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Abstract—Modern transportation systems face growing
challenges in managing traffic flow, ensuring safety, and maintaining
operational efficiency amid dynamic traffic patterns. Addressing
these challenges requires intelligent solutions capable of real-time
monitoring, predictive analytics, and adaptive control. This paper
proposes an architecture for DigIT, a Digital Twin (DT) platform
for Intelligent Transportation Systems (ITS), designed to overcome
the limitations of existing frameworks by offering a modular and
scalable solution for traffic management. Built on a Domain Concept
Model (DCM), the architecture systematically models key ITS
components enabling seamless integration of predictive modeling
and simulations. The architecture leverages machine learning models
to forecast traffic patterns based on historical and real-time data.
To adapt to evolving traffic patterns, the architecture incorporates
adaptive Machine Learning Operations (MLOps), automating
the deployment and lifecycle management of predictive models.
Evaluation results highlight the effectiveness of the architecture
in delivering accurate predictions and computational efficiency.

Index Terms—Digital Twin, Intelligent Transportation System,
Domain Driven Design, MLOps

I. INTRODUCTION

The increasing complexity of modern transportation
systems, characterized by growing vehicular density, diverse
communication protocols, dynamic and distinct traffic patterns,
and complex road networks poses significant challenges in traffic
management, safety, and operational efficiency. To this end,
Intelligent Transport System (ITS) has emerged as a potential
solution as they serve as an ecosystem that integrates technology,
communication, and data analytics to improve the efficiency,
safety, and sustainability of transportation systems. ITS solutions
are used to manage and optimize traffic flow, enhance user
experience, and support advanced applications like autonomous
driving and vehicular communication [1], [2]. Most importantly,
the ITS infrastructure helps reduce the accidents that occur on the
roads. Hence, it is important to deploy more ITS infrastructure
as fatal accidents are on the rise in several countries [3], [4].

However, deploying an ITS infrastructure, which achieves the
earlier mentioned objectives while ensuring safety, is non trivial
due to its scale, dynamic environment, and real-time demands.
The development of a formally sound ITS solution thus becomes
challenging as it is difficult to verify all the what-if scenarios
in the physical deployment. In response, Digital Twins (DTs)
have emerged as a transformative paradigm, enabling the
creation of virtual replicas of physical systems to support
real-time monitoring, predictive analytics, and adaptive control
mechanisms [5] [6] [7] [8]. In the context of ITS, DTs leverage
real-time data from IoT-enabled sensors, vehicular networks,
and environmental monitoring systems to improve situational

awareness and enhance decision-making processes [9]. Existing
implementations, such as Mobility DT [10], have demonstrated
their utility in modeling traffic flows, evaluating rerouting
strategies, and predicting congestion patterns through simulation-
based approaches. These advancements highlight the potential
of DTs to transform urban mobility and transportation planning.

Although modeling traffic flows works well in several coun-
tries, the challenge is significantly higher in many other countries
that witness highly unstructured traffic. This scenario also de-
mands robust traffic management solutions to mitigate the social,
economic, and environmental impacts of congestion. Traffic flow
prediction enables proactive decision-making and efficient traffic
control. However, the irregular and dynamic nature of traffic pat-
terns, presents unique challenges in identifying consistent trends.
To address these complexities, this project leverages temporal
and spatio-temporal Deep Learning (DL) models, such as LSTM
(Long Short-Term Memory) [11] and BiLSTM (Bidirectional
LSTM) [12]. LSTM, a variant of Recurrent Neural Networks
(RNNs), excels in capturing long-term dependencies in sequential
data, making it highly effective for modeling traffic patterns that
evolve over time. Its ability to retain and utilize information over
long sequences enables accurate predictions of future traffic flows
based on historical trends. By integrating real-time data from
traffic nodes at intersections in Hyderabad, India, the system
ensures precise predictions and real-time adaptability. Automated
retraining mechanisms further enhance robustness, contributing
to smarter and more efficient traffic management systems.

This paper introduces architecture for DigIT (DT for ITS)
platform, addressing the limitations of existing frameworks by
providing a modular, scalable, and adaptive solution for traffic
management. To systematically model the components and
behaviors of ITS, the architecture adopts a Domain Concept
Model (DCM), which captures key entities such as vehicles,
sensors, communication networks, and user behaviors. The
DCM serves as the foundation for designing the architecture and
defining the interactions required to simulate traffic scenarios
and predict outcomes effectively.

The proposed architecture integrates real-time data streams
with Machine Learning (ML) based predictive modeling to
optimize traffic flow and enhance decision-making. It employs
ML models to forecast traffic patterns based on historical and
real-time data. The predictions are validated through simulations,
enabling scenario testing and evaluation of intervention strategies.
By bridging modeling and simulation, this architecture demon-
strates the potential of integrating predictive analytics into real-



time traffic management workflows. The architecture for DigIT
platform incorporates adaptive Machine Learning Operations
(MLOps) [13] practices, automating the deployment and lifecycle
management of predictive models. This framework supports dy-
namic adjustments to evolving traffic conditions while maintain-
ing computational efficiency and scalability. The results presented
in this work validate the system’s accuracy and responsiveness,
demonstrating its suitability for real-world ITS applications.

II. RELATED WORK

Digital Twin (DT) technology has shown significant potential
across diverse domains by enabling real-time monitoring,
predictive analytics, and scenario-based simulations. Its
adaptability has made it particularly effective in applications
ranging from infrastructure management to smart cities, offering
a foundation for addressing the challenges of Intelligent
Transportation Systems (ITS).

In infrastructure management, Likhit et al. [14] demonstrated
DTs’ effectiveness in optimizing water distribution networks
through real-time data and simulations. Their work highlights
leveraging predictable flow patterns to improve resource
management. However, transportation systems add complexity
due to unpredictable traffic dynamics and human behavior,
as noted by Glaessgen and Stargel [15], requiring robust
frameworks to address uncertainties.

Expanding to urban-scale applications, Mohammadi et al.
[16] applied DTs for smart city optimization, enabling better
decision-making and resource allocation. Similarly, Barat et
al. [17] modeled pandemic dynamics, emphasizing adaptability
in crisis scenarios. Despite these advances, Barn et al. [18]
highlighted gaps in integrating socio-technical interactions and
behavioral modeling, limiting realism in existing frameworks.

To address scalability and interoperability, Redelinghuys et al.
[19] proposed layered DT architectures, promoting modularity.
Complementing this, Kulkarni et al. [20] introduced automated
workflows for predictive modeling, ensuring responsiveness
under evolving conditions. Yet, these methods often rely on
static configurations, posing challenges for dynamic systems
requiring continuous retraining.

Despite advancements, Digital Twin (DT) systems still struggle
with real-time synchronization between virtual and physical envi-
ronments, often relying on offline simulations [21]. Recent efforts,
such as Ge et al. [22], introduced cyber-physical frameworks with
IoT sensors for synchronized traffic simulations. However, scal-
ability to multi-modal urban systems remains a challenge [23].

To tackle these limitations, Domain-Driven Design (DDD)
offers a modular approach for structuring complex DTs. By
leveraging bounded contexts, DDD improves scalability and
adaptability. Macias et al. [24] applied DDD principles for
scalable architectures, Evans [25] emphasized adaptability
and automated updates, highlighting DDD’s potential to meet
real-time demands and evolving requirements.

Building on this foundation, we propose an architecture for
the DigIT platform—a DT framework for ITS that integrates
predictive modeling, simulations, and automated workflows. The
architecture applies DDD principles to identify domains, which
are modeled using a Decision-Component Model (DCM). The
DCM captures key entities such as vehicles, sensors, communica-
tion networks, and user behaviors, ensuring seamless integration

between physical and digital systems. ML models handle traffic
forecasting, supported by MLOps pipelines for scalability through
automated retraining. Simulations enable scenario testing, provid-
ing insights for decision-making and interventions. By combining
these elements, our framework addresses modern transportation
complexities with a dynamic and scalable approach.

III. DEPLOYED ITS USE CASE

The development of a DT for ITS involves deploying
IoT-based traffic monitoring systems in urban areas to create
a comprehensive and scalable platform for understanding and
optimizing traffic flow. The focus is on real-time data collection,
simulation of traffic scenarios, and predictive analysis to address
challenges such as congestion, delays, and inefficiencies in
traffic management.

To develop an exemplar ITS system, a network of edge devices
are strategically deployed at busy intersections near the IIIT
Hyderabad campus. These devices are equipped with cameras
and processors that capture real-time traffic data, including
vehicle counts, traffic density, and congestion levels, at regular
intervals. The data is processed locally on the edge devices using
advanced temporal models such as LSTM (Long Short-Term
Memory) and BiLSTM (Bidirectional LSTM), which are highly
effective in capturing traffic flow patterns and predicting future
trends. By leveraging LSTM’s ability to model long-term
dependencies and BiLSTM’s bidirectional analysis of sequential
data, the system ensures accurate and timely predictions.

The processed data is aggregated into 5-minute intervals to
reduce noise and optimize storage and is then transmitted to a
public API hosted on a Virtual Private Server (VPS). This API
serves as a centralized hub, enabling other system components
to access the data seamlessly. Additionally, the edge devices’
local processing minimizes latency, ensuring quick responses
to real-time traffic conditions.

This setup provides continuous insights into traffic flow
dynamics, particularly during peak hours or in response to
unexpected disruptions like accidents or roadblocks. The
integration of LSTM and BiLSTM models enhances the system’s
ability to adapt to the unpredictable and highly dynamic nature
of traffic patterns. Furthermore, the system supports regular
retraining mechanisms, either scheduled or dynamically triggered
by performance thresholds, to ensure the predictions remain
accurate and relevant. This comprehensive approach forms
the backbone of real-time traffic management and simulation
systems, enabling more efficient and adaptive decision-making
processes. The stored data powers simulations using tools like
the Simulation of Urban MObility (SUMO) [26], which replicate
real-world traffic conditions to model the behavior of vehicles
across the monitored intersections. For example, simulations
might explore how adjusting signal timings or rerouting traffic
can mitigate bottlenecks during heavy congestion. Alongside
simulations, ML models analyze both real-time and historical data
to forecast future traffic conditions, such as predicting increased
congestion at specific intersections during evening rush hours.

This use case demonstrates how DT can enable a better
understanding of traffic flow in urban environments. By
combining real-time data collection, simulation, and predictive
analytics, the system offers tools for traffic managers to
monitor current conditions and test interventions virtually before



implementing them. We utilize this use case in the remainder
of this paper to contextualize and elaborate on the proposed
architecture for building and deploying a DT for ITS.

IV. ARCHITECTURE FOR DIGITAL TWIN

The design and implementation of the architecture of
DigIT (DT for ITS) platform require a structured approach
to address the inherent complexities of urban mobility. Using
the Sociotechnical DT Specification Meta Language Concepts
[18] as the foundation, this approach establishes the scope,
purpose, and operational mechanisms of the DT. At the core
of this system is the Domain Concept Model (DCM), which
provides a structured representation of the architecture of
DigIT components and their interactions. Together, these
elements ensure that the architecture for DigIT platform is
both theoretically sound and practically viable.

A. Sociotechnical DT Specification Meta Language Concepts
for DigIT

The specification meta-language serves as a framework to
articulate and guide the development of the DT for ITS. Each
concept within this framework is defined and applied explicitly
to address the challenges and requirements of ITS.

Goal. The primary goal of the DT is to enhance traffic man-
agement by enabling proactive and data-driven decision-making.
Key objectives include improving traffic flow efficiency, reducing
congestion and delays, and enhancing road safety. Additionally,
the DT seeks to expand and optimize communication capabilities
through adaptive technologies, ensuring seamless information
exchange between vehicles and infrastructure. These goals
collectively aim to create a more responsive and sustainable ITS.

Measure. The effectiveness of the DT is evaluated
using quantifiable metrics that assess traffic performance,
environmental impact, and communication reliability. These
measures include average travel time per vehicle, intersection
throughput (vehicles per minute), reduction in greenhouse gas
emissions, and the number of accidents or incidents reported
per month. Additional metrics, such as average vehicle speed
during peak hours and communication latency between traffic
management systems and vehicles, provide insights into system
responsiveness and efficiency. These indicators ensure the DT
delivers measurable improvements aligned with ITS objectives.

Assumption. The assumptions explain the scope of the DT and
define the prerequisites for its successful deployment. For the ITS-
focused DT, the architecture assumes the presence of IoT-enabled
sensors deployed across the transportation network. These sensors
capture real-time data, such as traffic flow rates, vehicular speeds,
and congestion levels. Environmental sensors are also assumed
to provide supplementary data on external factors like weather
conditions. Additionally, the architecture assumes the existence of
a robust communication infrastructure that facilitates the seamless
transmission of data between the physical and digital layers.
These assumptions ensure that the DT operates in a data-rich
environment, accurately reflecting real-world conditions [27].

Lever/Policy. Levers or policies are quantifiable or actionable
elements that influence the operation of the DT. Examples
of policies include dynamic traffic signal adjustments, traffic
rerouting strategies, emission control policies, integration with
public transit policies, pedestrian prioritization, and enabling

direct vehicle-to-vehicle (V2V) communication for dynamic
traffic information sharing. These levers serve as input for
simulations and predictive models, allowing the DT to anticipate
traffic conditions and recommend appropriate interventions. For
example, a high vehicle density at a particular intersection could
be detected and processed by an ML model, which predicts
the potential impact of congestion. This prediction could then
initiate simulations to assess the effectiveness of rerouting
strategies or signal adjustments to alleviate the congestion.

Regulation. Regulations define enforceable policies and
standards that guide the operations of the DT within the ITS.
These include city-specific traffic and parking rules, privacy
laws governing data collection and use, emission control limits
for urban zones, and interoperability standards for IoT and
ITS components. Such regulations ensure that the DT complies
with societal, environmental, and legal requirements. For
example, emission control policies can trigger restrictions on
vehicle performance during periods of high pollution, while
interoperability standards ensure seamless integration between
heterogeneous systems within the ITS ecosystem.

Constraint. Constraints define domain-specific rules that
govern the behavior of the DT to ensure compliance with
legal, ethical, and operational standards. In the context of
ITS, these constraints include traffic signal timings that must
remain within operational limits, maximum vehicle density
thresholds for road segments, and safety margins for pedestrian
crossings. Additionally, environmental factors, such as weather
conditions, impose constraints on the reliability of predictive
models. By embedding these constraints into its architecture,
the DT operates within predefined boundaries, ensuring safe,
reliable, and regulation-compliant functionality.

Validation. The DT is validated using a multifaceted
approach to ensure accuracy and reliability. Real-time sensor
data collected from IoT-enabled devices at intersections are
compared against DT predictions to assess model performance.
Simulations are conducted to test intervention strategies, such
as rerouting, under varying traffic conditions. In addition,
stakeholder feedback on system recommendations provides
qualitative insights, ensuring that the DT meets practical
requirements and operational expectations.

Actions. Actions represent the operational behaviors assigned
to domain concepts within the DT. These include dynamic
signal timing adjustments, traffic rerouting based on real-time
conditions, and generating predictive alerts for traffic operators.
By translating the DT’s insights into actionable interventions,
these behaviors create a feedback loop that continuously refines
the system’s performance.

State Model. The State Model defines the dynamic conditions
of key entities within the ITS to capture their operational
status and transitions. Vehicles can be in states such as idle,
moving, queuing, or rerouted. Intersections are classified as
free flow, congested, or under intervention. Road segments
are categorized based on traffic levels, ranging from clear to
heavy congestion. The overall system state reflects conditions
like normal operations, incident response, or weather-affected
scenarios. These states enable real-time monitoring and adaptive
decision-making within the DT framework.

Domain Concept Model (DCM). DCM defines the ITS
as a set of interconnected components that capture attributes,



Fig. 1. Sociotechnical DT Specification Meta Language Concepts for ITS.

behaviors, and relationships at a higher level of abstraction. It
provides a foundational framework for modeling key entities such
as vehicles, users, communication networks, infrastructure, routes,
and environmental conditions, along with their interactions. Each
component in the DCM can be further elaborated through special-
ized domain models to address specific aspects of ITS operations
in greater detail. We used the principles of Domain-Driven Design
(DDD) to identify key domains in the ITS. This was achieved by
identifying bounded contexts within the ITS domain, as proposed
by Macı́as et al. [24] and Evans [25]. These bounded contexts
provide logical partitions that encapsulate specific functionalities,
ensuring modularity and consistency across the system.

Building on this foundation, the model organizes the ITS
into several interconnected components, each corresponding to a
bounded context as shown in Figure 1. For instance, the Users
Context categorizes users as drivers, passengers, and pedestrians,
each with distinct attributes and behaviors. Similarly, the Vehicles
Context models properties such as speed, direction, and unique
identifiers, as well as behaviors like adherence to speed limits, to
capture real-world dynamics. The Communication Context defines
networks and protocols to enable seamless data exchange between
vehicles, infrastructure, and centralized systems, supporting real-
time information sharing and decision-making. Environmental
factors, such as weather and time of day, influence traffic condi-
tions and vehicle performance, while infrastructure components
define fixed resources like traffic signals and IoT-enabled sensors.
Messages exchanged through communication protocols support
coordination, while routes and traffic conditions guide vehicle
navigation and behavior. The DCM also models interactions and
constraints, including traffic signal timing limits, vehicle density
thresholds, and pedestrian safety margins. These constraints are
embedded within the architecture to ensure compliance with

regulatory and operational requirements. Behavioral elements,
such as adaptive signal timing, dynamic rerouting, and message
exchanges, enable predictive analytics and scenario testing within
the DT. By abstracting ITS components at a high level, DCM
allows modular expansion, enabling detailed exploration of
specific domains through separate models. Figure 1 illustrates the
structure, showing how core entities and relationships form the
basis for an extensible and scalable ITS framework. It is important
to note that this DCM is not exhaustive but rather serves as an
illustrative example of how the ITS domain can be modeled.
The framework is flexible and can be extended or customized
to incorporate additional components and interactions as needed
to address the specific requirements of diverse ITS applications.

B. Proposed Architecture of the DT
Building on the DCM, we propose an architecture for DigIT

platform that transforms the high-level abstractions defined in the
DCM into operational components for data collection, predictive
analysis, simulation and visualization. Although DCM provides
a broad framework for modeling ITS, this architecture focuses
on select components essential for real-time traffic monitoring,
prediction, and scenario-based simulations. Using elements from
the DCM, such as vehicles, communication networks, sensors,
and user behaviors, the proposed architecture ensures a seamless
integration between conceptual modeling and practical implemen-
tation. The following sections detail each functional component,
demonstrating how the principles outlined in the DCM are
operationalized within the architecture of DigIT platform.

Users and Vehicles. As shown in Figure 2, the architecture
models users, including drivers, passengers, and pedestrians,
along with vehicles characterized by attributes such as speed,
direction, and ID. Users access dashboards that provide real-time
traffic updates and predictions, extending the behavioral



modeling of users and vehicles defined in the DCM to ensure
synchronization between physical and digital systems.

Sensors. As shown in Figure 2, IoT-enabled sensors deployed
at intersections and road segments capture real-time data,
including vehicle speeds, traffic density, and congestion levels.
Environmental sensors complement this by monitoring external
factors such as weather conditions, aligning with the Environment
component in the DCM (Figure 1). These sensors operate
continuously, reflecting the dynamic nature of the transportation
network and providing input for predictive modeling and
simulations. By integrating data from physical infrastructure, the
sensors ensure that the DT maintains synchronization with real-
world conditions, enabling timely analysis and decision-making.

Fig. 2. Architecture of DigIT

Communication Layer. The communication layer, as shown in
Figure 2, facilitates seamless and reliable data exchange between
the physical and digital systems. It leverages a heterogeneous
network comprising 4G/5G, LoRA, and WiFi communication
mechanisms to support high-frequency real-time data streams and
periodic batch transfers. Modeled in the DCM (Figure 1) through
the CommunicationNetwork and CommunicationBehaviour
components, this layer ensures bidirectional communication,
enabling the DT to relay recommendations—such as optimized
signal timings or rerouting strategies—back to the physical infras-
tructure. Attributes such as protocol type and latency, as captured
in the DCM, align with the low-latency protocols implemented
here to handle time-critical updates, including responses to
accidents or congestion. For example, vehicle counts and speed
data collected at multiple intersections are transmitted to the data
lake while maintaining synchronization across all input sources.

Data Lake. After data is transmitted through the communi-
cation layer, the data lake stores the communicated information,
supporting both real-time analysis and long-term storage. It pro-
cesses structured and unstructured data, performing preprocessing
tasks like cleaning and aggregation to optimize it for simulations
and machine learning models. As shown in Figure 2, this layer
integrates inputs modeled in the DCM, including vehicle behavior,
environmental conditions, and communication protocols.

Visualization. As shown in Figure 2, the visualization layer
provides three types of dashboards—real-time, simulation, and
prediction. The real-time dashboard monitors live metrics like
vehicle counts and congestion levels. The simulation dashboard
models scenarios such as accidents and peak-hour traffic, while
the prediction dashboard forecasts future traffic patterns using
historical and real-time data. These dashboards leverage the be-
havioral and environmental models defined in the DCM to ensure
synchronization between real-world data and simulated outputs.

Digital Twin Manager. As shown in Figure 2, the DT
Manager creates a virtual representation of the physical
transportation network. It enables the simulation, prediction,
and optimization of traffic conditions in real-time, while
ensuring continuous feedback between the virtual and physical
systems. The DT Manager incorporates three key components:
the Simulator, the Actuator, and the Code Generator. These
components collaboratively ensure the platform’s adaptability,
scalability, and responsiveness to evolving traffic conditions.

The Simulator replicates real-world traffic conditions by
using real-time and historical data from IoT-enabled sensors,
as described in the Figure 2. It models traffic dynamics such
as vehicle movements, congestion patterns, and disruptions
(e.g., accidents or roadblocks). Scenarios are evaluated using
predictive models, such as LSTM and BiLSTM, to assess the
impact of potential interventions like signal timing adjustments,
lane closures, or rerouting strategies. For instance, when a
sensor detects congestion at an intersection, the Simulator
evaluates alternative traffic flow patterns and identifies the most
effective mitigation strategy. The simulations are run iteratively,
incorporating temporal and spatial dependencies, ensuring the
virtual environment remains in sync with the physical system.

The Actuator implements decisions derived from the
Simulator into the physical transportation network. By translating
simulation outcomes into real-world actions, it controls physical
infrastructure such as traffic lights, dynamic message signs, and
variable speed limits. For example, if the Simulator predicts
bottlenecks at a specific intersection, the Actuator adjusts traffic
signal timings or reroutes vehicles to alleviate congestion. The
Actuator is designed to handle low-latency operations, ensuring
rapid deployment of interventions during critical scenarios,
such as accidents or emergency evacuations. The bidirectional
communication with physical systems ensures that the Actuator
can validate its actions using updated feedback from sensors,
maintaining a robust closed-loop system.

The Code Generator serves as the intermediary between
the high-level abstract models defined in the DCM and the
operational components of the Digital Twin. While ML models
can directly process data for predictions without translation,
abstract models in the DCM—such as communication protocols,
behavioral models, and state transitions—must be translated
into executable instructions for the Digital Twin to understand
and act upon them. The Code Generator performs this crucial
task, converting these specifications into machine-readable
configurations that the Simulator and Actuator can execute.
For example, the DCM may define the relationships between
vehicles, sensors, and infrastructure; the Code Generator ensures
these relationships are accurately mapped to system operations,
enabling real-time simulation and execution. This modular
approach ensures flexibility and scalability, allowing for the



seamless integration of new traffic management policies or
sensor types without disrupting the existing system.

MLOps Pipeline. The MLOps pipeline automates the lifecycle
of machine learning (ML) models, such as Long Short-Term
Memory (LSTM) for traffic flow prediction or Convolutional
Neural Networks (CNN) for anomaly detection. It handles data
preprocessing, model training, deployment, and monitoring,
ensuring adaptability to evolving traffic conditions. Let Xt=
{x1,x2,...,xt} represent input data collected over t time intervals.
The objective is to forecast traffic states for a future horizon h as:

Ŷt+h=f(Xt;Mv)
where Mv denotes the current model version. Model performance
is continuously evaluated using metrics such as Root Mean
Squared Error (RMSE):

RMSE=

√√√√ 1

n

n∑
i=1

(Yi−Ŷi)2.

To maintain model accuracy, retraining is triggered based on
drift detection. Drift δ is defined as:

δ=D(Y,Ŷ )>ϵ,
where D(·) measures data or model drift, such as distributional
changes in input features or output predictions, and ϵ represents
a predefined threshold. When drift is detected, a new model
version Mv+1 is trained and deployed:

Mv+1=Train(Xt,Yt).
The pipeline supports scalability by maintaining versioned

repositories of models and automating retraining cycles. It
reduces manual intervention while enabling responsiveness
to traffic variations and anomalies. Inspired by Bhatt et al.
[28], this approach emphasizes sustainable and self-adaptive
workflows, ensuring robustness in dynamic environments.

Model Manager. As shown in Figure 2, the Model Manager
organizes and stores models essential for the DT, including
communication, predictive, and environment models, but is
not limited to them. Communication models define protocols
and behaviors for data exchange, ensuring seamless interaction
between components. Predictive models, forecast traffic
patterns and congestion based on historical and real-time data.
Environment models account for external factors like weather
and time of day, influencing traffic dynamics. These models are
accessible to the Digital Twin Manager, with the code generator
facilitating the translation of abstract models into executable
formats, ensuring compatibility with the simulator and actuator.

V. IMPLEMENTATION

The implementation of the DigIT platform follows the
architecture outlined in Section IV, operationalizing its
components to enable real-time traffic monitoring, prediction,
and visualization for ITS. By leveraging a modular and scalable
design, the system ensures integration between data acquisition,
predictive analytics, simulation, and user-facing dashboards.

Real-time traffic data was collected using IoT-enabled sensors
deployed near the IIIT Hyderabad campus, capturing key
attributes such as timestamps, flow rates, average speeds,
and congestion levels. These sensors, corresponding to the
Sensors on the road in the architecture (Figure 2), transmitted
preprocessed data to a public API hosted on a Virtual Private
Server (VPS). This API acted as the primary data pipeline,

ensuring scalability and seamless integration of real-time and
historical data. This data was further communicated to the DT
Manager via the Communication Layer as shown in (Figure 2).

Traffic Simulator, a critical component of the Digital Twin
Manager (Section IV), was implemented using the SUMO.
SUMO utilized the processed sensor data to model transportation
networks and simulate real-world scenarios, such as peak
traffic hours, roadblocks, and intervention strategies. These
simulations allowed for scenario-based testing of adaptive traffic
management measures, including dynamic signal timing and
rerouting strategies, in alignment with the behavioral models
defined in the DCM (Section IV).

Predictive analytics was powered by ML models, which were
handled by the Model Manager, as described in Section IV.
Specifically, Long Short-Term Memory (LSTM) and Bidirectional
LSTM (BiLSTM) networks, implemented in Python using
TensorFlow, were used. These models were designed to analyze
temporal patterns in traffic data and provide short-term forecasts,
such as predicting congestion levels at specific intersections. The
models were integrated with an MLOps pipeline to automate
processes such as training, validation, and deployment. This
pipeline continuously monitored model performance using
metrics like Root Mean Squared Error (RMSE). Retraining
was dynamically triggered when performance degradation
exceeded predefined thresholds, ensuring sustained accuracy
under evolving traffic conditions, as described in Section IV.

The visualization layer was implemented using a React-based
frontend and a Node.js backend, connected to the API for
real-time updates. The dashboard provided an intuitive interface
for monitoring key metrics such as vehicle counts, average
speeds, and traffic intensity. It also visualized simulation
results and predictions through interactive graphs and heatmaps,
reflecting the actionable insights derived from the DT’s predictive
and simulation engines. This implementation extended the
DCM’s state and behavioral models into user-facing applications,
ensuring operational transparency and stakeholder engagement.
The system leveraged the cloud infrastructure for scalable storage
and computational resources, supporting both real-time analytics
and batch processing. This infrastructure enabled seamless
integration across all layers of the architecture, ensuring robust
and efficient operation. Overall, the implementation demonstrated
the practical realization of the proposed architecture, maintaining
synchronization between physical and digital systems while
addressing the complex requirements of ITS.

VI. EVALUATION

The evaluation of the architecture of DigIT platform is
guided by three key aspects:

• Accuracy: The predictive performance of the analytics
component, measured against observed traffic flow data.

• Fidelity: The ability of the simulation environment to replicate
real-world traffic patterns and responses to interventions.

• Efficiency: The computational performance of the system,
including the time required to execute predictions and run
simulations.



A. Data Collection and Setup
The data used for evaluating DigIT was collected from IoT-

enabled sensors deployed at intersections near the IIIT Hyderabad
campus, as described in Section III. These sensors capture traffic
parameters, including vehicle counts, speeds, and congestion
levels, at fixed intervals of 5 minutes. This frequency ensures that
the system captures real-time variations in traffic conditions, pro-
viding a foundation for both predictive analytics and simulations.
The collected data is transmitted via the Communication Layer
to the Data Lake, where it is preprocessed to handle missing
values, normalize readings, and structure data for modeling.
The dataset spans several days, encompassing both peak and
non-peak traffic conditions, making it suitable for evaluating
system performance across varying levels of congestion. Using
this detailed data set, the DT ensures accurate modeling of
traffic dynamics, allowing more realistic simulations and precise
predictions. To develop and validate predictive models, the data
set was divided into a training set (75%), validation set (15%),
and a testing set (10%). The data was structured into sequences
of 15 input timesteps to predict the 16th timestep, reflecting the
temporal dependencies required for short-term forecasting. For
the current implementation, the model takes traffic flow data as
input and outputs predicted flow values for future time intervals.

B. Predictive Model Validation: Accuracy
The predictive analytics component of the architecture of

DigIT platform employs deep learning models, specifically
Long Short-Term Memory (LSTM) and Bidirectional Long
Short-Term Memory (BiLSTM), implemented within the MLOps
Pipeline, as shown in Figure 2. These models are designed to
capture temporal dependencies in traffic data, enabling accurate
short-term predictions of traffic flow and congestion patterns.
Both models were trained using preprocessed data collected
from IoT-enabled sensors, as described in Section III. The
data was structured into sequences of 15 input timesteps to
predict 16th timesteps, reflecting the temporal dependencies
required for short-term forecasting. Traffic flow rates, measured
in vehicles per 5 minutes, were used as the target variable to
ensure precise predictions suitable for real-time decision-making
and intervention strategies. For example, the models can predict
increased congestion at an intersection, triggering appropriate
interventions such as rerouting traffic or adjusting signal timings.
The performance of the LSTM and BiLSTM models was
evaluated using standard metrics, including Mean Absolute Error
(MAE) (vehicles), Root Mean Squared Error (RMSE) (vehicles),
and Mean Absolute Percentage Error (MAPE) (percentage). The
results are presented in Table I.

TABLE I
PERFORMANCE METRICS FOR PREDICTIVE MODELS

Model RMSE (vehicles) MAE (vehicles) MAPE (%)
LSTM 25.522 18.394 13.3

BiLSTM 24.451 17.255 19.1

The results demonstrate that both models effectively capture
traffic dynamics. The BiLSTM model achieved slightly lower
RMSE and MAE values, indicating higher predictive accuracy.
However, the LSTM model exhibited a lower MAPE, suggesting
it may be more robust for percentage-based error evaluation.

These findings highlight the complementary strengths of
the two models, depending on specific performance criteria.
Predictions generated by the models were visualized through
the Visualization Layer using the Dashboard for predictions,
as shown in Figure 3, providing insights into both immediate
and future traffic patterns. These insights allow stakeholders
to assess the effectiveness of interventions in real-time, ensuring
timely and informed traffic management decisions.

Fig. 3. Traffic Prediction Dashboard displaying accuracy, prediction errors,
and performance metrics.

C. Simulation Fidelity

The simulation fidelity of the architecture of DigIT platform
was evaluated by analyzing its ability to replicate observed traffic
patterns and predict traffic flow dynamics accurately. This eval-
uation combined machine learning predictions with simulation
outputs to validate the system’s ability to model real-world traffic
behavior effectively. Traffic predictions were generated using
Long Short-Term Memory (LSTM) and Bidirectional LSTM
(BiLSTM) models, implemented within the MLOps Pipeline.
These predictions were compared against actual traffic flow data
collected at 5-minute intervals from IoT-enabled sensors, as
shown in Figure 4. The results demonstrated a strong correlation
between predicted and observed values, capturing key traffic
features such as congestion buildup, clearance, and peak-hour
variations. To ensure consistency, the modeling assumptions
between SUMO simulations and the DT were carefully aligned,
including vehicle flow rates, signal timing protocols, and road
network configurations. For example, vehicle flow rates from
IoT sensors were matched with the input parameters in SUMO
to reflect observed traffic volumes. This alignment ensures that
the virtual simulations reflect real-world dynamics as closely
as possible. Some spikes were observed during periods of high
congestion, as shown in Figure 4, due to insufficient data for
such scenarios; however, the model is expected to improve with
additional data collection. Simulations were executed using the
SUMO platform, integrated within the Simulation and Digital
Twin Manager, to model virtual scenarios reflecting real-world



dynamics. These simulation outputs were visualized in the Visual-
ization Layer via an interactive dashboard, providing insights into
traffic behavior and intervention strategies, as shown in Figure 5.

Fig. 4. Predicted vs Actual Traffic Flow.

Fig. 5. Simulation Dashboard displaying traffic flow timelines, speed
distributions, and junction traffic visualizations.

D. Computational Efficiency

The computational performance of DigIT was evaluated to
validate its suitability for real-time applications. The assessment
measured execution times for both predictive modeling and
simulation tasks, ensuring responsiveness under time-sensitive
conditions. The LSTM and BiLSTM models, implemented within
the MLOps Pipeline, required an average of 7 milliseconds to pro-
cess 15 input timesteps and generate predictions for the next 16
timesteps. Simulations covering the same interval were executed
within 15 seconds using SUMO. These results demonstrate that
the system operates within time constraints appropriate for real-
time traffic management, enabling timely responses to evolving
traffic conditions. The integration of the MLOps Pipeline further
enhances computational efficiency by automating the retraining
and deployment of predictive models. This process ensures that
the system adapts dynamically to changes in traffic behavior

without manual intervention, maintaining both accuracy and
scalability as data volumes increase.

VII. DISCUSSION AND CONCLUSION

This paper presented the architecture for the DigIT platform.
The platform integrates predictive modeling, simulations, and
automated workflows to address real-time traffic management
challenges. The DCM models components such as vehicles,
sensors, and communication networks, ensuring seamless data
flow between physical and digital systems.

Evaluation results demonstrated that the platform effectively
captured traffic patterns and provided accurate short-term
forecasts. Simulations were used to validate the computational
efficiency of the platform, showing an average prediction
time of 7 ms. The modular design supports scalability,
enabling integration of advanced modeling techniques, such
as reinforcement learning and hybrid simulations, to enhance
adaptability and performance. While the current implementation
focuses on traffic forecasting and data-driven modeling, the
architecture provides a foundation for expanding capabilities to
address broader challenges, including multi-modal transportation
systems and communication network modeling. The results
validate the feasibility of Digital Twins for traffic management
and highlight their potential for improving efficiency and
decision-making in dynamic transportation environments.

VIII. FUTURE WORK

Future efforts will focus on extending the architecture for
DigIT platform to support multi-modal transportation systems,
including public transit and pedestrian flows. Enhancements
in modeling communication networks will enable evaluations of
key metrics such as latency, throughput, and range, improving
performance in connected and autonomous vehicle scenarios.
Additional focus will be on integrating adaptive modeling
techniques and dynamic calibration methods to enhance
scalability during peak traffic and disruptions. Testing across
diverse traffic scenarios, including urban roads, highways, and
mixed-mode networks, will validate generalizability. Finally,
advancements in real-time analytics leveraging IoT and 5G
technologies will be explored to strengthen data acquisition,
communication reliability, and responsiveness, ensuring the
platform can handle dynamic traffic environments effectively.
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