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Abstract

Purpose The spatial truss is a special type of structure in civil
engineering with striking visualization, used for covering large spaces
such as stadiums, commercial centers, and train stations. Due to
its multi-component nature and large size, timely monitoring of its
structural health is a tedious and challenging mission, for which
using vibration signals measured from embedded sensors has shown
promising results, reducing significant time and e↵ort compared to
manual methods. In order to exploit vibration data more e↵ec-
tively, this study explores a novelty data-driven approach that per-
forms multiple structural damage detection tasks ranging from detect-
ing damage, localizing damage, and quantifying damage severity.
Methods The main steps of the proposed approach are: con-
verting truss data, including geometrical information and vibra-
tion signal, into graph data, leveraging the graph attention
network for spatial-temporal feature extraction, and elaborat-
ing a compound loss function for multi-task learning. The pro-
posed approach’s e�ciency and e�cacy are quantitatively demon-
strated via four case studies with increasing levels of complexity.
Results The results show that the detection achieves more than
95% accuracy for both a 2D truss structure with 23 elements and
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a 3D dome truss with 120 bars, while around 90% detection accu-
racy is obtained for multi-damage scenarios in a 3D spatial double-
grid truss with 581 bars. Furthermore, the high detection accuracy
is rea�rmed with experimental data of an actual truss structure.
Conclusion The unique advantage of the proposed model over
other counterparts is the ability to encode the geometrical con-
figuration of the truss structure via the adjacency matrix. There-
fore, it can be applied to various truss structures in a straightfor-
ward way with minor adjustments, given appropriate training data.

Keywords: deep learning, stochastic processes, forecasting, structural
engineering, numerical simulation

1 Introduction

The spatial truss is a particular structure class with a high sti↵ness/weight
ratio and visually appealing form, regarded as a de facto choice for roof struc-
tures of very large spaces, for example, Changi Airport in Singapore, Arena
stadium in Germany, the largest industrial factory Boeing Everett in the USA,
etc. Truss structure typically consists of a large number of members with sim-
ilar geometrical and material properties, thus ensuring its structural health in
a pristine state is a tedious and challenging task, for which using vibration sig-
nal measured from embedded sensors has shown promising results, reducing
significant time and e↵orts compared to manual visual inspection methods.
Furthermore, with the development of advanced technologies such as Wireless
Sensor Networks, Internet of Things, and Big Data, measurement data can be
collected continuously and in the long-term, thus catalyzing the evolution of
Structural Health Monitoring (SHM) at scale [1]. However, turning massive
measurement data into actionable information is a challenging task for the
engineering community not only because of the high dimensionality of data
but also due to inevitable uncertainties such as computational errors, signal
noise, and environmental e↵ects.

Towards a pragmatism of automatically monitoring the structure’s health,
dubbed Digital Twin [2], it is required to build an evolving digital replica
of the physical structure [3]. The former is closely linked to the latter by a
system of sensors measuring the structure’s operational state. Conventionally,
the digital replica is built using the finite element method with initial input
parameters corresponding to the structure’s intact state. Then, model updat-
ing methods [4] are utilized to adjust these input parameters such that the
updated numerical model can reflex the structure’s behavior with minimum
deviation compared to sensor measurement. After that, the numerical model
can assess the structure’s current state, detect unobserved damage, and pre-
dict future reliability. Although able to provide reliable results and applicable
for a wide range of structures, this approach requires significant computa-
tional time and is only available to a small portion of users having expertise
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in structure, optimization, and modeling. Recently, the data-driven method
has gained increasing attention from the engineering community thanks to its
rapid inference time, highly satisfying results for a spectrum of domains [5, 6].

One of the common ways to build an SHM application is to extract dynamic
characteristics such as frequencies, mode shapes, etc., from measured vibra-
tion data and then use optimization or machine learning algorithms to detect
damage existence. Favarelli and Giorgetti [7] compared the performance of var-
ious machine learning-based algorithms using modal frequencies as input for
detecting anomalies in bridge structures. Hosseinabadi et al. [8] used wavelet
transform as a feature extractor to distill features from vibration time-series
data, which were utilized as input for an artificial neural network-based dam-
age detector. Such a method required an user-defined mother wavelet type
and associated scale and shift parameters. Santos et al. [9] proposed a novel
optimization algorithm called the global expectation-maximization genetic
algorithm applicable for non-linear vibration data. Although the feature-based
methods can achieve fairly high detection accuracy, they require extracting
structures’ nature frequencies from raw data in advance via some specialized
techniques such as operational modal analysis, stochastic subspace identifi-
cation method etc. This can hinder its applicability and creditability to a
real-time framework, particularly in the case of noisy data, where modal data
are sensitive to noise intensity.

Recently, the deep learning-based data-driven technique has gained con-
siderable prominence as it possesses two superior properties: feature learning
and scalability. With feature learning, it is able to automatically extract mean-
ingful features from raw data thanks to a hierarchical multi-layer architecture
where lower layers identify basic features, and deeper layers synthesize higher-
level patterns in terms of learned lower-level ones [10]. With scalability, it is
acknowledged that bigger data resort to larger architectures to maximize ben-
efits and vice versa. That is why this artificial intelligent paradigm has become
an exciting research direction, achieving impressive results in diverse research
areas such as object recognition, machine translation, cancer detection, fault
diagnostics, and so forth. In the context of SHM, Avci et al. [11] engineered
an approach using 1D convolutional neural network architecture and wireless
sensor networks for determining the loss of connection sti↵ness of a steel frame
structure. Later, Zhang et al. [12] also adopted the 1D convolutional neural
network method for carrying SHM tasks of a steel bridge structure using vibra-
tion sensor signals as input. For monitoring the structural health of plates of
di↵erent materials, Zhang et al. [13] proposed to use a deep convolutional neu-
ral network along with guided waves. Another deep learning architecture was
proved e�cient in detecting faulty behavior is Long Short Term Memory, which
was utilized by Yuan et al. [14] in estimating the remaining useful life of aero-
engines under various degradation scenarios. A qualitative and quantitative
comparison of di↵erent deep learning architectures for SHM tasks was con-
ducted by the authors in [2, 15, 16]. Another benefit of data-driven approaches
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is that they can be applied to low-cost devices, thus reducing the budget for
long-term monitoring, as demonstrated by Moallemi et al. [17].

Though these deep learning architectures can take into account multiple
vibration signals as input, they do not have an explicit mechanism to exploit
the inherent spatial correlation of sensor locations. This shortcoming might
impede the SHM results because, in reality, the number of sensors is signifi-
cantly smaller than that of the structural members, and measurement signals
are only available at a subset of members. On the other hand, retransforming
the truss structure into graph data allows for implicitly capturing their geo-
metrical and topological properties. After that, a special architecture in the
artificial intelligence literature, namely, the Graph Neural Network (GNN) pro-
posed by Scarselli et al. [18], could be used to exploit this graph information.
Though originally, GNN was designed for non-Euclidean data, some authors
have proved that it could be beneficial for Euclidean data as discussed in [19],
where signal data and connections between signals could be reformulated as
a graph, then the fault diagnosis problem can be recast as a graph-level task.
Tong et al. [20] reframed the fault detection of transmission lines into a graph
classification problem, then employed a GNN model to improve the detection
accuracy. Since a truss structure typically has a large number of similar mem-
bers, it is required to engineer an e↵ective SHM approach able to detect and
locate damages with reduced computational time given limited available data
from strategically-placed sensors. Therefore, this study investigates a multi-
task approach specifically designed for structural damage detection (SDD) of
truss structures based on a variant of GNN, namely the graph attention net-
work (GAT). The proposed approach is abbreviated as m-SDDG. Unlike the
reviewed works where di↵erent detection tasks were carried out separately, one
task each time, this approach performs multiple structural damage detection
tasks simultaneously. In other words, its output is not a single value but a tuple
including a binary value signaling damaged/undamaged states, a value/vector
indicating the damaged member’s location, and a value/vector in percentage
denoting the damage severity. This is done thanks to the integration of three
following advents: i) converting truss data including geometrical information
and vibration signal into graph data; ii) leveraging the graph attention net-
work for spatio-temporal feature extraction; and iii) elaborating a compound
loss function for multi-task learning (MTL). In short, the main contributions
of this study can be summarized as follows:

• A data-driven framework is developed for structural damage detection, par-
allelly performing multiple tasks, including damage detection (SHM level 1),
damage localization and damage severity (level 2/3) without significantly
increasing computational complexity compared to conventional single-task
counterparts (only under 10% more central processing unit (CPU) time).

• The proposed approach is applied to di↵erent truss structures under time-
varying excitations and shows highly satisfied detection results (>95%
accuracy) without compromising any measurement metrics for each task of
interest.
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Fig. 1 Graphical representation of the proposed m-SDDG framework.
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Fig. 2 Explanation of a typical GAT layer.

• Not being limited to the single-damage case, the proposed approach is also
able to extend to multi-damage cases while still providing reasonable results
(⇡90% for damage detection and more than 80% for damage severity).

The rest of the paper is organized as follows: Section II presents the
key components of the framework involving the graph attention network-
based architecture, and multi-task learning. In Section III, the performance
of the proposed approach is justified through four case studies. Finally, the
conclusions and perspectives are drawn in Section IV.

2 Multi-task SDD Framework using Graph

Attention Network

2.1 Vibration-based Structural Health Monitoring

At first, it is relevant to clarify why vibration signals contain meaningful
information for damage detection. A set of sensors such as accelerometers or
LVDTs are placed at truss joints to measure vibration responses caused by
time-varying excitations; the measured quantities can be displacement U(t) or
accelerations Ü(t). Usually, vibration signals measured when the structure is
in a healthy state are given in advance. After that, any new vibration signals
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or features extracted from signals are compared with those collected in the
original healthy state to assess the structure’ actual status. However, directly
comparing raw high-dimensional vibration signals against each other often
does not provide satisfactory results. Therefore, current SDD methods involve
extracting eigen frequencies and eigenmode shapes from vibration signals by
using the operational modal analysis method [21]. This is because the eigen
frequencies and eigenmode shape are directly related to the matrix sti↵ness of
the structures via the matrix eigenvalue problem as follows:

[KKK � !2
iMMM ]�i = 0, (1)

where �i and !i are the eigenmode and eigenfrequency of mode i. Thus, cal-
culating the deviation between those values from intact states and those from
current states, enables us to estimate the reduction in sti↵ness matrix and
then perform the damage detection. However, the operational modal analysis
method has a high-entry level, as it requires expertise in structural dynamics
and mathematics. In addition, it needs specialized software such as MACEC
[22], making it di�cult to incorporate into an online SHM application. There-
fore, it is desirable to design another strategy that can e↵ectively handle
vibration signals.

In this study, one presents a data-driven approach for performing multi-
ple structural damage detection tasks for truss structures, namely m-SDDG,
as illustrated in Fig. 1. The proposed method directly uses vibration signals
and the adjacency matrix encoding spatial correlations of sensors as input to
perform structural damage detection, bypassing the need for sophisticated fea-
ture analysis and additional preprocessing steps such as modal analysis for
extracting dynamic characteristics or short-time Fourier transform for spec-
trogram images of signals. The graph attention layers act as an automatic
feature extractor whose outputs are fed into a fully connected layer for per-
forming SDD tasks. The performance of the proposed approach is evaluated
via a measurement metric such as accuracy and is graphically presented via a
confusion matrix or evolution curves.

Given a structure instrumented with Ns sensors across its body, data
collected from each sensor are stored in the form of a vector Ui 2 RLs

with Ls being the signal length. Hence, data collected by all Ns sensors are
[U1, . . . , UNs ] 2 RNs⇥Ls . Next, the vibration-based SHM approach aims to
assess the current operational state of the structure using only U . A struc-
ture’s state could be denoted by a binary value (0/1) for (healthy/damaged),
or an integer value indicating the location of the damaged element, or a cate-
gorical variable for damage severity such as minor/moderate/severe. The input
and output data of multi-task vibration-based SHM can be aggregated into a
database D = [UUU, Ydet, Ylocal, Ysev] with UUU 2 RNsample⇥Ns⇥Ls are a 3D tensor
of collected data, Nsample is the total number of samples, Ydet, Ylocal, Ysev are
the Nsample-length vectors indicating structures’ states for damage detection,
localization, and severity, respectively. On the other hand, the database for
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the single-task model is obtained by considering only one type of output, i.e.,
[UUU, Ydet], [UUU, Ylocal] and [UUU, Ysev].

With the m-SDDG method, one requires in advance a training dataset that
has a di↵erent set of vibration signals with corresponding structural states. A
structural state can be labeled as ”healthy”, or ”damaged” for damage detec-
tion, ”minor”, ”medium”, ”severe” for damage severity, or a label denoting
the damage location for damage localization. Next, the proposed method will
learn latent features that are significantly more sensitive to structural states
than raw vibration signals. Given a new vibration signal, the learned model
will map its latent features with the most likely structural states.

2.2 Graph Attention Network Layer

A truss structure can be naturally represented as a graph G = (V,E), where
V represents the set of nodes (truss joints), NV is the number of nodes, E
denotes the set of edges (truss bars) [18]. The connectivity of the truss joints
can be concisely described via an adjacency matrix AAA with binary values. If
there is a connection between node i and j then Aij = 1, otherwise Aij = 0.
One refers ne(v) as a set of neighbor nodes connected to node v (including
v) and co(v) as edges connecting v with ne(v). In practice, a truss structure
can comprise a large number of truss joints, but each joint usually connects to
no more than 10 other joints. Hence, matrix AAA can be represented as a sparse
matrix, helping improve memory e�ciency.

On the other hand, each node v of a graph has its own set of features
denoted by Xv 2 RLs with Ls being the feature dimension. In this study, the
considered features are vibration signals recorded at the truss nodes.

GAT is a method to learn new representations of nodes which are sensitive
to the investigated tasks, based on adjacency matrix AAA, node features and
attention mechanism. A new representation of node v at layer l + 1 can be
derived from its representation at previous layer l as follows:

hl+1
v = f(hl

ne(v)) = �

0

@
X

u2ne(v)

↵u,vWWWhl
ne(v)

1

A (2)

where hl+1 and hl are hidden states of nodes at layer l+1 and l, respectively.
f is a neighborhood aggregation function. Note that, the first hidden state
l = 0 of a node corresponds to the input layer, i.e., h0

v = Xv. In the right-hand
side of the equation,WWWhl

ne(v) is a linear transformation of node representation

via a learnable weight matrix WWW . Using WWWhl
ne(v) rather h

l
ne(v) can e↵ectively

reduce the dimension of node features, especially in case of lengthy vibration
signals before applying the attention mechanism because the latter is quadratic
computation and memory consumption with respect to the input length. ↵u,v

is a normalized attention coe�cient between two nodes u and v, signifying
how much influence the features of node v have on the representation of node
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u. More specifically, ↵u,v is calculated as follows:

↵u,v =
exp(eu,v)P

w2ne(v) exp(ew,v)
(3)

where eu,v is an unscaled attention coe�cient obtained from a single-layer
feedforward neural network using the combination of representations of nodes
u and v as input:

eu,v = a(WWWhl
u,WWWhl

v), (4)

where a : RDV ⇥RDV ! R is a single-layer feedforward neural network, DV is
the feature dimension of WWWhl

u. It is worth mentioning that the above calcula-
tion procedure involves only neighbor nodes ne(v), not the entire graph, and
we can compute attentional coe�cients for di↵erent nodes in a parallel man-
ner, thus, considerably improving the computation e�ciency of GAT. Fig. 2
provides a graphical explanation of the GAT layer via a truss structure with
7 nodes. For example, considering node 3 of the truss, their neighbor nodes
are 2, 6 and 7, and their vibration signals are v3, v2, v6 and v7, respectively.
Next, using Eq. (2), the new representation of node 3 will be obtained on the
rightmost of the figure. A similar procedure is applied for all nodes of the truss
structure.

2.3 Multi-task Structural Damage Detection Framework

The MTL model in this study is developed by using the hard parameter shar-
ing strategy. The model consists of intermediate layers with shared parameters
for synthesizing latent representation from input data and a task-specific out-
put layer comprised of multiple neurons, each corresponding to an individual
task. Traditional damage detection approaches solve separately di↵erent struc-
tural damage tasks, i.e., damage detection, damage localization, and damage
quantification by using di↵erent detection models, although their inputs are
mostly the same. On the other hand, recently, machine learning scientists have
experimentally shown that combining di↵erent tasks into a MTL model [23]
can, in fact, improve performance for each individual task of interest while
simplifying the learning process as there is only one model to train. The supe-
riority of the multi-task approach is attributed to the fact that instead of
only using some domain-specific exploited features for overfitting a specific
task, the MTL is forced to learn more generic patterns from data to achieve
good overall accuracy for all tasks investigated. Similar to the human learn-
ing process, knowledge acquired for one task can benefit others, even if they
are seemingly unrelated. Being inspired by this finding, one recasts structural
damage detection tasks into equivalent machine learning problems, namely,
damage detection into binary classification, damage localization and damage
severity into multi-label classification. After that, these problems are solved
simultaneously by using a compound loss function involving di↵erent terms as
follows:

⌦(X) = �DLD(X) + �LLL(X) + �SLS(X) (5)
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where ⌦(X) is the compound loss, X is input data, LD, LL, and LS are
losses for damage detection task, damage localization, and damage sever-
ity, respectively. �L,�D, and �S are their corresponding weights. These SDD
tasks, considered here, are not entirely independent but hierarchically related
together. To be more specific, one can only localize damaged members if the
damage occurs and then estimates how much their cross-section losses are.
Such a hierarchical relationship is accounted for via the values of weights asso-
ciated with the loss functions of these tasks. These three weights sum up to
1. More specifically, the weight �D for the damage detection task is set to 0.5,
while those for localization and severity tasks are both 0.25 unless otherwise
stated. It can be seen that if the training error related to the localization task
is at the highest, the compound loss will be larger than that of two single-task
models for damage and severity detection but smaller than that of the local-
ization detection. In the other extreme case, where the tasks are completely
unrelated, a negative transfer problem may occur. This means a task may
dominate the training process [24], guiding the model to learn some specific
representation of data, making the model achieve high accuracy on this task
but severely degrade the overall performance on other tasks.

With such a hard sharing-parameter architecture, the number of trainable
parameters of a MTL model is only higher than that of single-task models by
a small amount resulting from the task-specific fully connected layers. Thus,
theoretically, its model complexity and computational complexity could be
slightly higher than the most complex task but significantly lower than the
total cost of all tasks. The input data consist of Nv vibration signals with
length Ls and a 2D adjacency matrix of size [Nv, Nv]. The first GAT layer
results in new representations of nodes with the shape of [Nv, L1] where L1 is
a customizable parameter. The number of trainable parameters of this layer is
(L2+1)⇥L1+2L1, where the first term corresponds to the number of param-
eters of the linear transformationWWWhu, and the second term (2L1) correspond
to a feed-forward neural network calculating attention coe�cients per Eq. (4).
Similarly, the detail of the second GAT layer is also clarified in the table. After
that, the new representations of nodes are flattened into a 1D vector, before
going through a multi-output fully-connected layer, whose number of param-
eters is proportional to the number of tasks and number of scenarios. In this
study, the typical length of vibration signals Ls is from 1024 to 3000, L1 and
L2 are set to 512 and 128, respectively.

The proposed m-SDDG model is implemented with the help of the deep
learning library Pytorch geometric [25] written in Python. In summary, the
MTL investigated in this study is a standard hard-sharing, inductive bias MTL
where di↵erent tasks still belong to the same domain. By using only one MTL
model rather than three models for damage detection, damage localization, and
damage severity, one could increase the e�ciency and reduce storage require-
ments, thus, making the deployment easier to manage, maintain and update.
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Fig. 3 Schematic representation of the investigated Warren-type planar truss with num-
bering.

However, there may be a trade-o↵ between e�ciency and accuracy as the per-
formance of MTL is sensitive to selected tasks, including but not limited to
task di�culty, task complexity, task relatedness, etc.

3 Case Study

In this section, the proposed approach is applied to four case studies with
increasing complexity, from a 2D numerical truss with 23 elements to a 3D
dome truss with 120 bars, to a 3D spatial truss with 581 bars, and an actual
truss structure. Its realization steps are explicitly explained in detail, including
structure modeling, data preparation, damage scenarios, training process, and
testing detection results.

3.1 Case Study 1: Planar Truss Structure

The first case study aims to validate the applicability of the proposed approach
is a Warren-type planar truss, as shown in Fig. 3. The structure consists of
23 bars subjected to time-varying concentrated loads at six nodes on the top
chord, replicated from the work of [26]. The total span of the truss is 24 m
long, the height is 2 m, Young’s modulus is E = 210 GPa, the cross-section
area of the top and bottom chords is 20 cm2 while that of the diagonal bars
is 10 cm2. The external loads here are described by using Gaussian white
noise processes, which are widely adopted in the structural literature [27] with
amplitudes varying over time. In other words, the amplitude at each time
instants is regarded as an independent and identically distributed random
variable following a Gaussian distribution. The truss structure is modeled with
the help of the finite element software Abaqus Standard [28] with its bars being
modeled by using 2-node linear truss element T3D2.

Table 1 Random parameters for Monte Carlo simulations of the planar truss structure.

Parameter E F Damage Damage
(MPa) (N) location severity (%)

Distribution Normal Normal Uniform Uniform
Value N(210, 21) N(100, 10) [1 - 23] [0, 30, 60, 90]
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Fig. 4 Representative example of random concentrated load F3 (left), and corresponding
acceleration signal recorded at Node 4 (right).

For this example, one aims to utilize the proposed m-SDDG model to
inversely detect damages in the truss structure given vibration signals recorded
at truss joints. Fig. 4 illustrates a representative example of a vibration signal
obtained at the middle bottom node 4 by using the finite element model. The
database for training and validating the m-SDDG method is generated via
the Monte Carlo Simulation method. There are 5000 di↵erent simulations in
total. For each simulation, one randomly introduces damages under the form of
section loss, with various severity levels (30%, 60%, and 90% loss), to an arbi-
trary truss bar. Specifically, there are approximately 200 samples (5000/23) for
each damage localization and 1250 cases (=5000/4) for each damage level, as
summarized in Table 1. The duration of a simulation is 30 s, and accelerations
at every node except two ends are virtually recorded with a sampling frequency
f = 100 Hz, resulting in 3000-length vibration signals. Hence, the shape of the
database is [10000, 11, 3000] where 10000 represents the number of samples,
11 is the number of truss joints (except for two joints with boundary condi-
tions) and 3000 is the signal length. The data are then separately divided into
three sub-datasets, namely, training, validation, and testing data in a ratio of
80:10:10. Such a ratio commonly used in the SHM application [29, 30] is also
applied to other examples in this study unless otherwise stated.

Next, the training process is carried out, and obtained results are reported.
The adopted hyperparameters are the SGD optimizer, a mini-batch size of
128, and an initial learning rate of 10�4. The training process stops when the
validation loss does not decrease after 5 consecutive epoches that is known
as early stopping technique. The technique helps increase the e�ciency of the
training process since further training would not improve the model perfor-
mance. The final results of the training process are presented in Table 2 where
AccD, AccL, and AccS are the accuracy results of damage detection, local-
ization, and severity tasks, respectively. More specifically, the accuracy metric
is calculated as the ratio of the number of correctly classified samples to the
total samples. It can be seen that the multi-task model achieves high accuracy
on the validation dataset in all three tasks, i.e., 98.6%, 95.9%, and 97.5% for
damage detection, localization, and severity, respectively.
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Table 2 Comparison of SDD results for the first case study obtained by the proposed
m-SDDG and single-task counterparts.

Dataset Number Memory Multi-task model

of data (Gb) AccD AccL AccS CPU time
(%) (%) (%) (min)

Train 4000 1.85 99.4 98.3 99.0 72.5
Valid 500 0.21 98.6 95.9 97.5 0.44

Dataset Single-task model

AccD CPU time AccL CPU time AccS CPU time
(%) (min) (%) (min) (%) (min)

Train 98.2 62.8 98.8 62.3 94.5 62.4
Valid 96.6 0.41 96.4 0.40 92.6 0.41

AccD, AccL, and AccS are the accuracy results of damage detection, localization, and
severity tasks, respectively.

Fig. 5 Graphical representation of detection results via the UMAP technique. a) Damage
detection. b) Damage severity. c) Damage localization.

On the other hand, one compares the multi-task model with three single-
task counterparts. The single-task model is obtained by adjusting the number
of neurons at the output layer to only one and using a single loss term
rather than a compound loss involving di↵erent terms as described in Eq. (5).
Apparently, the table shows that the damage detection and severity accura-
cies obtained by MTL are clearly higher (98.57% vs. 96.41% and 97.5% vs.
92.6%) except for the localization results (95.9% vs. 96.41%). The reduction
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in accuracy of some tasks can be explained by the uneven distribution of inter-
nal forces within truss bars. For example, minor damage to a truss bar having
large internal forces may cause more negative e↵ects on the structure. Mean-
while, bars with lower axial forces that are severely damaged may only slightly
reduce the structure’s capacity. On the other hand, the training time CPU
required by the multi-task model is only around 14% higher than those of sin-
gle models (73 min vs. 62 min). Furthermore, when performing inference on
validation data, the di↵erence in computational time reduces to only about
9% (26.6 s vs. 24.3 s).

To better visualize the detection results on testing data, one utilizes one
of the most useful and friendly data visualization techniques, namely, Uniform
Manifold Approximation and Projection (UMAP) [31] to graphically represent
the similarity among data through clustering and dimension reduction. It is
expected that data from the same structural condition will be grouped into
the same cluster and well separated from others. Fig. 5 illustrates the UMAP
representation of the results on the testing data unseen during the training
process with three sub-figures for three detection tasks. Fig. 5(a) shows two
well-separated clusters of healthy and damaged class, except for a very small
number of red points at the boundary of the blue cluster. Fig. 5(b) also clearly
shows 4 clusters for healthy, minor, medium, and severe damage levels, though
there still exist some red points (medium) misplaced inside the green cluster
(minor). Fig. 5(c) displays all 24 clusters corresponding to 24 possible damage
locations. It can be seen that, overall, good separation between clusters is
obtained.

In summary, this first case study firmly validates the applicability of the
proposed m-SDDG in performing multiple SDD tasks at the same time with
accuracy results greater than 95% and time complexity slightly higher than
that of single-task competitors (<10%).

3.2 Case Study 2: 3D Dome Truss Structure

Table 3 Random parameters for Monte Carlo simulations of the 3D dome truss structure.

Parameter E F Damage Damage
(MPa) (kN) location severity (%)

Distribution Normal Normal Uniform Uniform
Value N(210, 21) N(1, 0.1) [1 - 8] [0, 30, 60, 90]

For the second case study, the structure of interest consists of 120 steel
bars triangularly connected, forming a visually appealing spatial truss with
a horizontal span of 3178 cm and a total height of 700 cm, as schematically
shown in Fig. 6. The material properties are Young’s modulus E = 210 GPa,
Poisson’s coe�cient 0.3, volumetric mass density ⇢ = 7850 kg/m3. The truss
bars are partitioned into seven groups, each with seven di↵erent cross-section
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Fig. 6 Schematic representation of the 3D dome truss with (a) dimensions and (b) group
labeling.

Fig. 7 Confusion matrices of detection results obtained by m-SDDG on the testing dataset.

areas graphically depicted in Fig. 6(a). When performing damage localization,
one attempt to identify to which group the damaged element belongs. In terms
of excitations, the structure is subjected to a time-varying concentrated load at
its summit. The boundary conditions comprise 12 simple supports restraining
translation movement in all three directions X, Y, and Z.

For the data generation, a detailed 3D numerical model of the dome struc-
ture is first constructed with the help of the software Abaqus. Next, damage
scenarios are introduced by reducing the cross-section area of an arbitrary truss
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bar by an amount in the range of [0, 30, 60, 90]%. There are 10000 simulations
in total, and the number of samples for each damage scenario is uniformly dis-
tributed as listed in Table 3. Using the same simulation parameters as the first
example, i.e., simulation duration T = 30s and sampling frequency f = 100
Hz, the shape of the database for the dome truss structure is [10000, 37, 3000]
where 37 is the number of truss joints as illustrated in Fig. 6.

To present the proposed approach’s performance, one utilizes the confusion
matrix, as shown in Fig. 7. The figure shows in detail detection results involving
correct results in the matrices’ diagonal, including true positive (TP) and true
negative (TN) samples and two types of false detections: false-positive one
(FP) in the upper o↵-diagonal cells and false-negative one (FN) in the lower
o↵-diagonal cells. Furthermore, the statistic metric F1 score is introduced to
evaluate the classification accuracy quantitatively, as follows:

P = TP/(TP + FP )

R = TP/(TP + FN)

F1 = 2/(1/P + 1/R)

(6)

A value F1 = 1 means prediction results in perfect agreement with actual
ones. High F1 scores (� 0.95) are achieved by the m-SDDG method, as shown
at the bottom of each subfigure. Besides, by adding up diagonal terms of
the confusion matrices, the obtained detection accuracy is 978/1000=97.8%.
Similarly, the accuracies computed for the localization task and severity task
are 95.6% and 95.4%, respectively.

3.3 Case Study 3: Double-Layer Grid Spatial Truss

Structure

For case study 3, one considers a double-layer grid truss structure from [32],
which is commonly used in covering large public spaces. This structure consists
of two parallel planes or curve grids of beams connected together by the third
grid of diagonal bars, as shown in Fig. 8. The dimensions of the structure are
presented as follows: the horizontal spans in X and Y-direction are Lx = Ly =
18 m, the depth is h = 3 m, the number of bars in the top, bottom, and diagonal
grids are 100, 81, and 400, respectively, resulting in a total of 581 bars. The
steel material has an elastic modulus of 210E3 MPa, yielding stress 235 MPa,
Poisson’s coe�cient 0.3, and volumetric mass density ⇢ = 7850kg/m3. The
cross-sections for the top, bottom and diagonal grid are D124⇥4.5, D102⇥4.0
and D89⇥3.5, respectively. The structure is simply supported at all peripheral
joints of the top grid. The time-varying random vertical loads are applied at
the inner joints of the top grid. The truss bars are divided into 20 groups as
shown in Fig. 8.

In this example, the multi-damage scenario is addressed, which means there
is possibly more than one damaged member in the structure. Such scenarios
usually happen in reality and pose significant di�culty to conventional meth-
ods. In terms of data generation, similar to the previous examples, a Monte
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Fig. 8 Schematic representation of the double-layer grid spatial truss structure with
dimensions and group labeling.

Table 4 Random parameters for Monte Carlo simulations of the double-layer grid spatial
truss structure.

Parameter E F Damage Damage
(MPa) (kN) location severity (%)

Distribution Normal Normal Uniform Uniform
Value N(210, 21) N(100, 10) [1 - 20] [0, 30, 60, 90]

Carlo simulation is carried out with 10000 simulations, each having a di↵erent
number of damaged elements ranging from 1 to 20. For each simulation, accel-
erations at about 50 joints (one-third of the total joints) at both the top and
bottom layers, excluding those with boundary conditions, are recorded and
used later as input for the m-SDDG model. Hence, the database has a shape
of [10000, 50, 3000].

The proposed multi-task method can handle the multi-damage scenario by
modifying the compound loss defined in Eq. (5) as follows:

⌦ =
20X

i=1

(�i,DLi,D + �i,SLi,S), (7)
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where the subscript i denotes the structural groups, Li,D and Li,S are losses
of damage detection and damage severity for members in group i. �i,D and
�i,S are their respective weights. Herein, �i,D = 0.7/20 and �i,S = 0.3/20,
as mentioned in previous examples, the weight for the damage detection task
should be more important. Besides, the output of the model is modified to a
40-neuron layer. Each pair of consecutive neurons corresponds to a structural
group: one for detecting damage and the other for assessing its severity..

Fig. 9 Learning curves obtained on a) training dataset and b, c) validation dataset.

The SDD results of the proposed m-SDDG model for the 3D spatial
truss structure are presented in Figs. 9 and 10, showing how its performance
improves throughout the training process as well as what is the final test-
ing accuracy. Fig. 9a illustrates that the training compound loss decreases

Fig. 10 Accuracy results obtained on testing dataset
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Fig. 11 Aluminum truss structure at Purdue University with node numbering and
dimensions [33]

sharply for the first 15 epochs, then diminishes gradually before becoming sta-
ble from epoch 30. Meanwhile, the validation accuracies for damage detection
and severity for all 20 groups exhibit clear improvements for the period of [0-
15] epoch, followed by fluctuating behaviors. The training process finished at
epoch near 50 according to the stopping criteria of no improvement in valida-
tion loss after 5 consecutive epochs. Final testing accuracy results are plotted
through two bar charts in Fig. 10. However, for this example, the accuracy
of the severity task is lower than that of the detection task (80% vs. 90%),
which can be explained by the highly repetitive nature of the structural layout.
Such a nature has a positive e↵ect in reducing the adversity of damaged ele-
ments making it more di�cult for the m-SDDG model to estimate the extent
of damage accurately.

3.4 Case Study 4: Experimental data

For the last case study, the m-SDDG framework was applied to an experimental
aluminum truss structure realized at Purdue University [33]. The truss has
a length of 17.04 m, a width of 1.83 m, and a height of 1.98 m, consisting
of 144 bars of cylindrical cross-sections connected together by 48 bolt joints,
as shown in Fig. 11. The structure was excited by band-limited white noise
excitation in the vertical direction using an electro-dynamic shaker placed at
node 4. Its dynamic responses were measured by using a network of 24 sensors.
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Fig. 12 Confusion matrices of detection results obtained by m-SDDG on the experimental
dataset.

Fig. 13 Evolution of the detection accuracy of the model versus the noise level

The sampling frequency of the sensors is 512 Hz. Damage was introduced
into the structure by a cut through one or two truss bars, and the severity
of the damage was characterized by the depth of the cuts. The first damage
scenario is created by cutting one-third of the cross-section of the bar between
nodes 34 and 45, while the second scenario involves cutting up to three-fourths
of this bar’s cross-section. The third damage scenario consists of this three-
fourths cross-section cut and an additional three-fourths cross-section cut of
the bar between nodes 6 and 29. These three damage scenarios correspond to
minor, medium, and severe states, respectively. The measurement data were
then divided into three sub-datasets with a ratio of 60:20:20. Specifically, the
shapes of the training, validation, and testing dataset are [600, 24, 1024], [200,
24, 1024], and [200, 24, 1024], where the first number is the number of samples
in the datasets, 24 denotes the number of sensors, and 1024 is the length of
vibration signals.
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Next, the training and validation processes were carried out in a similar way
as in the previous examples. For brevity, one solely presents the main results
on the testing dataset through Fig. 12. The figure shows the SDD results on
experimental data through two confusion matrices. It can be seen that for the
damage detection and damage severity tasks, the proposed method achieves
results with accuracies of 97.0% and 95.4%, respectively. These results are
slightly lower than those obtained on simulation data in examples 1 and 2
(98.6% and 97.8% vs. 97.0% for damage detection). This reduction can be
explained by the di↵erence in data volume. Specifically, the total number of
simulation samples is 5000, i.e., five times greater than that of experimental
data.

In addition, the robustness of the proposed approach against the adverse
e↵ect of noise is investigated. One injects white noises with di↵erent ampli-
tudes into the original vibration signals and estimates the respective detection
accuracy of the m-SDDG framework on noisy data. Mathematically, the noisy
data can be expressed as follows:

Xnoisy = X + ↵⇥ ✏ (8)

where X and Xnoisy are original and noisy data, ✏ is a white-noise signal
with zero mean and unit variance, ↵ is the noise amplitude measured based
on the percentage of the root mean square value of the original signal X.
Note that the same trained m-SDDG model presented above is tested with
di↵erent noise amplitudes. For each noise level, the calculation is repeated ten
times, and the mean results and associated confidence interval (mean ± two
times standard deviation) are reported. The robustness results are presented
in Fig. 13, showing that the m-SDDG can maintain good results for noise
levels up to 5%. For noise with a level of more than 10%, the accuracy quickly
decreases, and the associated uncertainty of the predicted results also increases
as the confidence interval widens correspondingly. The severity task is more
a↵ected by the noise than the detection task, e.g., with 20% noise, the accuracy
of the former is around 55% which is 10% higher than that of the latter.

4 Conclusion

In this study, a data-driven method for structural damage detection was
developed based on Graph Attention Network and multi-task learning. The
proposed method is able to address both SHM level 1 task (damage detec-
tion), level 2 (damage localization), and level 3 (damage severity) at the same
time. Moreover, as the network’s parameters are shared between tasks, thus
it requires only one running procedure to perform multiple structural damage
detection tasks leading to reduced time complexity. Throughout the paper,
the general working flow of the proposed approach, as well as the details of its
key components involving structure-related graph data, GAT-based architec-
ture, and MTL were discussed; furthermore, realization steps were explicitly
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demonstrated via various case studies. Besides, a unique advantage of the pro-
posed model over other counterparts is the ability to encode the geometrical
configuration of the truss structure via the adjacency matrix. Therefore, it
can be applied to various truss structures in a straightforward way with minor
adjustments at the output layer, given appropriate training data. Thanks to
this flexibility, the proposed method was successfully validated with di↵erent
structures, as demonstrated via four case studies, proving its practicability.
Whereas in the other deep learning and machine learning methods, which do
not explicitly take into account the structure topology, even a slight modifi-
cation such as adding or removing a structural member or change of member
orders may considerably a↵ect the model performance. Resultantly, the pro-
posed m-SDDG consistently achieves highly accurate results (>95%) on both
numerical and experimental databases of various spatial truss structures. For
multiple-damage scenarios, the damage detection tasks still receive satisfying
results (>90%) for all structural groups, while for damage severity, reason-
able results of ⇠80% are obtained. In addition, the m-SDDG is very e�cient
in terms of time complexity and memory usage as it processes data only one
time for di↵erent tasks.

As a final remark, simulation and experimental data have their own advan-
tages and inconveniences. Simulation data are generated via ideal models of
structures with several assumptions (e.g., frictionless connection, perfectly
straight members, negligible geometrical changes, etc.) and without any unex-
pected factors. In contrast, experiments provide more realistic data, thus
allowing for evaluating the model performance more reliably. However, exper-
iments are time-consuming and expensive; thus, the volume of experimental
data is limited, and it is impossible to try all damage scenarios on real struc-
tures. That is why it is desirable to find an active strategy to train and update
the data-drive model with numerical, experimental, and real data of the same
structures in an online fashion, paving the way toward a digital twin paradigm.

Appendix

Ablation study

In order to clarify the role of the GAT layer, one carries out an ablation study
in which one varies the number of GAT layers from 0 to 3, and observes the cor-
responding damage detection accuracies on four investigated truss structures.
The ablation study results, enumerated in Table 5, demonstrate that using
GAT layers significantly improves detection accuracy compared to directly
putting data into a dense network classifier without any GAT layer. Moreover,
it is found that the model with 2 GAT layers performs better than the model
with 1 GAT layer. Meanwhile, a more complex model with 3 GAT layers does
not always yield results as good as the model with 2 GAT layers.
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Table 5 Ablation study results showing the contribution of the GAT layer on obtained
detection accuracy.

Model Planar Dome Double-grid Experimental
truss truss truss truss

No GAT layer 77.0% 82.0% 64.6% 83.1%
1 GAT layer 96.1% 93.0% 87.4% 95.1%
2 GAT layer 98.6% 97.8% 90.0% 97.2%
3 GAT layer 91.7% 93.5% 89.9% 97.6%

Learning curves

In order to clarify the progress of the model during the training process, besides
the learning curve already presented above for the double-layer spatial truss,
the learning curves for the three other examples are presented in Fig. 14.
Because the early stopping strategy is used, thus the learning process termi-
nates after five consecutive epochs with no reduction in the compound loss
function.

Fig. 14 Learning curves of the m-SDDG model for the planar, dome and epxerimental
trusses.

E↵ect of the number of sensors

When working with large structures such as the double-layer grid spatial truss
structure in example 2, installing sensors to all truss joints is impossible. There-
fore it is necessary to estimate the impact of the number of sensors on the
model’s SDD performance. One varies the number of sensors in the range of
[1, 10, 15, 30, 50, 90, 120, 145] and carries out a similar procedure training and
validation as previously described above, then report the computed results,
including detection accuracy, severity accuracy, and CPU time in Table 6. The
CPU time investigated in this study is the program’s execution time but does
not include delay time for waiting for computational resources. It can be seen
that using only one sensor cannot provide satisfying results but is still higher
than random solutions (57.3% vs. 50.0%). Furthermore, increasing the num-
ber of sensors from 1 to 50 improves SDD results significantly, as the detection
accuracy clearly increases from 57.3% to 89.7% and severity accuracy from
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48% to 80.3%. However, increasing the number of sensors from 50 to 120 only
shows a marginal improvement in the obtained results, i.e., by 1.7% from 89.7%
to 90.4%. Especially, using vibration signals from all truss joints (145 joints)
leads to an over GPU memory error, which is 11 Gb for GeForce 2080i, then no
SDD result is available (N/A). On the other hand, the CPU time required for
the training process is approximately proportional to the used number of sen-
sors, from 1.8 minutes for one sensor to 54.3 minutes for 50 sensors and 138.1
minutes for 120 sensors. Based on these results, setting the number of sensors
to around 50 provides the best performance-e�ciency gain-loss estimation for
the double-layer grid truss structure under investigation.

Table 6 SDD results versus the number of virtual sensors as input

Number training Detection Severity
of sensor CPU time (m) accuracy (%) accuracy (%)

1 1.8 57.3 48.0
10 11.5 72.0 60.1
15 18.0 78.1 71.3
30 27.5 86.2 78.4
50 54.3 89.7 80.3
90 128.0 90.1 80.7
120 138.1 90.4 81.1
145 N/A N/A N/A

Data Availability. Source code and processed data are available from the
corresponding author upon reasonable request

Declaration of interests. The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
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