
Actor Monitors for Adaptive Behaviour

Tony Clark
Sheffield Hallam University,

UK
t.clark@shu.ac.uk

Vinay Kulkarni
Souvik Barat

Tata Consultancy Services
Research, India

vinay.vkulkarni@tcs.com,
souvik.barat@tcs.com

Balbir Barn
Middlesex University, UK

b.barn@mdx.ac.uk

ABSTRACT

This paper describes a structured approach to encoding mon-
itors in an actor language. Within a configuration of actors,
each of which publishes a history, a monitor is an indepen-
dent actor that triggers an action based on patterns occur-
ring in the actor histories. The paper defines a model of
monitors using features of an actor language called ESL in-
cluding time, static types and higher-order functions. An
implementation of monitors is evaluated in the context of a
simple case study based on competitive bidding.

Categories and Subject Descriptors

I.6.2 [Simulation Languages]

Keywords

enterprise modelling, multi-agent simulation.

1. INTRODUCTION
This paper describes a structured approach to encoding

monitors in an actor language. Within a configuration of
actors, each of which publishes a history, a monitor is an
independent actor that triggers an action based on patterns
occurring in the histories. Monitors are useful for a variety
of applications including adaptation and determining oppor-
tunities for collaboration.

Our particular interest is in the use of actors and monitors
to develop simulations of organisations to support decision-
making that is expressed in terms of goals, measures and
levers. In many cases, the complexity of an organisation
means that traditional approaches to simulation models, in-
cluding spreadsheets and stock-n-flow, are difficult to apply
because they rely on equations that explicitly represent the
relationships between goals, measures and levers. In large
organisations, such equations are difficult or impossible to
produce for many situations. Our hypothesis, is that it is
more practical and effective to take an emergent behaviour

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

approach to the construction of the models whereby the ap-
propriate elements of the organisation are represented as
autonomous actors. Judicious construction of such mod-
els will allow a human decision-maker to observe simulation
runs, make interactive changes to simulation-levers and to
infer the relationships that lead to goal maximisation.

Actor languages are appropriate for emergent behaviour
because they can be used to encode autonomous individ-
uals and collaborations. Monitors are useful in this con-
text because it is often necessary for individual elements (or
groups) in a simulation to adapt their behaviour based on
changes in the environment. A requirement on such moni-
tors is that they express temporal properties and a contri-
bution of this paper is to propose a statically-typed actor
language for monitor combinators that supports temporal
features.

As part of our aim to support organisational decision-
making, we have developed an actor language called ESL.
The features of ESL include static typing, higher-order func-
tions, pattern matching and time. The aim of this paper is
not to provide a detailed description of ESL, but we will
use ESL to introduce the idea of monitors and include de-
scriptions of ESL features as necessary to make the paper
self-contained.

The paper is structured as follows: Section 2 motivates
our claim that emergent behaviour is more appropriate than
standard equational modelling for organisational decision-
making, motivates the development of a language ESL, and
reviews similar approaches to monitors in actor and agent
technologies. Section 3 introduces a very simple example
that we use to illustrate our proposal for monitors. Section
4 introduces that part of ESL necessary to understand how
monitors are encoded. Section 5 describes how monitors are
defined in ESL and section 6 describes how they are used to
implement the simple example as part of decision-making.

2. MOTIVATION AND RELATED WORK

2.1 State of the Art
Enterprise Modelling (EM) supports a range of specifica-

tion, visualisation and analyses capabilities for understand-
ing various aspects of enterprises. For example, the Archi-
mate [18] supports visualization of an enterprise along three
aspects namely, structural, behavioural and information, ar-
ranged in three abstraction levels namely, business, applica-
tion and technology, with adequate support for establishing
relationships across aspects as well as levels. Other EM spec-
ifications such as EEML [19] and UEML [29] also visualize

an enterprise along multiple aspects and layers.
BPMN[30], i* [32] and stock-n-flow (SnF) [22] are amenable

to automated analysis. For example, the process aspect can
be analysed and simulated using BPMN, the high level goals
and objectives can be evaluated using i*, and high level sys-
tem dynamics can be simulated using Stock-and-Flow (SnF)
tools such as iThink1. Examination of existing EM reveals
some interesting observations. The EM techniques capable
of specifying all the relevant aspects of enterprise lack sup-
port for automated analysis (e.g., Archimate and UEML).
Essentially they are not suitable for supporting an ’apply
levers - observe measure- evaluate goals’ loop. Languages
capable of automated analysis only cater for a subset of the
relevant aspects for decision-making (e.g., BPMN, i*, and
SnF). Thus, as individuals, they are not adequate for deci-
sion making activities.

The multi-modelling and co-simulation based frameworks,
such as AnyLogic [7] and DEVS [8], are possibly the best
alternative among EM techniques to address the needs of
decision making, however the inadequate support to spec-
ify and analyse socio-technical characteristics such as au-
tonomous, uncertainty, temporal behaviour and adaptabil-
ity make them ineffective for a large class of organisational
decision making problems.

Approaches based on Bayesian Networks or Linear Pro-
gramming are also found less effective for a class of decision
making problems where the significant dynamism, uncer-
tainty, adaptation and emergent behaviour are involved.

2.2 Proposal: Actors and Monitors
Our observation is that existing methods (outlined above)

rely on a-priori knowledge of organisational behaviour. The
complexity, socio-technical [21], and stochastic characteris-
tics of organisations leads to such behaviour being emergent.
This has led us to propose an approach to decision-making
based on behaviours that emerge from organisational models
encoded as interacting agents [5, 20].

The Actor model of computation [1] has been identified
as a possible basis for simulation. We have reviewed a num-
ber of existing actor languages with respect requirements
for organisational simulation and decision-making. For ex-
ample, Erlang [3], SALSA [28], AmbientTalk [27], and Kilim
[26] provide strong safety guarantees and data-race freedom
using strict encapsulation and pure asynchronous communi-
cation. The actor frameworks (e.g., ActorFoundry [4], Scala
Actors [16], Akka [2]) have flexibility to use the expressive
power of the underlying languages such as Java and Scala.

Modelling an organisation as a collection of communi-
cating actors involves autonomous behaviour of individuals.
Monitors can be used to influence the behaviour of individ-
uals. The concept of monitor that observes the behaviour
of a system and detects the violations of safety properties is
well studied area [15]. The early work on monitors focused
on off-line monitoring wherein the historical data or pro-
gram trace is analysed off-line [13] to detect the anomaly. In
contrast the recent research trend on monitors is primarily
focusing on online monitoring that validates the observed
system execution against system specification dynamically
as preventive and corrective measures.

Research challenges include: (1) the use of an appropriate
foundational model for specification (this can be mapped
to the research related to Monitoring-Oriented Program-

1www.iseesystems.com/store/products/ithink.aspx

ming2); (2) an efficient implementation. Existing monitor
technologies are largely based on temporal logic as an un-
derlying model for monitor specification. For example, the
past-time linear temporal logic (PTLTL) is recommended as
specification language in [17], the PTLTL is further extended
with call and returns in [23], the Eagle logic (where the tem-
poral logic is extended with chop operator) is proposed in
[6], and Meta Event Definition Language (a propositional
temporal logic of events and conditions) is used in Moni-
toring and Checking (MaC) toolset [25]. In contrast, the
Extended Regular Expression and Context Free Grammar
based language is proposed and implemented in [10].

From an implementation dimension, online monitoring tech-
nologies are implemented either by adopting an inline ap-
proach [24] or a centralised approach [14]. A centralized
approach is employed to the system under observation us-
ing either synchronous [11] mode or asynchronous mode
[12]. In general, the inline monitors are computationally
efficient as they have access to all system variables, whereas
the centralised monitors are better in other dimensions as
they enable clear separation of concerns (and thus less error-
prone), facilitate distributed computation, and exhibit com-
positional characteristics.

We propose a light-weight variant of monitor technology
that can evaluate agent goals (similar to monitoring safety
properties) and decide appropriate system adaptation. A
restricted form of centralized asynchronous monitor is im-
plemented in Akka [2] to realise the monitoring behaviour of
supervisor actors of a hierarchical actor system. Recently, a
prototype of asynchronous centralised monitor implementa-
tion is presented in [10].

Our proposed implementation also implements centralized
asynchronous monitors. A key difference is that the Akka
implementation monitors the occurrence of events within its
sub-actors and uses a fixed set of operations such as stop
actor, suspend actor as an adaptation strategy. In contrast
our proposed implementation evaluates the historical data to
produce adaptation, effectively achieving a combination of
[10] with the adaptation strategy presented in [9] augmented
with temporal features.

In all cases, we have identified areas where we feel that
an existing language does not, or may not, support all the
requirements for organisational decision-making as outlined
above. This has led to the development of the actor language
ESL which is introduced in this paper. ESL supports many
of the features we believe to be useful for organisational
simulation such as time, static-typing, stochastic behaviour,
and the production and visualisation of simulation traces.
Although it is still in development, all the examples shown
in this paper are based on ESL executions.

3. EXAMPLE: COMPETITIVE BIDDING
Commercial organisations often participate in a market

for products and services. Customers have requirements for
the products that they make available as an invitation to
tender. Providers are given a period of time within which
they can produce a description of how they meet the require-
ments and what the cost will be. At the end of the bidding
period, a customer evaluates bids using their private crite-
ria. One of the providers (the winner) is chosen and all other

2http://fsl.cs.illinois.edu/index.php/Monitoring-
Oriented Programming

Figure 1: Competitive Bidding

providers lose the bid.
Figure 1 shows a diagram containing customers, providers

and a global notice-board that contains the public invita-
tions to tender. In this simple scenario, each customer rep-
resents their internal requirements as a colour: either red
or green. When the tender is made public on the notice-
board, the providers do not know the private colour that
the customer requires. Each provider chooses to bid red or
green. After a period of time the customer inspects the bids
and chooses one that matches their required colour. Each
provider is shown with a history of bid-successes and bid-
failures.

Although each provider does not know the required colour
of the published tender, they can inspect the history of each
customer in terms of their required colours over time. It
is reasonable to expect that a customer repeatedly issues
invitations of a particular colour and that there is a small
probability that this colour will change at any time.

In such a situation we may take the role of a provider and
aim to determine a strategy that will improve our chance
of winning a bid. In this case the strategic options are the
levers: (1) simply take a random chance; (2) stick with the
same colour over time; (3) monitor the behaviour of one
or more customers via their history and predict the next
requirement. Given that competitors may be using similar
strategies, it is attractive to use a simulation-based approach
to measure the outcomes for each option.

In the simple case we use the simulation from the per-
spective of a distinguished provider p in order to determine
a bidding strategy. Therefore the simulation measure is the
number of wins by p and the levers of the simulation vary
the provider’s behaviour in order to maximise the number
of wins.

4. ESL
ESL and its associated development and run-time environ-

ment is a language that has been designed to support our
thesis that simulation and emergent behaviour can be used
to support organisational decision-making. ESL together
with a supporting toolset is currently in development3. All
ESL code in this paper is taken from running examples.

4.1 Syntax
The syntax of ESL is shown in figure 2. It is statically

typed and includes parametric polymorphism, algebraic types
and recursive types. Types start with an upper-case letter.
An ESL program is a collection of mutually recursive bind-

3The current version of ESL is available at https://github.
com/TonyClark/ESL

type ::= Var type variable
| Act { export dec* Mes* } actor type
| (type*) → type λ-type
| tt term type
| Int | Bool | Str constant type
| Void undefined
| [type] lists
| Fun(Name*) type parametric type
| ∀(Name*) type polymorphic type
| rec Name . type recursive type

tt ::= Name(type*) term type
exp ::= var variables

| num | bool | str constants
| se l f active actor
| null undefined
| new name[type*] (exp*) create actor
| become name[type*] (exp*) change behaviour
| exp op exp binary exp
| not exp negation
| λ(dec*)::type exp λ-abstraction
| let bind* in exp local bindings
| letrec bind* in exp local recursion
| case exp* arm* pattern matching
| for pat in exp { exp } looping
| { exp* } block
| i f exp then exp else exp conditional
| [exp*] list
| [] empty list
| exp(exp*) application
| Name(exp*) term
| exp ← exp message
| name := exp update
| exp . name name reference
| probably(exp)::type exp exp uncertainty
| exp[type*] type limitation

bind ::= dec = exp value binding
| name(pat*)::type=exp when exp λ-binding
| type Name[Name*] = type type declaration
| data Name[Name*] = tt* algebraic type
| act name(dec*)::type { behaviour def

export name* interface
bind* locals
→ exp initial action
arm* behaviour

}
dec ::= name[Name*] :: type declaration
arm ::= pat* → exp when exp guarded exp
pat ::= dec binding

| dec = pattern naming
| num | bool | str const pattern
| pat : pat cons pair
| [pat*] list
| [][type] empty list
| Name[type *](pat*) term pattern

Figure 2: ESL Syntax

ings. The variables Var and var start with upper-case and
lower-case letters respectively. Pattern matching is used in
arms that occur in case-expressions and message handling
rules. Uncertainty is supported by probably(p) x y that
evaluates x in p% of cases, otherwise it evaluates q.

4.2 Evaluation
A minimal ESL application defines a single behaviour

called main, for example:

1 type Main = Act{ Time(Int) };
2 act main ::Main {
3 Time (100) → stopAll ();
4 Time(n::Int) → {}
5 }

An ESL application is driven by time messages. The listing
defines a behaviour type (line 1) for any actor that can pro-
cess a message of the form Time(n) where n is an integer. In
this case, the main behaviour defines two message handling
rules. When an actor processes a message it tries each of
the rules in turn and fires the first rule that matches. The
rule on line 3 matches at time 100 and calls the system func-
tion stopAll() which will halt the application. Otherwise,
nothing happens (line 4).

ESL Messages are sent asynchronously between actors.

Figure 3: Concurrent Factorial

An actor that is at rest selects a new message and processes
it in a thread that is independent of other actor threads.
When the thread terminates, the actor is ready to process
the next message. Consider the concurrent processing of
factorials:

type Customer = Act { Value(Int); Time(Int) };
type Fact = Act{ Get(Int,Customer) };
act fact ::Fact {

Get(0,c::Customer) → c ← Value (1);
Get(n::Int,c::Customer) → {

new fact ← Get(n-1,new cust(n,c))
}

};
act cust(n::Int,c::Customer)::Customer {

Value(m::Int) → c ← Value(n*m);
Time(n::Int) → {}

};
act main ::Customer {

Value(n::Int) → print[Int](n);
Time(n::Int) when n < 15 → new fact ← Get(3, se l f)

}

The main actor sends a request for !3 to a new factorial actor
at times 1 and 15. Instead of using traditional stack-based
recursion, the fact actor dynamically creates a new fact

actor to handle the recursive call and a cust actor to process
the results. This allows multiple requests on the original
fact actor to be processed concurrently as shown in figure
3 (generated by ESL) where the nodes are actors and the
edges are labelled with [t]m where t is the time when the
message m is sent. The trace shows that 14 calculations of
!3 are processed concurrently eventually leading back to the
main actor.

4.3 Simple Monitors
Consider the definition of a simple monitor for a class of

behaviours M[T] where each actor in the class has a value
of type T. A monitor observes a monitored object until a
given condition is satisfied at which point it fires an action
provided by the monitored object by sending it a message.
The type of a monitored actor is:

type M[T] = Act{
export value ::T; // The value to be monitored.
Time(Int); // Time drives the application.
Action () // An action available to others.

};

An example monitored actor manages a single integer value
that is incremented or decremented randomly each time
unit. The cell prints a message when the action is performed:

act cell ::M[Int] {
export value;
value ::Int = 0
Action → print[Str](’Action Performed ’);
Time(n::Int) →

probably(50) ::Int {

value := value + 1
} else value := value - 1

}

A simple monitor is constructed using a predicate that is
checked against the exported value. When the predicate is
satisfied, an action message is sent to the monitored actor:

act monitor[T](p::(T) → Bool,m::M[T])::Main {
Time(n::Int) when p(m.value) →

m ← Action;
Time(n::Int) → {}

};

The monitor m is applied to the monitored cell c and invokes
the action when the value is increased to 10:

c::M[Int] = new cell;
m::Main = new monitor[Int](λ(v::Int)::Bool v>10,c);

4.4 ESL Execution
ESL compiles to a virtual machine code that runs in Java.

Each actor is its own machine and thereby runs its own
thread of control. Figure 4 shows the ESL executive that
controls the pool of actors. When the executive is called, the
global pool ACTORS contains at least one actor that starts the
simulation. Global time and the current instruction count
are initialised (lines 3 and 4) before entering the main loop
at line 4; the loop continues until one of the actors executes
a system call to change the variable stop.

Lines 6 – 7 copy the global pool ACTORS so that freshly
created actors do not start until the next iteration. If an
actor’s thread of control has terminated (line 9) then a new
thread is created on the actor’s VM by scheduling the next
message (line 10) if it is available.

The executive schedules each actor for MAX_INSTRS VM in-
structions. This ensures that all actors are treated fairly.
Once each actor has been scheduled, the existing actors are
merged with any freshly created actors (line 14).

The executive measures time in terms of VM instructions.
Each clock-time in the simulation consists of INSTRS_PER_

TIME_UNIT instructions performed on each actor. When ac-
tors need to be informed of a clock-tick (line 15), global time
is incremented (line 17), the instruction counter is reset (line
18) and all actors are sent a clock-tick message.

5. MONITORING HISTORY
The previous section described a simple state monitor

which is a special case of a monitor that regularly checks the
history of an actor. In the case of the example from section
3, a provider may choose to continually check whether they

are repeatedly losing bids and then adapt their behaviour
accordingly. A more sophisticated mechanism for encoding
monitors is required that handles temporal features. This
section defines a simple language, outlines its semantics

5.1 History Formulas
Figure 5 shows a language that can be used to express

predicates over the history of an actor. In each case the
language construct is defined on the left and a definition of
satisfaction is given on the right. Satisfaction of a formula
is defined with respect to a history, for example seq(p,q) is
satisfied with respect to a history h1+h2 when the prefix h1

satisfies p and the suffix h2 satisfies q. The language is to
be viewed operationally because an action may cause a side-
effect. The difference between alt and xor is that alt waits
to determine that p is not satisfied before trying q whereas
xor expects one of the sub-formulas to fail and tries both at
the same time.

A history can be thought of as a list of public state infor-
mation and as such each history formula is defined as being
satisfied in terms of a list of data. For example, suppose
that we want to express a history formula fff that causes
action a to be performed every time a sequence of 3 fails,
000, is detected:

1anF (0) ::Bool = true
2anF (1) ::Bool = false
3aT(n::Int)::Bool = not(anF(n))
4any(n::Int)::Bool = anF(n) or aT(n)
5
6pxn[T](n::Int,p::(T) → Bool)::Mtr[T] =
7case n {
80 → idle[T]
9else seq[T](is[T](p),next[T](pxn[T](n-1,p)))
10}
11
12fff ::Mtr[Int] =
13always[Int](alt[Int](pxn[Int](3,anF),is[Int](any)))

The predicates anF and any are defined to detect the ap-
propriate state elements. The history formula fff uses the
operator seq to compose three F detectors one after another
in the history. The operator next is used to advance through
the history. Finally, the history predicate fff combines the
three F detector with an alternative detector is(any) that
skips a state value. The monitor alt(p,q) checks p first, if
p fails then q is checked, so line 13 will use three F’s as a
guard on the action a, if the guard fails then the head of
the history is skipped. The monitor always(p) continually

1 stop := false;
2 exec() {
3 time := 0;
4 instrs := 0;
5 while (!stop) {
6 actors := copy(ACTORS);
7 clear(ACTORS);
8 for actor ∈ actors {
9 i f terminated(actor)
10 then schedule(actor);
11 run(actor ,MAX_INSTRS);
12 }
13 instrs := instrs + MAX_INSTRS;
14 ACTORS := ACTORS + actors;
15 i f instrs > INSTRS_PER_TIME_UNIT
16 then {
17 time := time + 1;
18 instrs := 0;
19 for actor ∈ ACTORS
20 sendTime(actor ,time)
21 }
22 }
23 }

Figure 4: The ESL Executive

checks p throughout the history.
The history of an actor is produced incrementally over

time. Therefore an expression written in the language de-
fined in figure 5 must continually monitor the actor’s history.
The expression can be thought of as a state machine whose
nodes correspond to monitor states and whose transitions
consume parts of actor histories. Each transition is trig-
gered by a clock-tick and can proceed when there is some
history to consume, otherwise the machine must stay in its
current state and try again when the next tick occurs.

Figure 6 shows the machine corresponding to fff. Each
transition is triggered by a clock-tick, the labels on the tran-
sitions are: ǫ when no history is available; F occurs when the
next state element in the history is an F; # occurs when there
is at least one element at the head of the history and causes
the element to be consumed; * denotes the situation when
the next state element in the history is anything but F.

5.2 Monitor Types
A monitor for histories over type T is aa actor of type

Mtr[T]:

type Fail = () → Void

type Mtd[T] = Act {
export history ::[T];
Time(Int)

}
type Mtr[T] = rec M. Act {

Check(Mtd[T],Int,M,Fail);
Time(Int)

}

whose behaviour supports two messages: Time(t) drives the
state machine; Mtr(a,c,s,f) activates the monitor and con-
tains a monitored actor a, an integer c that indexes the next
element of a.history, a monitor s that is used as a success
continuation, and a function f that is used as a fail contin-
uation. The key idea is that if m ← Mtr(a,c,s;s’,f) then at
some future clock-tick, if m is able to consume the cth ele-
ment from a.history then s ← Mtr(a,c+1,s’,f) otherwise if
m rejects the cth element then f() tries an alternative.

5.3 ESL Monitors
The monitor behaviours are defined in figure 7, note that

where the clock-tick handler is Time(n::Int) → {} it is omit-
ted. The simplest monitor has the behaviour nothing that
directly activates the success continuation without modify-
ing any of the supplied data. Since the nothing behaviour
is always the same, it makes sense to create a distinguished
actor idle.

An action action(c) performs the command c when it is
activated. A sequence monitor seq(p,q) will be satisfied
when p is satisfied followed by q. Note that p may have
consumed some of the history and so q is supplied as part
of the success continuation to p.

There are two forms of alternatives: alt(p,q), if p is satis-
fied then so is alt(p,q) and q is ignored, otherwise q is tried.

p,q ::= nothing nothing(h)
| always(p) p(h1),p(h2), . . . ⇒ always(p)(h1+h2+ . . .)
| rec(λ(n)p) q(h) where q=[q/n]p ⇒ q(rec(λ(n)p))
| seq(p,q) p(h1) & p(h2) ⇒ seq(p,q)(h1+h2)
| alt(p,q) p(h) or q(h) ⇒ alt(p,q)(h)
| xor(p,q) p(h) or q(h) ⇒ alt(p,q)(h)
| next(p) p(h) ⇒ next(p)(x:h)
| is(c) c(x) ⇒ is(c)(x:h)
| action(a) action(a)(h)
| split(p,q) p(h1) & q(h2) ⇒ split(p,q)(zip(h1 ,h2))

Figure 5: History Formulas

Astart B

C D

EFG

H

F

ǫ
*

ǫ

##

ǫ ǫ

F

*

ǫ

#

ǫ

F

*

ǫ

a

ǫ

#

Figure 6: A Monitor State Machine

The alternative xor(p,q) assumes that only one of p and q

will be satisfied and tries them concurrently.
Recursive monitors are created using rec which is supplied

with a function g whose argument is a cyclic monitor. For
example:

rec[Int](λ(fStar ::Mtr[Int])::Mtr[Int]
seq[Int](isF ,next(fStar)))

is a monitor that will expect a history to contain an infinite
sequence of 0s.

5.4 Example Traces
ESL provides a visualisation of execution traces that can

be used to check our understanding monitor behaviours.
Consider the case of a monitored actor a that produces a
trace of true and false encoded as integers 1 and 0. To check
that the trace is correctly formed we might construct the
following monitor:

isT ::Mtr[Int] = new is[Int](aT)
isF ::Mtr[Int] = new is[Int](anF)
alwaysForT ::Mtr[Int] = always[Int](new xor[Int](isT ,isF))

Figure 8 shows the trace (up to time [14]) produced by ESL
as a result of evaluating:

alwaysForT ← Check(Leaf[Int](a) ,0,idle[Int],λ() {})

The actor init(138) is just the initialisation actor and can
be ignored. The trace starts at main(140) which sends a
Check message at time [1] to rec(145) that is responsible
for setting up a loop. Each loop sends a Check message to the
both(147) actor which in turn sends the message to the isT

(142) and isF(143) actors. We deduce from the trace that a

produces 0 as the first two elements of its history since the
isF(143) actor invokes its success continuation in response
to checking the history at index 0 and index 1, whereas actor
isT(142) does not send any messages.

It may be necessary to check the histories of two or more
actors at the same time. This is achieved by encoding the
actors using the constructor Pair[T]::(MTree[T],MTree[T]) →
MTree[T]. Given two actors that produce histories of 0 and
1 the following monitor checks that the first actor produces
1 and the second produces 0 on the next two occasions:

twice[T](m::Mtr[T])::Mtr[T] = new seq[T](m,new next[T](m))
tfX2 ::Mtr[T] = twice[Int](new split[Int](isT ,isF))
pair ::MTree[Int] = Pair[Int](Leaf[Int](a1),Leaf[Int](a2))
tfX2 ← Check(pair ,0,idle[Int],λ() {})

data MTree[T] = Leaf(Mtd[T]) | Pair(MTree[T],MTree[T]);

act nothing[T]::Mtr[T] {
Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →

s ← Check(a,c, self ,f) }

idle[T]::Mtr[T] = new nothing[T]()

act action[T](command ::() → Void)::Mtr[T] {
Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) → {

command ();
s ← Check(a,c,idle[T],f) } }

act seq[T](p::Mtr[T],q::Mtr[T])::Mtr[T] {
Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →

p ← Check(a,c,new seq[T](q,s),f) }

act alt[T](p::Mtr[T],q::Mtr[T])::Mtr[T] {
Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →

p ← Check(a,c,s,λ()::Void q ← Check(a,c,s,f)) }

act xor[T](p::Mtr[T],q::Mtr[T])::Mtr[T] {
Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) → {

p ← Check(a,c,s,f);
q ← Check(a,c,s,f) } }

always[T](p::Mtr[T])::Mtr[T] =
new rec[T](λ(q::Mtr[T])::Mtr[T]

new seq[T](p,new next[T](q)))

act next[T](p::Mtr[T])::Mtr[T] {
Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →

p ← Check(a,c+1,s,f) }

act is[T](pred ::(T) → Bool)::Mtr[T] {
Check(t::MTree[T],c::Int,s::Mtr[T],f::Fail) →

case t {
Leaf(a::Mtd[T]) →

i f length[T](a.history) > c
then {

i f pred(nth[T](a.history ,c))
then s ← Check(t,c,idle[T],f)
else f()

} else se l f ← Check(t,c,s,f) } }

act rec[T](g::(Mtr[T]) → Mtr[T])::Mtr[T] {
Check(a::MTree[T],c::Int,s::Mtr[T],f::Fail) →

g(new rec[T](g)) ← Check(a,c,s,f) }

act split[T](p::Mtr[T],q::Mtr[T])::Mtr[T] {
Check(t::MTree[T],c::Int,s::Mtr[T],f::Fail) →

case t {
Pair[T](t1::MTree[T],t2::MTree[T]) →

let j::Mtr[T] = new join[T](t,s,f)
in {

p ← Check(t1 ,c,j,f);
q ← Check(t2 ,c,j,f) } } }

act join[T](t::MTree[T],s::Mtr[T],f::Fail)::Mtr[T] {
done ::Bool = false
Check(a::MTree[T],c::Int,s::Mtr[T],f1::Fail) →

i f not(done)
then done := true
else s ← Check(t,c,s,f) }

Figure 7: ESL Monitor Behaviours

Figure 9 shows a trace of execution for tfX2. The two
monitored actors are a(243) and a(244). The trace shows
that, as required, a(243) produces 1 and a(244) produces 0

as the first element in their respective histories. However,
both actors produce 0 on the next round causing the trace
to halt at join(251).

6. DEVELOPING A SIMULATION
Section 5 has defined a language for representing moni-

tors over actors with histories. The language has been im-
plemented as a statically type-checked collection of monitor
combinators in ESL. This section uses the approach and as-
sociated technology to develop a simulation for the simple
scenario described in section 3. The first step is to define
a trace-based specification of the scenario in section 6.1, to
define monitors for adaptive behaviour in section 5 that are

Figure 8: Always F or T

used in an ESL-based simulation in section 6.2 producing
results in section 6.3.

6.1 Specification
Each ESL simulation is based on an execution model that

creates a sequence of states of type [Σ]. The starting point
for developing a simulation is a black-box model that iden-
tifies the key features of the histories that will be measured
and that can be affected via levers. Refinement of the initial
specification introduces detail necessary for adaptation.

Figure 10 shows a constructive approach in terms of a set
of customers C, a set of providers P and a set of offers O.
The set ∅∗ denotes the set of all traces of arbitrary length.
The set of traces Bo contains all possible offerings c(o,t) by
customer c, of offering o with colour t and defines them to
be available for a clock-ticks. The set of traces Ba contains
awards p(o) of offering o to provider p. Traces Bb define bids
p(o,t) by provider p for opportunity o.

The operator ⊕ freely combines traces with the expecta-
tion that predicates hold for all traces. The predicates are
not defined here but are outlined as follows: offer holds for
traces where each customer can offer, and each provider can
bid for, at most one opportunity at any given time, and bids
must be concurrent with offers. award holds for traces where
an award occurs at the end of the offer period a and when
the colour of the bid matches that of the offer; no award can
be made when no bids are present and at most one award
can be made.

The goal of the bidding simulation is to achieve a be-
haviour that is specified by ∆. ESL can be used to construct
a system of interacting actors with emergent behaviour. Mon-
itors can be used to detect when the behaviour diverges from
the specification and take corrective action. Levers that con-
trol the monitors can help inform strategic decisions.

6.2 Implementation
The specification given in section 6.1 defines a sequence of

system states that must be refined to produce an ESL sim-
ulation model of the system whose levers can be modified
and whose goals can be measured. The refinement must pro-
duce a system that is consistent with the specification, but

that may introduce more detail. The result is an implemen-
tation defined in terms of five types of behaviour customer

generating opportunities, opportunity managing the bidding
and awarding process for opportunities, a notice-board nb,
provider generating bids and receiving their outcome, and a
monitor for provider adaptive behaviour. This section gives
the key elements of the implementation.

The customer behaviour is supplied with a colour, a per-
centage chance of changing the colour, the frequency at
which the opportunities are created and the availability of
the opportunity:

1 data Colour = Red | Green
2 opp(Red)::Colour = Green
3 opp(Green)::Colour = Red
4
5 type Customer = Act {
6 // A customer is a monitored actor.
7 export history::[Colour];
8 Time(Int); // Time generated opportunities.
9 Done(Colour) // Record opportunity completion.

10 }
11
12 act customer(c::Colour ,cng::Int,freq::Int,avail::Int)::Customer {
13 // Create opportunities coloured c, with frequency
14 // freq , availability avail with a cng% chance of
15 // changing colour.
16 export history;
17 next::Int = 0;
18 history::[Colour] = [][Colour];
19 offer() = nb ← Add(new opportunity(self ,c,avail))
20 Time(n::Int) when next=freq → {
21 next := 0;
22 probably(90) {
23 offer();
24 probably(cng) c := opp(c) else {}
25 } else {}
26 };
27 Time(n::Int) → next := next + 1;
28 Done(c::Colour) → history := c:history
29 }

A customer detects clock-ticks on lines 20 and 27. Every
freq clock-ticks (line 20) there is a 90% chance (line 22)
that an offer is created (line 23) and a cng chance that the
colour changes. A new opportunity is created in line 19 by
sending an Add message to the global notice-board nb.
An opportunity behaviour is supplied with a customer,

the colour of the opportunity and the length of time the
opportunity should be available:

1 type Opportunity = Act{
2 export customer::Customer;
3 Time(Int); // Check whether to make award.
4 Bid(Colour ,Provider) // Receive bid from provider.
5 }

Figure 9: Checking for F or T

T = {r, g}
Bo, Ba, Bb, B,∆ : [Σ]
⊕ : [Σ]× [Σ] → [Σ]

offer, award : [Σ] → {t, f}

Bo = {ǫ+ [{c(o,t)}
a
] + r | c ∈ C, o ∈ O, t ∈ T, ǫ ∈ ∅∗, r ∈ Bo}

Ba = {ǫ+ [{p(o)}] + r | p ∈ P, o ∈ O, ǫ ∈ ∅∗, r ∈ Ba}
Bb = {ǫ+ b+ r | p ∈ P, o ∈ O, t ∈ T, b ∈ {p(o,t)}

∗
, ǫ ∈ ∅∗, r ∈ Bb}

B = {t1 ⊕ t2 ⊕ t3 | t1 ∈ Bo, t2 ∈ Ba, t3 ∈ Bb}
σ1 : t1 ⊕ σ2 : t2 = σ1 ∪ σ2 : (t1 ⊕ t2)
∆ = {b | b ∈ B, offer(b) ∧ award(b)}

Figure 10: Specification of Bidding Behaviours ∆

6
7 act opportunity(c::Customer ,k::Colour ,avail::Int)::Opportunity {
8 // Opportunity created by c, for processing k. After avail
9 // time units the opportunity will be awarded to winning

10 // provider selected at random.
11 export customer;
12 customer::Customer = c;
13 tryAward(Bid(c::Colour ,v::Provider),true)::Bool = {
14 v ← Failed;
15 true
16 };
17 tryAward(Bid(c::Colour ,v::Provider),false)::Bool = {
18 v ← Award;
19 true
20 } when c = k;
21 tryAward(Bid(c::Colour ,v::Provider),false)::Bool = {
22 v ← Failed;
23 false
24 };
25 bids::[Bid(Colour ,Provider)] = [][Bid(Colour ,Provider)]
26 b::Bid(Colour ,Provider)=Bid(k::Colour ,v::Provider) when avail >0

→ bids := b:bids;
27 Bid(c::Colour ,provider::Provider) → provider ← Failed;
28 Time(n::Int) when (avail = 0) and (bids <> []) → {
29 availability := avail - 1;
30 let won::Bool = false
31 in for b::Bid(Colour ,Provider)
32 in shuffle[Bid(Colour ,Provider)](bids)
33 do won := tryAward(b,won);
34 bids := [][Bid(Colour ,Provider)];
35 nb ← Remove(self);
36 kill[Opportunity](self);
37 customer ← Done(colour)
38 };
39 Time(n::Int) when (availability = 0) → {
40 nb ← Remove(self);
41 customer ← Done(k);
42 kill[Opportunity](self)
43 };

44 Time(n::Int) → avail := avail - 1
45 }

An opportunity receives bids from providers (26-28). If the
opportunity is available then the bid is saved (27) other-
wise the provider has missed the deadline and is informed
that the bid has failed (28). Clock-ticks reduce the avail-
ability count (45), when the opportunity closes and there
are bids (29), the bids are taken in a random order (33) and
awarded (34). An opportunity is terminated by removing
it from the global notice-board (36) and informing the cus-
tomer that the colour was processed (38). The actor is killed
(37) meaning that is can perform no further computation.

A provider is created with a colour that controls the bids:

1data Result = S | F;
2type Provider = Act{
3export history::[Result];
4Time(Int); // Bid for opportunities.
5Award(); // We got it!
6Failed (); // It went to someone else.
7Change(Colour ,Customer) // Change colour.
8}
9
10act provider(colour::Colour)::Provider {
11// A provider initially bids using colour. It publishes
12// a history if successes and failures. It can be
13// instructed to change bid -colour for particular
14// customers.
15export history;
16history::[Result] = [][Result];
17bidding::Bool = false;
18record(r::Result)::[Result] = history := r:history;
19bid(o::Opportunity:l::[Opportunity])::Bool = {
20o ← Bid(getColour(history ,o.customer),self);
21bidding := true
22};
23getColour(l::[Result],c1::Customer)::Colour =
24// getColour takes into account any changes of bid
25// colour for the supplied customer.
26case l {
27[][Result] → colour;
28Changed(k::Colour ,c2::Customer):l::[Result] → k when c1=c2;
29r::Result:l::[Result] → getColour(l,c1)
30};
31Time(n::Int) when (nb.data <> [][Opportunity]) →
32// Try for an opportunity (assume there is one).
33bid(shuffle[Opportunity](nb.data));
34Award → {
35record(S);
36bidding := false
37};
38Failed → {
39record(F);
40bidding := false
41};

Figure 11: Example Actor Configuration

42Change(colour::Colour ,customer::Customer) →
43record(Changed(colour ,customer))
44}

A provider checks the opportunities on the notice-board and
makes a bid (131–33,19–22) based on the history (20). A
monitor (defined below) may request that a provider changes
colour for a particular customer (42–43) that is subsequently
used to determine the colour of a bid (23–30) for that cus-
tomer.

A bidding simulation has the following levers: the number
of providers, the number of customers, the likelihood that
the customer changes the colour of their opportunities, the
duration of the simulation and the monitors.

A monitor is created for each provider and customer pair.
Our levers are three different types of monitor: none that
does not change a provider, random that changes a provider’s
colour at random, and adaptive that changes a provider’s
colour based on its failure rate:

none(p::Provider ,c::Customer)::Mtr[Int] =
// Do nothing . . .

idle[Int]

random(p::Provider ,c::Customer)::Mtr[Int] =
// Randomly change the colour for the supplied
// provider when bidding for an opportunity from
// the supplied customer . . .

let getColour ()::Colour =
probably(50) ::Colour

Red
else Green;

change ()::Void = p ← Change(getColour (),c)
in always[Int](new action[Int](change))

adaptive(k::Colour ,p::Provider ,c::Customer)::Mtr[Int] =
// Use a guard to check whether the colour should
// change. The guard checks that:
// (1) Provider p has failed 3 times; and
// (2) Customer c has offered the opposite colour 3x . . .

let chkOpp(v::Colour)::Bool = v = opp(k) in

let isOpp ::Mtr[Colour] = is[Colour](chkOpp) in

let op3 ::Mtr[T] = pxn[Colour](3, isOpp);
change ()::Void = {

k := opp(k);
p ← Change(k,c)

} in

let guard = split[Int](fff ,op3)
in always[Int](seq[Int](guard ,action[Int](change)))

Figure 11 shows a configuration of actors involving two
providers and a single customer. Note that both providers
have their own monitor. Figure 12 shows the initial part of a
trace for a situation involving a single customer and a single

provider. Four opportunities are created during the simula-
tion. The provider bids for the first three opportunities at
times [5], [12] and [17]. All bids fail at which point the
monitor detects the failing situation and changes the colour
to Red at [21]. After the provider has been influenced by
the monitor it makes a successful bid for an opportunity at
time [22].

6.3 Results
Figure 13 shows the results of the simulation given 2 cus-

tomers and two categories of service provider: competitors
(10) and ourselves (1). Each category of service provider
can have three different adaptor types:

none No adaptive behaviour: the provider will not change
the colour of the bid.

random The provider changes its bid colour at random.

adaptive The provider uses a monitor on all customer his-
tories in order to change bid colour when it has failed
to be awarded an opportunity 3 or more times.

The simulation was executed for 1000 clock-ticks for each
configuration of service service provider category and adap-
tor type. The number of successful bids for ourselves and
the maximum number of successful bids for competitors was
recorded for each configuration. Figure 13 shows results for
a selection of configurations: the legend labels each result
line in terms of configuration strategies (ourselves, competi-
tors) and shows the number of successes for ourselves.
The simulation is intended to aid decision making with

respect to whether a particular strategy is cost effective,
and although we would need to know the cost of monitoring
historical records, the results indicate that it is clearly in
our favour to implement the adaptive strategy if we believe
that our competitors are behaving randomly. Also, it would
appear that no strategy at all is of similar value to random
choice. Where all categories are behaving strategically, there
is a benefit to us, however this is significantly less that when
our competitors are not strategic.

7. CONCLUSION

Figure 12: Example Trace

Figure 13: Results

This paper has proposed an approach to organisational
decision-making using emergent behaviour expressed as ac-
tor models. We are in the process of developing technology
to support this approach in the form of a language called
ESL. Part of the approach depends on monitors that detect
patterns of behaviour and influence actors by sending them
messages. The contribution of the paper is to show how
a language of monitor combinators can be defined in ESL
and used to implement a simple case study. All the code in
the paper has been implemented in the ESL language which
runs on a VM written in Java and all actor configurations
and message traces have been generated from EDB and vi-
sualised using GraphViz.

Further work is planned in the following areas: Although
we have identified an approach to specification of a simu-
lation given in section 6.1, no attempt has been made to
verify properties of the ESL program; research in this area
[31] will be investigated. ESL has been designed with the
aim of expressing patterns of organisational behaviour, and
with the expectation that results from Multi-Agent Systems

research will be relevant to constructing organisational sim-
ulation models. We intend to investigate how to extend
ESL with abstractions that are specific to organisations and
to encode features such as negotiation and collaboration.
ESL is supported by a development environment called EDB
that performs syntax checking and type checking. EDB also
supports debugging and exporting simulation traces such as
those shown in this paper. We aim to use EDB as a basis
for research into debugging and visualising actor systems.

References
[1] Gul A Agha. Actors: A model of concurrent compu-

tation in distributed systems. Technical report, DTIC
Document, 1985.

[2] Jamie Allen. Effective akka. ” O’Reilly Media, Inc.”,
2013.

[3] Joe Armstrong. Erlang - a survey of the language and
its industrial applications. In Proc. INAP, volume 96,
1996.

[4] Mark Astley. The actor foundry: A java-based ac-
tor programming environment. University of Illinois at
Urbana-Champaign: Open Systems Laboratory, 1998.

[5] Balbir S Barn, Tony Clark, and Vinay Kulkarni. Can
organisational theory and multi-agent systems influence
next generation enterprise modelling? In International
Conference on Software Technologies, pages 202–216.
Springer, 2014.

[6] Howard Barringer, Allen Goldberg, Klaus Havelund,
and Koushik Sen. Rule-based runtime verification. In
International Workshop on Verification, Model Check-
ing, and Abstract Interpretation, pages 44–57. Springer,
2004.

[7] Andrei Borshchev. The big book of simulation model-
ing: multimethod modeling with AnyLogic 6. AnyLogic
North America Chicago, 2013.

[8] Benjamin Camus, Christine Bourjot, and Vincent
Chevrier. Combining devs with multi-agent concepts
to design and simulate multi-models of complex systems
(wip). In Proceedings of the Symposium on Theory of

Modeling & Simulation: DEVS Integrative M&S Sym-
posium, pages 85–90. Society for Computer Simulation
International, 2015.

[9] Ian Cassar and Adrian Francalanza. Runtime adapta-
tion for actor systems. In Runtime Verification, pages
38–54. Springer, 2015.

[10] Ian Cassar and Adrian Francalanza. On implement-
ing a monitor-oriented programming framework for ac-
tor systems. In International Conference on Integrated
Formal Methods, pages 176–192. Springer, 2016.

[11] Feng Chen and Grigore Roşu. Mop: an efficient and
generic runtime verification framework. In ACM SIG-
PLAN Notices, volume 42, pages 569–588. ACM, 2007.

[12] Christian Colombo, Adrian Francalanza, and Rudolph
Gatt. Elarva: A monitoring tool for erlang. In In-
ternational Conference on Runtime Verification, pages
370–374. Springer, 2011.

[13] Paul S Dodd and Chinya V Ravishankar. Monitoring
and debugging distributed real-time programs. Softw.,
Pract. Exper., 22(10):863–877, 1992.

[14] Adrian Francalanza. A theory of monitors. In Interna-
tional Conference on Foundations of Software Science
and Computation Structures, pages 145–161. Springer,
2016.

[15] Alwyn E Goodloe and Lee Pike. Monitoring distributed
real-time systems: A survey and future directions. 2010.

[16] Philipp Haller and Martin Odersky. Scala actors: Uni-
fying thread-based and event-based programming. The-
oretical Computer Science, 410(2):202–220, 2009.

[17] Klaus Havelund and Grigore Roşu. Synthesizing mon-
itors for safety properties. In International Conference
on Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 342–356. Springer, 2002.

[18] M.E. Iacob, Dr. H. Jonkers, M.M. Lankhorst,
E. Proper, and Dr.ir. D.A.C. Quartel. Archimate 2.0
specification: The open group. Van Haren Publishing,
2012.

[19] J. Krogstie. Using eeml for combined goal and process
oriented modeling: A case study. CEUR Workshop Pro-
ceedings, 337:112–129, 2008.

[20] Vinay Kulkarni, Souvik Barat, Tony Clark, and Bal-
bir Barn. Toward overcoming accidental complexity
in organisational decision-making. In Model Driven
Engineering Languages and Systems (MODELS), 2015
ACM/IEEE 18th International Conference on, pages
368–377. IEEE, 2015.

[21] Tom McDermott, William Rouse, Seymour Goodman,
and Margaret Loper. Multi-level modeling of complex
socio-technical systems. Procedia Computer Science,
16:1132–1141, 2013.

[22] Donella H Meadows and Diana Wright. Thinking in
systems: A primer. chelsea green publishing, 2008.

[23] Grigore Roşu, Feng Chen, and Thomas Ball. Synthesiz-
ing monitors for safety properties: This time with calls
and returns. In International Workshop on Runtime
Verification, pages 51–68. Springer, 2008.

[24] Koushik Sen, Abhay Vardhan, Gul Agha, and Grig-
ore Rosu. Efficient decentralized monitoring of safety
in distributed systems. In Proceedings of the 26th In-
ternational Conference on Software Engineering, pages
418–427. IEEE Computer Society, 2004.

[25] Oleg Sokolsky, Usa Sammapun, Insup Lee, and Jesung
Kim. Run-time checking of dynamic properties. Elec-
tronic Notes in Theoretical Computer Science, 144(4):
91–108, 2006.

[26] Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-
typed actors for java. In European Conference
on Object-Oriented Programming, pages 104–128.
Springer, 2008.

[27] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez
Boix, Jessie Dedecker, and Wolfgang De Meuter. Am-
bienttalk: object-oriented event-driven programming in
mobile ad hoc networks. In Chilean Society of Computer
Science, 2007. SCCC’07. XXVI International Confer-
ence of the, pages 3–12. IEEE, 2007.

[28] Carlos Varela and Gul Agha. Programming dynam-
ically reconfigurable open systems with salsa. ACM
SIGPLAN Notices, 36(12):20–34, 2001.

[29] François Vernadat. Ueml: towards a unified enterprise
modelling language. International Journal of Produc-
tion Research, 40(17):4309–4321, 2002.

[30] Stephen AWhite. BPMN modeling and reference guide:
understanding and using BPMN. Future Strategies Inc.,
2008.

[31] Shohei Yasutake and Takuo Watanabe. Actario: A
framework for reasoning about actor systems. In Work-
shop on Programming based on Actors, Agents, and De-
centralized Control (AGERE, 2015.

[32] E. Yu, M. Strohmaier, and X. Deng. Exploring inten-
tional modeling and analysis for enterprise architecture.
10th IEEE International Enterprise Distributed Object
Computing Conference Workshops, 2006. .

