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A generalized evolutionary metaheuristic (GEM) algorithm for engineering
optimization

Xin-She Yang

School of Science and Technology, Middlesex University London, London, UK

ABSTRACT
Many optimization problems in engineering and industrial design applications can be formu-
lated as optimization problems with highly nonlinear objectives, subject to multiple complex
constraints. Solving such optimization problems requires sophisticated algorithms and opti-
mization techniques. A major trend in recent years is the use of nature-inspired metaheustic
algorithms (NIMA). Despite the popularity of nature-inspired metaheuristic algorithms, there
are still some challenging issues and open problems to be resolved. Two main issues related
to current NIMAs are: there are over 540 algorithms in the literature, and there is no unified
framework to understand the search mechanisms of different algorithms. Therefore, this
paper attempts to analyse some similarities and differences among different algorithms and
then presents a generalized evolutionary metaheuristic (GEM) in an attempt to unify some
of the existing algorithms. After a brief discussion of some insights into nature-inspired algo-
rithms and some open problems, we propose a generalized evolutionary metaheuristic algo-
rithm to unify more than 20 different algorithms so as to understand their main steps and
search mechanisms. We then test the unified GEM using 15 test benchmarks to validate its
performance. Finally, further research topics are briefly discussed.
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1. Introduction

Many design problems in engineering and industry
can be formulated as optimization problems subject
to multiple nonlinear constraints. To solve such opti-
mization problems, sophisticated optimization algo-
rithms and techniques are often used. Traditional
algorithms such as Newton-Raphson method are effi-
cient, but they use derivatives and calculations of
these derivatives, especially the second derivatives in
a high-dimensional space, can be costly. In addition,
such derivative-based algorithms are usually local
search and the final solutions may depend on the
starting point if optimization problems are highly
nonlinear and multimodal (Boyd & Vandenberghe,
2004; Yang, 2020a). An alternative approach is
to use derivative-free algorithms and many evolu-
tionary algorithms, especially recent nature-inspired

algorithms, do not use derivatives (Kennedy &
Eberhart, 1995; Pham et al., 2005; Storn & Price,
1997; Yang, 2020b). These nature-inspired metaheur-
istic algorithms are flexible and easy to implement,
and yet they are usually very effective in solving
various optimization problems in practice.

Algorithms have been important through history
(Beer, 2016; Chabert, 1999; Schrijver, 2005). There are
a vast spectrum of algorithms in the literature, rang-
ing from fundamental algorithms to combinatorial
optimization techniques (Chabert, 1999; Schrijver,
2005). In some special classes of optimization prob-
lems, effective algorithms exist for linear program-
ming (Karmarkar, 1984) and quadratic programming
(Zdenek, 2009) as well as convex optimization
(Bertsekas et al., 2003; Boyd & Vandenberghe, 2004).
However, for nonlinear optimization problems,
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techniques vary and often approximations, heuristic
algorithms and metaheuristic algorithms are needed.
Even so, optimal solutions cannot always be
obtained for nonlinear optimization.

Metaheuristic algorithms are approximation opti-
mization techniques, and they use some form of
heuristics with trial and error and some form of
memory and solution selections (Glover, 1986;
Glover & Laguna, 1997). Most metaheuristic algo-
rithms are evolution-based and/or nature-inspired.
Evolution-based algorithms such as genetic algo-
rithm (Holland, 1975; Goldberg, 1989) are often
called evolutionary algorithms. Algorithms such as
particle swarm optimization (PSO) (Kennedy &
Eberhart, 1995), bees algorithm (Pham et al., 2005;
Pham & Castellani, 2009) and firefly algorithm (Yang,
2009) are often called swarm intelligence based
algorithms (Kennedy et al., 2001).

However, terminologies in this area are not well
defined and different researchers may use different
terminologies to refer to the same things. In this
paper, we use nature-inspired algorithms to mean all
the metaheuristic algorithms that are inspired by
some forms of evolutionary characteristics in nature,
being biological, behaviour, social, physical and
chemical characteristics (Yang, 2020a; Yang & He,
2019). In this broad sense, almost all algorithms can
be called nature-inspired algorithms, including bees
algorithms (Pham & Castellani, 2014, 2015), PSO
(Kennedy et al., 2001), ant colony optimization, bat
algorithm, flower pollination algorithm, cuckoo
search algorithm, genetic algorithm, and many
others.

Nature-inspired algorithms have become popular
in recent years, and it is estimated that there are
several hundred algorithms and variants in the cur-
rent literature (Yang, 2020a), and the relevant litera-
ture is expanding with more algorithms emerging
every year. An exhaustive review of metaheuristic
algorithms by Rajwar et al. (2023) indicated that
there are over 540 metaheuristic algorithms with
over 350 of such algorithms that were developed in
the last 10 years. Many such new variants have been
developed based on different characteristics/species
from nature, social interactions and/or artificial sys-
tems, or based on the hybridization of different algo-
rithms or algorithmic components, or based on
different strategies of selecting candidate solutions
and information sharing characteristics (Mohamed
et al., 2020; Rajwar et al., 2023; Zelinka, 2015).

From the application perspective, nature-inspired
algorithms have been shown that they can solve a

wide range of optimization problems (Abdel-Basset
& Shawky, 2019; Bekasş et al., 2018; Osaba et al.,
2016; Pham & Castellani, 2015), from continuous
optimization (Pham & Castellani, 2014) and engineer-
ing design optimization problems (Bekasş et al.,
2018) to combinatorial optimization problems
(Ouaarab et al., 2014; Osaba et al., 2016, 2017),
multi-robots systems (Palmieri et al., 2018; Rango
et al., 2018) and many other applications (Gavvala
et al., 2019; Mohamed et al., 2020; Rajwar et al.,
2023; Zelinka, 2015).

Despite the wide applications of nature-inspired
algorithms, theoretical analysis in contrast lacks
behind. Though there are some rigorous analyses
concerning genetic algorithm (Greenhalgh &
Marshal, 2000), PSO (Clerc & Kennedy, 2002) and the
bat algorithm (Chen et al., 2018), however, many
new algorithms have not been analyzed in detail.
Ideally, a systematical analysis and review should be
carried out in the similar way to convex analysis
(Bertsekas et al., 2003) and convex optimization
(Boyd & Vandenberghe, 2004). In addition, since
there are so many different algorithms, it is difficult
to figure out what search mechanisms can be effect-
ive in determining the performance of a specific
algorithm. Furthermore, some of these 540 algo-
rithms can look very similar, either in terms of their
search mechanisms or updating equations, though
they may look very different on the surface. This
often can cause confusion and frustration to readers
and researchers to see what happens in this research
community. In fact, there are many open problems
and unresolved issues concerning nature-inspired
metaheuristic algorithms (Rajwar et al., 2023; Yang
et al., 2018; Yang & He, 2019; Yang, 2020b).

Therefore, the purpose of this paper is two-fold:
outlining some of the challenging issues and open
problems, and then developing a generalized evolu-
tionary metaheuristic (GEM) to unify many existing
algorithms. The rest of the paper is organized as fol-
lows. Section 2 first provides some insights into
nature-inspired computing and then outlines some
of the open problems concerning nature-inspired
algorithms. Section 3 presents a unified framework
of more than 20 different algorithms so as to look
all the relevant algorithms in the same set of math-
ematical equations. Section 4 discusses 15 bench-
mark functions and case studies, whereas Section 5
carries out some numerical experiments to test and
validate the generalized algorithm. Finally, Section 6
concludes with a brief discussion of future research
topics.
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2. Insights and open problems

Though not much systematical analysis of nature-
inspired algorithms exist, various studies from differ-
ent perspectives have been carried out and different
degrees of insights have been gained (Eiben & Smit,
2011; Ser et al., 2019; Yang, 2020b). For any given
nature-inspired algorithm, we can analyze its algo-
rithmic components, and their role in exploration
and exploitation, and we also study its search mech-
anism so as to understand ways that local search
and global search moves are carried out. Many stud-
ies in the literature have provided numerical conver-
gence curves during iterations when solving
different function optimization and sometimes real-
world case studies, and such convergence curves are
often presented with various statistical quantities
according to a specific set of performance metrics
such as accuracy of the solution and successful rate
as well as number of iterations. In addition, stability
and robustness are also studies for some algorithms
(Clerc & Kennedy, 2002). Such analyses, though very
important, are largely qualitative studies of algorith-
mic features, as summarized in Figure 1.

The analysis of algorithms can be carried out
more rigorously from a quantitative perspective, as

shown in Figure 2. For a given algorithm, it is pos-
sible to analyze the iterative behaviour of the algo-
rithm using fixed-point theory. However, the
assumptions required for such theories may not be
realistic or relevant to the actual algorithm under
consideration. Thus, it is not always possible to carry
out such analysis. One good way is to use complex-
ity theory to analyze an algorithm to see its time
complexity. Interestingly, most nature-inspired algo-
rithms have the complexity of OðntÞ where n is the
typically population size and t is the number of itera-
tions. It is still a mystery that how such low com-
plexity algorithms can solve highly complex
nonlinear optimization problems that have been
shown in various applications.

From the dynamical system point of view, an
algorithm is a system of updating equations, which
can be formulated as a discrete dynamical system.
The eigenvalues of the main matrix of such a system
determine the main characteristics of the algorithm.
It can be expected that these eigenvalues can
depend on the parameter values of the algorithm,
and thus parameter settings can be important. In
fact, the analyses on PSO (Clerc & Kennedy, 2002)
and the bat algorithm (Chen et al., 2018) show that

Figure 1. Analysis of algorithmic features such as components, mechanisms and stability.
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parameter values are important. If the parameter val-
ues are in the wrong ranges, the algorithm may
become unstable and become less effective. This
also indicates the important of parameter tuning in
nature-inspired algorithms (Eiben & Smit, 2011; Joy
et al., 2023). However, parameter tuning itself is a
challenging task because its aim is to find the opti-
mal parameter setting for an optimization algorithm
for a given set of optimization problems.

From the probability point of view, an algorithm
can be considered as a set of interacting Markov
chains, thus it is possible to do some approximation
analysis in terms of convergence using Markov chain
Monte Carlo (MCMC) theory (Chen et al., 2018).
However, the conditions required for MCMC can be
stringent, and thus not all algorithms can be ana-
lyzed in this way. From the perspective of the ana-
lysis of variance, it is possible to see how the
variances may change with iteration to gain some
useful understanding (Zaharie, 2009).

An alternative approach is to use Bayesian statis-
tical framework to gain some insights into the

algorithm under analysis. Loosely speaking, the initial-
ization of the population in an algorithm with a given
probability distribution forms the prior of the algo-
rithm. When the algorithm evolves and the solutions
also evolve, leading to a posterior distribution of solu-
tions and parameters. Thus, the evolution of algorithm
can be understood from this perspective. However,
since Bayesian framework often requires a lot of
extensive integral evaluations, it is not straightforward
to gain rigorous results in general.

A more ambition approach is to build a mathem-
atical framework so as to analyze algorithms in a
unified way, though such a framework does not exist
in the current literature. Ideally, a theoretical frame-
work should provide enough insights into the rise of
swarm intelligence, which is still an open problem
(Yang, 2020b; Yang & He, 2019).

As we have seen, algorithms can potentially be ana-
lyzed from different perspectives and there are many
issues that need further research in the general area of
swarm intelligence and nature-inspired computation.
We can highlight a few important open problems.

Figure 2. Different perspectives for quantitative analysis of algorithms.
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1. Theoretical framework. Though there are some
good theoretical analyses of a few algorithms
such as genetic algorithm (Greenhalgh &
Marshal, 2000), PSO (Clerc & Kennedy, 2002) and
the bat algorithm (Chen et al., 2018), there is no
unified theoretical framework that can be used
to analyze all algorithms or at least a major sub-
set of nature-inspired algorithms. There is a
strong need to build a mathematical framework
so that the convergence and rate of conver-
gence of any algorithm can be analyzed with
rigorous and quantitative results.
In addition, stability of an algorithm and its
robustness should also be analyzed using the
same mathematical framework, based on theo-
ries such as dynamical systems and perturbation
as well as probability. The insights gained from
such a theoretical framework should provide
enough guidance for tuning and setting param-
eter values for a given algorithm. However, how
to construct this theoretical framework is still an
open problem. It may be that a multidisciplinary
approach is needed to ensure to look at algo-
rithms from different perspectives.

2. Parameter tuning. The setting of parameters in
an algorithm can influence the performance of
an algorithm, though the extent of such influ-
ence may largely depend on the algorithm itself
and potentially on the problem to be solved
(Joy et al., 2023). There are different methods
for parameter tuning, but it is not clear which
method(s) should be used for a given algorithm.
In addition, different tuning methods may pro-
duce different results for parameter settings for
different problems, which may leads to the
question if a truly optimal parameter setting
exists. It seems that there are different optimal-
ity conditions concerning parameter setting (Joy
et al., 2023; Yang et al., 2013), and parameter
settings may be both algorithm-dependent and
problem-dependent, depending on the perform-
ance metric used for tuning. Many of these
questions remain unresolved.

3. Benchmarking. All new algorithms should be
tested and validated using a diverse of set of
benchmarks and case studies. In the current lit-
erature, one of the main issues is that most tests
use smooth functions as benchmarks, and it
seems that these functions have nothing to do
with real-world applications. Thus, it is not clear
how such tests can actually validate the algo-
rithm to gain any insight into the potential per-
formance of the algorithm to solve much more

complicated real-world applications. There is a
strong need to systematically investigate the
role of benchmarking and what types of bench-
marks and case studies should be used.

4. Performance metrics. It can be expected that the
performance of an algorithm depends on the
performance metrics used to measure the per-
formance. In the current literature, performance
measures are mostly accuracy compared to the
true objective values, success rate of multiple
functions, number of iterations as computational
efforts, computational time, and the combin-
ation of these measures. Whether these meas-
ures are fair or sufficient is still unexplained. In
addition, these performance metrics tend to
lead to the ranking of algorithms used and the
benchmark functions used. Again, this may not
be consistent with the no-free-lunch theorems
(Wolpert & Macready, 1997). It is not clear if
other performance measures should be
designed and used, and what theory should be
based on to design performance metrics. All
these are still open questions.

5. Search mechanism. In many nature-inspired
metaheuristic algorithms, certain forms of ran-
domization and probability distributions are
used to generate solutions with exploration abil-
ities. One of the main tasks is to balance explor-
ation and exploitation or diversification and
intensification using different search moves or
search mechanisms. However, how to balance
these two components is still an open problem.
In addition, exploration is usually by random-
ness, random walks and perturbations, whereas
exploitation is usually by using derivative infor-
mation and memory. It is not clear what search
moves can be used to achieve both exploration
and exploitation effectively.

6. Scalability. Most studies of metaheuristic algo-
rithms in the literature are concerned with prob-
lems with a few parameters or a few dozen
parameters. These problems, though very com-
plicated and useful, are small-scale problems. It
is not clear if the algorithms used and the
implementation realized can directly be applied
to large-scale problems in practice. Simple scale
up by using high-performance computing or
cloud computing facilities may not be enough.
How to scale up to solve real-world, large-scale
problems is still a challenging issue. In fact,
more efficient algorithms are always desirable in
this context.

COGENT ENGINEERING 5



7. Rise of Swarm Intelligence. Various discussions
about swarm intelligence have attracted atten-
tion in the current literature. It is not clear what
swarm intelligence exactly means and what con-
ditions are necessary to achieve such collective
intelligence. There is a strong need to under-
stand swarm intelligence theoretically and prac-
tically so as to gain insights into the rise of
swarm intelligence. With newly gained insights,
we may be able to design better and more
effective algorithms.

In addition, from both theoretical perspective and
practical point of view, the no-free lunch theorems
(Wolpert & Macready, 1997) had some significant
impact on the understanding of algorithm behav-
iour. Studies also indicate that free lunches may exist
for co-evolution (Wolpert & Macready, 2005), con-
tinuous problems (Auger & Teytaud, 2010) and
multi-objective optimization (Corne & Knowles, 2003;
Zitzler et al., 2003) under certain conditions. The
main question is how to use such possibilities to
build more effective algorithms.

3. A generalized evolutionary metaheuristic
(GEM) for optimization

From the numerical algorithm analysis point of view
(Boyd & Vandenberghe, 2004; Yang, 2020a), an algo-
rithm in essence is a procedure to modify the cur-
rent solution xt so as to produce a potentially better
solution xtþ1: The well-known Newton’s method at
iteration t can be written as

xtþ1 ¼ xt −
rfðxtÞ
r2fðxtÞ , (1)

where rf is the gradient vector of the objective
function at xt and r2f is the Hessian matrix. Loosely
speaking, all iterative algorithms can schematically
be written as

xtþ1 ¼ xt þ Sðxt , x�, p1, :::, pkÞ, (2)

where S is a step size vector, which can in general
depend on the current solution xt , the current best
solution x�, and a set of parameters (p1, :::, pk).
Different algorithms may differ only in the ways of
generating such steps.

In addition to the open problems highlighted
above, the other purpose of this paper is to provide
a unified algorithm framework, based on more than
20 existing nature-inspired algorithms. This unifica-
tion may enable us to understand the links and dif-
ference among different algorithms. It also allows us

to build a single generic algorithm that can poten-
tially use the advantages of all its component algo-
rithms, leading to an effective algorithm.

As we have mentioned earlier, there are approxi-
mately 540 metaheuristic algorithms and variants in
the literature (Rajwar et al., 2023), it is impossible to
test all algorithms and try to provide a unified
approach. This paper is the first attempt to unify
multiple algorithms in the same generalized evolu-
tionary perspective. Thus, we have to select over
twenty algorithms to see if we can achieve our aim.
Obviously, there are two challenging issues: how
many algorithms we should use and which algo-
rithms we should choose. For the former question,
we think it makes sense that we should choose at
least ten different algorithms or more so that we
can get a reasonable picture of the unification capa-
bilities. In fact, we have chosen 22 algorithms for
this framework. As for the latter question which
algorithms to use, it is almost impossible to decide
what algorithms to use from 540 algorithms. In the
end, the algorithms we have chosen here have dif-
ferent search features or characteristics in terms of
their exploration and exploitation capabilities. In
addition, in the case of similar exploration and
exploitation capabilities, we tend to select the
slightly well-established algorithms that appeared
earlier in the literature because later/new algorithms
may have been based on such mechanisms.

This unified algorithm is called Generalized
Evolutionary Metaheuristic (GEM) with multiple
parameters and components to unify more than 20
algorithms.

A solution vector x in the D-dimensional space is
denoted by

x ¼ ðx1, x2, :::, xDÞ: (3)

For a set of n solution vectors xi where i ¼
1, 2, :::, n, these vectors evolve with the iteration t
(the pseudo-time) and they are denoted by xti :
Among these n solutions, there is one solution g�
that gives the best objective value (i.e. highest for
maximization or lowest for minimization). For mini-
mization,

g� ¼ argminffðxti Þ, fðx�i Þ, fð�xgÞg,
ðfor minimizationÞ,

(4)

where the argmin is to find the corresponding solu-
tion vector with the best objective value. Here, �xg is
the average of the top m best solutions among n
solutions (m � n). That is

6 X.-S. YANG



�xg ¼ 1
m

Xm
j¼1

xj: (5)

In case of m¼ n, this becomes the centre of the
gravity of the whole population. Thus, we can refer
to this step as the centrality move.

The main updating equations for our proposed
unified algorithm are guided randomization and
position update. In the guided randomization search
step, it consists of

vtþ1i ¼ pvti|{z}
inertia term

þ q�1ðg� − xti Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
motion towards current best

þ r�2ðx�i − xti Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
motion to individual best

:

(6)

In the position update step, it means

xtþ1i, new ¼ axti þ ð1 − aÞ�xg|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Centrality

þ bðxtj − xti Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
similarity convergence

þ cvtþ1i|ffl{zffl}
kinetic motion

þHhðxti Þfi|fflfflfflfflffl{zfflfflfflfflffl}
perturbation

,

(7)

where a, b, c,H, p, q, and r are parameters, and x�i is
the individual best solution for agent or particle i.
Here, hðxti Þ is a function of current solution, and in
most case we can set hðxti Þ ¼ 1, which can be a
constant. In addition, fi is a vector of random num-
bers, typically drawn from a standard normal distri-
bution. That is

fi � Nð0, 1Þ: (8)

It is worth pointing out the effect of each term can
be different, and thus we can name each term, based
on their effect and meaning. The inertia term is pvti ,
whereas the q�1ðg� − xti Þ simulates the motion or
move towards the current best solution. The term
r�2ðx�i − xti Þ means to move towards the individual
best solution. The centrality term has a weighting coef-
ficient ð1 − aÞ, which tries to balance between the
importance of the current solution xti and the impor-
tance of the centre of gravity of the swarm �xg: The
main term bðxtj − xti Þ shows similar solutions should
converge with subtle or minor changes. cvti is the kin-
etic motion of each solution vector. The perturbation
term Hhðxti Þfi is controlled by the strength parameter
H where hðxiÞ can be used to simulate certain special-
ized moves for each solution agent. If there is no spe-
cialization needed, hðxiÞ ¼ 1 can be used.

The selection and acceptance criterion for mini-
mization is

xtþ1i ¼
xti, new if fðxtþ1i, newÞ � fðxti Þ,

xti otherwise:

8<
: (9)

These four main steps/equations are summarized
in the pseudocode, shown in Algorithm 1 where the

initialization of the population follows the standard
Monte Carlo randomization

xi ¼ Lbþ randð1,DÞðUb − LbÞ, (10)

where Lb and Ub are, respectively, the lower bound
and upper bound of the feasible decision variables.
In addition, rand(1,D) is a vector of D random num-
bers drawn from a uniform distribution.

Special cases can correspond to more than 20 dif-
ferent algorithms. It is worth pointing out that in many
case there are more than one way to represent the
same algorithm by setting different values of parame-
ters. The following representations are one of the pos-
sible ways for representing these algorithms:

1. Differential evolution (DE) (Price et al., 2005;
Storn & Price, 1997): a¼ 1, b ¼ F, c¼ 0 and
H ¼ 0.

2. Particle swarm optimization (PSO) (Kennedy &
Eberhart, 1995; Kennedy et al., 2001): a¼ 1,
b¼ 0, p¼ 1, c¼ 1, and H ¼ 0. In addition, q ¼
a and r ¼ b:

3. Firefly algorithm (FA) (Yang, 2009, 2013): a¼ 1,
b ¼ b exp ð−cr2ij Þ, c¼ 0 and H ¼ 0:97t:

4. Simulated annealing (SA) (Kirkpatrick et al.,
1983): a¼ 1, b ¼ c ¼ 0 and H ¼ 1.

5. Artificial bee algorithm (ABC) (Karaboga &
Basturk, 2008): a¼ 1, b ¼ U 2 ½−1, 1�, c¼ 0 and
H ¼ 0.

6. Artificial cooperative search (ACS) (Civicioglu,
2013): a¼ 1, b ¼ R. c¼ 0, H ¼ 0 and its two
predator keys are drawn from its a and b.

7. Charged system search (CSS) (Kaveh &
Talatahari, 2010): a¼ 1, b ¼ AðRÞ where R is the
normalized distance with the maximum at
R¼ 1. In addition, c¼ 0 and H ¼ 0.

8. Cuckoo search (CS) (Yang & Deb, 2010): a¼ 1,
c¼ 0, and b ¼ asHðpa − �Þ where a is a scaling
parameter, H is a Heaviside function with a
switch probability pa and a uniformly distrib-
uted random number �. The step size s is
drawn from a L�evy distribution. The other
branch with the switch probability pa is a¼ 1,
b ¼ c ¼ 0, H ¼ 1, but f is drawn from the
L�evy distribution

Lðs, bÞ � bCðbÞ sin ðpb=2Þ
p

1
s1þb

, b ¼ 1:5,

where C is the standard Gamma function.
9. Gravitational search algorithm (GSA) (Rashedi

et al., 2009): a¼ 1, p ¼ rand 2 ½0, 1�, q ¼ r ¼ 0,
c¼ 1 and H ¼ 0. In addition, b ¼ rand � GðtÞ
where GðtÞ ¼ G0 exp ð−at=TÞ:
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10. Gradient evolution algorithm (GEA) (Kuo &
Zulvia, 2015): a¼ 1, c¼ 0 and H ¼ 0, but

b ¼ rgDx
t
ij=2ðxwij − xtij þ xBij Þ:

In addition, the parameter is set to ra ¼ 0
in GEA.

11. Harris hawk optimizer (HHO) (Heidari et al.,
2019): a¼ 1, b¼ 0, c¼ 1, H ¼ 0, p¼ 0, r¼ 0,
and q ¼ −E where E varies with iteration t.

12. Henry gas solubility optimization (HGSO)
(Hashim et al., 2019): a¼ 1, b ¼ r, c¼ 1 and
H ¼ 0. In addition, p¼ 1 and r¼ 0, but q is
related to the solubility affected by the Henry
constant and parochial pressure. Here, the
Henry’s constant changes with iteration t by
Htþ1
j ¼ Ht

j exp½−Cjð1=TðtÞ − 1=T0Þ� where T0 ¼
298:15 K, Cj is a given constant and
TðtÞ ¼ e−t=tmax :

13. Harmony search (HS) (Geem et al., 2001): a¼ 0,
b ¼ c ¼ 0, H ¼ 1, hðxÞ ¼ xti for pitch adjust-
ment, but for harmony selection b¼ 1 and
H ¼ 0 can be used.

14. Ant lion optimizer (ALO) (Mirjalili, 2015): a¼ 1,
b¼ 0, c¼ 1, H ¼ di − ci where di is the scaled
random walk length and ci is its corresponding
minimum. In addition, p¼ 0, q¼ 0, r¼ 1 with
some variation of g� is just the average of two
selected elite ant-lion solutions.

15. Whale optimization algorithm (WOA) (Mirjalili &
Lewis, 2016): a¼ 1, c¼ 0, p ¼ q ¼ r ¼ 0, b ¼
−A where A ¼ 2dr − a with r be drawn ran-
domly from ½0, 1� and d be linearly decreasing
from 2 to 0. In their spiral branch, H ¼ 1 with
an equivalent b ¼ eR cos ð2pRÞ where R is uni-
formly distributed in [[−1, 1].

16. Lion optimization algorithm (LOA) (Yazdani &
Jolai, 2016): a¼ 1, b¼ 0, c¼ 1, H ¼ 0, p¼ 0,
q ¼ −PI, and r¼ 0. In the other moving branch
in their LOA, H is proportional to DR where D
is their scaled distance and R can be drawn
either from [0, 1] or [−1, 1].

17. Mayfly optimization algorithm (MOA) (Zervoudakis
& Tsafarakis, 2020): a¼ 1, b¼ 0, c¼ 1, H ¼ 0, p ¼
g, q ¼ a1 exp ð−br2pÞ, and r ¼ a2 exp ð−br2gÞ:

18. Big bang-big crunch (BBBC) (Erol & Eksin,
2006): the modification of solutions is mainly
around the centre of gravity xg of the popula-
tion with a¼ 0. b ¼ c ¼ 0, and H ¼ Ub=tmax:

19. Social spider algorithm (SSA) (James & Li,
2015): a¼ 1, b ¼ wed

2
ij where w is a weight

coefficient and dij is the distance between
two spiders. In addition, c¼ 0, H ¼ 1, f ¼
rand − 1=2:

20. Moth search algorithm (MSA) (Wang, 2018):
a ¼ k, b¼ 0, c¼ 1, p¼ 0, q ¼ /, r¼ 0, and
H ¼ 0 in one equation. The other equation
corresponds to a¼ 1, b ¼ c ¼ 0, H ¼ Smax=t2

and f ¼ LðsÞ drawn from a L�evy distribution.
21. Multi-verse optimizer (MVO) (Mirjalili et al.,

2016): a¼ 1, b ¼ c ¼ 0, but H ¼ 1 − ðt=tmaxÞ1=p
where tmax is the maximum number of itera-
tions. Its randomized perturbation is given
by f ¼ 6½Lbþ randðUb − LbÞ�:

22. Water cycle algorithm (WCA) (Eskandar et al.,
2012): a¼ 1, c ¼ H ¼ 0, b ¼ C rand where C 2
½1, 2� and rand is a uniformly distributed random
number in [0, 1] for both water drops in river
and stream in the WCA. For the additional search
for the new stream step, a¼ 1, b ¼ c ¼ 0, but
H ¼ ffiffiffi

l
p

as its standard deviation and f is drawn
from a Gaussian distribution with a unity mean.

Algorithm 1: GEM: A generalized evolutionary meta-
heuristic for optimization.

Data: Define optimization objective (fðxÞ) with
proper constraint handling
Result: Best or optimal solution (fmin) with
archived solution history

1 Initialize parameter values (n, a, b, c, H, p,
q, r);

2 Generate an initial population of n solutions
using Eq. (10);

3 Find the initial best solution g� and fmin

among the initial population;
4 while (t <MaxGeneration) do
5 Generate random numbers (�1, �2, fi);
6 for i ¼ 1 : n (all solutions) do
7 Modify solutions by Eq. (6);
8 Update solution vectors by Eq. (7);
9 Accept a solution by checking criterion

Eq. (9);
10 end
11 Rank all the solutions to find the current

best fmin;

12 Update the best solution so far g� and �xg

by Eq. (4);
13 Save and archive the current population for

next generation;
14 Update the iteration counter t t þ 1;
15 end
16 Post-process the solutions for constraint verifi-

cation and visualization;

As pointed out earlier, there are more than one
ways of representing an algorithm under consideration
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using the unified framework, and the minor details
and un-important components of some algorithms
may be ignored. In essence, the unified framework
intends to extract the key components of multiple
algorithms so that we can figure out what main
search mechanisms or moves are important in
metaheuristic algorithms. Therefore, it can be
expected that many other algorithms may be con-
sidered as special cases of the GEM framework if
the right combinations of parameter values are
used.

4. Benchmarks and parameter settings

To test the unified GEM algorithm, we have selected
15 benchmark functions and case studies. There are
many different test function benchmarks, including
multivariate functions (Jamil & Yang, 2013), CEC2005
test suite (Suganthan et al., 2005), unconstrained
benchmark function repository (Al-Roomi, 2015) and
engineering optimization problems (Cagnina et al.,
2008; Coello, 2000). The intention is to select a sub-
set of optimization problems with a diverse range of
properties such as modality, convexity, nonlinear
constraints, separability, and landscape variations.
The case studies also include a mixed-integer pro-
gramming pressure vessel design problem, and a
parameter estimation based on data for a vibrations
system governed by an ordinary differential equation
(ODE).

4.1. Test functions

The ten test functions are outlined as follows.

1. Sphere function

f1ðxÞ ¼
XD
i¼1

x2i , − 10 � xi � þ10, (11)

its global optimality fmin ¼ 0 occurs at x� ¼
ð0, 0, :::, 0Þ:

2. Rosenbrock function (Rosenbrock, 1960)

f2ðxÞ ¼ ðx1 − 1Þ2 þ 100
XD−1
i¼1
ðxiþ1 − x2i Þ2,

xi 2 −10, 10½ �,
(12)

whose global minimum fmin ¼ 0 is located at
x� ¼ ð1, 1, :::, 1Þ:

3. Ackley function

f3ðxÞ ¼ −20 exp −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD
i¼1

x2i

vuut
2
64

3
75

− exp
1
D

XD
i¼1

cos ð2pxiÞ
" #

þ 20þ e,

(13)

with

xi 2 −32:768, 32:768½ �, (14)

whose global minimum fmin ¼ 0 occurs at x� ¼
ð0, 0, :::, 0Þ:

4. Dixon-Price function

f4ðxÞ ¼ ðx1 − 1Þ2 þ
XD
i¼2

ið2x2i − xi−1Þ2,

xi 2 −10, 10½ �,
(15)

whose global minimum fmin ¼ 0 at xi ¼
2−ð2

i−2Þ=2i for i ¼ 1, 2, :::,D:
5. Schwefel function (Schwefel, 1995)

f5ðxÞ ¼ −x1x2ð72 − 2x1 − 2x2Þ, xi 2 0, 500½ �,
(16)

its global minimum fmin ¼ −3456 occurs at
x� ¼ ð12, 12Þ:

6. Booth function

f6ðxÞ ¼ ðx1 þ 2x2 − 7Þ2 þ ð2x1 þ x2 − 5Þ2,
xi 2 −10, 10½ �,

(17)

whose global minimum fmin ¼ 0 occurs
at x� ¼ ð1, 3Þ:

7. Holder table function

f7ðxÞ ¼ − sin ðx1Þ cos ðx2Þe
1−

ffiffiffiffiffiffiffiffi
x2
1
þx2

2

p
p

��� ���������
������,

xi 2 −10, 10½ �,
(18)

whose four global minima fmin ¼ −19:2085
occur at x� ¼ ð68:05502,69:66459Þ:

8. Beale function

f8ðxÞ ¼ ð1:5 − x1 þ x1x2Þ2 þ ð2:25 − x1 þ x1x22Þ2

þ ð2:625 − x1 þ x1x32Þ2,
(19)

where

xi 2 −4:5, þ 4:5½ �: (20)

The global minimum fmin ¼ 0 occurs at x� ¼
ð3, 0:5Þ:
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9. Trid function

f9ðxÞ ¼
XD
i¼1
ðxi − 1Þ2 −

XD
i¼2

xixi−1,

xi 2 −d2, d2
� �

,

(21)

whose global minimum fmin ¼ −DðDþ 4ÞðD −
1Þ=6 occurs at xi ¼ iðDþ 1 − iÞ for i ¼ 1, 2, :::,D:

10. Rastrigin function

f10ðxÞ ¼ 10Dþ
XD
i¼1

x2i − 10 cos ð2pxiÞ
� �

,

xi 2 −5:12, 5:12½ �,
(22)

whose global minimum fmin ¼ 0 occurs
at x� ¼ ð0, 0, :::, 0Þ:

4.2. Case studies

The five design case studies or benchmarks are
described as follows.

11. Spring design. The three design variables are:
the wire diameter w (or x1), mean coil diameter
D (or x2) and the number N (or x3) of active
coils.

min fðxÞ ¼ ð2þ x3Þx21x2, (23)

subject to

g1ðxÞ ¼ 1 −
x32x3

71785x41
� 0, (24)

g2ðxÞ ¼ 4x22 − x1x2
12566ðx2x31 − x41Þ

þ 1
5108x21

− 1 � 0,

(25)

g3ðxÞ ¼ 1 −
140:45x1
x22x3

� 0, (26)

g4ðxÞ ¼ x1 þ x2
1:5

− 1 � 0: (27)

The simple lower and upper bounds are

Lb ¼ 0:05, 0:25, 2½ �,
Ub ¼ 1:00, 1:30, 15½ �:

(28)

The best solution found so far is (Cagnina et al.,
2008; Yang, 2013)

fmin ¼ 0:01266522,

x� ¼ 0:05169, 0:35673, 11:2885½ �:
(29)

12. For the three-bar truss system design with two
cross-section areas x1 ¼ A1 and x2 ¼ A2, the
objective is to minimize

min fðxÞ ¼ 100 2
ffiffiffi
2
p

x1 þ x2
� �

, (30)

subject to

g1ðxÞ ¼
ffiffiffi
2
p

x1 þ x2
� �

Pffiffiffi
2
p

x21 þ 2x1x2
− r � 0, (31)

g2ðxÞ ¼ x2Pffiffiffi
2
p

x21 þ 2x1x2
− r � 0, (32)

g3ðxÞ ¼ P

x1 þ
ffiffiffi
2
p

x2
− r � 0: (33)

where r¼ 2 kN/cm2 is the stress limit and
P¼ 2 kN is the load. In addition, x1, x2 2 ½0, 1�:
The best solution so far in the literature is
(Bekasş et al., 2018)

fmin ¼ 263:8958, x� ¼ ð0:78853, 0:40866Þ:
(34)

13. Beam design. For the beam design to support a
vertical load at the free end of the beam, the
objective is to minimize

min fðxÞ ¼ 0:0624ðx1 þ x2 þ x3 þ x4 þ x5Þ, (35)

subject to

gðxÞ ¼ 61
x31
þ 37

x32
þ 19

x33
þ 7
x34
þ 1
x35

− 1 � 0, (36)

with the simple bounds 0:01 � xi � 100: The
best solution found so far in the literature is
(Bekasş et al., 2018)

fmin ¼ 1:33997,

x� ¼ ð6:0202, 5:3082, 4:5042, 3:4856, 2:1557Þ:
(37)

14. Pressure vessel design. The main objective is to
minimize

min fðxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x23

þ 3:1661x21x4 þ 19:84x21x3, (38)

subject to

g1ðxÞ ¼ −x1 þ 0:0193x3 � 0, (39)

g2ðxÞ ¼ −x2 þ 0:00954x3 � 0, (40)

g3ðxÞ ¼ −px23x4 −
4p
3
x33 þ 1296000 � 0, (41)

g3ðxÞ ¼ x4 − 240 � 0: (42)

The first two design variables must be the inte-
ger multiples of the basic thickness h¼ 0.0625
inches (Cagnina et al., 2008). Therefore, the
lower and upper bounds are

Lb ¼ h, h, 10, 10½ �, (43)

and

Ub ¼ 99h, 99h, 200, 200½ �: (44)

10 X.-S. YANG



Its true global optimal solution fmin ¼
6059:714335 occurs at

x1 ¼ 0:8125, x2 ¼ 0:4375, x3

¼ 40:098446, x4 ¼ 176:636596: (45)

14. Parameter estimation of an ODE. For a vibration
problem with a unit step input, we have its
mathematical equation as an ordinary differential
equation (Yang, 2023)

€y
x2
þ 2f

_y
x
þ y ¼ uðtÞ, (46)

where x and f are the two parameters to be
estimated. Here, the unit step function is given

uðtÞ ¼ 0 if t < 0,
1 if t � 0:

	
(47)

The initial conditions are yð0Þ ¼ y0ð0Þ ¼ 0: For a
given system, we have observed its actual
response. The relevant measurements are given
Table 1.In order to estimate the two unknown
parameter values x and f, we can define the
objective function as

fðxÞ ¼
X10
i¼0

yðtiÞ − ysðtiÞ½ �2, (48)

where yðtiÞ for i ¼ 0, 1, :::, 10 are the observed
values and ysðtiÞ are the values obtained by solv-
ing the differential equation (46), given a
guessed set of values f and x. Here, we have
used x ¼ ðf, xÞ:
The true values are f ¼ 1=4 and x¼ 2. The aim of
this benchmark is to solve the differential equation
iteratively so as to find the best parameter values
that minimize the objective or best-fit errors.

4.3. Parameter settings

In our simulations, the parameter settings are: popula-
tion size n¼ 10 with parameter values of a¼ 1,
b¼ 0.7, c¼ 1, p¼ 0.7, q ¼ r ¼ 1 and H ¼ ht with h ¼
0:97: The maximum number of iterations is set
to tmax ¼ 1000:

For the benchmark functions, D¼ 5 is used for f1,
f2, f3, f4, and f10. For f9, D¼ 4 is used so as to give
fmin as a nice integer. For all other problems, their
dimensionality has been given earlier in this section.

5. Numerical experiments and results

After implementing the algorithm using MATLAB, we
have carried out various numerical experiments. This
section summarizes the results.

5.1. Results for function benchmarks

For the first ten functions, the algorithm has been
run 20 times so that the best fmin, mean values and
other statistics can be calculated. The results have
been summarized in Table 2. As we can see, the
algorithm can find all the true optimal solutions
even with a small population size n¼ 10. This shows
that the unified GEM algorithm is very efficient for
solving function optimization problems.

5.2. Five case studies

To test the proposed algorithm further, we have
used it to solve five different case studies, subject to
various constraints. The constraints are handled by
the standard penalty method with a penalty coeffi-
cient k¼ 1000 to 105. For the pressure vessel prob-
lem, k ¼ 105 is used, whereas all other problems use
k¼ 1000.

For example, in the pressure vessel design prob-
lem, the four constraints are incorporated as PðxÞ so
that the new objective becomes

FpðxÞ ¼ fðxÞ þ kPðxÞ, (49)

where

Table 1. Measured data for a vibration problem.
Time ti 1 2 3 4 5

yðtiÞ 1.0706 1.3372 0.8277 0.9507 1.0848
Time ti 6 7 8 9 10
yðtiÞ 0.9814 0.9769 1.0169 1.0012 0.9933

Table 2. Numerical experiments for ten test functions.
Best (fmin) Worst Mean (fmin) True fmin

Fun 1 þ1:4073e − 28 þ1:3985e − 27 þ5:2722e − 28 0
Fun 2 þ1:0192e − 26 þ4:3595e − 05 þ4:3595e − 06 0
Fun 3 þ2:6645e − 15 þ2:3981e − 14 þ9:7700e − 15 0
Fun 4 þ9:8139e − 27 þ6:6667e − 01 þ2:0000e − 01 0
Fun 5 −3:4560eþ 03 −3:4560eþ 03 −3:4560eþ 03 −3456
Fun 6 þ3:1554e − 30 þ1:8302e − 28 þ7:9359e − 29 0
Fun 7 −1:9209eþ 01 −1:6268eþ 01 −1:8620eþ 01 −19.2085
Fun 8 þ1:9586e − 29 þ7:6207e − 01 þ7:6207e − 02 0
Fun 9 −1:6000eþ 01 −1:6000eþ 01 −1:6000eþ 01 −16
Fum 10 þ0:0000eþ 00 þ1:9899eþ 00 þ1:1940eþ 00 0

Table 3. Pressure vessel design benchmarks.
x1 x2 x3 x4 fmin

Run 1 1.2500 0.6250 64.7668 11.9886 7332.8419
Run 2 0.7500 0.3750 38.8601 221.3657 5850.3851
Run 3 1.1875 0.6250 61.5285 26.9310 7273.5127
Run 4 1.0000 0.5000 51.8135 84.5785 6410.0869
Run 5 0.8750 0.4375 45.3367 140.2544 6090.5325
Run 6 0.8750 0.4375 45.3368 140.2538 6090.5262
Run 7 0.7500 0.3750 38.8601 221.3655 5850.3831
Run 8 1.0000 0.5625 51.8135 84.5785 6708.4337
Run 9 0.8125 0.4375 42.0984 176.6366 6059.7143
Run 10 0.7500 0.4375 38.8601 221.3655 6018.2036
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PðxÞ ¼
X4
i¼1

maxf0, giðxÞg, k ¼ 105: (50)

The pressure vessel design problem is a mixed
integer programming problem because the first two
variables x1 and x2 can take only integer multiples of
the basic thickness h¼ 0.0625 due to manufacturing
constraints. The other two variables x3 and x4 can
take continuous real values. For each case study, the
algorithm has been run 10 times. For example, the
10 runs of the pressure vessel design are summar-
ized in Table 3. As we can see, Run 2 finds a much
better solution fmin ¼ 5850:3851, highlighted in bold,
than the best solution known so far in the literature
6059.7143. All the constraints are satisfied, which
means that this is a valid new solution.

Following the exact same procedure, each case
study has been simulated 20 times. The results for
the five design case studies are summarized in Table
4. As we can see, all the best known optimal solu-
tions have been found by the algorithm with a
population size n¼ 10.

The above simulations and results have shown
that the unified GEM algorithm performs well for all
the 15 test benchmarks, and in some cases it can
achieve even better results. This indicates that this
unified algorithm is effective and can potentially be
applied to solve a wide range of optimization prob-
lems. This will form part of our further research.

6. Conclusion and discussion

In this paper, we have proposed a unified algorithm,
called generalized evolutionary metaheuristic (GEM),
which represents more than 20 different algorithms
in the current literature. We have validated the pro-
posed GEM with 15 different test benchmarks and
optimal solutions have been obtained with a small
population size and fixed parameters.

From the parameter tuning perspective, it can be
expected that if the parameters can be tuned sys-
tematically, it may be possible to enhance the algo-
rithm’s performance further. In fact, a systematical
parameter study and parameter tuning is needed for
this new algorithm, which will be carried out in our
future work.

In addition, apart from more than 20 algorithms
as special cases of this unified algorithm when set-
ting different parameter values, it can be expected
that the vast majority of the 540 algorithms can also
be rightly represented in this unified algorithm if
certain parameter are allowed to vary in certain
ways and some minor differences in some algo-
rithms can be ignored. Obviously, for some algo-
rithms such as the genetic algorithm, the algorithm
is mainly described as an algorithmic procedure
without explicit mathematical formulas. Such type of
algorithm may not be easily categorized into the
generalized framework. However, the procedure and
algorithmic flow may in essence be quite similar to
some of the main framework. In addition, a system-
atic comparison of this general framework can be
carried out with various component algorithms. This
can be a useful topic for further research.
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