained open-loop by numerical methods, since once the system
deviates from the optimal trajectory, subsequent motion no longer follows the precalcnlated optimal
trajectory, nor adapts to that change. Moreover, the resulting numerical solution is valid only for the
specific problem being considered, and it is very difficult to extend the result and obtain a general
solution which can be used for other problems [2].

6.5.2.3 Co—ordinated motion issues

Optimal contral problems along a specified path lend themselves naturally to co-ordinated motions,
i.e., motions where all the joints start and stop at the same time. This is hecause the problem can
then be parameterised by a unique scalar parameter measuring the arc-length of the path, which when
solved, determines the torques for all the joints of the robot arm, as described in Section 4.3.1. When a
numerical solution to the unconstrained optimal prohlem is attained, no deconpling is attempted since
it is not an issne for the solution, and a synchronised motion is easily achieved. However, when the
meotion of the manipulator is described by each individual axis, as is the case here, final times may not
he the same for all joints. In fact, they rarely are [14, 19]. Notice, however, thai when the joint reaches
its final position, it is held there by the steady-state torque calculated from the Feedforward Controller.

%Very often impossible for high order non-linear systems.
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Hence, possible displacements from the desired end position due to coupling effects from other joints
still at motion are considered in feedback form by the linear PD portion of the Feedforward Controller.

6.5.3 Stability analysis

Even though the general propositions of stahility and performance analysis of linear systems have
heen extensively developed in the literature, giving way to well established techniques, only a limited
number of tools have heen made available for the analysis of non-linear systems, otherwise an active
area of research [24]. Furthermore, given the fundamental properties of non-linear systems, no uniform
approach to their analysis is possible, and availahble techniques depend on such factors as the severity
of the non-linearity, the order of the system under consideration and/or the form of the input, hence
rendering them applicahle to the analysis of specific systems under specific conditions. Some of the
technignes availahle include: : '

¢ The Describing Function approach [1], which is applicahle to non-linear systems of any order,
bnt assnmes the input to he of sinusoidal form. Also, while the describing functions of single
‘non-linearities, such as hysteresis or backlash, are relatively easy to obtain (in fact, they can
be looked up in tables), if a system contains more than one non-linearity, they must he lumped
together and an overall describing function ohtained. This is hy no means a straightforward task
for complex non-linear systems such as rohotic manipulators.

¢ Popov’s Frequency Domain Method [25] provides a sufficient condition for asymptotic stability of
time-invariant non-linear control systems hut, as the describing function, the method is restricted
to single-loop plants which can he decomposed in a linear process and a non-linear element (such
as a saturation or a relay). In fact, the key element of the technique is based on characteristics
derived from the linear portion of the system.

¢ The Generalised Circle Criterion [2] is essentially an extension of Popov’s method to account for
time-variahle non-linearities also, but the same restrictions apply.

o A very powerful and elegant technique to determine the steady-state stahbility of non-linear systems
hased on generalisations of energy notions is Lyapunov Stability Analysis [2, 20]. It should perhaps
also he noted that the original Russian text by Lyapunov (dating back to 1892) is now available
in an English translation [26]. Lyapunov theory has hecome increasingly prevalent in rohotic
research publications (27, 28]. The reason is the ease of application compared to the approaches
described ahove, mainly hecause new control algorithms for non-linear systems can be proved
{asymptotically) stable hy choosing the appropriate definite scalar function of the state variables
with certain required properties. On the other hand, althongh some general functions are widely
employed with successful results, choosing the right one is still a matter of experience.

Unfortunately, the structure of the control algorithm proposed in this work, (Egnation (6.36)) poses
a major drawhack in the stahility analysis with these techniques. The assumpiions undertaken in its
design are in part responsihle for that, but it is mainly its variahle structure which prevents the controller
from being directly accommodated in the feedback loop for stability analysis pnrposes. Although further
work could he dedicated to the tedious pursuit of the right Lyapunov function(s) to provide a general
answet, the methodology employed in the design of the controller lends itself naturally to the graphical
Phase-Plane techniqne [1, 2] of stahility analysis of first and second order systems, particnlarly useful
for systems with any number of non-linearities. '

The technique generates a phase portrait of the system by studying the transient response of the
non-linear control system to an external input nnder different initial conditions, as shown in Figure 6.5.
This is accomplished either by specifically solving the non-linear equation of the plant, or by phase-
portrait sketching methods such as that of the Isoclines [2] when no analytical solution can be obtained.
It can he intuitively deduced from the general concept of stability that, if the phase trajectory followed
hy the system approaches the vicinity of the origin, the system can he regarded as stable. Given the
design specifications followed during the synthesis of the near-optimal manipulator controller, it can
be gunaranteed that for any given state, the trajectory followed by the manipulator will always he that
of approaching one of the two possihle switching curves (depending on whether velocity is positive or
" negative at each particular instant) as described hy Equation (6.36), and then sliding down to the state
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origin, continuously applying the necessary (near-optimal) control action to drive the plant back to the
switching trajectory under any possible disturhance. In view of these facts, it can then bhe conclnded that
the actual specifications under which the controller is designed provide the necessary conditions for the
asymptotic stability of the plant. The author is nevertheless aware that a more rigorons mathematical
proof would be a valuable asset, and that is one of the suggestéd areas for further work surveyed at the
end of Chapter 8. .

An additional contribution to the stability of the system is also the choice of sampling rate, explained
in more detail in Section 7.4. This was set to a value of 4 ms (i.e., a frequency of 250 Hz), which provided
a much greater rate than 20 times the 10 Hz mechanical time constant of the arm links, hence minimising
any deterioration of the controller dne to sampling [29].

A final check on the stahility and performance analysis of the controller will be provided hy simulation
in the following Chapter. This is fonnd particularly necessary in this case to demonstrate stahility
conclusively. Moreover, it will aid in overcoming such factors as possible uncertainties regarding the
validity of the assumptions made in the previons Section, and the difficnlties cansed hy the manipulator
plant complexity which can not be studied by any other analytic method.

6.6 Summary and Discussion

A strategy has heen presented in which the role of manipulator dynamics in trajectory planning and
control is investigated within the context of optimal control. Given the non-linear and conpling char-
actertstics of robot manipulators, some hypothesis needed to be undertaken if a numerical solution to
the optimal contral problem was to he avoided. The assumptions taken about the manipulator dy-
namics along the point-to-point motion have resulted in a regulating algorithm, suitable for real-time
implementation, which maximises the capabilities of the device, hence improving the manipulator time
response. - .

Although the assumptions taken result in the control of the manipulator in a near-optimal fashion,.
it has heen confirmed in Section 6.5.2.1 that the end result will always lie very close to the true
optimal solutton. It is important to realise that the proposed controller does not force the mantpulator
to follow a prescribed trajectory. It moves the arm to a goal point along a collision-free trajectory
virtually specified by the manipulator dynamics, and then regulates the position there with the aid of a

' Feedforward Controller. While the main justification of the hypothesis undertaken for its design was to
aid in deriving an on-line analytical solution to the problem, on the other hand successfully implemented
as shown in the succeeding Chapter, nothing prevents the derived trajectory to be employed as an off-
line reference trajectory to he controlled by any other more traditional algorithm if so desired. While -
this betrays the main goal of the strategy presented, it should still provide better results than the
schemes implemented on common industrial manipnlators.

The stahility of the algorithm has also heen established hy its own design methodology with the
assistance of phase-plane techniques. However, as emphasised in Section 6.5.3, given the particular
characteristics of the controller and the lack of an all embracing theory equivalent in its widespread nse
to the theory of linear systems, the ultimate check on stahility will be given by the simulation of the
plant in the snbsequent Chapter.
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Chépter 7

Implementation and Results

7.1 Introduction

The effectiveness of tbe control strategy detailed in the previous Chapter is demonstrated here via the
simulation and implementation of the algorithm. Theoretical analysis and computer simulations of the
near-optimal controller are important hut not snfficient. The ultimate justification of the value and
applicability of the new controller lies in its actnal hardware implementation.

In pursnit of this goal, a test rig was designed and constructed around the CRS A251 industrial ma-
nipulator. Much of tbe existing rohot controller architecture, i.e., the driving hardware and feedback
signalling, were rensed. This scenario is presented in Section 7.2. While the electro-mechanical char-
acteristics of the CRS A251 Small Industrial Robot System were extensively reviewed and studied in
Chapter 5, the most important features of the existing CRS A251 Robhat System Controller (RSC) are
examined in Section 7.2.1. Off-the-shelf data acquisition and newly designed communication interface
boards, regnired to enable control of the plant using an external personal computer (PC), are descrihed-
in Section 7.2.2. ,

A brief description of the software (SW) and hardware (HW) simulation environment is first described
in Section 7.3. Given tbe similarities hetween the simulation and experimental controller SW coding
(both developed in structured ANSI C), a more detailed stndy of the actual controller program has
been restricted to the latter, thns avoiding nnnecessary redundancies. This is presented in Section 7.4.
Additionally, some of the real-time proklems encountered and the solutions adopted are exposed, and a
data flow schematic diagram is also provided to belp understand the coding of the controller (provided
in Appendix B).

The set of experimental and simulation results are compiled in Section 7.5. This is initiated by a
definiiion, in Section 7.5.1, of the criteria to be followed in analysing and evaluating the ontpnt data.
Given the bigh volume of data generated from simulations, real-time experiments and measurements
" from the existing PID controller for comparison pnrposes, only two of the eight cases apalysed are -
presented in full in Sections 7.5.2.1 and 7.5.2.2. The resnlts from the remaining cases, reduced to
tabnlar form, are discnssed in Section 7.5.2.3. Furthermore, an in-depth analysis of the inflnence of the
dynamic parameter A in the overall structure of the algorithm is also undertaken in Section 7.5.2.4.
This is then followed hy a brief discussion of the resnlts in Section 7.6, which finally concludes the
Chapter. :

7.2 Experimental Setup

A schematic description of the experimental environment is shown in Figures 7.1 and 7.2. The hottom
diagram, Figure 7.2, illnstrates the development of new measurement and control eqnipment, which
was added to the standard industrial controller shown in the top diagram - Figure 7.1 - to evaluate the’
new motion strategies. Following this scheme, the existing and the new HW/SW configurations are
presented next.
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7.2. Experimental Setup

CRS A251 .

Inclustrial Controller

Original PID

Sensar Interface

Industrial Controller  pet— + Power Amplifiers

CRS A251
Inclustrial Monipulcn‘qr

Figure 7.1: Schematic diagram of the standard CRS A251 industrial manipulator system.
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Figure 7.2: Schematic diagram of the experimental setup.
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7.2.1 Current robot system controller (RSC) configuration

The characteristics of the existing RSC can be separated into three main areas as follows:

7.2.1.1 ~Hardware

The CRS AZ251 rchot arm is cogtrolled by the CRS RSC-MIA controller motherboard, in turn driven
by the Intel 8087/NEC V30 16 bit microprocessor and the Intel 8087-2 math co-processor, running at
a master clock frequency of 7.33 MHz. The controller hox also houses standard electronic components
such as the power supply, AC conditioning circuitry and motor power amplifiers. The majority of the
information necessary to modify the controller circuitry was obtained from the manual [1], to which
the reader is referred to for further detail, although some proprietary information had to be requested
from the manufacturer in Canada. '

The motherhoard has 8 axis slots, five of which are used hy independent PID axis cards in the standard
CRS A200 Series robot, such as the CRS A251. One of the extra 3 axes available was employed to
control a servo gripper. The P1D axis cards are-self-contained micro-controller hased servo controllers !,
thus providing a fully distrihuted control architecture. A single Intel 8095H micro-controlier integrated
circuit (IC) is employed to provide a high performance PID servo loop with 1 ms closure time. The
position feedback ohtained from the optical encoder rotor attached to each motor shaft is updated at
the same 1 ms interval. The axis card generates a command voltage output in the range of £10 V with
12 bits precision. This gives a voltage resolution of 0.0048 V. This signal is then shaped in the DC
amplifier module, with a gain of 2.0, to the motor voltage of 20 V at 2 A.

A pulse train for the clockwise (CW) motion, and another for the anti-CW motion of the servo motor
are available for measurement. These are obtained from the incremental optical encoder square wave -
feedback signals (chanriel 4, channel B and zero crossing index) which are converted hy some existing
circuitry to a single pulse train on each direction. This avoids the need of dealing with the (more
numerons and complicated) encoder signals, hence simplifying the sensor interface circuitry design as
shown later in Section 7.2.2. The signal at this test point has a low-true puise width of 1.8 us {£30 %),
which sets the requirement for fairly high speed circuitry, and a period depending on the speed of the
servo motor. : )

The controller is also fitted with motor circuit breakers which, upon detecting an overload in the
system, such as a crash, energise the fail-safe electromagnetic arm breaks which cut power to the motors
and hold the arm in position. They also come into play when arm power is turned off (for instance, via
pressing an external Emergency-Stop button).

7.2.1.2 Software and communications

The CRS A200 Series Small Industrial Robot is a completely free-standing robot system. However,
it requires a PC subsystem for running the ROBCOMM-II communication package, a programming
environment which permits back-up of programs, locations and variables from the robot system to
the PC. It also includes a terminal emulator for direct ASCII communication to the robot’s RAPL-II
operating system via a dual RS-232 link. RAPL-II is the proprietary language used by the CRS Plus
family of industrial robots. It is an automation-oriented, line-structured language, designed to facilitate
rohot systems applications. It uses high-level commands, such as SPEED or MOVE JOINT 3, to provide
a friendly interface to the operator, much along the same lines of Unimation’s VAL programming
language [2]. A teach pendant is also connected to the control unit to give movement freedom to the
operator in operations such as homing the robot or manual-control positioning of each axis individually,
effectively providing an alternative method to communicate with the rohot controller.

7.2.1.3 Closed Ioop control and command generation

The A251 controller has multiple path generation modes which, following the outer/inner (master /slave)
control loop configuration described in Section 3.2, can be sumrmarised as 4 major modes of path control
around the 1 ms joint PID closed loop algorithm [1]:

1. Joint Interpolated. In this mode of operation the motherboard 8086/8087 tandem processors
generate command updates to the axis cards at 3.6 ms intervals which guarantee that all joints

1See Section 3.4 for a description of servo control mechanisms.
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start and stop together. By default, the velocity of each joint varies according to a smooth spline
velocity profile, although a faster but less smooth trapezoidal velocity profile is also possible.

2. Straight Line. This mode of control keeps the tool center point (T'CP) at the tip of the arm
moving in a straight line path in Cartesian space, in which command npdates are performed
at the slower rate of 16 ms. This mode of operation is a specialised form of the path control
described below where the “knots” are calculated hy RAPL-II hased on a linear interpolation
between end-points.

3. Continuous Path. This strategy defines a path curve through Cartesian space by selecting a
number of intermediate points through which the robot TCP will move. The continuous path
algorithm ntilises a cubic spline technique (see Section 2.7) which will join the path “knot” points,
in such a way as to make the velocity of the joints adjust smoothly between paths. The resnlt of
this is a motion which stops only at the end of the path. The time base for this kind of command
generation is not specifically provided, hnt is between 16 and 40 ms.

4. Vie Poth. This path command defines a path curve through space based upon a set of intermediate
points that will be approximated, bnt the robot may not necessarily move through them. This
type of motion permits the robot to execute a series of consecntive motion commands, with the
advantage that these can be entered in sequence first, and then executed continuously. Depending
upon a flag set hy the user, the path between points may be generated as a straight line, in which
case the path commands are generated at 32 ms interval. Otherwise, 16 ms intervals are required
for joint interpolated profiling.

Joint interpolation is the fastest and most “natural” way of operation of the rohot controller, and
subsequent comparative studies of the existing controller against the optimal controller will be run
under this mode of operation. '

7.2.2 New robot control configuration

As the initial test-bed for the new controller, a low cost PC-hased subsystemn was chosen in this work
for its implementation. While a number of off-the-shelf PC-based data acqnisition (DAQ) cards were
employed in the general setup, there was still a need to degign some in-honse interface PCBs for
Digital/Analog input/output (I/O) signal conditioning, as will he readily apparent below.

7.2.2.1 PC subsystem

The compnter system employed in the experiments was a Pentinm 75 MHz PC with a Naticnal Instrn-
ments LAB-PC+ DAQ board for each axis to be controlled, as shown in Fignre 7.2. The LAB-PC+
card (3] is a low-cost multifunction analogue, digital and timing I/O card for the PC. The general
confignration of the board is as follows:

o 8 analogne inpnts (single-ended, or 4 differential channels) with 12-bit successive approximation
zinalogue—to—giigital converter (ADC). Bipolar (£5 V) or nnipolar (0-10 V) analogue input ranges.

2 12-bit DACs, with bipolar or unipolar analogue ontpnt ranges.

24 lines of transistor-transistor logic (TTL) compatible digital I/Q, also confignrahle by SW as 3
byte-length digital ports.

o 6 16-bit connter-timer channels for timing I/O.
¢ Maximum recommended analogue data acquisition rate of 83.3 kHz (for 12-bit DAC accuracy).
¢ Maximum built-in clock source for digital inpnt of 2 MHz.

Bipolar settings were chosen for both inpnt and output ports, while positional information from each
joint was fed back as a 2-byte word to 2 of the digital ports, while the third was employed for digital
1/0 single line control data. This layont will become readily apparent when the design of tbe interface
PCB is detailed in the following Section.
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Figure 7.3: Functional block diagram of the PCB feedback stage.

The card comes with a variety of language interfaces, such as BASIC, PASCAL and C/C++, so
that the programming of the board can be developed in a high-level language. DOS ANSI C in
Borland’s Turbo C++ environment was chosen for portability, since this allowed code written for the °
TELEGRIP graphical simulation enviroument (see Section 5.5.2) in ANSI C to be easily translated
to real-time code for the controller. Other more “user friendly” programming environments, such as
National Intrument’s LabVIEW and LabWindows/CVI, both under Windows, were employed for code
development, debugging and testing, and also for data collection. But the critical on-line controlier was
designed under DOS for a speedier response. )

7.2.2.2 PCB subsystem

The need to develop an interface between the new PC controller subsystem and the existing rohot
controller has already been briefly outlined, but is now given special mention. The two main reasons
can he sumimarised as follows: '

1. Since the output range from the Lab-PC+ card is 5 V, an amplification stage was required to
achieve the 10 V in the motor driving signal required by the DC linear amplifiers.

2. Given the positional output as a CW and Anti-CW pulse train, some circuitry had to be devised
to obtain the state feedhack information needed by the controller.

The solutions to these two design issues, presented next, were implemented on a PCB to provide a
smaller size and more reliable circuitry than the traditional bread hoards used during development and
testing. Tbe overall circuit diagram and the PCB artworks are included in Appendix C.

The system was designed to be modular, with the PCBs heing fabricated to fit in a standard Eurocard
rack. This approach permitted quick development of the prototype system, together with the added
flexibility of using replaceable modules. Furthermore, a Universal Right Angle 50 way plug, which is the
standard I/0 Lab-PC+ connector, was also attached to the PCBs for straight off-the-shelf connection
to the DAQ boards.

Output stage A common operational amplifier (4A741) in non-inverting configuration was employed
for this purpose. The values of the resistor components were chosen of equal magnitude, thus achieving
an amplification gain of 2.0 as desired. A potentiometer was also incorporated in the circuitry in order
to eliminate the DC offset voltage at the output of the operational amplifier. 1t also enabled the gain
to be accurately tuned and calibrated. '

State feedback Figure 7.3 illustrates the configuration of the feedback subsystem implemented in
the PCB. A dual high speed IC opto-isolator, the HCPL2630, was, employed to provide decoupling
between the existing controller feedback signals (CW and Anti-CW pulses), and the interface circuitry.
This measute was taken to increase the safety and robustness of the interface circuitry, since the 1C
internal shield provides immunity against transient peaks beyond TTL limits. ,

The choice of an all-digital feedback interface was in part determined by the CW and Anti-CW TTL
pulse trains at the positional test points, but it also enhanced processing speed and noise reduction.
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Figure 7.4: Detail of feedback counter circuitry.

The measurement of the widest range of pulses, £34800, set by the waist joint, determined a digital
word length of 16 bits, i.e., 2 of the 3 ports of the Lab-PC+ as previously stated, which was extended
to all the joints for PCB design uniformity. It can be seen from the diagram that the 16 hit counter for
each joint was implemented by cascading a series of 4 hit synchronous up/down binary counters, the
74LS193. The mode of operation of this IC ideally matches the CW and Anti-CW signal specifications,
where the direction of counting is determined by which count input is pulsed while the other count input
is held high. Moreover, the counters are designed to be cascaded without the need for external circuitry,
as the detail in Figure 7.4 illustrates, where only connections for the first two counters are shown. Both
BORROW and CARRY outputs are available to cascade both the up and down counting functions. The
BORROW output produces a pulse equal in width to the count down input when the counter underflows.
Similarly, the CARRY output produces a pulse equal in width to the count down input when an overflow
condition exists. Four counters were then easily cascaded to form the desired word length of 16 hits.
As is customary with 1C counters, they are cyclic, so that provision for motion in the positive and
negative direction from an arhitrary zero had to he taken care of hy software. For further details on
the hardware implementaiion, the reader may refer to [4]. :

7.3 Simulation Setup

The advantages of utilising an advanced graphical simulation engine to develop and test the novel
control strategy were already introduced in Section 5.5.2. In addition 1o its rich graphical capahilities
and robot motion modelling features, Deneh’s TELEGRIPTM [5) provided an open architecture which
allowed proprietary algorithms to he linked directly into the motion pipeline. This was accomplished
by developing user routines in ANSI C and other native programming languages to access the internal
system functions and data structures used by the TELEGRIP kernel. Pre-existing system functions
could also he replaced by identically named functions written in ANSI C, essentially allowing for the
customisation of the averall rohot motion pipeline simulation.

TELEGRIP runs on a UNIX environment, and a Silicon Graphics 4d/lndy workstation (100 MHz
MIPS R4600PC processor) with a 24 bit XZ huffer accelerated graphics card running IRIX 5.2 was the
computer platform employed.
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7.4 Software Configuration

Figure 7.5 shows the data fiow diagram for the near-optimal controller. Since the controller code
developed for simulation and that written for on-line testing were both encoded in ANSI C, under the
same programming structures, the flowchart concentrates only on the real-time implementation code to
avoid duplicity, However, a stmilar SW configuration was employed in the simnlation code. Only calls
to the appropriate TELEGRIP graphical environment updates and the numerical integration routine
(see Section 5.5.1) were specific to the simulation environment, while DAQ initialisation, I/O routines
and real-time considerations were applied exclusively to the experimental setnp.

It can be seen from the data flow diagram that the real-time controller SW, included in Appendix B,
represents a straightforward implementation of the algorithm presented in Section 6.5.1. It is also
apparent from the program that, given the multi-DoF characteristics of the plant being controlled,
much of the code is duplicated for each individual joint of the rohot manipulater. It was precisely
this thought that initially led the author to think of embedded paraliel processors (transputers) for
the on-line implementation of the controller, aware that a single processor would he unable to meet
the high processing needs of the algorithm. However, while the standard frequency at which the DOS
clock triggers timing interrnpts 2 was found too slow, at 18.2 Hz, for the real-time processing needs
of the plant, the speed of calculation could be dramatically increased by nesting a piece of assembler
code that changed the timer ticking frequency. The rountines, which can be fonnd in Appendix B at
the beginning of the module c¢rsmain.c, in the higher res() and nomal_res() routines, allowed for
an external clock frequency of 80 kHz. This, in turn, permitted much finer timer resolution (from the
original 50 ms down to 0.01 ms) which primarily affected the accuracy and signal-to-noise ratio of the
numerical feedback state calculations, an important problem already addressed in Section 5.3.4.1.

Under the new timing arithmetic, the total processing time to carry out a complete {all joints) control
cycle was found to be aronnd 2 ms (i.e., a frequency of 500 Hz). This execution time included not only
the individual control processing times for each joint, but also the time taken to read in the state and
send out the voltage control action. However, the tight margin set by this value often allowed spurious
readings, and the loop was closed around a safety sampling value of 4 ms (i.e., a frequency of 250 Hz).
This is still a valne much greater than 20 times the 10 Hz mechanical time constant of the arm links,
chosen according to [6] to minimise the effect of sampling. '

7.5 Experimental and Simulation Results

7.5.1 Ewaluation criteria

The purpose of minimum-time control is to achieve fast motion along a given path, or between set-points
if no path exists. It was therefore only natural that the main evaluation criterion in the experiments
undertaken was settling time. A common allowable tolerance was established to define the region in
the phase plane where the motion of a joint could he regarded as complete. ‘

Definition 7.1 A manipulator joint is considered ot rest after completing a motion when the joint has
reached the steady-state position (with a sensitivity of 2.0E-02 rad), and the velocity of the joint satisfies
the inequality: : ’

|za] < 8.7TE-03 rad/s (7.1)

The time to reach this phase point from the. beginning of the motion is represenied as t,,.

Furthermore,
t = tas: 7.2
total Irél',agc 88 ( )

represents the slowest of all joints in performing the combined motion, i.e., the time taken by the
manipulator to come to rest after completion of the motion.

It is important to emphasise that these conditions set a more restrictive estimate than those reported
by other researchers. In Kahn and Roth (7], the deviations of the transformed joint angles were con-
strained to be within I % of their énitial values, while the transformed joint velocities were restricted

2Hence allowing the nser to do time-keeping tasks, such as enforcing synchronous sampling intervals.
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Figure 7.5: Data flow diagram of near-optimal controller.
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to be less than 1 % of their maximum values. However, because these criteria were satisfied by trans-
formed (linearised and decoupled) states, the actual joint velocities would have deviated largely from
zero upon reaching the response-time. In order to compatre results with the previous work, Kao et al (8]
defined the rise-time as the iime at which the deviation in all the joint angles first reached to within
1 % of their initial values. Although the conditions imposed by Definition 7.1 give way to a longer
settling time than that of the stand-alone near-optimal controller 3 by taking into account the proposed
meodel-based steady-state control too, it was felt a more appropriate measure of settling time, straight
after which a new motion can he executed.

Despite focusing on timing characteristics as the key performance parameter, investigations were also
conducted into other measures of performance, which included:

1. A measure of the utilisation of the torque range was also proposed as a measure of fast motion.
The torque usage parameter, subsequently denoted w,;;;, was computed as the percentage of the
maximum torque bound U (considered fixed here for clarity) applied throughout the motion:

(7.3)

where N is the number of data points, and At is the closed loop sampling value, whose choice was
addressed 1n the last Section. As can he seen from (7.3), uy. satisfies 0 < wyyy < 1, and achieves
its maximum value when the motion displays a bang-bang characteristic, i.e., the actuator torque
is always at the limits, £U.

2. The classical manipulator steady-state error, denoted hereafter as E'rr,, (rad), was also considered.
3. The maximum (percent.) overshoot over the steady- sta.te value M e

4. One of the key aspects in the evaluation of the controller was to characterise the relative perfor-
mance of the near-optimal-time controller with that of the existing PI1D robot controller. Hence,
the potential of the proposed strategy as an alternative for industrial manipulators could be as--
sessed. A straightforward measure of the utility of the two controllers was devised in the following
speed-up percentage:

(7.4)

t 11
speed — up = 100 (1 _ =_f[°!11m_°‘1)

tiotal [P ID]

which, in a simple format, represents the (percentage) time gained (speed — up > 0) or lost
(speed — up <"0) by employing the proposed optimal controller over the fitted PID controller,
upon reaching the same destination in the workspace.

7.5.2 Illustrative examples

In order to test the efficacy of the near-minimum-time algorithm, numerical simulations and on-line
experiments were performed for the set of robot configurations collected in Tahle 7.1. These sets of
initial and final states cover a wide range of the manipulator workspace, hence giving a realisiic overview
of the practical performance of the controller. As can be seen in Table 7.1, the same configurations were
tested in both directions, further contributing to the critical analysis of the a.lgonthm All examples
are rest-to-rest motions.

As a hasis for comparison, the same configurations of Table 7.1 were presented to both controllers,
near-optimal and industrial PID, in order to ohtain the performance parameters described in the previ-
ous Section. Given the vast amount of information collected from the experiments, a full presentation,
which includes graphical resulis from the on-line experiments, numerical simulations, fitted PID con-
troller experiments and validation data, will be restricted to two of the cases in Table 7.1, A and B. For
the remaining cases, the key parameters from the real time near-optimal and standard PID coniroller
experiments will be provided in tabular form.

3Comparable to the response-time defined in [7] or rise-time in [8]
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Mae x1(ti)(rad)

= x1(ts)(rad) ”

A {0.0,-0.785,-061} — {06,-1.57,0.0}
B {0.6,-1.57,0.0 } — {0.0,-0.785,-0.6 }
C {00,-157,-05} = {-04,-1.0,0.3}

D {-04,-1.0,0.3} - {0.0,-1.57,-0.5 }
E {0.0,00,00} = {0.0,-1.0,0.0} -
F {0.0,-1.0,0.0} - {0.0,0.0,0.0}

G {-05,-1.57,05} — {08,-157,-04}
H {08,-157,-04} —= {-05-157,05}

Tahle 7.1: Manipulator configurations studied.

Optimal Controller
z1(t) = =1(ty) ” tas(3) | teotat(s) l Errys(rad) | vua (%) | My (%)
0.0 — 06 0.461 0.012 71.144 1.90
-0.786 — -1.57 0.541 | 0.541 0.001 91.357 0.43
061 —= 0.0 0.365 0.019 63.933 3.01
PID Controller
2200 = @10) [ 1onl) | teotatls) | Erraslrad) | v (%) | M, () |
00 —- 086 0.552 0.0 '54.076° | 0.69
-0.786 — -1.57 0.596 | 0.596 0.001 91.057 2.74°
-0.61 = 0.0 0.536 0.007 57.466 1.05 -

Tabie 7.2: Case A.

7.5.2.1 Case A

The full set of results obtained for Case A are graphically depicted in Figures 7.6 - 7.12. The near-
minimum-time state profile for this example is shown in Figure 7.6 for measurements, and Figure 7.7
for simulation. In both instances, the left plot shows the joint displacements, while the right plot shows
the joint velocities. The axes are scaled in link radians versus time. As the graphs show, experimental
and simulated curves agree satisfactorily. T

It can also be seen from the plots that the upper-arm, Joint 2, is the controlling DoF in this case,
i.e., the slowest joint-."This result is also numerically collected in Table 7.2, top, where it is clear that
the optimal settling time, teopqr = 0.541 s, corresponds to the time taken by Joint 2 to reach the goal
point, as given hy Equation (7.2). This value compares favourably to the timing performance of the
PID controller in executing the same motion, troear = 0.596s; as shown in"Table 7.2, bottom. The
trajectory followed under this strategy is graphically shown in Figure 7.9. 1t is easy to observe how
the traditional scheme of geometric trajectory planner coupled with error-driven PID control produces
a more co-ordinated trajectory than that of the near-minimum-time optimal controller of Figure 7.6,

1 - Xyirad ’ 3+ Xa/rad scc!

-
-

Joint }

0.5 + 24
Joint 3
0 -A4—¢—/k——-4—+—v-=«-v--ﬂ—4==9—m<" = 11

-
- 0 008 0I1670.24 0.32 0.4 0.48 0.56 0.64 0.72 08 Vs

051 _ -~ 0 - AV oy
' 0.HND,08 0.16 0.24 032 0.40 0.49 0.56 0.64 0.72 0.80 Y*
-1+ 14
; -\ Jaint 2 24
24 31

Figure 7.6: Case A. Measurements of joint states under optimal control.
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Figure 7.10: Case A. Measurements of joint torques under PID control.
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Figure 7.12: Case A. Demanded (bold) and measured actuator optimal driving torques. Joint 3.

although there is still one joint that exhibits the limiting characteristics. .1n general, that would be
the same joint which imposes its limitations in the near-optimal strategy, although the steady-state
oscillations might render the controlling joint to be different from the limiting cne, as will be the case
for run B, analysed in the following Section.

The close match between theoretical (right) and experimental (left) results obtained for the near-
optimal torque profile shown in Figure 7.8 further contributes to the validation of the dynamic modelling -
and simulation environment employed. A compatison of these results and those depicted in Figure 7.10
clearly reveals the general characteristic of a saturating joint as a limiting condition in both strategies.
It is clear from these graphs that, while the upper-arm is driven close to its maximurmn capabilities under
both strategies, the other joints are correspondingly adjusted under traditional geometric trajectory
planning and PID control (Figure 7.10) to allow for a fairly simultaneous motion of all the joints. This
is reflected back in the lower percentage of torque utilisation for each joint, g, in comparison with
the near-optimal controller utilisation values shown in Tahle 7.2.

A peculiarity of this case shows how the high-speed demands of the industrial controller have forced
the utilisation of the limiting joint to be relatively close to its corresponding near-optimal u,.i1, 91.057 %
versus 91.357 % respectively. However, this is not necessarily a general characteristic of the scheme,
as results from other experiments reviewed in later Sections suggest (e.g. Case B). In fact, it is rarely
sa. On the other hand, the traditional voltage-driven P1D scheme does indeed show a tendency to
introduce more torque oscillations near the steady-state than the near-optimal controller when driven
at high speeds, a direct consequence of its (purely) positional error-driven characteristic and lack of
direct torque control 4. While this effect, clearly visible in Figure 7.10, does not significantly increase
the %age overshoot (around 3 % in hoth cases), it does, nevertheless, augment settling time due to the
appreciable velocity oscillations caused near the steady-state (as seen in Figure 7.9, right). This can
be more effectively deali with under the near-optimal controller strategy for two intrinsic reasons:

1For further details on this design feature the reader may refer to Section 5.4, where the problem and its solution were
introduced.
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Optimal Controller
z1(t;) = =za(ty) | tss(8) I tiorai(5) E""u(e"ad) | uueit (%) | M, (%)
06 - 00 0.449 0.004 77.187 1.16
2157 — -0.785 || 0.400 | 0.449 0.002 84.122 0.23
00 — 06 | 0273 0.001 68.283 0.16
g PID Controller
z1(t) = ®a(ty) [ tes(s) | teotat(s) | Errs(rad) | vuen (%) [ My (%)
06 — 00 0.568 : 0.0 54.778 0.70
157 — -0.785 || 0.588 | 0.588 0.001 61.137 0.55
00 — -0.6 052 0.001 31.676 0.66

Table 7.3: Case B.

1. The optimal torque action is designed so as to drive the manipulator to the origin. Hence, less
velocity oscillations would occur in the first place, as shown in Figure 7.6.

2. The switching to a steady-state torque control, such as the (partially error-driven) feedforward
controller proposed in this work, can more judiciously damp the remaining torque oscillations, as
clearly depicted in Figure 7.8.

It is also interesting to note the reduced maximum steady-state errors achieved under hoth strategies.
While the PID integral action managed to effectively reduce this error to less than 0.007 rad ®, the near-
optimal plus feedforward controlier was not able to decrease this value to less than 0.019 rad. Since the
feedforward controller comes into action for a small period of time near the end of the motion, where

. errors are kept small and building up to small values for the foregoing reasons, the introduction of an
integral action showed no significant improvements, and was opted out due to its associated potential
problems of stability (see Section 3.5 for more details on the strategy). Despite this result, the “gross
motion” characteristic for which the algorithm was originally intended should he kept in mind at this
point. Under such a perspective, time is assigned a higher relevance than other parameters, and the
steady-state accuracy achieved should still be regarded as an exceptional outcome of the proposed
strategy. '

Figures 7.11 and 7.12 depict the commanded actuator torque which results from the near-optimal
controller, and the actual control torque exerted in response, hy theithree major manipulator joints
under analysis. These resuits are included here to extend the validation of the approach to accurately
command the actuator torques, described in Section 5.4.3, vnder extreme conditions such as those of
the near-optimal controller. 1t can be seen how, other than minimal errors from overlooking some
electro-mechanical dynamic effects (and already considered in Section 5.4.3), the modelling accurately
reflects the actuating subsystem dynamics. ‘

7.5.2.2 Case B

The full set of results obtained for run B are graphically collected in Figures 7.13 to 7.19. Following
the structure previously adopted for Case A, the near-minimum-time state profiles for measurement
and simulation are shown side hy side in Figures 7.13 and 7.14 respectively. These satisfactorily reflect
how the general character of the solution can be accurately reproduced in the modelling environment.
An important feature of these curves corresponds to the velocity spikes measured on the experiments,
which are not present in the simulations. The reason  behind this variation in behaviour between
experimental and simulation results cau be mainly attributed to noise bursts in the measurement of
position, and the consequent amplification introduced by its numerical differentiation carried out to
obtain a full state feedback. The reasons for employing this approach in the work presented here, and
possible alternatives for future implementations, can be found in Section 5.3.4.1 where the problem was
first envisaged. Also, the fact that a DOS PC is not a real-time operating system environment would
also mean that a ”variahle” synchronous sampling time might have occurred when the microprocessor

5Which might still be regarded as sligh;ly larger than expected, although this is probably explained by the extremely
high velocities demanded from the industnial controller
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Fi.gure 7.14: Case B. Simulation of joint states under optimal control.

could not have served the clock interrnpt as requested hy the controlling program, due to its low
priority against other system interrupts. This would have also shown spikes in the velocity measures.
Furthermore, it sould not be underestimated the quick and large switching in the motor voltage, and the
consequent electromagnetic forces generated, which might have also contributed to the bursty velocity
readings.

It is important to realise the “corrective” action injected straight-away by the optimal controller
in order to counteract this deviation of the manipulator from the ideal trajectory profile. This is
depicted as sndden and short-lived torque changes in Figure 7.15. However, it should he emphasised
that while some of these sudden bursts correspond to noisy readings to which the controller adapts
(easily identifiable by a coniparison of snperimposed jumps between measured velocity and torque
curves), others should be attributed to the implicit errors in estimating the manipulator dynamics for
the remaining motion, mathematically represented hy the A parameter in Eqnation §.27. Although
the importance of the parameter is analysed in depth in Section 7.5.2.4, it is nevertheless ohvious at
this stage how the closer the chosen coefficient should efficiently represent the variable manipulator
dynamics over time, the fewer control switches would be required to compensate for “unforeseen”
changing dynamics along the sliding trajectory . In other words, less short “compensations” will be
required from the controller to keep the manipulator at the desired optimal state trajectory. This
distinction is clearly visible from a comparison of the simulated and experimental near-eptimal torque
profiles of Figure‘7.15. It should nevertheless be emphasised that, irrespective of the natunre of the short
corrective actions, the result is always one of smooth displacements of the robot links, as the positional '
graphs clearly illustrate.

Case B also demonstrates another important feature of the torque-based near-optimal controller in
comparisen to the error-based PID controller - that is the better use of the available resources when
motion of the links takes place predominantly with gravity. This is illustrated when Figure 7.15 and 7.17
are compared, and also by the results collected in Table 7.3. Here, PID timing shows a similar figure
to that of Case A, 0.588 s, while #;0¢q; for the near-optimal controller is decreased down to 0.449 s.

SUpdated at each sample time.
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Figure 7.17: Case B. Measurements of joint torques under PI1D control.
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Figure 7.18: Case B. Demanded (bold) and measured actuator optimal driving torques. Joint 1 (left)
and 2.
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Figure 7.19: Case B. Demanded (bold) and measured actuator optimal driving torques. Joint 3.

Optimal Coutroller

zl(ti) = zl(tf] tas(s) I ttocal(s) Erru(rad) UYurit (%) Mp (%)
0.0 - -04 0.485 0.004 69.711 0.81
-1.57 = -1.0 0.433 | 0.493 0.01 83.064 0.18
05 = 03 0.493 0.004 76.34 0.77

P1D Controller

zi{t;) = 2:1[!;) " t,s(s) I tgomg[S] Err,o(rad) | i (%) I M, (%)
[ o0 - -0.4 | 0472 0.005 39.012 0.49
| -1.57 = -1.0 || 0.524 | 0.528 0.0 48.663 0.39
[ -05 = 03 [0528 0.0 61.210 0.35

Table 7.4: Case C.

Figure 7.15 indicates how, as in Case A, the available torque for each joint is maximised under near-
optimal control. However, since gravity need not now be overcome, the full torque can he applied in
accelerating the body, hence reaching the goal-point faster. This is not the case for the PID controller,
which due to its nature can hardly take advantage of this fact. Working with gravity surely facilitates
the objective of the controller in keeping the manipulator closer to the desired trajectory, thus smaller
errors are generated along the trajectory. Consequently, torque requirements along the trajectories are
kept lower than in Case A, as Figure 7.17 and the uy.i parameter of Table 7.3 illustrates. Essentially,
only at the beginning of the motion, when the error is larger, a larger control action burst is required
to get the manipulator moving fast. For the rest of the motion, much of the available capabilities of
the actuators are not fully employed.

Results listed in Table 7.3 also show favourable steady-state error (less than 0.004 rad) and %age
overshoot (less than 1.16 %) values to those of Case A, and fairly similar to the equivalent parameters
under P1D control (less than 0.001 rad and 0.70 % respectively). In that respect, the same issues
previously raised for Case A about the “gross motion” nature of the algorithm can be noted now. As
with Case A, Figures 7.18 and 7.19 show, in hold, the actuator torques commanded by the near-optimal
controller for the three joints individually 7, the graphs being superimposed hy the actual control
torques exerted in response. Yet again, a close match is obtained, which illustrates the accuracy of
the actuator dynamics modelling. As previously pin-pointed in Chapter 5, there is a slightly poorer
matching between model and measurements of joint 3, with slower rise and settling times as shown in
Figure 7.19. The reader is referred back to Section 5.6 where this fact was initially addressed.

7.5.2.3 Other cases

The parameter values for the remaining cases analysed are collected between Tables 7.4 and 7.9, while
the overall near-optimal coutroller/P1D speed-ups are listed in Table 7.10.

In general, results indicate that the near-optimal controller performs well for a wide range of motions
that cover the majority of the manipulator workspace. Speed-ups as exceptional as 24.4 % (Case

7 Collectively shown in Figure 7.15, left.
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Optimal Controller
z1(t:) = =xa(ty) || 1,.(s) ] teotat(s) | Errss(rad) | wes (%) | My (%)
0.4 — 00 0.497 0.001 87.728 1.78 |l
-1.0 = -1.57 0.517 | 0.517 0.006 94.316 1.0 ||
03 — -05 [ 0.501 0.003 78.065 | 054 |
PID Controller
wl(t:‘) = zl(tj) tu(s) ttotal(s) l Efru(rﬂd) l Uil (%) Mp (%)
04 — 00 0472 | 0.0 30.671 | 0.39
10 — -1.57 | 0536 | 0536 0.002 67.851 0.63
03 — -05 | 0.468 0.0 38.079 | 0.37
Table 7.5: Case D.
Optimal Controller
z1(t:) = @alty) || tsls) [ trorails) | Erras(rad) | vuea (%) | My (%)
00 — 0.0 0.032 0.0 0.29 0.11
00 — -1.0 1.383 | 1.383 0.012 56.09 1.54
00 — 00 0.056 0.0 42928 | 061
. P1D Controller
z(ts) = zalty) [ tes(s) | teorarls) | Errs(rad) | wusit (%) [ Mp (%)
00 — 00 [ N/P N/P N/P N/P
00 — -1.0 N/P | -N/P N/P N/P N/P
0.0 — 0.0 N/P N/P N/P N/P
Table 7.6: Case E (N/P = Not Possible).
Optimal Controller
zi(t;) = 2alty) || tasl(s) | teorar(s) I Errys(rad) l tuyeir (%) | M, (%) .
00 — 00 0.028 0.0 0.325 0.03
10 — 00 0.533 | 0.533 0.008 90.35 0.43
00 — 0.0 0.357 0.007 36.762 1.46
P1D Controller
zl(ti] = zI(tj) JJ tu(s) Lttotal(s) I Err,_,(rad] | Yytsl (%) | Mp (%)
00 —» 00 ] 00 0.0 1923 0.01
-10 = 0.0 [ 0.616 | 0.616 0.003 61.04 0.11
00 —+ 00 | 0.076 0.0 41.145 0.1
Table 7.7: Case F.
Optimai Controller
zy(t;) = zalty) || 1aa(s) [ teotar(s) | Errsa(rad) | wvuea (%) | Mp (%)
-05 = 038 0.521 0.001 73.318 0.04
- =157 = -1.57 0.377 0.521 0.011 19.428 1.91
0.5 = -04 0.352 0.005 71.372 0.0
. PID Controller .
z22(t) = 21(7) [ Lal8) [ eorar(s) | Brros(rad) | e (%) | My (%)
05 —+ 08 0.676 0.0 52.811 0.78
157 — -157 || 0.12 | 0676 0.0 11.747 0.06
05 — -04 0.656 0.0 33.181 | 0.26

Table 7.8: Case G.
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Optimal Controller
z1(t;) =  za(ty) |l tes(s) | teotat (5) | Err,,(rad) | uuit (%) | M, (%)
0.8 = -035 0.513 0.003 70.668 0.42
-1.57 = -1.57 0.0 0.541 0.004 6.437 0.9
-04 —= 05 0.541 0.001 75.383 1.27
PID Conutroller
z1(t) = zalty) [| 1as(s) [ tiorar(s) | Erros(rad) | vun (%) [ M, (%)
08 — -0.5 0.672 0.0 51.425 0.79
-1.57 - -1.57 0.0 0.672 0.0 7.288 0.08
04 —- 05 0.596 0.0 59.023 0.29

Table 7.9: Case H.

[ Case | Speed up (%)Jl
0.23
24.4
6.65
3.54
N/P
13.5
22.9
19.5
|LAvera.ge ] 14.25

o o m| o] o|w| >

Table 7.10: Near-opfimal countroller/PID speed-up.

B) have been achieved, 3.54 % being the lowest for Case D. On average, a value of 14.25 % has been
obtained for 7 of the 8 cases considered. The 8th, Case E, is worth special mention. Here, the controller
is asked to keep joints 1 and 3 stationary at the initial configuration (both at 0.0 rad), while transfering
joint 2 from 0.0 to -1.0 rad, hence testing the response of the controller to keep joints locked at a certain
position. It is shown in Tahle 7.6 how the PID controller was not able to perform the required motion
at maximum speed as specified. This can be explained by the intensive torque requirements from Joint
2 in order to accelerate the manipulator from its initial configuration. The dominant gravity-induced
torgue at that point, jointly with the requirements of full-speed trajectory tracking, caused a following
error beyond the permissible value of the controller. By design, an occurrence of this characteristic
immediately triggers a safe routine that cuts power to the manipulator arm to avoid overload damage
to the motors. The motion was, however, successfully completed when the speed requirements were
reduced to 65 %. A different scenario took place under near-optimal control due to its torque-based
characteristic. Although the overall motion was relatively slow before Joint 2 managed to counteract
the static torque components and accelerate the hody, it did so by safely exerting the maximum rated
torque available at each instant, thus completing the motion after 1.383 s.

Other conclusions can he drawn from the results presented here, some of which were recently published
in a preliminary results paper [9]:

o Continuing with the trends exhibited by Cases A and B, it can he seen how the availahle torque
utilisation in all cases is consistently higher under the near-optimal controller, an expected per-
formance given the design specifications. As a consequence, faster settling times are achieved.
Reduced steady-state oscillations also contribute to this result, partially induced by the direct
control of the torque, and also the switching to a feedfarward controller near the end-state as
discussed in Case A.

o It may also be seen that similar, if only slightly larger, peak values of the response curve, were
measured in comparison with the PID strategy. This is a reflection of the good damping features
of the combined near-optimal controller, despite the large speeds and torques under which the
manipulator is driven throughout the motion.
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Figure 7.20: Case B. Influence of factor X in near-optimal torque profile. Joint 1 (top left), Joint 2 (top
right) and Joint 3.

e In addition to high operational speed, results from the proposed approach also highlight its ability
to.achieve small steady-state errors, although not as good as the P1D, for the reasons exposed
in Section 7.5.2.1. This is, however, a small drawback under the “gross motion” behaviour the
near-optimal controller is designed for. '

e Another general characteristic of the controller is the wiser use of the resources when the motion
takes place with gravity, as demonstrated when Case B was analysed. This ability applies in
particular to Joint 2, since this joint is designed to support the reaction tarques exerted by the
rest of the manipulator structure. 1t can be seen in Table 7.10 how the best performances are
gained under these circumstances. Hence, Cases B, C, F and G achieve better speed-ups than
their counterpart motions, A, D, E and H respectively. It is shown how speed-up gains between

. parallel cases with same end-points are considerably influenced by the gravitational effect in all
cases, except between Cases G and H, which 1s not so affected because Joint 2 is kept stationary
and only Joint 3 moves with the gravitational field.

e The combined HW and 5SW robot configurations has also given way to undesirable velocity peaks
as a result of the differentiation process employed. This was necessary in order to obtain this
parameter from the position measurements. While some alternatives have already been devised
in the thesis (see Section 5.3.4.1) to avoid such a problem, resulis have nevertheless shown the
adequate behaviour of the controller to counteract these errors, as previously explained in Sec-
tion 7.5.2.2 when Case B was analysed.

7.5.2.4 Influence of parameter A,

Section 6.5 introduced the concept of the averaged dynamics as an attempt to mode] the variable
plant dynamics, based on the limited feedback information available at each time instant. Key to
the proposed methodology was the dynamic factor A, whose intuitive importance has already been
anticipated in Section 7.5.2.2, when Case B was analysed.

The effects of the variation of the parameter A in Equation 6.27 is demonstrated by the simulated neazr-
optimal torque profiles shown in Figure 7.20. These correspoud to the response from each individual

110



J. Valls Miré 1997 - 7.6. Summary and Discussion

manipulator joint when the rohot was prescribed to accomplish Case B motiou. While the whole range
of A coefficients from 0 to 1 was tested in steps of 0.1, only three cases, namely those corresponding
to values of 0.2, 0.5, and 0.8, are presented here for the sake of clarity, the general behaviour of the
remaining cases being accomodated by these three parameters.

A close look at Equation §.27 reveals how, mathematically, large coefficients of A correspond to an
increasing importance of the end-point dynamics in the overall dynamic behaviour of the manipulator,
while lower coeflicients imply a preponderance of the current configuration. Which boundary configu-
ration should he given primary consideration seems, a priori, a difficult and elusive question. However,
in view of the experimental data collected in Figure 7.20, it can be concluded that too large values
show a tendency to generate far more switchings than small values. This is particularly true when the
manipulator is sliding along the optimal trajectory towards the origin, i.e., aftér the manipulator state
trajectoy hits the switching curve . This indicates a need to “accomodate” the manipulator dynamics
to its true dynamics more often throughout the motion, although it is also shown that this does not
necessarily mean slower motions, given the adaptive nature of the proposed algorithm. On the other
hand, a predominance of the current manipulator configuration in the averaged dynamics seems to be
more prone to higher overshoots and longer settling times, as suggested by results from Joint 2. The
fact that this situation does not arise in the other joints is prohahly explained by the dominant influence
of the other joints’s dynamic and static forces in Joint 2, which is not so much the case for the other
two links analysed.

In view of these facts, it was concluded that a medium-to-small ceefficient would avoid unnecessary
dynamic “adaptions”, while still giving an optimal petformance with a wide dynamic range. Hence,
A = 0.4 was found most adequate, and all the experimental results shown in this Chapter (Cases A to
H) have been abtained under this A configuration.

7.6 Summary and Discussion

The simulation and implementation of the proposed novel methodology for the near-optimal control
and trajectory planning of industrial manipulators has been presented in this Chapter. The required
HW and SW developments which permitted the real-time control of the 5 DoF CRS A251 robotic
system from a stand-alone PC have been described in full. .

Further to the validation of the robotic arm dynamic médel, carried out in Chapter 5, new sets of
results have heen presented here which satisfactorily compare simulation and practical resulis, thus
supporting the suitability of the manipulator dynamic model for the design of the coutroller.

Qut of the various manipulator configurations, arbitrarily selected to represent the robot workspace
as a whole, results chtained from Case B, in Section 7.5.2.2, suggested a maximum time improvement of
nearly 25 % over the standard trajectory planner plus PID tracking strategy, with which the industrial
manipulator was fitted. However, in practice, the average improvement for the eight show-cases anal-
ysed reflected a satisfactory average time optimisation of 14.25 %, with the lower speed-up boundary
heing 3.54 % for Case D. This experimental evidence for near-time-optimal strategies as a favoured
coutrol method for unconstrained point-to-point trajectory planning and contrel is backed up by the
maximisation of the manipulator capabilities thoughout the motion, in comparison with the standard
robot controller performance.

The consideration of other evaluation criteria, such as steady-state error and overshoot, have almost
consistently achieved better values under the PID iudustrial controller, on the other hand not an
unexpected result given its design specifications. However, it is important to point out the “gross
motion” characteristic for which the algorithm was originally intended. Within such a framework, time
is assigned a higher relevance than other parameters, such as steady-state accuracy, and it is in that
respect the near-optimal-time controller has clearly outperformed the industrial controller. Moreover,
it is envisaged that the performance of the controller could be further improved by implementing any
of the suitable alternatives to numerical differentiation for full-state feedback, originally suggested in
Section 5.3.4.1, hence avoiding the undesirahle effects of noise amplification inherent in such numerical
techniques.
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Chapter 8
Conclusions

The work presented in this thesis has shown the feasibility of applying optimal control for real-time
planning and control of robot motions.

The approach is based on the philosophy that incorporating the non-linear manipnlator dynamics into
the rohot planning and control stages can lead to a true maximisation of the manipulator’s capahilities
at any time instant during the motion. From this generic concept, nortured during the early stages of the
project, the idea of accommodating optimal control theory natuorally evolved. A judicious manipulator
dynamics approximation by piecewise-linear and decoupled equations of motion in state-space, and the
application of Pontryagin’s MP, lead to a generic analytical optimal solution to the path unconstrained
TPBV manipulator motion problem. By adopting this strategy, the need to resort to numerical, albeit
exact, optimal solutions to the problem is avoided, hence rendering a relatively simple controller which
brings about near-optimal motions hetween any two desired end-points. A timing performance has been
selected in this work as the measure of optimality in the pursuit of increzsed manipulator productivity,
although the proposed strategy can be easily extended to other performance criteria, e.g. a measure of
the energy expended during the defined motion.

8.1 Contributions of this Thesis

The main contributions of this thesis can be summarised as follows:

e A method has been proposed which determines the trajectory and associated contrel that the
manipulator must follow to satisfy given end-point constraints and minimise a time cost function
during the motion. Although the application of optimal control theory for the solution of the
robot motion problem has been investigated in the literature, very few authors have discussed
implementation issues and presented experimental results. Hence, the exploration of alternatives
towards an efficient on-line implementation is, indeed, one of the key contributions of this work.
To this end, the concept of the averaged dynamics to transform the manipulator dynamics intc a
piecewise-linear decoupled model in feedback form has been presented. While not a new idea, it
has been refined to allow for each boundary condition’s dynamic performance to be weighted inde-
pendently in the estimated overall time-invariant manipnlator dynamics. Furthermore, extensive
work has been carried out into studying the role of this approximation in the response of the
algorithm. It was concluded that a medium-to-small averaged dynamic coefficient (0.4) offered
the best performance with a good dynamic range - minimum manipulator dynamics adaptions
and adequate overshoot and settling times. '

e A Feedforward Controller has been proposed as a novel approach to reduce the chattering oscl-
lations near the steady-state caused by frequent bang-hang control switching. Other strategies
have been surveyed in the literature, mainly the use of linear error-driven controllers, hut the
availahility of the steady-state control torques made the proposed strategy a simple alternative.
Moreover, it was a natural chattering-removal addition to a direct torque-control strategy, such
as the one implemented in this work. As a result, remaining torque oscillations in the vicinity of
the target state bave been quickly damped, hence reducing the overall settling time.
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o A desktop virtual reality environment has been employed in the synthesis and simulation of the

proposed controller. While not a traditional control analysis package, a computer graphics front-
end has greatly accelerated the overall development and testing process, particularly aiding in
the understanding of the dynamic system hehaviour via simulation software.

The proposed strategy has been extended to the actunal physical system hy designing and con-
structing an in-house digital interface hetween the master industrial controller, and a stand-alone
PC with additional 1/O capabilities. This development has allowed the validation of the novel
strategy and also the comparison of this strategy with the splined trajectory planner plus PID
control implemented in the industrial manipulator. Experimental evidence has shown an average
speed-up performances of 14% from maximising the manipulator torques in the near-optimal-time
controller. The algorithm was however outperformed by the industrial controller with respect to
other evaluation criteria. Hence, steady-state error and damping proved better, if only slightly,
uader standard control, although this is not detrimental of the proposed motion model, given the
“gross” motion specification for which the near-optimal-time controller was synthesised.

A direct consequence of the model-based characteristic of the controller was the implementation
of direct torque control as the driving signal. This is not in itself a novelty, but given the error-
driven characteristic of most current industrial manipulators, where the driving voltage signal is
proportiona) to some function of the position error (e.g., PID}, an interesting practical contri-
bution ahout reverse engineering the controller has been made. Although current, and therefore
torque, could only but indirectly be controlled through the velacity amplifiers, the validation of
the methodology has shown that it is feasible to apply it to the hardware configuration of most
current manipulators, without the need to incorporate torque amplifiers, for which the strategy
is ideally suited. '

The work presented here can also be regarded, in a more general framework, as a contribution to
the practical propositions of what is recently heing termed as “soft” real-time control. That is,
a new generation of software products that allow the PC to undertake the control functions that
would otherwise he assigned to dedicated pieces of embedded systems, such as industrial robot
controllers or PLCs. Atiraction of an “open” standard development platform, lower hardware
cost, access to standard PC software tools, such as high-level computer languages, and large
processing power and memory capacities are some of the potential henefits of the technology,
which have allowed the development and testing of the proposed strategy.

As a final remark, the author would like to state that the challenge of developing the proposed
strategy, like a Jarge percentage of the challenges in advanced control engineering, existed not in the
derivation of new theory, but in utilising existing theory to the full in order to achieve the desired
objectives.

Summary

The following have been achieved:

1.

R S

Clear exposition and rationalisation of current trends in optimal trajectory planning and control.
Derivation and assessment of the CRS A251 manipulator dynamic equations of motion.
Complete 3D modelling of the robotic system in an advanced graphical simulation environment.

Formulation of the near-optimal-time point-to-point control strategy for path unconstrained mo-
tions using Pontryagin’s MP and modern control system analysis.

. Simulation of the proposed strategies in the virtual environment.
. On-line implementation of the near-optimal-time control strategies on a low-cost PC.

. Design and construction of the controller interface.

Validation of simulation results with high accuracy (correlation coefficients & [0.86, 0.99] depend-
ing on the joint and speed of motion)on the PC robot controller.
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9. Comparison of experimental and standard industrial countroller results, with average speed-ups in
the order of 14%.

8.2 Recommendations for Future Work
There are many issues surrounding the topics in this thesis that deserve further study.

1. In this work, a simplistic point-mass dynamic distribution approximation has heen considered in
the derivation of the manipulator dynamic equations of motion. This was the result of proprietary
information provided hy the manufacturer about the robot dynamics, which showed to what
length the dynamics of the manipulator are overlooked in the arm design, placing more emphasis
in the kinematics and electro-mechanical parts. While the validation experiments carried out
for the CRS A251 have shown the suitahility of the dynamic model, a more thorough study of
the inertial distribution mass of the manipulator must be undertaken, and its significance in the
overall dynamics studied. In fact, one would ideally like robust identification techniques that
can automatically derive such a structure. For iustance, in load inertial parameter estimation,
one challenge will he to generalize more complex loads than those characterised as point-masses,
as assumed in this work. For instance full rigid hodies or time-varying liquids poured into a
container. It would then be interesting to compare the results from both models to assess the
importance that dynamics detail plays in the efficiency of the algorithm.

2. To some extent related to the manipulator dynamics issue just addressed, it would also he interest-
ing to study the level of complexity in the control structure as a result of the dynamic interactions.
The solution implemented in this dissertation has taken the full rigid-body dynamics of the ma-
nipulator into account when synthesising the control strategy. This was a deliberate choice, which
generalises the solution to a wide range of robot manipulators. However, it is conjectured that if
the manipulator exhibits low inertial mechanical construction, and/or high gear ratios, a simpler
decoupled dynamic description may suflice to ohtain near, or mayhe fully optimal performances.
While the true dynamics of a robot manipulator could hardly be regarded as constant and linear
over the whole workspace of the manipulator, a decoupled approach would, for instance, avoid
the need for a torque decoupling approximation, hence significantly simplifying the design and
analysis (in particular stability) of the controller.

3. The experiments also pointed out conceptual limitations due to unmodelled nonlinearities in joint
3. Although these are thought to be identified with the light link structure and a preloaded roller
chain, these assumptions need to he further explored.

4. The issue of sampling rate also merits re-examination. 1In the experimeunts undertaken, this was
limited by the 75 MHz PC microprocessor and on-hoard 1/0 circuitry to a sampling rate of 250
Hz. While this was stringeut enough to carry out all the calculations and minimise the effect
of digital sampling in the analogue plant, it also allowed the reading of some spurious data.
Furthermore, it is envisaged that a fully blown-up dynamics as descrihed in point 1 will require
more processing capabilities, iu which case the sample rate would have to he considered with care.
It would be interesting to see how the algorithm performs under the new PCs being introduced
onto the market, running at frequencies of 300 MHz. On the other hand, thinking further into the
future, and given the multi-DoF characteristic of robot manipulators, special purpose real-time
Transputers have heen acquired in order to test the adequacy of the algorithm for a true parallel

_and multi-tasking environment,.

5. The incorporation of a tachometer to the robot actuators in order to avoid the numerical inte-
gration of the positional readings may also be quite useful to derive motor speeds. On the other
hand, it has only recently heen appreciated that the speed of the servo motor might also he ob-
tained hy measuring the period of the CW and anti-CW pulse trains at the controller test points.
Hence, the addition of pulse width extraction circuitry to the interface PCBs might suffice for-
full-state feedback. Otherwise, it would be interesting to consider the design of a state-ohserver

_as suggested in Chapter 5.
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10.

11.

. Optimal control has been studied here in the context of arm movements. While its application

is not so much an issue in the fine motion of the hand, the adequacy and completeness of the
concepts expressed here will certainly have to be tested for optimal hand control.

Most of the commercially available industrial robots nse harmonic-drive gear trains to transmit the
power generated by the motor to the actual robot link. The built-in flexihility that the flexible-
spline introduces is a well known fact. This introdnces additional degrees of freedom and the
dynamics of the maniprlator become more complex than predicted by the rigid-body dynamic
model, hence possibly incurring dynamic positioning errors, particularly if fast dynamics are
excited. The issue of nnmodelled resonant frequencies was addressed by analysing the frequency
response of the manipulator, where the energy of any residual effect was found to be well beyond
the dominant resonant frequencies of the links, and ignored for the purposes of controlling the
arm. However, although this issue has been overlooked for gross motion of the robot, accurate

. modelling of the harmonic-drive (and any other) joint compliance in order to incorporate it into

the real-time torque loop coutrol could hopefully lead to a more precise positioning control.

. The lack of current sensing devices at the time when the PCBs were designed prevented the

torque-control loop from being closed. Heuce, although the overall contrel strategy has been
closed around the state feedback, it is still opeu with regards to torque. Experience gained from
the implementation of the controller has hinted at some of the advantages that closing the loop

“wonld have in the overall controller: DC motor torque ripple effect, amplifier dead-zones around

zero torques, input/ontpnt non-linear relationships at high torques or parameter variation in
electrical components due to temperature are some of the effects that a closed-loop is expected
to, at least, attennate. '

. Another issne that deserves special attention is the domain in which the coutroller should be

designed. As already discussed in Chapter 6, the torgne domain is the natural and preferred envi-
roument of the control engineer to design direct torque (model-based) controllers. This was also
the preferred environment in which to design the near-optimal-time controller. The fact that the
actual robot was fitted with voltage amplifiers imposed the need to resort to reverse engineering
the controller for direct current control, which proved a successful option oun comparison with
the standard indunstrial coutrol strategies. However, practical experiments have showun that direct
torque control might actnally degrade the optimality of the solution when compared to a voltage-
driven controller, something particnlarly manifested in dominant gravity-induced cenfigurations,
where the highest torques are reqnired to move the manipulator. The reasons behind this could
probably be attributed to unmeodelled motor dynamics in the reverse engineered model of the
motor. For instance, several reports in which motor torque constants have been measured showed
cousiderable variation between similar type motors on a single robot, as well as between similar
robots. Also, the torque constant reduces with time due to de-magnetisation, and this effect is
even hastened when the motor current rating is exceeded. Furthermore, it is a well know fact
that during cnrrent saturation (in which, incidentally, the optimal controller relies throughont.'
the motion) at high torques, the motor torque constant is not so constant anymore, exhibiting a
non-linear behavionr. Another reason which might explain these findiugs is the slower mechanical
time-constant of the motor versus the electrical time response of the system. In view of these
facts, it is believed that the domain in which the controller should be designed needs to be further
explored and explained.

Tu this work, an imtial stability analysis of the plant has been carried out, although sirnnlatiou
(and experimental) resnlts provided the ultimate check on stability. This analytical limitation was
partly due to the approximation-related issues of the proposed algorithm, although the lhimited
number of tools available for the theoretical analysis of non-linear systems also posed a major
handicap. Theoretical analysis of non-linear systems is, however, a very active area of research,
and recent advances in nou-linear dynamic state feedback controllers might soon provide a way
to find a tractable analysis.

The issue of coordinated arm motion, while to some extent defeating the whole purpose of the
proposed optimal strategy, can also be explored in the future.

116



J. Valls Miré 1997 Conclusions

12. The work underiaken in this dissertation bas been a successful attempt to close the gap between
optimal control theory and application. It can be regarded as a first step towards the design of a
truly generic on-line time-optimal trajectory planner/controller. Although this problem should
still be considered as an open problem in robotics, mainly hindered by the unavailability of low-
cost computational power, the author envisages that, at the current pace of advances in embedded
computing resources, this question will also soon be answered. With more and more widespread
use of PCs in industrial control, the so-called “soft control”, and technological predictions in the
order of GHz for processor frequencies in the early 21st century versus current MHz speeds, the
increased importance of computing iu the robotics and automation community is set to have
far-reaching benefits.
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Appendix A

Closed Form Dynamics Derivation

The derivation of the customised closed form dynamic equations of the CRS A251 robotic arm are
presented here. These expressions are computed for the three gross-motion links of the five DoF
revolute manipulator, whose kinematic configuration is sketched in Figure 5.1, and described in detail
in Section 5.3.1, The final functions for the closed form dynamics are collected in Equation 5.3.

Following the Lagrangian dynamic formulation of an open-chain mechanical manipulator with rigid
links, Equation (5.1}, an expression for the kinetic energy of each link i must be first developed. This
is given hy: :

Ki = %m,—ﬁﬁ“ + %I.-éi“ _ (A.1)

where the first term is the kinetic energy due to the linear velocity of the link’s center of mass (#m,),

and the second term is the kinetic energy due to the angular velocity of the link (6',,,,.) about this

center of mass. All quantities are expressed with respect to the rohot base frame. The vector 7y,

represents the Cartesian location of the center of mass for link i, while 8,,; corresponds to the angular -
displacement. ' .

Given the assumnption of point-mass distribution ?, the inertia tensor at the center of mass for each
link, J;, is the zero matrix. Taking this simplification into consideration, the kinetic energy of each link
can he considered in turn by expanding the coordinates and velocity components of the point-mass(es).
Hence, expanding the Cartesian co_qrdinates as follows:

Tm; = {zm,-;ym.-,zm,-} (A2)

the pdsitio_n of the point-mass(es) for each link m; can he obtained. Thus, referring to Figure 5.1 for
kinematic and dynamic components, and employing the notation previously defined in Section 5.3.1,
the location of point-mass m; can be found to be:

Tm, = —Ime
Ym, ) = —Im1 5 (A3)
Zm, = d

where d; represents the vertical (along the z axis) distance between the origin of the robot frame,
and the location of the waist point-mass m;. By taking derivatives with respect to time, the linear
velocity of m; is given by:

im, = [m;s;a.l )
¥m, = -—Imeib (A.4)
Zm, = 0
Squaring {A.4) we obtain:
i,zm = .Imfsféf‘
Um, = imicié] (A.5)
.é,";.,l = 0

1Refer to Section 5.3.1 for a discussion about the implications of this assumption.
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Substituting this expression into (A.1), and reducing the solution by trigonometric identities, the
total kinetic energy for link 1, K, is thus found to be:

K = %m,lmféf (A.6)

1t can be seen then how the kinetic energy of a manipulator can be described by a scalar formula as

a function of joint position (8) and velocity (8). The mechanism for deriving tbe kinetic energy of the

rest of the links is the same. However, since the kinematic relationships are obtained with respect to

the base frame, the expressions can become noticeably more involved. Hence, for the second link, the
location and velocity of the first point mass mj is given by:

Zm, = Imacjey .
Ym, = lImasice {A.7)
Zm, = d1—1m282
and
Emg = —Imy(s1c20) + 51¢26))
!.lrn-_, = [TH2(61€291 + 313292] ) (A.S)
ém, = —ImQCng

Raising each coordinate of Equation (A.8) to the power of two, and rewriting the resulting expressions
into (A.1), the upper-arm kinetic energy contributed by mz is obtained as:

] 1 . ,

Ka(ms) = 5rm,nmg(.:g,af + 62) , (A.9)

Because, as shown in Figure 5.1, the upper-arm mass distribution was concentrated in two points,

my and mg, the contribution of ms to the total upper-arm kinetic energy is identical to that of ma,
except for the location of ma along the upper-arm link. Accordingly,

Ka(ms) = %mglmg(cgéf +62) (A.10)

The total kinetic energy of joint 2 is made up of the sum of both contributions. That is,
1. 1.
K, = Ki(my)+ Kx{ms) = EBf(mglmg + malm3)c3 + §a§(m21m3 +malm?)  (A.11)

The fact that the fore-arm mass was also distributed in two points, m4 and mg, also gives rise to
two independent contributions to the total kinetic energy of the link. However, as was the case for the
fore-arm, obtaining the kinetic functional structure of one of the point-masses, immediately provides
the otber one. Hence, the location of my and its first derivative can be expressed as: '

Tm, = {Imgcs+imyes)e;
ym, = (Imzcz +1lmycs)s; ' (A.12)
Zm, = ) —Imgss+1Imys;s
and
Zm, = —0ys)1(lmacs+Imycs) — facylmass — B3ciimass
Yma = 9-1"-‘1(1"1362 + Imge3) — 9'2811711352 - 53511m433 (A.13)
imi = —Balmacs + falmycs

After some cumbersome algebra to reduce the expression, the solution for the kinetic energy of m,
is given by:

1 . ‘ i .
Ki(mg) = Em.;ﬂf (Im3c3 + Im2c2 + 2lmalmacacs) + §m46§lm§ +

1 . .. '

511149%11712 — mybBafs3imalmycas (A.14)
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And, consequently, the kinetic energy of mj is:

Ka(ms) = %mséf(lmgcg +im2el + 2Amzlmscaca) + %mgéglmg +
%mséglmg — msfa6almalmscaa (A.15)
Hence, the total kinetic energy for the fore-arm can be combined as follows:
K3 = Ki(my)+ Ka(ms) = %éf{(n‘q + mg)im2cl + (madm? 4+ mgim?)ck + Ama(malmy + (A.16)

1. 1. .
mslms)C2C3} + -2—8§(m4 + m5)!m§ + §8§(m4lmi + mslmg) - 02031”13(1’1’141”14 + mslms)C23

" The total kinetic energy of the manipulator is the sum of the kinetic energy in the individnal links.
For the three DoFs being analysed, that is,

3
K = Y K (A.17)
=1

Having developed an expression for the manipulator kinetic energy, the potential energy of the robot
arm must then be obtained in order to derive the Lagrangian of the mranipulator (5ee Eqnation 5.1).
Potential forces are represented by gravity forces, thus the potential energy of each link can be expressed
as:

P = mighp, (A.18)
where g is the gravity vector and hy, is the Cartesian vector locating the center of mass of the ith
link. As before, for a point-mass distribution, the potential energy can be obtained by applying (A.18)
to each point-mass m;. Furthemore, if the robot is upright, the gravitational acceleration vector is
proportional to the z component of the location vector only. Hence, for m;, the potential energy can
be reduced to the following scalar quantity, where h,,, is proportional to z,,, in Equation (A.3), as
follows: ..
.P]_ = mlgdl I (A.lg)

Combining the vertical Cartesian location of ma, as given by(A?),wﬁzh Ec_;ﬁ;}.ibn (A.18), the

. potential energy of the npper-arm stored in my can be derived as:

Pg(mg) = ng(d]—-lmzsg) (A?O)

Notice that bacause A, in (A.18) is described as a function of §, the potential energy of a manipulator
can be described by a scalar formula as a function of the joint positions. Accordingly, the potential
energy in myz is given by:

Pz(mg) = mgg(dl - Imssg) (AQI)
So that the total potential energy of link 2 can be obtained as:
Py = Py(ma)+ Po(mz) = dyg(ma + m3) — sag(lmarmy + Imam,) (A.22).

Analagously, by substitnting the z component of m4 in Equation (A.12) - and the eqnivalent of ms
- in (A.18), the potential energy stored in these point-masses can be derived as:

Pa(ﬂ'h;) = m4g(d1—lm332+lm453) i
Pa(ms) = msg(dl—lmgsg +lm553) (A23)

Combiﬁing (A.23) into one, the potential energy of the fore-arm can be then expressed as:
Py = Pa(my) + Pa(ms) = d1g(myg + ms) — salmag(my + ms) + sag(lmamy + Imsms)(A.24)

The total potential energy stored in the manipulator can be now obtained as the snm of the potential
energy in the individual links; that is,

3
P = YA (A.25)
i=1 ’ .
The derivation of the manipulator eqnations of motion can be now addressed in two alternative ways:
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1. Jointly for the overall Lagrange function of the manipulator, L, as described by Equation (5.1).
That is, L is first obtained as the suhtraction of (A.25) from (A.17). Then, partial derivatives
of this expression with respect to each generalised coordinate, #,, 62 and f3, and their first time
derivatives are taken to obtain 71, = and 73 respectively.

2. Separately for the kinetic and gravity forces of each link.

While the first option is faster to derive, it also loses part of the insight into the contribution of the
different forces to the overall torque developed by each motor. Furthermore, given the complexity of
the resulting expression for L, the subsequent derivation procedure is more inclined to errors. Hence,
the second mechanism was preferred in deriving the dynamic equations of the CRS A251.

in the development presented next, the notation 7; implies the torque that has to he exerted by the
motor at joint { to support the motion and gravity-induced forces of link j. Due to the mechanical
construction of the manipulator, some important preliminary conclusions about the structure of the
Lagrange-Euler equation of motion, given by formula (5.1), can be drawn prior to its derivation for the
particular case of the CRS A251:

e The potential energy is a function of §;, but not ;. Hence, 8P;/8¢; = 0 for all i.
e There is no contribution of a motor link to support motion of lower links, i.e., 75; = 0 if £ > j.

Taking these issues into consideration, the torques developed by motaors at joint 1, 2 and 3 will now
be analysed in turn.

‘Waist motor (joint 1) The torque components to be developed by the waist joint motor to support
motion and gravity-induced forces of its own link (1), upper-arm (712) and fore-arm (713) links are,
respectively (and after some trigonometric identities):

_ d [aL 8Ly _ d (8K1\ _ ; 2
mo= g (5) = (Gg) =Btmind (4.26)
_ d (L) 8Ly _d (8Ko\ _; a4 " 2y _
N2 = °F (3_9'1) T B dt (ath) = 61{ca(malm; + mzim;)}
6,62{2s2c2(malm3 + malmZ)) (A.27)
_d (8l 8Ly _ d (8K3\ _ ; \ 2.2 2 2.2
T3 = o (—a—gl—) % - &t (3¢1 ) = 61{(ma4 + ms)imic; + (mylmi + msimZ)ci +
(m4lm4 - mslm5)2fm30263} - (A28)

6152{(m4 + m5)21m352c2 + (malmy + mglmg)2imgsqca} —

5193{(m41m§ + m51m§)253C3 + (m.;lm.; + m51m5)21m3cz.53}

Expressions (A.26), (A.27) and (A.28) can be now added together to ohtain an expression for the
overall torque to be developed by the actuator in joint 1, i.e.,

=T+ nz+ 7o (A-29)

which, after some -re-arranging, gives the customised expression for 7 in Equation (5.3).

Upper-arm motor (joint 2) As hefore, the torques required from the motor of joint 2 to support
the forces exerted at link 2 and 3 can be obtained as:

d K apr .
Tog = % (aLz) — % = (?&) - (h - ——2) = Gg{mzlmg -+ malmg} +

93z ) Bg T dt \ i 8¢z ey
éf{(mzlrng + malm2)saca} — g{(malma + malmz)cs} (A.30)
_d (8L 3Ly _ d (0K; 0Kz 0P\ _ 2
o= g (a) - a = (F) (G g = Faltma malimdy -
f3{(malma + mslms)lmacas} + 61 {(mg + ms)im3sacy + (malmy + mgims)imasacs} +
8% {(mqlmy + mslmg)lmasaz} — g{(ma + ms)imacy} (A.31)

These torque components are to be added to derive the overall torque to he developed by the actuator
in joint 2, T2, whose final expression is given in Equation (5.3). That is,

T2 = T2z + 723 : - (A.32)
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Fore-arm motor (joint 3} The motor at joint 3 needs only to develop a torque to counteract
motion and gravity-induced forces exerted by its own link. The dynamic expression for this torque can

he obtained as:

T3 = T3 =

4 (Gt 2 (%) (% _oB),
dt \ 8ca dez ~ dt \ 8da dca  Bes)

—52{(1’“41"14 + mglmg)imacaz} + (A.33)
53{(m4lm§ + mslmg)} -+ éf{(m,;lmi + m51m§]53C3 + (malmy + mslms)imasaca} +

82 (malma + mslms)imasas} + g{(mqelmy + mglms)cs}

This torgue solutién can be further manipulated to ohtain the reduced expression of 73 in Equa-

tion (5.3).
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Appendix B

Source Code

This Appendix presents the source code developed in ANSI C with Borland Turbo C++ to control the
manipulator from an on-line PC. 1t provides simultaneous control of the three major links of the robot
via an equal number of DAQ cards. Refer to Sections 7.2 and 7.4 for more details about the actual

HW /SW implementation. The code is structured into the following functional blocks:

Crs_params.h Declaration of the CRS A251 kinematic, dynamic, and actuating subsystem pa-

rameters.

Crs._defs.h Declaration of global data structures, DAQ definitions, function prototypes, auxiliary

constants and global C header files.

Crs.main.c Main routine performing, in a continuous loop, state input + computation of control

action + coutrol outpat.

Crs_init.c Structure and DAQ initialisation routines. Dynamic memory allocation.

Dynamics.c Computation of the CRS A251 dynamic equations of motion and auxiliary proce-

dures.

Control.c Routines to compuﬁe the near-optimal-time torque curves for current state and clas-

sical PID control action.

Daq_ctrl.c Procedures to gend control action through the'data acquisition cards. '

Jhk kR Rk kR Rk Rk ko ko ok R ARk ok ks sk ook ok Rk R dkok ok sk dkok ok ok ko

*
*
*

Modnle Crs_params.h

Jaime Valls Miro

*

*

*

T L Ll LT L L L L L R T T S T P P PP PP S T P
#define g 9.81 /* Metric(5.I.)system -> [m/(572)] »/

#tdefine DoF 3

/* Link characteristics */

#ifdef CRS_AVG_MASSES
/* Metric(S.I) system —-> Link point Masses in kg. */

#define m1 4.3% /* Waist
#define m2 0.00 /* Upper arm
fidefine m3 1.73

#tdefine m4 0.00 /* Fore arm

/* Vrist + gripper + load mass considered located at end of Fore—arm -> mS
*mS 0.36 ; m6 0.23 ; m7 1.00 -—> Max. nominal load of 1kg(2.201h) =*/

/* Gross motion links only*/

mi */
m2 + m3 */

mé + m5 + m6 + m7(load)*/

#tdefine . mS 2.21 /* 0.62+0.36+0.23+1.0 =/
/* Metric(S.I) system —-> Link Lenghts in m. #/

#define 1lml 0.135 /* Waist
#define 1m2 0.0
#define 1m3 0.18415 /* Upper arm
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#tdefine 1lmé 0.0

#define 1mS 0.1805  /* Fore arm
#endif
#ifdef CRS_DIST_MASSES

/* Metric(5.1) system --> Link point Masses in kg. */

il

ImS = 7.5 ins/

#define ml1 4.35 /* Waist = ml x/

#define m2 0.84 /» Upper arm = n2 + m3 */

#define m3 0.89 .
#define m4 0.62 /* Fore arm =m4 + n5 + m6 + m7(locad)*/

/* Wrist + gripper + load mass considered located at end of fore-arm -->mS
*pS 0.36 ; w6 0.23 ; m7(load) 0.0 --> Max. nominal load of 1kg(2.201b) */

#define mS_noload 0.59

#define load | 0.0

#define nS (aS_noload+load)

/* Metric(S.I) system --> Link Leaghts in m. */

#define 1lml 0.135 /* Waist = 1lml */
#define 1m2 0.114
#define 1m3 0.254 /* Upper arm = 1lm3 =/
#define 1m4 0.127
#define 1mS 0.254 /* Fore arm = 1lmS #*/
#endif
/* Actuator characteristics »/
#define N 72 /* Gear ratio */
static float gear_eff[DoF]}={0.75,0.75,0.56};/% Gear efficiencies »/
static float Rm[DoF] = {4.4,4.4,4.4}; /* Armature resistance (Ohms)[4.0, 6.0]x/
#define Jm 0.000028 /* Jm = 0.085 1bf*in~2 (* 1/32 s~2/ft *

* 1/1272£¢72/in"2+1,35kg*m"2/1bf*s"2*ft)
* = 0.000025 kg*m~2 + 0,0116 1bf*in~2
. * for HD wave genarator */
static float Jmeff [DoF] [DoF]={{0.109,0 ,0 }, /% Jneff = Jm*N-2+gear_eff[i) =/

{o ,0.109,0 },

{0 ,0 ,0.081}};
#define L 0.004 /+ Motor inductance */
#define Km - 0.0657 /* Motor torque constant Nm/Amp */
#define Khenf 0.0657 /+ Back e.m.f. coastant V#*s/rad »/

#define motor_torque_max 0.928 /+ +/-0.085 not to exceed motor MAX.VEL.RATING
: * Maximum CRS actuators output torque [Nem]
* motor torque max=0.128N+m=180z*in~9.30z*in/Amp
* x 2 Amp (max motor current} =/

#define max_PC_voltage 4.99 /+ Maximum voltage provided by LabPC+ */
#define max_motor_voltage 19.89 /+ Maximum voltage from LA to motor */

#define FINAL_TOLER_THETAS 0.0087 /* [rad] error w.r.t. final pos->End motion */
#define FINAL_TQLER_SPEEDS 0.02 /#* [rad/s] error w.r.t. final vel.->" */

#define OPT_TOLER_THETAS 0.027 /# [rad]=0.Sdeg error w.r.t. final pos—>End nearopt
* dyn-model-based ctrl+start feedforward ctrl »/
#define OPT_TOLER_SPEEDS 0.27 /# [rad/s]l=10deg/s error w.r.t. final vel.->" */

F LT Ty Y Y Y Y T Ty T Y T T Y P P TP T TS Y

* . Module crs_defs.h *
* *
* Jaime Valls Miro - *

ok kR Rk kR ok Rk Rk ko kR Rk Rk ke kR kR kR kR Rk kR kR kS
#include <nidaq.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
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#include <time.h>
#include <conio.h>
/* Conditional Compilation definitions */
#define CRS_DIST_MASSES
#define FeedForward /* Alternatives: PID, ComputerTorque, FeedForward_NoModel #*/
#include <crs_parm.h>
/* DAQ constants */
/* LabPC+ devices: jointl=l, joint2=2, joint3=3 #*/
/* Analog Ports */

1

#define DACO 0 /* Analog Output */
/* Digital Ports */ :

#define DPortA 0 /* Data Input */

#define DPortB B | /* Control Outout */

#define DPortC 2 /* Control Output */

/* Digital Lines #*/
#define Line0
#define Linel
#define Line2
#define Line3
#define read
#define write

/* General constants #*/

/* Count Clock Up or Down */

/* Clear everything */

/* Load initial value »/

/* Count Down or Up constantly at high level */

= O WK = O

#define FALSE 0

#define TRUE IFALSE

#define mmTOm 0.001

#define PI 3.1416

#define rad_to_deg {180/PI)

#define deg_to_rad (PI/180)

#define pulsestoradians {0.005%deg_to_rad)/* 0.005 link_deg/mot_pulse */

#define samples 700 /* state samples in out file #*/
/* DOS timing */

#define TMR_CNT 20 /* New frequency from 1.192737 MHz/TMR_CNT */

/* The original being 1.192737 MHz/65535=18.2 Hz */
/* 1193 = 1000Hz (1 kHz) */ )

/* 239 = S000Hz (5 kHz) */

/* 119 = 10000Hz (10 kHz) #*/

/* 24 = 50000Hz(50 kHz) */

/* 20 = 60000Hz(60 kHz) --> Maximum'! */
#define ticks_sample 239.0
#define sample_time (ticks_sample*THR_CNT/1.192737E+6)

/* = 0.004 s of sampling time ~-> Minimum ! %/
/* Global type definitions */
typedef struct .
{ float max_req_time;
float *alpha_final;
float *beta_final;
float *alpha_avg;
float *beta_avg;
float *torque_last;
float *holding_torque;
float *prev_thetas;
float *prev_prev_thetas;
float *prev_prev_prev_thetas;
} mot_data_struct;
typedef struct
{ float. err_gq [Don; /* current control error */
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float err_ii [DoF];
float err_vv [DoF];
float prev_err_qq [DoFl; /* previous control error */
float prev_err_ii_[DoF];
} pid_ctrl_data_struct;
/% Global headers for auxiliary functioms */
/* Functioms declared in file crs_imit.c %/
void crs_init( mot_data_struct *mot_dats, pid_ctrl_dsta_struct *pid_data );
void crs_init_daq( void );
short configure_ports(short device);
short counter_init_state(short device); : ,
short clear_and_load_izit_value(short device);
/* Functions declared iz file dyhamics.c */
void inertia_matrix( float *thetasp, float (*D)[DoF]l);
veid inverse_inertia_matrix(fleat (#D)[DoF], float (*D_inv)[DoFl);
void centripetal_coriolis_and_gravity _matrix(float *thetasp,float *speedsp,float *HG);
void ‘calc_alpha( float *alpha, float (*D_inv)[DoF] );
void calc_beta( float *beta, float (*D_inv)[DoF], float *HG, float *torques )};
void cale_torque(float *torques, float *accels, float (#D)[DoF], float *HG );
/* Functions declared in file control.c #*/
void torque_curve(int jeint, mot_data_struct *mot_data, float *final_thetas,
float *speedsp, float *thetasp);
float pid_ctrl( pid_ctrl_data_struct *pid_data,int joint, float #thetasp,
float *final_thetas);
/* Functiozs declared in file daqetrl.c */
float send_torque_control_voltage( float *torque, float *speedsp,
mot_data_struct *mot_data, short joint);
void send_PID_control_voltage(float torque_error, float tcurrent_hpeeds,short joint);
/* Macro definitions =/ -
#define check_torque_limits(curr_error_torque, max_torque)
{fabs(curr_error_torque) > max_torque 7 ( curr_error_torque > 0.0 7
max_torque : -max_torque ) : curr_error_torque )
#define sign(vel)( vel > 0.001 7 1.0 : -1.0 ) /# Sign of velocity */
#define moving(vel) ( fabs(vel) > 0.01 7 1.0 : 0.0 ) /* Is joint moving? */

JHEERREER R AR AR AR RA AR R AR RS AR BEA A E R R R R RS R R R R F R R AR R RN R kR ¥

* Module crs_main.c *
* *
* Jaime Valls Miro *

T T Ly T L T ey Ty Ty Ty Iy T S I Py T ¥
#include <crs_defs.h>
/* Global variables definitions */
float *initial_thetas,*final_thetas,*initial_speeds,*final_speeds,
*inpitial accels,*final_accels, *alpha,*beta, offset_thetalDoF],
*torque_array, avg_factor;

int final_pos_reached[DoF] = { TRUE, TRUE, TRUE },
opt_pos_reached[DoF] = { TRUE, TRUE, TRUE };
short count[DoF], countA, countB; /* current pos. pulses %/

float torque_max[DoF]l; /* = {6.9,6.9,5.16} Maximum “mathematical”(comstant) CRS
* actuator output torque [Mm]
* 0.128 N*n (motor_torque_max)x72(gear ratio)xgear_ eff[1]*/

double Vu[samples] [DoF];
mot_data_struct *pot_data;
pid_ctrl_data_struct *pid_data;
FILE *state_fIp;

/* Here due to stack overflow, but no need for global variables */
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float current_thetas[samples][DoF], /* [rad] »/
current_speeds[samplen] [DoF],
current_accels[samples] (DoF],
current_torques [aamplesa] [DoF],
meanure_torque[samples] ,temp_thetas[DoF],tot_time;

int i=1;
/* Change timer */

void higher_res()

{

asm mov al, 0x36; -

asm out 0x43, al;

asm mov ax, TMR_CNT;

asm out 0x40, al;

asm mov al, ah;

asm out 0x40,al; -

}

void normal_res()
{

int tmr=0;

asm mov al, Q0x36;
asm out 0x43, al;
ASh MoV ax, tmr;
asm out 0340, al;
asm mov al, ab;
asm out 0x40,al;

}

/b e -

void main()

{

int joint, j; .

float accum_time[samples], D[DoF] [DoF], D_inv[DoF] [DoF] ,HG[DoF] ,temp,
current_error_torque, beta_file[samplesl [DoF], alpha_file[samples] [DoF];

char c,cnl,keyb;

short init_joint = 0, dagErr;

double voltin;

clock_t time_1, time_2, ticks_for_next_sample, start_time;

printf(”crs_main() entered");

/# Initialize various param’s and DAQ PC carda at beginning of motion. */
not_data = (mot_data_struct *) malloc(aizeof(mot_data_struct));
pid_data = (pid_ctrl_data_struct *) malloc(sizeof(pid_ctrl_data_struct));
crs_init(mot_data, pid_data);

/* Calculate current marimum torques */
for(joint = init_joint;joint < DoF;joint++)

torque_max [joint] = (motor_torque_max*N*gear_eff[joint]);

/* Start computation cycle for each joint until final position is reached.
_ * When joint reaches final position only feedforward control is applied ;/
for( joint = init_joint; joint < DoF ; joint++ )

{

current_thetaa[0] [joint] initial_thetas[joint];
current_sapeeds[0] [joint] initial_speedz[joint];
current_accela[0] [joint] = initiai_accels[joint];
corrent_torquesn[0] [jeint] = mot_data->torque_last[joint];
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Vm[0][joint) = mot_data->torque_last(joint];

/* Hold robot at initial configuration */
~for(joint = init_joint;joint < DoF; joint+4+)
Vm[0] [joint ] = send_torque_control_voltage( current_torques+0,
current_speeds+0, mpot_data ,joint);
/* Initial synchronisation */
printf("Resetting system. Hit Enter to continue\n");
scanf ("%c",&c);
/* Finer DOS clock resoclution */
higher_res();
accum_time[0] = measure_torquel0] = 0.0;
do{
ticks_for_next_sample = clock()+ticks_sample;
doq{ .
/* Synchronisation loop */ ,
while(clock() <= ticks_for_next_sample)
/* do nothing */;
accum_time[i] = accum time[i-1]l+sample_time;
tot_time = sccum_time[i];
time_1 = clock(};
/* Current joint axes.- values at begianing of current iteration */
for(jeint=init_joint; joint<DoF; joint++) /* i=1=joint2, i=2=joint_3 */
{
daqErr=DI1G_In_Port(joint+i, DPortA, &countd);
daqErr=DIG_In_Port(joint+1, DPortB, &countB);
court[joint]l=(countB*256+countd);
count[jointl=(count [joint]l> 32766)7 -65535+count [joint] :count [jeint];
current_thetas[i] [joint] =(count[joint]l*pulsestoradians) +
offset_theta[joint];
/% Numerical 2 point velocity approximatiom. */
current_speeds[i] [joint] = (current_thetas[i] [joint] -
mot_data—>prev_thetas[joiﬁt])/sample_time;
current_speeds[i] [joint]l*= 0.6;
current_speeds[i] [joint)+= current_speeds[i-1] [joint] * 0.4;
/* Numerical 2 point acceleration approximation. */
current _accels[i] [joint] = (current_speeds[i) [joint] -
current_speeds[i-1] [jointl)/sample_time;
current_zccels[i] [joint]l#*= 0.15;
current_accels[i] [joint]+= current_accels[i-1][joint] * 0.85;
mot_data=->prev_thetas[joint]l=current_thetas(i] [joint];
Valil [jeint]l=0.0;
3 .
/* Safety stop if Waist Joint (0) gone beyond limits #*/
if (fabs(current_thetas[iJ[0]) > 1.7)
{
for(joint = 1; joint <= DoF ; joinmt++)
daqErr = AO_VWrite (joint, DACO, 0.0);
break; '
}
/* Update each of the joint axes dynamic coefficieats.
* Update alpha’s */
inertia_matrix(current_thetas+i, D);
inverse_inertia_matrix( 0, D_inv );
calc_alpha{ alpha, D_imv );
/* Update beta’s */
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centripefal_coriolis_and_gravity_matrix(current_thetas+i,current_speeds+i,HG);
calc_beta( beta, D_inv, HG, mot_data->torque_last ); '

/* Calculate average dyn. coefficients for linear eq. of motion */

for( joint = init_joint; joint < DoF ; joint++ )

{
mot_data->alpha_avgl[joint] = (i-avg_factor)*alpha[joint] +
avg_factor*mot_data->alpha_final[joint];
alpha_file[i]l[joint] = mot_data->alpha_avg[joint] ;
mot_data->beta_ avg[Jo1nt] = (i-avg_factor)*betaljoint] +
avg_factor*mot_data—>beta_final[joint];
beta_file[i]) [joint] = mot_data->beta_avgljeint] ;
3 .
for( joint = init_joint; joint < DoF ; joint++ )
{

if(opt_pos_reached [joint])

{ :
if{{fabs(final_thetas[jeint]-current_thetas[i] [joint] )<=FINAL_TDLER_THETAS)
&z{fabs(final_speeds[joint]l-current_speeds[i] [joint])<=FINAL_TOLER_SPEEDS))

final_pos_reached [joint]=TRUE;

/* Calculate Linear norn-model-based PID control action

* from "measured state”(UN-LINE) and send it down the DA cards */
#ifdef PID ' '
¥m[i][joint] = current_error_torque = pid_ctrl{pid_data, joint,
current_thetas+i,final_thetas );
send_PID_control_voltage{current_error_torque, joint); )
#endif
/* Calculate Computed Torque control action
* from "measured state"(ON-LINE) and send it down the DA cards */
#ifdef ComputerTorque
current_accels[joint]=pid_ctrl{pid_data, joiat,current_thetas+i,
final_thetas); '
current_error_torque = 0.0;
for(j = 0; j < DoF ; j++)
current_error_torque+= D[joint] [jl*current_accels[jl;
curreat_torques[i] [joint] = curreat_error_torque+=HG[joint];
vm[i]l [joint] = send_torque_control_voltage{ current_torques+i,
current_speeds+i, mot_data ,joint);
#endif
/* Calculate feedforward centrol action from "desired positions™
* (DFF-LINE = holding torque of final pesition & vel.) +
+ send down DA cards WITHDUT actuator model */
#ifdef FeedForward_NoModel
Vm[i][joint] = current_error_torque = mot_data->holding torque[joint]+
pid_ctrl(pid_data, joint,current_thetas+i,final_thetas);
send_PID_coatrol_voltage(current_error_torque, curreat_speeds+i, joint);
#endif
/*
+ Calculate feedforward control action
* from "desired positions"(DFF-LINE=holding torque at final pos & vel)
* and send it down the DA WITH actuator model
*/
#ifdef FeedForward
current_torques[i] [joint] = mot_data->holding torquel[joint] +
pid_ctrl(pid_data, jeint, current_thetas+i, final_thetas ) ;
mot_data—>torque_last[jointl=Vm[i] [joint]=send_torque_control_voltage(
current_torquee+i, current_speeds+i, mot_data ,joint);
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#endif
}
alse
{
if({fabs(final_thetas[joint]-current_thetas[i] [joint] }<=0PT_TOLER_THETAS)
&&(fahs(final_speeds[joint]—current_speeds[i][joint])<=UPT_TOLER_SPEEDS))
{
apt_pos_reached[joint]=TRUE;
/* Calculate new control action from chattering damping alg.*/
/* Calculate Linear non-model-based PID control action
* from "measured state'(ON-LINE) and send it down the DA cards #*/
#ifdef PID '
Vm[i] [joint] = current_error_torque = pid_ctrl(pid_data, joint,
current_thetas+i, final_thetas ) ;
' send_PID_control_voltage(current_error_torgque, joint);
#endif
/* Calculate Computed Torque contrel actionfrom "measured state"
* (ON-LINE) and send it down the DA cards */
#ifdef ComputerTorque
current_accels[jeint] = pid_ctrl(pid_data, joint,
current_thetas+i, final_thetas ) ;
current_error_torque = 0.0; |
for(j = 0; j < DoF ; j++)
current_error_torgune+= D[joint][j]*current_accéls[j];
current_torques[i] [joint] = current_error_torque+= HG[joint];
vm[il[jaint] = send_torque_contral_voltage(current_tarques+i,
current_speeds+i, mot_data ,joint);
#endif ' '
/* Calculate feedfarward comtrel action
*+ from “"desired positions" (OFF-LINE=holding torque of final. pas & vel)
+ send it down the DA WITHOUT actuator model */
#ifdef FeedForward_NoModel .
Vn[i] [joint]=current_error_torque=mot_data->holding torque[joint]+
pid_ctrl(pid_data, joint,cnrrent_thetas+i,final_thetas);
send_PID_centrol_voltage(current_error_torque,current_speeds+i, joint);
#endif ' '
/* Calculate feedforward contraol action
* from "desired pasitions* (OFF-LINE=holding torque of final pos & vel.)
* + send it down the DA WITH actuator model */
#ifdef FeedForward
current_torques(i) [joint]l = mat_data->helding_torque[joint] +
pid_ctrl(pid_data,joint,current_thetas+i, final_thetas};
vm[i] [joint]=send_torque_cantrol_voltage(current_torques+i,
' current_speads+i,mot_data, joint);

+

#endif
}
else
IR
/* Calculate near-optimal controel curves and corrent action */
‘torque_curve(joint ,mot_data,final_thetas,current_speads+i,
current_thetas+i);
current_torques[il[joint] = mat_data->torque_last{joint];
mat_data->torque_last[jaint}=Vm[i] [joint]=send_torque_control_voltage(
current_tarques+i, current_speeds+i, mot_data, joint);
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}
i++; )
ticks_for_next_sample = time_i+ticks_sample;
}while( !kbhit() );
/* Another motion? */
printf(“Hit ’c’ to continue, ’q’ to quit: ");
scanf ("%c", &cnl); /* Discard newline char */
scanf("%c", &c);
Jwhile(c!='q’);
/* Resetting output on exit */
for(joint = init_joint;joint < DoF;joint++)

{ :
dagErr = AO_VWrite (joint+1, DACO, 0.0 );
if (daqErr)
) printf(" Error #:%d Reseting device: %i\n", daqErr, joint);
}

/* Update+close state outbut file */
for(j = 0;j < i-1;j++)
{ }
fprintf(state_£fp,"}6.4f ",accum_time[jl);
for(jeint = init_joint; joint < DoF; joint++)

{
fprintf(state_£fp," %6.4f %6.4f ¥B.4f ',current_thetas[j][joint],
) current_speeds[j] [joint], current_accels[j][joint] );
¥
fprintf(state_fp," %6.4f \n ",measure_torque[jl);
}

fclose(state_fp);

/* Free memory allocated dynamically */
free(alpha); :
alpha = NULL; l
free(beta);
beta = NULL; )

/* Set PC counter back to normal resolution */
normal_res();

/* exit */
printf("crs_main() exited\n");
return;

} /* end function */

/*#**#**###**********#******************1********************************#tt*##***
i

* Module crs_init.c *
* . ) *
* Jaime Valls Miro ' *

Ao o K o oK o ok ok o o kR ok kb ok bk kR kR kR R R R Rk R Rk kR
#include<crs_defs.h> '
/* External declarations #/
extern float *initial_thetas,*final_thetas,*initial_speeds,*final_speeds,
*initial_accels,*final_accels,*alpha,*beta,*torque_array,
avg_factor,offset_theta[DoF];

extern short 'countA, countB;
extern FILE *state_1p;
/¥ - .-
* Procedure to initialise data structures and all 1I/0 boards
- —— */
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void crs_init(motﬂdafa_struct *mot_data,pid_ctrl_data_struct *pid_data)
{

int i, j, joint;

char nl;

float D[DoF] [DoF],D_inv[DoF][DoF], HG(DoF];

printf(“crs_init() entered\n"}; 7
/#* Initialize PC DAQ boards {(LabPC+ 1,2 & 3) */
crs_init_daq()}; :
/* Initialize file for state output */
if( (state_fp = fopen("C:\\jvm_test\\state.txt","w")) == NULL)
printf("Error openning output state file\n");
/* Allocate memory for mot_data arraj pointers */

mot_data->alpha_final = (float *) calloc( DoF, sizeof( float ) );
mot_data->beta_final = (float *) calloc{ DoF, sizeof( float ) )};
mot_data->alpha_avg = (float *) calloc{ DoF, sizeof{ float ) };
mot_data->beta_zvg = (float #*) calloc({ DoF, sizeof( float ) };
mot_data->torque_last = (float *) calloc( DoF, sizeof( float ) );
mot_data->holding_torque = (float‘*) calloc( DoF, sizeof( float ) );
mot_data->prev_thetas = (float *) callec( DoF, sizeof( float ) );
mot_data->prev_prev_thetas = (float *) calloc{ DoF, sizeof( float ) );
mot_data->prev_prev_prev_thetas = (float *) calloc{ DoF, sizeof( float } );

/* Allocate memory to dyn. coef’s array pointérs */
alpha = (float *)calloc(DoF, sizeof(float));
beta = (float *)calloc(DoF, sizeof(float));
/* Allocate memory to motion data arrays */
(float *) calloc( DoF, sizeof( float
(float *) calloc( DoF, sizeof( float
(float *) calloc( DoF, sizeof( float
(float *) calloc( DoF, sizeof( float
initial_accels (float *) calloc( DoF, sizeof( float
final_accels (float *) calloc( DoF, sizeof( float
/* Allocate memory to torque arrays */
torque_array = {(float *) calloc( DoF, sizeof( float ) };
/* Initialize PID ctrl data structure */
for{ joint = 0; joint < DoF; joint++ )
pid_data~>prev_err_qqljoint]=pid_data->prev_err_ii[joint]=0.0;
/#* This will insure that any statement calling this code will
* require at most § s to execute. Avoid infinite loops! */
mot_data->max_req_time = 5.0;
/* Obtain start and end-point of joint configurations for current move
# final_thetas = ideal solution angles computed by inverse kinematics.
* initial_accels and final_accels = 0.0 for all joints.
* This case corresponds to Case.A in thesis %/

initial_thetas
final_thetas
initial_speeds
final_speeds

w o u
e e we

L L L W
L L W L S
-

/* Start and end-point position values =/

initial_thetas[0] = offset_thetal0] = mot_data->prev_thetas[0] = 0.0 ;
final_thetas[0] = -0.6 ;

initial_thetas[t] = offset_thetal[1] = mot_data->prev_thetas[1] = -0.785;
final_thetas[1] = -1.57 ;

initial_thetas[2] = offset_thetal[2] = mot_data->prev_thetas[2) = -0.61 ;
final thetas[2) = 0.0 ; '

/* Start and ehd-point speeds and acceleration values */
for ( joint = Q; joint<DoF ; joint++)
initial_speeds[joint]=final_speeds[joint]=
initial_accels[0]=final_accels[0]=0.0 ;
printf(” Enter lambda dynamic avg_factor (0-1): \n");
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scanf ("%f", kavg_factor);
scanf ("*¥c", &nl); /* Discard newline char */
printf("\n");
/#* Set Dynamic parameters for start and end states )
* and calculate last control action and that of the initial state.
* Initial state #*/
inpertia_matrix( final_thetas, D);
centripetal_coriolis_and_gravity_matrix( final_thetas, final_speeds, HG);
calec_torque( mot_data->holding_torque, final_accels, D, HG );
inverse_inertia_matrix( D, D_inv );
calc_alpha(mot_data—>alpha_final, D_inv );
calc_beta(mot_data->beta_final, D_inv, HG, mot_data->holding_torque);
/* Final state */
inertia_matrix( initial_thetas, D);
inverse_inertia_matrix( D, D_inv );
centripetal_coriolis_and_gravity_matrix( initial thetas, initial_speeds, HG);
calc_torque{ mot_data->torque_last, initial_accels, D, HG );
cale_alpha(alpha, D inv );
calc_beta(beta, D_inv, HG, mot_data->torque_last);

/

printf("crs_init() exited. \n"); "
} /* end crs_init() */

/* —_— —————————————— - —
* Procedure to actually control initialisation of DAQ boards
o _— ———x/
void crs_init_dagq(void)
{

short daqErr,joint; ——

for(joint = 1;joint <= DoF;joint++)

{ . .
dagErr = configure_ports(joint);
if (dagErr)
printf("Error #:%d Configuring device: %i\n", dagErr, joint);
dagErr=counter_init_stata(joint); '
if (dagErr)
printf("Error #: id Counter init state of device: %i\n",daqErr,joint);
daqErr= clear_and_load_init_value(joint);
if (dagErr)
printf ("Error #: ¥d Clear and load init of device: %i\n",daqErr,joint);
}
} /* end crs_init_daq() */
J/— e ———————— e e e ———— -
* Procedure to configure DAQ boards
e — -— —————— e */
short canfigure_ports(short device)
{ .

short dagErr;

/* Config Port 0 (Port A in LabPC+) for reading: Data Input */
daqErr=DIG_Prt_Canfig (device, DPortiA, 0, read);

/* Config Port 1 (Port B in LabPC+) for reading: Data Input */
daqErr= daqErr || DIG_Prt_Config (device, DPortB, 0, read);

/* Config Port 2 (Port C in LabPC+) far Writing: Control Qutput */
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daqErr= daqErr || DIG_Prt_Contig (device, DPortC, O, write);
if (dagErr)

printf(" Error Number: %d \n", dagErr);
return{dagErr);
} /+ end configure_ports{) */

/* e e e e e e e ———
* Procedure to initialiee PCB interface
* —— e ———x/
short counter_init_state(short device)
{ .
short dagErr;
/* "Count Up/Down" (DPortC-Line0) is set te high */
dagErr = DIG_OQut_Line (device, DPortC, Line0, 1);
/* The other "Count Down/Up" (DPortC-Line3) is also set to high */
daqgErr = daqErr [[| DIG_Out_Line (device, DPortC, Line3, 1);
/* "Clear" line initially to low */
dagErr = dagErr || DIG_Dut_Line {(device, DPortC, Linel, 0);
/* "Load" line initially to high */
daqErr = daqErr || DIG_Out_Line (device, DPortC, Line2, 1);
if (dagErr)
printf{" Error Number: %d \n", daqErz);
return{daqErr); :
} /* end counter_init_state() */
/% ———
* Procedure to reset PCB interface
* —_—— -— ——————— e ————— */

short c¢lear_and_load_init_value(short devica)
{
short daqErr;

/* Clear everything (DPorthﬂinei): send high pulse down "Clear" = Linel */

dagErr = DIG_Dut_lLine {device, DPortC, Linei, 1);
dagErr = daqErr || DIG_Out_Line (device, DPortC, Linei, 0);

/* Load Initial Value : send low pulse down "Load" = Line2 */

dagErr = daqErr || DIG_Out_Line (device, DPortC, Line2, 0);
dagErr = daqErr || DIG_Dut_Line (device, DPortC, Line2, 1i);
© /* Reset amalog output (DACQ) = 0 */

daqErr = daqErr || &0_VWrite (device, DACO, 0 );
if (dagErr)

printf(" Error Number: ¥d \n", daqErr);
return{dagErr);
} /% end clear_and_load_init_value() */

FAIT I T2 E R SR LA PR S S L R PR R E L T e s it e I e I e PR PSS 22 P22 T s 2.

* Mcdule dynamics.c
.
* Jaime Valls Miro

*
*
x*

*#*4********4#***##**#*#**#*44**##*#******##***##**4#*4#**4***‘***#**##*###*****#/

#include<crs_defs.h>
‘extern float #final_thetae, *initial_thetas;

/* —--

* Procedure to calculate variable inertia matrix - D(q)
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e - */
void inertia_matrix(float *thetasp, float (*D)[DoF] )
1{

/* Waist Joint, O */
pL0][D] = mi*pow(lmi,2) +
(m2*pow (1n2, 2)+(m3+m4+mS) *pow (1m3,2) J+pow(cos(*(thetasp+1)) ,2)+
(m4+pow(1lm4,2)+m5+pow{lms,2) ) *pow(cos(* (thetasp+2)),2)+
2%1m3#* (mé *imd+m5+1m5 )Y *cos (*(thetasp+i) )+ cos(*(thetanp+2) )+
Jmeff [0] [0];
plol[11= ¢ + Jmeff£[0]I[1];
plo1[2]= D + Jmeff[0]([2];
/* Upper-arm Joint, 1 */

D[11[0] = Dol [1];

DL[11[1] = m2*pow(1n2,2)+(m3+mé+mS)*pow(1m3,2) + Jmeff[1]1[1];

D[1]1[2]) = -((m4*im4+m5*1m5)*1m3*cos((*(thetasp+1) }+(*(thetasp+2))))}+Jneff [1] [2];

/* Fore-arm Joint, 2 %/ '
p[21[0] = plol[2];
~Db[2]101] = pl11(2];

D[21[2] = m4*pow(lmd,2)+mS*pow(1mS,2) + Jmeff[2]1[2];

} /% end inertia_matrix() */

YA -_— e e e e e
* Procedure to inverse a square 3x3 matrix - D(q)
‘- - - S */

void inverse_inertia_matrix(float (*D)[DoF],, float (*D_inv)[DoF])
< ,

fioat det_matrix, Adj[DoF][DoF], inv_det_matrix;

int i,3;

/* Compute matrix determinant */
det_matrix=(D[0] [0]+D (1] [1]1*D[2] [2]1+D[1] [0]*p (2] [11+D[0] [2]+D[2] [0]+D[0] [1]*D[1][2])~
(p[2] [01*D[1]1 [11+D [0] [2]+D (2] [1]1+D[1][2]«p[0] [0]+p[1] [0]+D (0] (11+D[2][2]);

/% Compute matrixr adjoints */

Adj[0I[0] = (DL[11[11«D[2]1[2])-(D[21[11*P[1][2]); . . -
Adjfol (1] = - ((p[11[01+D[2]1[21)-(D[2] [0]*D([1)[2]));
Adj[0][2] = (PI1](0]*p([2] [1])-(DL[2]1[01*D[1]1[1]);
Adj[1]1[0] = - ((PLo][1]+D[2][2])-(p[2](1]*p[0]1[2]));
Adj[1][1] = (p[0] [01*p[2] [2])-(D[2] [01*DI[0]1[2]);
Adj[1]1[2] = - ((pL[e][0]*p[2][1])-(D[2]1[0]1*D[01[1]1));
Adj[2][0] = (D[0][13+p[11(21)-(p[11[11*D[01[2]);
Adj[21[1] = - ((pCe] [e)+p[1][2])-(p[1]1[D]1+p[0][21));
Adjf2)[2] = (D[0]1[01+D[11[1])-(D[1][01*p[0][1]);

inv_det_matrix = (1/det_matrix);
D_inv[0] [0]
D_inv{[0] (1]
DP_inv[0][2]
D_inv.[1] [0]
D_inv([1][1]
-D_inv[1][2]
P_inv[2] [0]

inv_det_matrix*Adj[0][0];
inv_det_matrix*Adj[1]1[D];
inv_det_matrix+Adj[2][0];
inv_det_matrix*Adj[0] [1];
inv_det_matrix*Adj[1][1];
inv_det_matrix*Adj[2][1];
inv_det_matrix«Adj[0][2];
D_inv[2][1] = inv_det_matrix«Adj[i][2];
D_inv[2]1[2] = inv_det_matrix*Adj[2][2];
} /% end inverse_inertia_matrix() */

o honnonno

/[
* Procedure to calculate centripetal and coriolis matrix - HG = H(q,qdot), G(q) ’
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. - - - —-- */

void centripetal_coriolis_and_gravity_matrix{float #*thetasp,float *speedsp,float *HG)
{
float H[DoF][DoF] [DoF], G[DeF1;

/* Waist Joint, 0 *»/
HE0J[01[11 = HICI[1] 0] = - ( (m2*pow(1m2,2) +
(m3+m4+mS ) #pow (1m3,2) )#sin(* (thetasp+1) )*cos (* (thetasp+l)) +
(m4*1m4+m5*1n5)*1m3*sin(* (thetasp+l) }*cos(*(thetasp+2}) );
H[0J[01[2] = HL0I[2][0] = - { (m4*pow(lm4,2)+
mS*pow{lm5,2) ) *cos(* (thetasp+2) ) #sin(*(thetasp+2}) +
_ (m4*1mé+mS+1m5) *1m3*cos(* (thetasp+1) ) *sin(+(thetasp+2)) );
HG[0] = HL0][0] [11*(*(speedsp+0))*(*(spaedsp+1})+
HL0] [0] [2] *(*(epeedsp+0) }*(*(speedep+2) }+
HEQJ E1] [0]* (*(speedsp+1) )+ (*(speadsp+0} )+ .
HL0] [2] [0]*(* (speedsp+2) )*(*(speedsp+0d) )+
0.5%(*(speedspt+0)) + 1.0*(-sign{*{epeedsp+0))}*noving(*{speedsp+0));
/* Upper-arm Joint, 1 */
HL[11 [0l [0] = -K[0] [0][1];
H[1]1[2][2] = (m4*lm4+mS*1m5)*1m3*ein((*(thetasp+l))+(*(thetasp+2)) );
G[11 = - (m2*1m2+(m3+m4+mS)*1m3)*cos(*(thetasp+l) )*g;
. HG[1) = H[1][0] [0]*pow(*(speedsp+0},2)+
HL11£2] [2] #pow(*{speedsp+2) ,2)+
G[1] + .
0.8%(+{epeadsp+1})} + 1.0*(-sign(*(speedsp+1)))*moving(* (speedsp+1));
/* Fore-arm Joint, 2 */ s
KI[21[0]1 [0] =(m4*pow(lmé,2)+mS*pow(1m5,2))*cos(*{thetasp+2))*sin(* (thetasp+2))+
_ (n4#+1n4+m5+1m5)*1m3*cos (*(thetasp+1) ) *xsin(*(thetasp+2));
H[2]1T1]1[1] = (m4*1m4+mS+1lm5)*1m3+sin((*(thetasp+1)) + (*(thetasp+2)));
G[2]=(ma*1ma+m5*1m5) *cos(*(thetasp+2) ) *g; '
HG[2] = H[2] [0][0]*pou{*(speedsp+0),2) +
H[2] (1) [1]*pow (*(speedsp+1),2) +
G[2] +
0.3*(*(speedsp+2)) '+ 0.7+(-sign(*(speedsp+2)))*moving(*(speedsp+2));
} /* end centripetal_coriolis_and_gravity_matrix() =*/ .

/== --- -
* Procedure to calculate alpha dyn. coefficient

R */
void calc_alpha( float #alpha, float (*D_inv}[DoF] )

{

int joint;

for(joint = 0; joint < DoF; joint++)
alphaljoint) = D_inv(joint]l[joint];
} /* end calc_alpha() #*/

f————— —_ —_—

* Procedure to calculate beta dyn. coefficient

- R - ———— - */
void calc_beta( float sheta, float (*D_inv)[DoF], float *HG, float *torques )
{

int i35 .

for(i = 0; i < DoF; i++)

{
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beta[i] = 0.0;
for(j = 0; j < DoF ; j++)
{
betal[il-= (D_inv[il[j]1+HG[j]);
if(ir = j)
betalil+= (D_inv[i]{j]+torques[jl);

}
¥ /+* end calc_beta() */

/* e - —— —

* Procedure to calculate joint torques for given state (thetas, speeds, accels)

* - e ———————— - x/
void calc_torque{flecat *torques, float *accels, float (*D)[DoF], fleat *HG )
{ ' (]

int i,j;

for(i = 0; i < DoF ; i++)

{
torques{i] = 0.0; -
for(j = 0; j < DoF ; j++)
torques[il+= (P[il[jl*accels[jl);
torques [i}+= HG[i];
¥

} /* end calc_torques() #*/

AT T T e L L L P e L P P L P L)

* Madule contreol.c *
* o
* Jaime Valls Miro *

T L T
#include<crs_defs.h> :
extern float torque_max[DoF],current_torques[samples] [DoF],tot_time,*alpha,*beta;
extern doubla Vm[samples] [DoF];

extern int i;
[#=- --- --
* Procedure to calculate near-optimal-time torque-curves
P e ———— e ——— —_— - ——

void torqua_curve(int joint, mot_data_struct *mot_data, float *final_thetas,
float *current_speeds, float *current_thetas)
{
float gamma_plus,gamma_minus,tamp_torque,temp_volts,temp_current,thetas_shift [DoF],
ptorque_max{DoF] ,mtorque_max fDoF] ,di;

/* Calculate current maximum admissible torques (positive and negative) =/
di=( mot_data->terque_last[jeint] > 0.0 ) 7 0.0 : (torque_max[joint] -
mot_data->torque_last[joint])/(sample_time*Km*N*gear_eff[joint]);
ptorque_mazx[joint]=temp_torque = (max_motor_voltage -
(*(current_speeds+joint))*N*Kbemf - di*L )*Km*N+gear_eff[jeint]l/Rm[jeint];
ptorque_max [joint]={(temp_torque > torque_max[joint])?torque_max[joint] :temp_torque;
di=( mot_date->torque_last[joint] < 0.0 ) 7 0.0 : (-torque_max[joint] -
mot_data->torque_last[joint])/(sample_time*Km*N*gear_eff [joint]);
ntorgue_max [joint]=temp_torque = ( -max motor_voltage -
(*(current_speeds+jeint))*N+Kbemf - di*L )*Km*N*gear_eff [joint]/Rm[joint];
mtorque_max[joint]=(temp_torque<-torque_max[joint])7-torque_max[joint] :temp_torque;
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thetas_shift[joint]=(*(current_thetas+joint)) - final_thetas[joint];
gamma_plus=mot_data->alpha_avg[joint]*ptorque_max[joint]+mot_data->beta_avg[joint];
gamma_minus=mot_data->alpha_avg[joint]*mtorque_max[joint)+mot_data->beta_avg[joint];
if{*(current_speeds+joint) >= Q) ’
if( thetas_shift[joint] < pow{({*(current_speeds+joint)),2)/(2*gamma_minus) )
mot _data->torque_last[joint] = ptorque_max[joint];
else .
not_data->torque_last[joint] = mtorque_max[joint];
else ' _
if( thetas_shift[joint) <= pow{(*(current_speeds+joint)),2)/(2*gamma_plus) )
mot_data->torque_last[joint] = ptorque_max[jointl;
else
mot_data->torque_last[joint] = mtorque_max[joint];
} /* end torque_curve() */
/%= —ammmm—— e
* Procedure to calculate PID control _
*— - - e e e e e e e s ——%x/

float Pid_ctrl( pid_ctrl_data_struct *pid_data,int joint,float *current_thetas,
float *final_thetas)
{

float pid_error_torque;

/* PID depending on type of PID control #/
#if defired(PID)

float Kpp[DoF]

float Kii[DoF]

float  Kdd[DoF]

{200.0,200.0,200.0};
{0.0,0.0,20.0};
{0.6,0.6,2.0};

#endif

#if defined(ComputerTorque)
float Kpp [DoF]=1{400.0,400.0,400.0};
float Kii[DoF]={0.0,0.0,0.0};
float Kdd[DoF]={25.0,25.0,25.0};

#eondif

#if defined(FeedForward) || defined(FeedForward NoModel)
float KpplDoF1={30.0,100.0,60.0%};
flost Kii{DoF]={0.0,0.0,0.0};
‘float Kdd[DoFl={2.0,1.5,2.0};
#endif
/* Calculate control error terms.
* Position control error term */
pid_data->err_qqljoint] = final_thetas[joint]-{(*{current_thetas+joint)};
/* Velocity control error term */ .
pid_data->err_vv[joint]=(pid_data->err_qqljoint]-
pid_data->prev_err_gq[joint])/sample_time;
/* Integral control error term */
pid_data-»err_iil[joint] = pid_data—>prev_err_iiljoint] +
(pid_data->err_qqljoint]+pid_data=->prev_err_gg[joint])*(sample_time/2);
/* Motor control torques using PID law */
pid_error_torque=Kpp[joint]*pid_data->err_qq[joint]
+Kdd[joint]*pid_data->err_vv[joint]+Kii[joint] *pid_data->err_iil[joint];
/* Save current pos. and integ. error for nert iteratiom of PID controlx/
pid_data->prev_err_qqljoint] = pid_data->err_qqljoint];
pid_data->prev_err_iiljoint] = pid_data->err_iiljoint];
return(pid_error_torque);
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} /* end pid_ctrl() #/

F Attt ek e R R AOK AR AR A o o A R o o o oK K K Ao o R ok o sk o ok ok Rk

* . Module dag_ctrl.c *
* *
* Jaime Valls Miro *

e L d et R T PP P P PR R PR R PR P PR PR e ey
#include<crs_defs.h>
extern float torque_max[DoF], Vm[samples] [DoF],
current_torques[samﬁles][DOF], current_accels[samples] [DoF] ;
extern int i; )

/* e
* Procedure to calculate Voltage control action éorresponding to the cantrol
* torque and send it down the DA (actuator model necessary)
*- - - : -/

float send_torque_control_voltage(float *torque, float *current_speeds,
mot_data_struct *mot_data, short joint)

{
short  daqErr;
double V;

float temp_torque, di;

di=(*(torque+joint)-current_torques[i-1][joint])/(sample_time*Km*N*gear_eff[jointl);
V=Rm[joint]#* (*(torque+joint))/(Km*N+gear_eff [joint])+ Lxdi +
' (*(current_speeds+joint) )*N*Kbemf ;
/* Pre-L.A. voltage, Ka=2, Op-Amp gain = 2 %/
/* Linear amplf. Good enough hut could be improved */
V/=4.0; .
Vv = (V>=0}7 ((V >= max_PC_voltage ) ? max_PC_valtage : V): /¥ Voltage saturation */
((V <= —méx_PC_voltage ) ? - max_PC_voltage : V);

dagErr = AO_VWrite (joint+1, DACO, V);

/* The higher the gain, the flatter the responses of Im, but

* also more Steady-state error */ '

/* Calculate last torque applied with newly calcul’d volt. control actiom */
temp_torque=(V+4-(*{current_speeds+joint))*N*Kbemf-di*L)*
Km#N+gear_eff [joint] /Rm[joint];
return{temp_torque); '

} /% end send_torque_control_voltage() */

/+ - ' - e ' -

* Praocedure to send PID Voltage control action down the DA
* (No actuator model necessary)
S _— - e mmmm x/

void send _PID_control_voltage(float torque_error, float *current_speeds, short joint)
{

short  dagErr;

double Vm;

Vm = torque_error;

/* Control voltage */

Vm = (Vm>=0)7? ( (Vm >= max_motor_voltage ) 7 max_motor_voltage : Vm) :
((Vm <= - max_motor_voltage ) 7 -max_motor_voltage : Vm);

dagErr = AQ_VWrite (joint+1, DACO, Vm/4.001);

}/* end send_PID_control_voltage() */
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Appendix C

PCB Schematics and Circuit
Diagram

The schematics of the iuterface PCB desigued for the control of the CRS A251 manipulator from a
stand-alone PC are shown below. These were developed with the aid of the software package EASY-PC,
while OrCAD software was employed in the design of the circnit diagramn. The reader may refer to
Sections 7.2 and 7.4 for more details about the design and implementatian of the custom interface.
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Figure C.1: Interface PCB schematic (top side).
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App-endix D

Cubic Polynomial Validation
Trajectories

The following curves represent the trajectory (position, velocity and acceleration) followed by tbe waist
joint during the validation experiments described in Section 5.3.4. As both the npper-arm and fore-arm
give similar looking profiles, they have not been included.
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Figure D.1: Medium speed (0.7 s} cubic polynomial trajectory followed by Joint 1 during validation .
experiments.
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Appendix E
Video

o Investigations into an Optimal Approach for On-line Robot Trajectory Planning and Control, Miré
J.V., PhD thesis video, 1997.
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Appendix F

Publications

1. The Use of Computer Graphics for Robot Motion Simulation, Miré J.V_, Stoker M. and Gill R.,
Proceedings of the 11th ISPE/IEE/IFAC International Conference on CAD/CAM, Robotics &
Factories of the Future, Pereira {Colombia), pp. 884-889, 1995.

2. A Graphical Prototyping Approach for Robotic Simulation Environments, Mird J.V., Stoker M.
and Gill K., Proceedings of the Middlesex University Conference on Research in Technology,
London {UK), Faculty of Technology technical report TR 1.96, pp. 32-36, 1995.

3. Optimal Dynamic Trajectory-planner/Controller Applied to Industrial Manipulators, Mird J.V |
Stoker M., White A.S. and Gill R., Proceedings of the 12th ISPE/IEE/IMechE International
Conference on CAD/CAM, Robotics & Factories of the Future”, London (UK), pp. I180-1886,
1996. -

4, On-line Time-optimal Algorithm for Manipulator Trajectory Planning, Miré J.V., White A.S. and
Gill R., Proceedings of the European Control Conference, Brussels {Belgium), Session TH-E G5,
paper number 661 (in CD-ROM), 1997.
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The Use of Computer Graphics for Robot Motion Simulation

Jaime Valls Miro, Mark Stoker, Raj Gill
Middlesex University
Bounds Green Road, London N1 2NQ, U.K.
Tel: 0181-362 5219, Fax: 0181-361 1726
~ Contact Email: jaimel@mdx.ac.uk.
http://www.mdx.ac.nk/www/ammc/ammec.btml

Abstract

This paper describes how computer graphics can be integrated into the design, evaluation,
ofl-line programming and real-time control of robotic systeins. Robot parameters such as kine-
matics, dynamics and control are incorporated to produce accurate motion simulations. Three
dimension CAD schematics of the manipulator and the working environment have allowed a
number of concepts to be rapidly evaluated long before the expensive pracess of detailed design
and manufacturing. Conventional CAD systems can then be used to carry out the designs which
are in turn fed back to the graphics environment for validation. A case study is presented which
describes the development of an automated workeell within the graphical simulation environ-
ment. ’

Once the manipulator design is established particular attention is given to the motion improve-
ment that the use of robot dynamics may have in the early stages of the motion pipeline.
Traditionally the dynamic model has only been accounted for during the coatrol loop, and in
most cases is totally ignored . A method is proposed where path planning can be enhanced by
the use of the manipulator dynamics. Although Lagrange-Euler formulation was originally stud-
ied due to its closed form, more computationally snitable forms like the recursive’ Newton-Enler
approach are being investigated.

Keywords: Computer Graphics, Simulation, Prototype, Manipulator Motion

1 Introduction

The purpose of systems study tbrongh modelling is to aid the analysis, understanding, design,
operation, prediction and/or control of systems without actually constructing and operating the
real process [1]. Models play the rale of the real objects whose analysis by real experimentation
could be expensive, risky, time-consnming or even pbysically impossible (2]. Simulation models [I]
have traditionally been approached by textual-based compnter simulation langnages, both discrete
(GPSS, SIMULA, etc.) and continuous (ACSL, CSMP, etc.) some of which provide at most the-
capability to plot some simulation resnits in a simple graphical environment. However the rapid
development of computer hardware and graphics software during the last decade has added a new
dimension to the practice of modelling and simulation.

- Tt is generally accepted that bumans can relatively easily assimilate complex information from pic-
torial images (A pictnre says more than a thonsand words” - Confucins). Undoubtedly colour
graphics and animation is considered a highly desirable feature in understanding the dynamics of
system behavionr via simulation software. Indeed, this is found particularly attractive in robotics [3}.

A solid object can be represented in a computer aided design package {CAD) using primitive solids
such as cubes, cones, wedges, spheres, etc. which are added, subtracted, cut, etc. to form desired
shapes for the robot parts and its operating environment. These can then be fed into the graphical

- simulation package where furtber nan-geometric attributes snch as motion definition, joint limits
and speeds, input/output, etc. are attached to the solid model of the manipulator and devices in its
surroundings.
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2 Problem Overview

Diagnostic radio-isotopes are used in the Nuclear medicine as markers within the body. They are
attached to selected molecules (tracers) allowing the passage and distribution of these molecules to
be traced in the body for the examination of a given area of the body - bone, lung, liver and heart
to name but a few [4].

Regulations [3] require every employing authority to take all necessary steps to restrict, As Low
As Reasonably Practicable (ALARP [6]), the extent to which employees and other persons are
exposed 1o ionising radiation, and impose limits on the doses of ionising radiation which employees
and other persons may receive in any calendar year. This project is an attempt to fulfill such
requirements by designing an automated radiopharmaceutical dispenser to prepare precise individual
patient prescriptions [7, 4, 8]. The system consists of as isolator cabinet containing:

o Specialised programmabie stations (e.g. syringe filling station described in Section 3.1).
o Consumables (syringes, vials) and the corresponding léad-shielded containers.
+ Radio-isotope generator.

o A general purpose 5DoF manipulator to transfer items between stations, remove lids, etc.

The system provides the required patient dose of radio-isotope delivered either in shielded syringes
or vials.

Research is currently heing carried out in the improvement that manipulator dynamic models may
have in the early stages of the robot motion process, particularly in medical robotic workeells.
The algorithms are being implemented and tested entirely within the same graphical simulation
framework than previously used during the study of the robotic workeell layout. An overview is
given at the end of the paper.

3 System Design Methodology

For the development of the system a suite of tools and technologies capable of matching the capa-
bilities of the human user to the requirements demanded by the application was needed. Deskiop
virtual reality is an advance concept for the graphical design, prototyping and systems simulation
which makes the designed objects’ behaviours more accessible and understandable.to the user. The
attributes and associations between objects in a virtual environment permit an approximation to the
nature and behaviour of such ohjects and processes which do not yet exist, thus providing the sort
of front-end with which the user feels comfortable and accelerating the overall development process.

3.1 Virtual Prototyping

During the initial stages of the simulation process an accurate CAD solid model of the manipulator
coupled with simple schematics of the rest of the parts in the workcell have allowed a number of
different concepts to he rapidly evaluated. This has permitted important design principles to be
established and verified at an early stage in the project and long before the expensive processes of
detailed design and manufacture. For instance the robot datum-bracket ! provided by the manufac-
turer was found far too bulky for the limited working space available and was quickly redesign from
a stand position in the working plate into a wall-mounted home plate.

1 Necessary to provide a repeatable position when robot uses incremental encoders
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Figure 1: Syringe-filling-station 2D Prototype

Starting from 2D CAD designs as shown in figure 1, or directly from solid models of the compo-
nents the prototypes are created. The ability to evaluate a mechanism for functional capability is
critical at this stage hecause too much nonfunctional detail will impact dramatically the simulation
performance. Hence, prototype modelling strategies must discriminate detail prudently, retaining
component identity and functionality to comply with the conceptual design. This is explaiued with
the following example.

Figure 2 represents the virtual prototype of the syringe-filling-station (s.f.s.) which was used through-
out the project to test for reachability and collisions in the workcell as described below in section 3.2.
The s.f.s. station is a 3 DoF mechanism used to transfer liquid to and from the syringes: 2 prismatic
joints operate the syringe plunger and vial carriage to withdraw the liquid and a third rotational
joint inverts the mechanism to perform this action. On the development of the prototype the main
concern was to test for collisions with the environment when performing a rotational motion of the
device. Since linear motion did not represent any constraint the prototype was designed with a
single DoF (rotational) with the prismatic joints fully extended (worst case) to be tested against its
surroundings. '

After solid models of the required components have been developed, analytical work of building a
system that clearly describes the operation of the workeell is started. '

‘8.2  Workcell Layout. Path Planning

The first step in this process is to couple the necessary devices (those with any degree of motion) with
kinematics, joint limits, speeds and accelerations, etc. Each device is then operationally positioned
relative to the other devices describing the total system. A detailed path planning process is then
carried out to test the layout against reachability and collision of the robot to fulfill all the tasks.
Simulation through virtual reality made it possible to travel virtual distances within the workcell,
highlight design flaws, illustrate the size of the facility, etc. thus allowing for a most practical
environment to carry out the tasks.



Figure 2: §.fs. Solid Model Prototype

The initial simul ation identified the following problems with the proposed workeell layout and allowed
a correction to be posed.

o The enclosing cabinet design suggested by the manufacturer was found too narrow to allow
for the motions of the rohot and after consultations with the design engineers it was agreed
to increase tbe depth of the cabinet model. These permitted a more flexible arrangement and
path planning in the workeell.

o The lack of yaw motion in the robot (5 DoF) forced the use of a turn-over station for re- .
gripping the bottles carrying the radic-isotopes. The possibility of upgrading the manipulator
to a 6 DoF was sought. After creating the model into the workcell it was found too large which
restricted adequate motion planning within the workeell and the idea was scrapped.

Simple refinements like these would have been very laborious and expeusive if a workeell mock-up
was to be built. The approach described here allows for better conceptual implementation and
process optimization when compared to traditional 2D or 3D wireframes and mechanical checking
methods. . ,

Once satisfied with the cell configuration and its performance, detailed CAD drawings are then
~ developed, converted into solid models (Figure 3) and fed hack to tbe graphics environment for
validation and final visualization purposes, off-line programming and development of control and
rohot motion strategies. ' ’

4 Motion Improvement

Additional work is now being carried out to enhanced motion efficiency in the workcell by looking
at the impact that the manipulator dynamic models may have during the patb planning stage.
Minimising current and torque transients in the manipulator actuators reduces some mechanical
forces and stresses in the system [9), thus increasing tbe up-time of tbe robot and consequently tbe
whole system. This is of particular importance for complex machinery in hazardous environments
like the system described bere.



Figure 3: S.fs. Final design

Having developed kinematic models for the robot - nsed during the workeell layont, work is now
concentrated in obtaining an accurate dynamic model of the manipulator to optimize the paths
that the robot must follow to perform a particular task. Tests are being carried out in the graphical
simulation environment to calculate and visualize the torques required to move the robot at different
positions, velocities and accelerations. Resnlts are providing an insight into the dynamic needs of
the manipulator. Patbs and motion parameters will then be modified to allow for the robot to
approach these configurations whenever possible during the execution of the tasks. In the limited
working space that medical robotics have to offer this might not be a major improvernent but work
might be extrapolated to any rohotic environment. In constdering snitable algorithms to solve the
inverse dynamic prohlem Lagrange-Euler [10, 1T] turned ont to be the most suitable option to gaina
good understanding of the problem given its closed form. However more computationally attractive
alternatives are under evaluation. In particular the recursive Newton-Euler algoritbm [10] of which
a parallel implementation on transputers is currently being developed.

5 Conclusions

!

This paper has described how advanced graphical simulation tools have been applied to benefit
the total development cycle of an automated radiopharmacentical dispenser. It would have been
very difficnlt if not impossible, to lay ont the workcell manually as the selected robot was hard
pressed to reach the required target points in the workeell withont collision. It bas been shown bow
virtnal prototyping and robot motion simnlation lends itself to continuous designer-manufacturer
participation, which resnlts in a high degree of cooperation prior to actually bnilding the hardware
system. Graphical programming has emerged as the natural way to plan complex robot motions
safely, gnickly, and easily. Finally, an overview of current research in robot motion improvement
by considering manipulator dynamics has been stated. At present, the prototype workcell is being
assembled nsing the layout generated from the simnlated workeell.
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Abstract

This paper describes how computer[ graphics can be integrated throughout the design stages
of a robotic system. Three dimension CAD schematics of the manipulator and the working
environment have allowed a number of concepts to be rapidly evaluated long before the expensive
process of detailed design and manufacturing. Conventional CAD systems can then be used to
carry out the designs which are in turn fed back to the graphic environment for validation. Robot
parameters such as kinematics, dynamics and control are incorporated to produce accurate
motion simulations. A case study is presented which describes the development of an automated
workcell within the graphical simulation environment.

Keywords: Computer Graphics, Simulation, Prototype, Manipulator Motion

1 Introduction

The purpose of systems study through modelling is to aid the analysis, understanding, design,
operation, prediction and/or control of systems without actually constructing and operating the
real process [1]. Models play the role of the real objects whose analysis by real experimentation
could be expensive, risky, time-consuming or even physically impossible [2]. Simulation models [1]
have traditionally been approached by textual-based computer simulation languages, both discrete
{GPSS, SIMULA, etc.) and continuous (ACSL, CSMP, etc.) some of which provide at most the
capability to plot some simulation results in a simple graphical environment. However the rapid
development of computer hardware and graphics software during the last decade has added a new
dimension to the practice of modelling and simulation.

It is generally accepted that humans can relatively easily assimilate complex information from pic-
torial images ("A picture says more than a thousand words” - Confucius). Undoubtedly colour
graphics and animation is considered a highly desirable feature in understanding the dynamics of
system behaviour via simulation software. Indeed, this is found particularly attractive in robotics [3].

A solid object can be represented in a computer aided design package (CAD) using primitive solids
such as cubes, cones, wedges, spheres, etc. which are added, subtracted, cut, etc. to form desired
shapes for the robot parts and its operating environment. These can then be fed into the graphical
simulation package where further non-geometric attributes such as motion definition, joint limits
and speeds, input /output, etc. are attached to the solid model of the manipulator and devices in its
surroundings.

2 Problem Overview

Diagnostic radio-isotopes are used in the Nuclear medicine as markers within the body. They are
attached to selected molecules (tracers) allowing the passage and distribution of these molecules to
be traced in the body for the examination of a given area of the hody - bone, lung, liver and heart
to name but a few [4]. -

Regulations [5) require every employing authority to take all necessary steps to r&stnct As Low

As Reasonably Practicable (ALARP [6]), the extent to which employees and other persons are
exposed to ionising radiation, and impose limits on the doses of ionising radiation which employees
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Figure 1: Syringe-filling-station 2D Prototype

and other persons may receive in any calendar year. This project is an attempt to fulfill such
requirements by designing an automated radiopharmaceutical dispenser to prepare precise individual
patient.prescriptions [7, 4, 8]. The system consists of as isolator cabinet containing:

& Specialised programmable stations {e.g. syringe filling station described in Section 3.1).
e Consumables (syringes, vials) and the corresponding lead-shielded containers.
¢ Radio-isotope generator.

e A general purpose 5DoF manipulator to transfer items between stations, remove lids, etc.

The system provides the required patient dose of radio-isotope delivered either in shielded syringes
or vials.

3 System Design Methodology

For the development of the system a suite of tools and technologies capable of matching the capa-
hilities of the human user to the requiremeuts demanded by the application was needed. Desktop
virtunal reality is an advance concept for the graphical design, prototyping and systems simulatiou
which makes the designed ohjects’ behaviours more accessible and understandable to the user. The
attributes and associations between objects in a virtual environment permit an approximation to the
nature and behaviour of such objects and processes which do not yet exist, thus providing the sort
of front-end with which the user feels comfortable and accelerating the overall development process.

3.1 Virtual Prototyping

During the initial stages of the simulation process an accurate CAD solid model of the manipulator
coupled with simple schematics of the rest of the parts in the workcell have allowed a number of
different concepts to be rapidly evaluated. This has permitted important design principles to he
established and verified at an early stage in the project and long hefore the expensive processes of
detailed design and manufacture. For instance the robhot datum-bracket ! provided by the manufac-
turer was found far too bulky for the limited working space available and was quickly redesign from
a stand position in the working plate into a wall-mounted home plate.

! Necessary to provide a repeatable position when robot nses incremental encoders



Figure 2: S.1.s. Solid Model Prototype

Starting from 2D CAD desigus as shown in figure 1, or directly from solid models of the compo-
nents the prototypes are created. The ability to evaluate a mechanism for functional capability is
critical at this stage hecause too much nonfunctional detail will impact dratnatically the simulation
performance. Hence, prototype modelling strategies must discriminate detail prudently, retaining
component identity and functionality to comply with the conceptual design. This is explamed with
the following example.

Figure 2 represents the virtual prototype of the syringe-filling-station (s.f.s.) which was used through-
out the project to test for reachability and collisions in the workcell as described below in section 3.2.
The s.f.s. station is a 3 DoF mechanism used to transfer liquid to and from the syringes: 2 prismnatic
joints operate the syringe plunger and vial carriage to withdraw the liquid and a third rotational
joint inverts the mechanism to perform this action. On the development of the protatype the main
concern was to test for collisions with the environment when performing a rotational motion of the
device. Since linear motion did not represent any constraint the prototype was designed with a
single DoF (rotational) with the pnsmatlc joints fully extended (worst case) to he tested against its
surroundings.

After solid models of the required components have heen developed, analytical wotk of huilding a
system that clearly describes the operation of the workcell is started. '

3.2 Workcell Layout. Path Planning

The first step in this process is to couple the necessary devices (those with any degree of motion) with
kinematics, joint limits, speeds and accelerations, etc. Each device is then operationally positioned
relative to the other devices describing the total system. A detailed path planning process is then
carried out to test the layont against reachability and collision of the robot to fulfill all the tasks.
Simulation through virtual reality made it possible to travel virtual distances within the workcell,
highlight design flaws, illustrate the size of the facility, etc. thus allowing for a most practical
environment to carry out the tasks. -

The initial simulation identified the foliowing problems with the proposed workeell layout and allowed
a correction to be posed.

o The enclosing cahinet design suggested by the manufacturer was found too narrow to allow
for the motions of the rohot and after consultations with the design engineers it was agreed
to increase the depth of the cabinet model. These permitted a more flexible arrangement and
path planning in the workeell.



Figure 3. S.is. Final design

e The lack of yaw motion in the robot (5 DoF) forced the use of a turn-over station for re-
gripping the bottles carrying the radio-isotopes. The possibility of upgrading the manipulator
to a 6 DoF was sought. After creating the model into the workcell it was found toc large which
restricted adequate motion planning within the workcell and the idea was scrapped.

Simple refinements like these would have heen very lahorious and expeusive if a workcell mock-up
was to be huilt. The approach described here allows for hetter counceptual implementation and
process optimization when compared to traditional 2D or 3D wireframes and mechanical checking
methods. ‘ '

Once satisfied with the cell counfiguration and its performance, detailed CAD drawings are then
developed, converted into solid models (Figure 3) and fed back to the graphics environment for
validation and final visualization purposes, off-line programming and development of control and
robot motion strategies [12].

4 Conclusions

This paper has described how advanced graphical simulation tools have heen applied to henefit
the total development cycle of an automated radiopharmaceutical dispenser. 1t would have been
very difficult if not impossible, to lay out the workcell manually as the selected robot was hard
pressed to reach the required target points in the workcell without collision. 1t has been shown how
virtual prototyping and robot motion simulation lends itself to continuous designer-manufacturer
participation, which results in a high degree of cooperation prior to actually building the hardware
system. Graphical programming has emerged as the natural way to plan complex robot motions
safely, quickly, and easily. '

At present, the prototype workcell is being assembled using the layout generated from the simulated
workcell.

-
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Most current industrial manipulators address the problem of point-to-point
motion in two sequential steps, namely trajectory planning and control track-
ing. Conventionally, the former stage is entirely based on kinematic consid-
erations, hence with a strong geometric flavonr, whereas linear feedback
control laws are widely adopted later. However the dynamic behavionr of a
mechanical manipnlator is described by strongly non-linear differential equa--
tions. This paper describes a procedure which takes into account these non-
linearities and joint coupling in an attempt to plan relistic minimum-time
robot motions. A trajectory planner-controller of an industrial manipulator
(CRS A251) based on optimal control theory has been simnlated and shows
that maximising the capabilities of the device can lead to an improvement
in the manipulator time response of 25-35%.

Introduction

It is generally desirable to design the trajectory that a manipulator must follow
as a smooth functiaon of time, i.e., one which is continuous and ideally has a ¢ontinuous
first derivative too. Traditional trajectory planning strategies like cubic splines, linear
functions with parabolic blends, critically damped, bang-bang, etc are entirely based
on kinematic considerations to satisfy the set of constraints on the position, velocity
and acceleration of the arm at a number of points along the desired. trajectory. Regard-
ing control strategies, practically all industrial manipulators currently in use are based
on classical linear control theory such as PD or PID feedback control, etc...However,
it is well known that mechanical manipunlators are multibody systems whose dynamic
behaviour is described by strongly non-linear differential equations. Non-linearities
are associated both with position and velocity variables, and also their payloads. Al-
though a few more advanced model-based industrial controllers - An C H'& Atkeson
C G & Hollerbach J M (1988) - compensate for some of the position-dependent non-
linear terms such as gravity terms they all neglect the velocity-dependent terms in the
controller design, which restricts the manipulator to slow motion if an accurate and
smooth tracking is desired.

Both problems, trajectory planning and control are tightly coupled and yet
traditionally have been regarded as separate problems which as stated above are ap-
proached sequentially. This often results in mathematically tractable solutions which
do not maximise the performance that the manipulator is capable of at any given
time. Both maximum speeds and accelerations and decelerations are limited for a
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given robot structure by the torque capacity of the joint motor actuators and, accord-
ingly, vary across the workspace. However, when a trajectory is planned a maximnm
speed and acceleration along each degree of freedom (DoF) is assumed. But in order
not to exceed the actual capabilities of the device, these specifications must be chosen
conservatively, possibly forcing the robot to be nnderntilised, e.g., the robot may be
driven more slowly than necessary.

A procedure to overcome these drawbacks is proposed in this paper by the
design of a trajectory planner-controller in configuration space which operates the
manipulators close to its maximum efficiency between points, thus optimising motion
time. This is addressed by the use of time optimal control theory based on Pontryagin’s
maximum principle - Kirk D (1970) - with special consideration to the manipulator
dynamic equations of motion and drive torque bounds. The approach taken is similar
to that adopted by some researchers in the past - Chen Y & Chien S Y P (1992) - who
focused their work on time-optimal iracking of robotic manipulators along specified
geometric paths. In this work, however, the actual trajectory the robot must follow
is also considered for a realistic optimisation.

The validity of the trajectory planning algorithm presented in this paper has *
been established by numerical simulation of the first three joints of a five rigid links
industrial manipulator, the CRS A251.

Problem Statement

The problem can then be summarized as follows: Using a closed form of manip-
ulator dynamics ! as shown in equation (1) find the optimal path that the robot tool
centre point (TCP) should follow to move (in joint space) from the initial position gy,
to the final position ¢, while minimizing a performance index J(t).

D(q)4+H(q,4)+G(q)=7 _ (1)

where D(q) denotes the » x n inertia matrix (n = number of DoF of the

manipnlator), H(q,¢) is a n x 1 vector containing all velocity dependent terms arising

from centripetal and coriolis forces and G'(q) represents the n» x 1 gravity force terms.
Joint torques are included in 7.

Depending on what parameters are considered in the cost function J(t) the
problem can be seen as an energy optimization problem, minimum time problem,
a combination of both, acceleration optimization problem, etc...Efforts are being
concentrated here into reducing the time required by the manipulator to achieve the
desired location, i.e., the optimal time problem. Thus, the performance index can be

expressed as:
k)

J(t) = jt 710t | | (2)

=1

Non-linear Optimal Trajectory Planner

If the terms of equation]l were expanded it would be easy to see that they are
inherently nonlinear, both in position and velocity variables. This makes it impossible

!derived according to the Lagrangian formulation of mechanics. Friction is neglected without loss
of generality



to design a trajectory planner-controller based on linear control theory. However, since -
equationl represents the nonlinear plant dynamics correctly, we can use this model
to actively compensate for all nonlinearities. To this end the problem was initially
attempted by usirg modern optimal control theory - Kirk D (1970). Hence, a 2n-
dimensional state vector y(t)=[v1(t),v2(t)]T=[g,4]T will be used to rewrite the
dynamic equation (1) in state-space form as

y=A(y)}+B(y)7T (3)

where

_ Y2 = 0
A(y)= ~D=(y))[H (¥1,92) + G(¥1)] l Bly)= [ D= (y) ] @

Each joint of an industrial manipulator is driven by separate actuatorsand there-
fore the optimal trajectory is designed under constraints imposed on the maximum
torque bounds that can be exerted by the actuators, i.e., 7<|7%| which as shown do
not depend on system state. Given the initial and final states Y, and y; f this results

_in a non-linear two-point boundary-value problem whaose solution is very difficult, if
not impossible to abtain - Kim B K & Shin K G (1985). In order to overcome such
difficulty an alternative approach is proposed where the system equations are 11near1ze
and decoupled in terms of the joint variable g.

Linear Optimal Trajectory Planner

The dynamic model (3) can be first rewritten for each individual axis y;. The
2-dimensional state vector for each axis can be now described as follows

gi=A(y)+B(y)T (5)

In order to obtain a closed-form optimal solution to the problem we can further
expand equation (5) into a form where there is a clear structure of the dependency
between the acceleration of joint i and the actuator torque driving the joint

y2;, = ai(y1)Ti + Bi(y1, Y2, T) fQI' i=1...n (6)
where
ai(y1) = Dg'(wm) |
bilyr,va7) = .é.”"?’@lh ZD (¥1)[Hs(y1,¥2) + Gs(w1)]
F=ggti

Dal denotes the (7, j)th element of the inverse of D(y1). Coefficients a;(y:1)
and B;(v1,vy2,7) are time-variant non-linear functions of the manipulator position,
velocity and input. However, equation (6) could be regarded as an uncoupled linear
system by assuming ¢; and §; constant during each sample interval AT at which
the trajectory is generated. It will be assumed - Kirk D (1970) - that the sampling
interval is small enough so that the continuous control signal can be approximated
by a piecewise-constant function that changes only at each sample interval. That will



allow to approximate the inertial coupling in the joint at time ¢, with the last control
input at time ¢, — AT with a minimal overall error - Kim B K & Shin K G (1985).
Non-linearities on y; and y» are considered in feedback form by using the manipulator
present state at the beginning of the curreut sampling period ¢, which is of particular
interest in a real implementation. The resulting linear and decoupled equation for
each link can be then described as

y2, = o7 + Bi for i=1...n (7)

which reduces the problem to the solution of a quasi-double integrator problem

. - Kirk D (1970) - that must be solved in real-time at each sample interval. However,
the inclusion of the state-dependent manipulator dynamics makes the system time-
invariant no longer, proving then necessary to update the optimal switching curve at
each sample time. Unlike the double integrator problem, the optimal switching curve
at each time ¢ can not be described by a unique equation, and therefore the control
law needs to be considered for two separate cases depending on the current state:

if y2,(¢) 2 0
= 7O T < il
£ 4 lt) < 0 i (&) othervise for i=1...n (8)
ay={ O y“(”gaai(r)%tg)+ﬁ.-(t)
1. (t) otherwise

The behaviour of such contrel law at any instant time £ can be depicted by the
optimal state switching curve of figure 1 where the two cases are clearly identifiable
by the non-symmetry of the optimal curve.

Since the dynamic model is updated with state feedback information at the be-
ginning of each interval AT the approximation error derived from the linearisation
assuption is implicitly compensated. Furthermore, at present time ¢. the optimal con-
trol input should be determined based on the dynamic behaviour of the manipulator
over the period [t.,ts]. Yet the dynamic coefficients are known for ¢, and {; but not
for the period in between. It is therefore necessary to find a way to describe the overall
dynamic behaviour of the system for the remaining of the actual motion on the basis
of the current state and the final state. Some methods have been devised - Kim B K
& Shin K G (1985) - which propose an arithmetic average of the dynamic coefficients.
Particularly simple is a zero order hold. A more general form implemented in Wiens
G & Berggren M J (1991) has been adopted in which the overall dynamic behaviour
of the manipulator is defined by two factors, one for each dynamic coeflicient. The use
of a factor allows for each boundary condition’s dynamic performance to be weighted
separately in the estimated final value.

Structure of the Optimal Trajectory Planner-Controller

The resulting algorithm that yields the minimum-time trajectory and control
action the robot should follow to move from the initial to the final state can be
formulated as follows: '
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Figure 1: Quasi-Double Integrator State Switching Curve.

1. Derive the manipulator dynamic model. Lagrange mechanics has been used here,
but other alternatives such as discrete dynamics, Newton-Euler or variations of
Lagrange-Euler are viable also.

2. Given initial aund final states .compute the corresponding control actions from
equation (1). The initial control action will act as the estimated control input
into the algorithm.

3. Calculate dynamic behaviour for current state as described by equation (7). The
linear approximation described by (7) is also applied now.

4. Average the dynamic coefficients to achieve an overall dynamic performance of
the manipulator representative of the whole motion.

5. Use the current estimated dynamic model to update the switching curves and
compute the optimal control according to (8).

6. Go back to point 3 if final state has not been reached.

A well-known problem with any bang-bang method is control chattering in the
vicinity of the target state caused by frequeut switchings of the control input. In the
work presented here the possibility of applying feedforward torque control has been
sought with successful results. This means that the actuator driving torque is solely

_determined by the current dynamic behaviour of the manipulator. Therefore point 6
of the algorithm is further extended to compare current state with target state. If the
difference is less than some state bounds specified by the user, the control switches
into a feedforward control.

~
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Figure 2: Measured PID torqﬁe response of robot joint.

Simulation Results

"It was known that the manipulator controller follows a spline joint interpo-
lated trajectory between points followed by a PID closed loop algorithm. However
no further information was provided as to what parameters define the spline itself.
Therefore measurements from the real system were needed to be able to compare the
performance of the optimal controller with the real system upon the same commanded
task. Figure 2 shows the torque response of the real manipulator moving at maximum
controller speed with no load. Superimposed noise effects were filtered out by means
of a digital lowpass Butterworth filter.

For simulation purposes the system of non-linear equations describing the be-
haviour of the manipulator under the optimal control action was integrated numer-
ically using a fourth order Runge-Kutta numerical algorithm. Figure 3 shows the
simulated torque profile response. 1t can be seen that stretching the manipulator ca-
pabilities near maximum values dramatically improved the time taken to do the mo-
tion, demonstrating the performance of the optimal trajectory planner-controller. The
algorithm has been applied to different points throughout the manipunlator workspace
with improvements in the range of 25-35%.

The value of the feedforward torque at the end of the motion corresponds to the
actuator holding torque. It can be seen from comparison of graphs in figures 2 and 3
that in both cases the holding torque is very similar.

Concluding Remarks

An algorithm has been presented in which the role of manipulator dynamics
in trajectory planning and control is investigated. lncorporating dynamics into the
trajectory planning stage and applying optimal contro! theory has resulted in an al-
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Figure 3: Simulated optimal torque response of robot joint.

gorithm that maximises the capabilities of the device, thus improving the overall
manipulator time response by 25-35%. A feedforward control approach at the end of
the motion has aiso been implemented to solve the problem of chattering around the
end position. A comparison of the simulated optimal trajectory and actual measure-
ments from an industrial maunipulator, the CRS A251, has confirmed the validity of
the strategy presented here.

In view of this fact a custom controller interface to the robot is currently being
developed 1o test the practicality of a real-time imiplementation.
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Abstract

A near-optimal solution to the path-unconstrained time-
optimal trajectory planning problem is addressed in this
paper. While traditional trajectory planning strategies
are entirely hased on kinematic considerations, manipula-
tor dynamics are neglected altogether. This often results
in mathematically tractable solutions which do not max-
imise the performance that mantpulators might he capa-
ble of at any given time. The strategy presented in this
work has two distinguishing features. First, the trajec-
tory planning problem is reformulated as an optimal con-
trol problem which is in turn solved using Pontryagin’s
Maximum/Minimum Principle. This approach merges the
traditional division of trajectory planning fallowed by tra-
jectory tracking into one process. Secondly, the feedback
form compensates for the dynamic approximation errors
derived from the linearizatiou approach taken and also the
fundamental parameter uncertainty of the dynamic equa-
ticns of motion. Results from simulations and an on-line
implementation to a general purpose open-chain indus-
trial manipulator, the CRS A251, confirm the validity of
the approach and show that maximising the capabilities
of the device can lead to an overall improvement in the
manipulator time response of up to 25-30% .

1 Introduction

The hasic problem in robotics is planning motions to solve
some specific task and then controlling the response of
the robot to achieve those motions. Depending on the
literature it is commeon practice to refer to the path as
the curve in space that the manipulator end-effector must
visit during the motion with central attention to collision
avoidance. A trajectory is defined as the time sequence
of intermediate configurations of the arm along the pro-

grammed path. These configurations, together with their

first and possibly second time derivatives are then fed to
the servo mechanisms controlling the actuators that ac-

tually move the arm. Most current industrial manipu-
lators follow these steps to accomplish a specified task
because the overall motion process could become fairly
complicated if considered in its entirety [1].

Traditional trajectory planning strategies such as low
degree peclynomials, cubic splines, linear functions with
parabolic blends or bang-bang [2] are entirely hased on
kinematic considerations to satisfy a set of constraints on
the position, velocity and acceleration of the arm at a
number of points along the desired trajectory. Regarding
control strategies, practically all industrial manipulators
currently in use are based on classical linear feedback con-
trollers with PD or PID algorithms.

However, it is well known that mechanical manipulators
are multibody systems whose dynamic behaviour is de-
scribed hy strongly non-linear differential equations. Non-
linearities are associated both with position and velocity
variahles, and also their payloads. While a few more ad-
vanced model-hased coutrollers [3] compensate for some
of the position-dependent non-linear terms such as grav-
ity they very often neglect the velocity-dependent terms
in the controller design. Although industrial trackers can
generally keep the manipulator fairly close to the desired
trajectory [4], the simplistic division of robot motion into
trajectory planning and tracking often results in mathe-
matically tractable solutions which do not maximise the
manipulator’s maximum capahilities. The source of such
underutilisation lies in the fact that hoth maximum speeds
and accelerations/decelerations are limited for a given
robot structure hy the torque capacity of the joint actu-
ators which vary across the workspace. Yet when trajec-
tories are planned constant maximum bounds along each
degree of freedom (DoF) are assumed. Thus, in order not
to exceed the actual capabilities of the device, these spec-
ifications must be chosen conservatively, possibly forcing
the robot to be underutilised [5].

A procedure to overcome these drawhacks is proposed in
this paper by formulating the design of a trajectory plan-
ner as an optimal control problem in configuration space
with account for the dynamics of the manipulator. This
method removes the traditional inefficient assumption of
trajectory planning and control as two separate motion

'stages. The work presented focuses on on-line minimum-
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time point-to-point nunconstrained motions, i.e., robotic
applications which do not require manipulators to strictly
follow a prescribed path or trajectory between points. In-
stead, collision avoidance is taken care of at task level
by some means of specifying appropriate control points.
Hence, the manipnlator control problem can be addressed
as a more general form in which the robot is given rel-
ative freedom to move along any trajectory between any
' two given intermediate or.end path points.

Althongh the approach taken to solve the problem
is similar to that adopted by some researchers in the
past [4, 6, 7], in their work a geometric path is first
assumed given as a function of a single parameter A,
@ = f(A). Then the path is time parameterised as A(f) to
minimise a pre-specified performance index {e.g., a func-
tion of time) subject to the dynamic constraints of the sys-
temn. The compntational complexity of these algorithms
is such that they have been regarded for off-line use in the
literature. .

A more general approach to the truly unconstrained
problem where the shape of the path is also optimised in
the process was presented in [2], in which the use of geo-
metric uniform cnbic B-splines was extended to solve the
optimal problem. The resulting non-linear programming
problem was then solved with the sequeutial gnadratic
programming (SQP) numerical algorithm. The optimality
of the solution however, depends on several factors such
as an initial guess for the unknown spline coefficients and
the traveling time. Furthermore, the iterative procedure
renders it suitable for off-line use only.

The approach described here computes a trajectory that
is optimal with respect to a timing performance index
withont going throngh an intermediate geometric path,
and is also simple enough to allow for on-line implemen-
tation with actual personal computers. The work is sim-
ilar to the optimal weighted feedback controller initially
described and simulated in [8]. However, new alterna-
tives towards an efficient on-line implementation of a time-
optimal algorithm have been explored. In particnlar, a
close look at the manipulator electro-mechanical parts and
a more general form of dynamics linearisation provides a
more realistic approach to the design of a truly on-line
optimal unconstrained trajectory generator.

The validity of the algorithm presented in this paper
has been established by numerical/graphical simulation
of the first three joints of an industrial manipulator with
‘five rigid links, the CRS A251. The accuracy of the simu-
lations is demonstrated in a comparison to measurements
performed on an implementation of the strategy on the
real rohot.

2 Problem Statement

The problem can then he summarized as follows: Using a
closed form of manipulator dynamics ! as shown in equa-

lderived from a Lagrangian formulation of mechanics

tion (1) find the optimal path that the robot tool centre

" point (TCP) should follow to move (in joint space) from

the initial position g4, to the final position g; ; while min-
imizing a performance index J(¢). :

D(q){+H(q,4)+G(q)=T (1)

where D(g) denotes the n x n link and actuator inertia
matrix (n = number of DoF of the manipulator), H(q, q)
is a n x 1 vector containing all velocity dependent terms
arising from centripetal and coriolis forces and also effec-
tive viscous friction and G(q) represents the n x 1 gravity
force terms. Joint torques are included in =.

Depending on which parameters are considered in the
cost' function J(t) the problem can be seen as an en-
ergy optimizaiion problem, minimnm time problem, a
combination of both, acceleration optimization problem,
etc. .. Efforts are heing concentrated here into reducing
the time required by the manipulator to achieve the de-
sired location, i.e., the optimal time problem. Thus, the
performance index can be expressed as:

ty
J(t) = / 1dt
L

2.1 Non-linear Optimal Trajectory Plan-
ner

(2)

If the terms of equation (I) were expanded it wonld be
casy to see that they are inherently nonlinear, hoth in
position and velocity variables. This makes it impossi-
ble to design a trajectory planner-contreoller based on lin-
ear control theory. However, since equation (1) represents
the nonlinear plant dynamics correctly, we can use this
model to actively compensate for all nonlinearities as oth-
ers researcher have done in the past [9]. To this end the
prohlem was initially attempted hy using modern optimal
control theory [10]. Hence, a 2n-dimensional state vector
y(t) = [y1(1), v2(1)]T = [g, 4] will ke nsed to rewrite

‘the dynamic equation (I) in state-space form as

y = A(y) + B(y)~r (3)

where
— Yy
Aly) = [ D= () H (y1, y3) + Glya)] ]

5w = p-fiyy |

Each joint of an industrial manipulator is driven by
separate actnators and therefore the optimal trajectory
is designed under constraints imposed on the maximum
torque bounds that can be exerted by the actuators, i.e.,
7 < |r%|. Given the initial and final states Yy, and Vi,
this results in a non-linear two-point honndary-value prob-
lem whose solution is very difficult, if not impossible to
obtain [8]. In order to overcome such difficulty an alter-
native approach is proposed where system equations are
linearize and decoupled in terms of the joint variable q.

(4)



3 . Linear Optimal Trajectory Plan-
ner '

The dynamic model (3) can be first rearranged into a
closed-form where there is a clear structure of the depen-
dency between the acceleration of joint i and the actuator
torgue driving the joint as follows

v2, = ai(y)n + Bi(y, vz, 1) i=1l...n ()
where
~ai(y) = D' ()
Bi(y1, 92, 7) = e jui DG (1) 75— (6)

oy D5 () [ Hi(w1, 92) + Gi(w)]

Di—jl denotes the (i, 7)th element of the inverse of the
" inertia matrix, Coefficients a;(y1) and B;(y1, Y2, T) are
time-variaut non-linear functions of the manipulator po-
sition, velocity and input. However, equation (5) conld
. be regarded as an uncoupled linear system by assum-
ing o; and f§; constant during each sample interval AT
at which the trajectory is generated. 1t will be as
sumed [10] that the sampling interval is small enough so
that the continuous control signal can be approximated
by a piecewise-constant function that changes only at in-
stants t = 0,AT, ..., (N — 1)AT. That will allow to ap-
proximate the inertial coupling in the joint at time t. with
the last contrel input at time ¢, — AT with a mintmal over-
all error. Non-linear terms in y1 and yg are considered
in feedhack form by using the manipulator present state
at the beginning of. the current sampling period ¢.. The
resnlting linear and decoupled equation for each link can
be then described as

(7

~ which rednces the problem to the solntion of a quasi-
double integrator problem that must be solved in real-time
at each sample interval. 1t is interesting to note kere that
in doing so the problern is most suitable to be treated with
concurrent programming and that is an objective for the
near futnre.

Yo, = T + B for i=1...n

3.1 The Double Integljator Problem

The double integrator problem [10] is applied when the
dynamic hehaviour of the system can be described by the
following set of ordinary differential equations:

dyi(t)/dt = yaft)
dya(t)/dt = T(t)

where y(f) = (y:(t), y2(t)) represent the state vector
for the nnitary-mass system. 1t can be shown by applying
Pontryagin’s maximum principle [10] that a necessary con-
dition to transfer the system from a specified initial point

(8)

t

Figure 1: Double Integrator State Switching Curve.

(%) to a specified end point y(t;) in minimum time is to
let the control variable 7(t) take one or other of its extreme
valnes 7¥(¢). 1t can also be shown that 7(t) changes sign
not more than once during the whole motion, providing
the optimal state switching curve illustrated in figure 1
where arrows show the direction of increasing time ¢. The
switching curve AOB can be described as a function of
the current state y(t) by

_y2(t) ()

27+(t) ©)

w(t) =

An optimal trajectory consists then on two consecu-
tive segments. In the first the state moves towards the
switching enrve AOB under the action of one of the two
maximumn control hounds. That is then followed by the
opposite maximum control action which effectively slides
the state along the switching curve towards the state ori-
gin. Hence, the time-optimal control law at any time ¢ can
be easily dednced in accordance with the following logical

ranles:
T(t) = { . .
if y(t) lies above AOB or on BO
| (10)
It is interesting to note the symmetry of the optimal
curve AQB with respect to both axis given the time-
invariability of the system described by (8).

(1)
(1)

if y{t) lies below AOB or on AQ

3.2 Structure of the Optimal ’I&;ajectory
Planner-Controller

The approach described above was extended to solve
the uncoupled quasi-double integrator prohlem described
by eguation (7). However, the inclusion of the state-
dependent manipulator dynamics makes the system time-
invariant no longer, proving then necessary to update the
optimal switching curve at each sample time 2. Unlike be-
fore the optimal switching curve at each time ¢ can not be

2that is a great burden for real-time purposes if the robot is to
be operated at high speeds as is desirable
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Figure 2: Quasi-Double Integrator State Switching Curve.

descrihed by a unique equation, and therefore the contral
law for £ = 1...n needs to be considered for two separate
cases depending on the current state:

[ ify2,(t) 20 ,
' - v3, (1)
ny={ TO Tl < o
7 (1) otherwise
if y2,(t) <0 y )
: ¥, (t
7(t) = T:“'.("') if yy,(t) £ 20'_(‘:)1_;@) ¥ A0
. 7 (t) otherwise

(11)

The behaviour of such control law at any instant time

t can he depicted by the optimal state switching curve of

figure 2 where the two cases are clearly identifiable by the
nou-symmetry of the optimal curve. -

Since the dynamic model is updated with state feedback
information at the beginning of each interval AT the ap-
proximation error described in Section 3 is implicitly com-
peusated. Furthermore, at present time t, the optimal
control input should be determined hased on the dynamic
behaviour of the manipulator over the period [t.,tf]. Yet
the dynamic coefficients are known for ¢, and ¢y but not
for the period in between. 1t is therefore necessary to
find a way to describe the overall dynamic behaviour of
the system for the remaining of the actual motion on the
basis of the current state and the final state. Some meth-
ods have been devised [8) which propose an arithmetic
average of the dynamic coefficients. A more general forimn
proposed in [9] has been adopted in which the overall dy-
namic behaviour of the manipulator is defined by two fac-
tors Ay, A2 € [0,1], one for each dynamic coefficient. This
is shown in (12) for 1 = 1...n. The use of a factor allows
for each boundary condition’s dynamic performance to be
weighted separately in the estimated final value. It also
gives the flexibility to set weighting coefficients to differ-
ent values (although the same values have been employed

here for simplicity).

(1= A)aite) + Meifty)
(1= X2)Bilte) + Aafi(ty)

(12)

The resulting algorithm that yields the minimum-time

N (rfd) trajectory and control action the robot should follow to

move from the initial to the final state can be formulated
as follows:

1. Derive the manipulator dynamic model. Lagrangian
mechanics have been used here, but other alternatives
are also viable. Most dynamic parameters have been
estimated according to information from the manu-
facturer.

2. Given initial and final states compute the correspond-
ing control actions from equation (1}. The initial con- -
trol action will act as the estimated control input into
the algorithm.

3. Calculate dynamic behaviour for current state. That
is described by a{gq) and f(q,¢,7) in equation (6).
The linear approximation described by (7) is also ap-
plied now to ohtain the linear behaviour of the system
during the current time interval AT.

4. Average the dynamic coeflicients according to (12] to
achieve an overall dynamic performance of the ma-
nipulator. A constant A=0.5 has been used here for
both coefficients assigning the same weight to both
states but further work to discern the significance of
the weighting factors is currently being undertaken.

5. Use the current estimated dynamic model to update
the switching curves according to the control law de-
scribed by (11) and compute the optimal control ac-
tion.

6. Go back to point 3 if final state has not been reached.

A well-known problem with any bang-bang method is
control chattering in the vicinity of the target state caused
by frequent switchings of the control input. Different al-
ternatives to alleviate this undesirable effect have been
proposed in the literature, e.g., the use of a smooth-
ing function [11] or switching to a linear controller when

"the manipulator is within a prescribed range of the end

state [8]. In the work presented here the possibility of
applying feedforward torque control [3] around the de-
sired end state has been sought with successful results.
Therefore point 6 of the algorithm is further extended to
compare current state with target state. If the difference
is less than some state hounds specified by the user, the
feedforward controller comes into action.
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4 Simulation and Experimental
Results

To simulate the structure of the proposed algorithm the
system of non-linear equations that describes the be-
haviour of the manipulator under the optimal control ac-
tion was integrated numerically using the fourth order
Runge-Kutta algorithm. The program was written in
ANSI C and linked to an advanced graphical robotic simu-
lation environment running under UNIX 3. The kinemat-
ics, dynamics and CAD models of the CRS A251 industrial
manipulator were also developed and linked to the simu-
lator. For more details on the actual implementation the
reader may refer to [12].

The experimental equipment setup included a Pentium
PC@75Mhz with one Lab-PC+ data acquisition card and
a purpose-built PCB dedicated for each joint to increase
processing speed. The PCB design holds mainly the digi-
tal counters required to obtain state feedback information
from the industrial controller, along with analog outputs
for the drive voltages to the motor power amplifiers.

Since the wrist joints are usually dominated hy inertia,

3UNIX is a trademark of Bell laboratories.
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Figure 5: CRS PID joint 1
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Figure 6: CRS PID joint 2

with gravity and inertial coupling effects in the range of
one or two orders of magnitude down [13], only the gross
motion links (waist, upper and fore arm)} have been con-
sidered here for optimisation. Furthermore, due to lack
of space results from joint 1 (waist) will not be presented
here. This is not detrimental to the overall understanding
of the paper, moreover when the motion of joint 1isin a
gravitational-free plane.

As a basis for comparison, the same joint path end
points were presented to the simulation and experimen-
tal environment, and also the commercial controller. The
experiments were computed at a sampling rate of 250 Hz
which proved to be fast enough for the computational bur-
den of the algorithm. Figures 3 and 4 demonsirate the ac-
curacy of the simulation by superimposing a thinner curve
gained from measurements to the bold curve gained from
simulation of the torques exerted by the optimal trajec-
tory planner. Some general conclusions can he drawn. It
can be seen how due to the inherent performance of the ac-
tuators, the nominal torque is also dependent on the state
of the system. Hence, saturation of the actuators must
also bhe taken into account to achieve an accurate simula-
tion vet the feedback nature of the algorithm allows for



constant bounds to be assumed. Whether variable state-

dependent torque bounds would make any improvement
to the optimal algorithm is still being investigated. Also,
although lower feedback gains can be applied due to the
use of a feedforward strategy around the end state, the
change to the feedforward controller is still clearly mani-
fested in Figure 3 with a high torque peak nearby the end
position. This, however, is only kept for a very short pe-
riod of time and does not contribute notably to the overall
timing. In contrast, higher gains reduce the steady sta.te
error to around +/ — 0.005 link radians.

Figures 5 and 6 show the actuator response in Volts
of the real manipulator moving from the same initial to
end poiuts at maximum actuator speed with no load.
The commercial controller follows the traditional motion
pipeline, i.e., an initial spline joint interpolated trajectory
between path end points with command updates at 18 mil-
lisecond intervals followed by a PID closed loop algorithm
at a servo rate of 1kHz. Despite au expected null steady-
state error in the commercial manipulator, the optimal
algorithm proves superior regarding timing constraints as
a comparison of Figures 3, 4 and 5, 6 demonstrate. This
makes the algorithm most suitable for gross motion whea
speed becomes the parameter to watch.

5 Concluding Remarks

An algorithm has been presented in which the role of ma-
oipulator dynamics in trajectory plauning and control is
investigated. Incorporating dynamics into the trajectory
planning stage and applying optimal control theory has
resulted in'a maximisation of the device capabilities, thus
improving the time response by up to 25-30%.

The scheme has been oriented towards an on-line im-
plementation in which its ¢losed-loop feedhack form and
simplistic linearisation approach has proved clearly advan-
tageous to cope with the complexity of the robot dynamic
model. A feedforward controller has also been proposed
to remove the undesirable chattering in the vicizity of the
end state.

A comparison of the simulated results with actual mea-
surements from an experimental setup has confirmed the
validity of the strategy presented here.
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